
Learning Descriptors for Novelty-Search Based Instance
Generation via Meta-evolution

Alejandro Marrero
Universidad de La Laguna

San Cristóbal de La Laguna, Spain
amarrerd@ull.edu.es

Eduardo Segredo
Universidad de La Laguna

San Cristóbal de La Laguna, Spain
esegredo@ull.edu.es

Coromoto León
Universidad de La Laguna

San Cristóbal de La Laguna, Spain
cleon@ull.edu.es

Emma Hart
Edinburgh Napier University

Edinburgh, UK
e.hart@napier.ac.uk

Figure 1: Meta-Learning of Descriptors: (1) CMA-ES is used to evolve the weights of an NN with fixed architecture that projects
a feature-vector to 2D. (2) For each evolved NN (weight vector), a Novelty Search (NS) algorithm is run to evolve knapsack
instances that are discriminatory w.r.t. a solver portfolio and diverse in the 2D projection defined by the corresponding NN.
(3) The output of the NS algorithm is a set of instances which are projected into a fixed 8D hypercube. The coverage of the
hypercube is assigned as the fitness of the corresponding NN weight vector. (4) CMA-ES repeats the above procedure for a fixed
number of generations.

ABSTRACT
The ability to generate example instances from a domain is im-
portant in order to benchmark algorithms and to generate data
that covers an instance-space in order to train machine-learning
models for algorithm selection. Quality-Diversity (QD) algorithms
have recently been shown to be effective in generating diverse and
discriminatory instances with respect to a portfolio of solvers in var-
ious combinatorial optimisation domains. However these methods
all rely on defining a descriptor which defines the space in which
the algorithm searches for diversity: this is usually done manually

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0494-9/24/07.
https://doi.org/10.1145/3638529.3654028

defining a vector of features relevant to the domain. As this is a
limiting factor in the use of QD methods, we propose a meta-QD
algorithmwhich uses an evolutionary algorithm to search for a non-
linear 2D projection of an original feature-space such that applying
novelty-search method in this space to generate instances improves
the coverage of the instance-space. We demonstrate the effective-
ness of the approach by generating instances from the Knapsack
domain, showing the meta-QD approach both generates instances
in regions of an instance-space not covered by other methods, and
also produces significantly more instances.

CCS CONCEPTS
• Computing methodologies→ Heuristic function construc-
tion; Discrete space search; Neural networks; Instance-based learn-
ing.

206

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3638529.3654028
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3638529.3654028&domain=pdf&date_stamp=2024-07-14

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

KEYWORDS
Instance generation, instance-space analysis, knapsack problem,
novelty search, evolutionary computation, neural-network

ACM Reference Format:
Alejandro Marrero, Eduardo Segredo, Coromoto León, and Emma Hart.
2024. Learning Descriptors for Novelty-Search Based Instance Generation
via Meta-evolution. In Genetic and Evolutionary Computation Conference
(GECCO ’24), July 14–18, 2024, Melbourne, VIC, Australia. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3638529.3654028

1 INTRODUCTION
For any optimisation domain it is well-known that a portfolio of
solvers will have complementary performance over a space of in-
stances. To understand the strengths and weaknesses of different
solvers over this space, it is crucial to have access to a large set
of instances that ideally provide uniform coverage of an instance-
space, i.e. the space of all possible instances. For many domains
however, both the quantity and quality of available instances is
poor [6]. On the one hand this limits benchmarking practices which
enable a fair and unbiased comparison of solvers, and on the other,
has an impact on machine-learning approaches such as algorithm-
selection where large sets of unbiased training data are required to
learn accurate models. To address this, a variety of methods have
been proposed to generate new instances that are either diverse
(cover a large region of the instance-space), discriminatory (elicit
different performance from different solvers) or have both prop-
erties. For example, [13] use a full factorial design of experiments
method, to generate problem instances for every combination of
parameters in the knapsack domain. In [1], the automated parame-
ter configuration tool iRace [17] is used to generate discriminatory
instances for Constraint Programming and Mixed Integer Program-
ming problems. On the other hand, Evolutionary algorithms (EAs)
have been used to both generate new instances that fill gaps in
an existing instance-space [31] (focusing on improving coverage)
and to generate discriminatory instances [2, 26] in the bin-packing
domain.

More recently, approaches from the class of EAs known as
Quality-Diversity (QD) [28] algorithms have shown to be promising
in being able to generate large sets of diverse and discriminatory
instances in one run of an algorithm in travelling salesman, bin-
packing and knapsack domains [4, 18, 20]. The intuition behind QD
methods is to force exploration of a search-space to discover high-
quality solutions, maintaining stepping-stones in the population
that can lead to high performing solutions. The two most common
QD algorithms, i.e. MAP-Elites [24] and Novelty-Search (NS) [14],
rely on the definition of a multi-dimensional space in which to
search for diversity, generally referred to as a descriptor. This is
commonly defined by hand, for example using a feature-vector
derived from the domain. However, the selection of appropriate
features is challenging, and furthermore, high-dimensional feature-
spaces can be very time-consuming to search. To address this is-
sue when using QD to generate instances, [18] used the popular
dimensionality-reduction method PCA [8] to reduce a feature-space
to 2D, and then applied NS in the projected space, showing that
new instances were found that were not discovered when searching
for novelty in the feature-space directly. However, the choice of

PCA as a dimensionality-reduction method is somewhat limiting
given that it only finds linear relationships among variables.

While there are other ‘off-the-shelf’ dimensionality-reduction
methods including non-linear approaches such as UMAP [22] that
could be used instead of PCA, in this article we propose a method
to learn a projection of features into a 2D space such that when
an NS algorithm is applied in this new space, it produces a set of
instances that maximise coverage of an instance-space. Specifically,
the proposedmeta-EA searches over a space of possible descriptors,
where a descriptor is defined as the 2D coordinates output given by
a neural network (NN) that takes a high-dimensional feature-vector
as input.

The well-known continuous algorithm CMA-ES [12] is used to
evolve the weight vectors of the NN that outputs the 2D descriptor
vector, while the NS algorithm proposed by [20] is used to evolve
diverse and discriminatory knapsack instances in the 2D space.
Comparison of the results in terms of the number and diversity
of instances discovered demonstrates: (1) the novel meta-EA finds
a order of magnitude more discriminatory instances than previ-
ously proposed methods using hand-defined descriptors or PCA;
(2) previous work using PCA-based descriptors is significantly out-
performed in terms of the coverage metric; (3) instances that cover
regions of the instance-space not covered by other NS methods
from the literature are found (4) the method finds significantly more
instances that are discriminatory for two of the heuristic solvers
(𝐷𝑒𝑓 and𝑀𝑃𝑊) than previous approaches which struggled with
these solvers.

2 RELATEDWORK
As noted in the Introduction, there is a long history of EAs be-
ing used to generate instances for combinatorial optimisation do-
mains [2, 26, 32]. Typically these methods focus on filling gaps in
an instance-space, or finding instances that are discriminatory with
respect to a portfolio of solvers. Recent work has shown that algo-
rithms from the QD literature that were originally developed in the
context of Evolutionary Robotics can be used to evolve instances
that are both diverse and discriminatory in the Travelling Salesman
Problem (TSP) and Knapsack (KP) domains [4, 18, 20]. However, as
already pointed out, QD methods have some drawbacks, particu-
larly with respect to the need to define an appropriate descriptor
that sets the space in which diversity is measured. Recognising
that searching for novelty in a high-dimensional space defined
by a feature-vector is computationally expensive, [18] proposed it
might be easier to search for novelty in a low-dimensional space,
by using PCA to project to 2D with promising results in the KP
domain. However, PCA provides a linear projection that might fail
to capture relevant patterns in the data.

Looking beyond the field of instance-generation, the wider QD
literature has embraced the idea of automatic generation of descrip-
tors, particularly in the robotics domain. For example, in robot-
ics, [11] propose a method of learning low-dimensional descriptors
from raw sensory data using an encoder. The descriptors are used
with a MAP-Elites algorithm where they are demonstrated to out-
perform hand-coded descriptors on three tasks. [3, 4] proposed
a meta-QD algorithm that also learns descriptors for MAP-Elites
by evolving an NN to create a low-dimensional encoding. This is

207

https://doi.org/10.1145/3638529.3654028

Learning Descriptors for Novelty-Search Based Instance Generation via Meta-evolution GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

evaluated on a set of standard benchmark functions from the con-
tinuous optimisation domain and to learn behaviours for a hexapod
robot. Meyerson [23] proposed a method for learning behaviour
descriptors for an NS algorithm used in a maze-navigation task that
outperforms hand-coded descriptors. Their framework requires an
underlying descriptor that provides a set of base features and learns
a weighting over the features of the base descriptor for each new
task.

Although not specifically related to learning descriptors, recent
work which uses EAs to learn low-dimensional embeddings of data
is also worthy of mention. For example, [30] used Genetic Program-
ming to learn a 2D projection of instance-data in which the distance
between pairs of instances in the projected space correlated with
the distance between pairs of instances in the performance space.
Lensen et al. [15] proposed a GP approach to manifold learning
of machine-learning datasets. A multi-tree GP method is used to
learn a 2D projection of data using a fitness function that attempts
to maintain the same ordering between neighbours of an instance
in both the original and low-dimensional spaces. The quality of
a learned embedding is estimated via a proxy measure calculated
post-evolution — applying a classifier to the newly projected data
and measuring classification accuracy. In more recent work, the
same authors propose further extensions that (1) optimise the em-
bedding learned by GP to match a pre-computed UMAP embedding,
and (2) optimise UMAP’s own cost-function directly [29]. Most re-
cently, they adapt their approach to consider how local structure
within an embedding can be better reflected, proposing a modified
fitness function that seeks to measure how well local topology is
preserved by the evolved mapping [16].

Our proposed approach is mainly inspired by work in robotics
that automatically learns descriptors for MAP-Elites using a meta-
learning approach [4]. We adapt this method to work with NS in
the context of instance-generation.

3 METHODS
This section provides specific details on each of the steps described
above. The innovation of this work is the use of a meta framework
to learn a projection of a feature-vector into a new space in which
NS is able to find diverse, discriminatory instances. We accomplish
this using an evolutionary strategy (𝐶𝑀𝐴 − 𝐸𝑆) [12] which evolves
the parameters of a 𝑁𝑁 model that outputs the coordinates of an
instance in the new space in which novelty can be measured. The
term parameters refers to the weights and bias terms of the layers of
the 𝑁𝑁 [10]. The intuition is that rather than searching for novelty
in a fixed space defined by an off-the-shelf method (as per [18]), we
use the meta-algorithm to find the best space possible to apply NS
in. The method overcomes some of the main disadvantages that
PCA models have, such as presented by Marrero et al. [18]; e.g., (1)
the data has to be standardised before applying PCA and (2) PCA
assumes that the data hides a linear pattern between the variables.

We chose to use an 𝑁𝑁 to learn a new projection as there is
ample evidence in the literate that the weights of an 𝑁𝑁 can be
easily learned by an 𝐸𝐴 [33] and similar approaches have been
utilised in the robotics literature [3]. Other choices such as Genetic
Programming [16] or UMAP [22] could have beenmade—we return
to this in Section 6. We use a fixed structure 𝑁𝑁 and use𝐶𝑀𝐴−𝐸𝑆

Figure 2: 𝐶𝑀𝐴𝐸𝑆 algorithm for evolving a population of 𝑁𝑁

parameters.

to learn the weight vector𝑊 . The 𝑁𝑁 is constructed from three
layers of eight, four and two units respectively. The first layer is
defined by the number of features in the original vector that we
wish to reduce, and the output layer by the need to project to 2D.
Only one middle layer is set for simplicity. However, the 𝑁𝑁 could
be defined with any number of hidden layers and various units per
layer. The input layer receives an 8D feature descriptor which is
passed to the four-neuron layer, the only hidden layer of the model,
and then the output layer provides the 2D representation of the
original 8D descriptor. The activation functions are fixed to Rectified
Linear Unit (ReLU) [9] for the input and middle layers of the 𝑁𝑁 ,
and none for the output layer to avoid restricting the possible
output values of 𝑁𝑁 [10]. 𝑁𝑁 is a fully connected architecture
and the number of parameters for each layer can be calculated
as (𝑛 + 1) ×𝑚 where 𝑛 is the number of input units and𝑚 is the
number of output units. Therefore, the number of parameters to
evolve𝑊 is the sum of the parameters for each layer of 𝑁𝑁 . Thus,
𝑊 = (8 + 1) × 4 + (4 + 1) × 2 = 46. Consequently, each individual in
the𝐶𝑀𝐴−𝐸𝑆 population is a list of𝑊 = 46 floating point numbers
which encodes the parameters of 𝑁𝑁 ; i.e., 8 weights for the first
layer and a bias term repeated 4 times followed by 4 weights plus a
bias term repeated 2 times.

𝐶𝑀𝐴 − 𝐸𝑆 starts by creating an initial population 𝜆 individuals
sampling a multivariate normal distribution with an initial centroid
defined by a vector of |𝑊 | values equal to 0.05 and𝜎 = 1.0, following
common practices in the field [12]. Then, at each generation 𝑔 <

𝐺 and for each individual 𝑖 , 𝐶𝑀𝐴 − 𝐸𝑆 runs NS (see Figure 3)
to generate instances for different solvers in a portfolio. The NS
algorithm calculates the features of each instance and projects them
to a 2D vector using 𝑁𝑁 with the parameters from individual 𝑖
which is used to calculate novelty. The NS variant which uses an
𝑁𝑁 to reduce the descriptors is termed as 𝑁𝑆𝑁𝑁 in the rest of the
paper.

It is important to note that the evaluation procedure of the𝐶𝑀𝐴−
𝐸𝑆 algorithm is the most computationally expensive part of this
work. For each individual 𝑖 , a complete run of 𝑁𝑆𝑁𝑁 is required to
generate and collect sets of diverse and discriminatory instances
for each of the four solvers in the portfolio. After that, the fitness
of the individual in the 𝐶𝑀𝐴 − 𝐸𝑆 population is calculated as the

208

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

Table 1: Features ranges of 8D feature space hyper-
cube. 𝐶 is the maximum capacity of the knapsack,
minimum weight/profit (min_w, min_p), maximum
weight/profit (max_w, max_p), average item efficiency (also
known as correlation), mean and standard deviation of
values between profits and weights (mean, std).

Feature Minimum Maximum

𝐶 711 30000
𝑚𝑎𝑥_𝑝 890 1000
𝑚𝑎𝑥_𝑤 860 1000
𝑚𝑖𝑛_𝑝 1.0 200
𝑚𝑖𝑛_𝑤 1.0 230
𝑎𝑣𝑔_𝑒 𝑓 𝑓 0.10 12.0
𝑚𝑒𝑎𝑛 400 610
𝑠𝑡𝑑 240 330

space coverage by the set of instances over a predefined 8D feature
space hypercube 𝐻 . The use of a fixed reference space to calculate
coverage (i.e. the fitness of each individual represented by𝑊) is
essential as the metrics obtained by the NS algorithm are defined
in the projected space which is unique to each individual. The
hypercube𝐻 is defined by the interval [𝑚𝑖𝑛 𝑗 ,𝑚𝑎𝑥 𝑗] for each feature
𝑗 of the 8D feature descriptors extracted from available datasets [18,
20]. Table 1 shows the intervals for each feature. For each dimension
𝑗 in 𝐻 , we create a set of 𝐵 evenly spaced bins calculated over the
interval [𝑚𝑖𝑛 𝑗 ,𝑚𝑎𝑥 𝑗]. Then, for every instance in the set, we map
each 𝑗𝑡ℎ feature value from its 8D descriptor into the corresponding
bin of the 𝑗𝑡ℎ dimension of 𝐻 . A bin is considered to be covered if
the 𝑁𝑆𝑁𝑁 can generate at least one instance with a feature value
located in such a bin. The fitness 𝑓 of the individual is calculated
as the sum of bins filled in 𝐻 . After the evaluation, the 𝐶𝑀𝐴 − 𝐸𝑆
proceeds to update and create the next-generation population until
reaching the maximum number of generations to perform 𝐺 . The
new population maintains the 𝜇 = 𝜆/2 best individuals from the
parent population. Then, the algorithm returns the best individual
found; i.e., the parameters for the 𝑁𝑁 which maximises the space
coverage in 𝐻 . Figure 2 shows the flow of the𝐶𝑀𝐴 − 𝐸𝑆 algorithm.
Moreover, Algorithm 1 presents the pseudo-code of 𝐶𝑀𝐴 − 𝐸𝑆 ,
𝑁𝑆𝑁𝑁 and the procedure to calculate 𝑓 , the space coverage in 𝐻 .

3.1 Instance Representation and Novelty
Descriptors

We apply the approach to generating instances for the zero-one
KP domain, a commonly studied [5, 25] combinatorial optimisation
problem with many practical applications. The KP requires the
selection of a subset of items from a larger set of 𝑁 items, each
with profit 𝑝 and weight 𝑤 in such a way that the total profit is
maximised while satisfying a constraint that the weight remains
under the knapsack capacity 𝐶 . Each instance is described by an
array of real numbers of size 2 × 𝑁 , where 𝑁 is the dimension
(number of items) of the instance of the KP we want to create,
with the weights and profits of the items stored at the even and
odd positions of the array, respectively. We use 𝑁𝑆𝑁𝑁 to generate
instances with 𝑁 = 50 items and a capacity 𝐶 as 80% of the sum of

Algorithm 1: Meta-evolution with CMA-ES
1 𝐵𝑒𝑠𝑡 ← ∅, 𝑓𝑏𝑒𝑠𝑡 ← 0, 𝑃 ← create initial population()
2 for 𝑔 = 0 to 𝐺 do
3 𝑂 ← generate offspring population (𝑃)
4 for 𝑖 = 0 to 𝜆 do
5 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑠𝑒𝑡 ← ∅
6 for 𝑎𝑙𝑔 in 𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜 do
7 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑠𝑒𝑡 ← 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑠𝑒𝑡 ∪ run 𝑁𝑆𝑁𝑁 (𝑂𝑖)
8 end
9 𝑓𝑖 ← calculate space coverage(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑠𝑒𝑡 , 𝐻)

10 if 𝑓𝑖 > 𝑓𝑏𝑒𝑠𝑡 then
11 𝐵𝑒𝑠𝑡 ← 𝑂𝑖 , 𝑓𝑏𝑒𝑠𝑡 ← 𝑓𝑖

12 end
13 end
14 𝑃 ← update and select new population (𝑂)
15 end
16 return Return 𝐵𝑒𝑠𝑡

17 Procedure 𝑁𝑆𝑁𝑁 (𝑁 , 𝑘 ,𝑀𝑎𝑥𝐸𝑣𝑎𝑙𝑠 , 𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜 , 𝑁𝑁):
18 initialise and evaluate(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑁 , 𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜)
19 archive = ∅
20 for 𝑖 = 0 to𝑀𝑎𝑥𝐸𝑣𝑎𝑙𝑠 do
21 offs = select and reproduce(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
22 offs = evaluate(𝑜 𝑓 𝑓 𝑠 , 𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜 , 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 , 𝑘 , 𝑁𝑁)
23 population = update(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑜 𝑓 𝑓 𝑠)
24 archive = update_archive(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑎𝑟𝑐ℎ𝑖𝑣𝑒)
25 solution_set = update_ss(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑠𝑒𝑡)
26 end
27 return 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑠𝑒𝑡
28 end procedure
29 Procedure Evaluate(𝑜 𝑓 𝑓 𝑠 , 𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜 , 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 , 𝑘 , 𝑁𝑁):
30 for 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 in 𝑜 𝑓 𝑓 𝑠 do
31 for 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 in 𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜 do
32 apply 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 to solve 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑅 times;
33 calculate mean profit of 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
34 end
35 descriptors← reduce dimension(𝑜 𝑓 𝑓 𝑠 , 𝑁𝑁)
36 calculate the novelty score(𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 , 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 , 𝑘)
37 calculate the performance score(𝑜 𝑓 𝑓 𝑠)
38 calculate fitness(𝑜 𝑓 𝑓 𝑠)
39 end
40 return 𝑜 𝑓 𝑓 𝑠

41 end procedure
42 Procedure Space Coverage(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑠𝑒𝑡 , 𝐻):
43 𝐶𝑜𝑣 = {∅ × 8};
44 for instance 𝑖 in 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑠𝑒𝑡 do
45 for 𝑓𝑗 in the 8D descriptor of 𝑖 do
46 𝐶𝑜𝑣 𝑗 =𝑚𝑎𝑝 (𝑓𝑗 , 𝐻);
47 end
48 end
49 𝑓 ← ∑8

𝑗=1 |𝐶𝑜𝑣 𝑗 |;
50 return 𝑓

51 end procedure

209

Learning Descriptors for Novelty-Search Based Instance Generation via Meta-evolution GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

Figure 3: Flow of 𝑁𝑆𝑁𝑁 algorithm: the algorithm calculates
the 8D feature vector and then uses 𝑁𝑁 to create the reduced
2D projected vector.

the weights of all items.1 These parameters are chosen to reflect
those used by Marrero et al. [18] to enable a direct comparison.

We search for an 𝑁𝑁 that optimises the projection of an 𝑛-
dimensional feature-vector to two dimensions. The input to the
𝑁𝑁 is a set of 8 features, again taken directly from [18]: capacity
of the knapsack (𝐶); maximum weight/profit (max_w, max_p); min-
imum weight/profit (min_w, min_p); average item efficiency (also
known as correlation); mean distribution of values between profits
and weights (mean); standard deviation of values between profits and
weights (std).

3.2 Algorithm Portfolio
To provide a fair comparison between the methods, we also use the
same portfolio of solvers described in [18]. Although this portfolio
may contain any number or kind of solvers (Marrero et al. [19]
used a portfolio of EA solvers tuned with different configurations),
the computational effort required to run each solver scales with
the size of the portfolio and the time taken for each solver to
run. Consequently, in these experiments, we use a portfolio of
heuristic solvers [18, 27] to reduce computational effort. The port-
folio includes: Default (Def) selects the first item available to be
inserted into the knapsack; Max Profit (MaP) sorts the items by
profit and selects those items with largest profit first; Max Profit
per Weight (MPW) sorts the items according to efficiency (ratio
between the profit and weight of each item) and selects those items
with largest ratio first; and finally,MinWeight (MiW), which selects
items with the lowest weight first [27].

3.3 Novelty Search
Although the NS element of our proposed architecture has been
described in detail in previous work and is implemented without
modification, we provide a brief overview of NS for completeness.
The reader is referred to [18, 20] for a detailed description of this
part of the framework.

1The description of an instance follows the general method of [20].

NS was first introduced by Lehman et al. [14] as an attempt to
mitigate the problem of finding optimal solutions in deceptive land-
scapes, with a focus on the control problems. The core idea replaces
the objective function in a standard evolutionary search process
with a function that rewards novelty rather than a performance-
based fitness value to force exploration of the search-space.

Briefly, a population defining new instances is evolved that are
discriminatory with respect to a target algorithm selected from a
portfolio. Uniform crossover and Uniform One mutation (only one
gene of the chromosome is updated) are applied to create new child
instances. The evaluation function (𝑁𝑆𝑁𝑁 evaluation in Algorithm
1) assigns a fitness value to a new instance based on a linearly
weighted combination of novelty and objective fitness. The former
measures the novelty of an instance with respect to a user-defined
descriptor that denotes a set of characteristics of a solution, e.g. a
set of features describing the instance. For each solution, novelty
is calculated as the average distance between its descriptor and
that of its 𝑘 nearest neighbours. Neighbours are calculated w.r.t
the current population and an archive of previously discovered
solutions, which is updated at each generation of the algorithm and
provides a historical record of places visited in the search-space. On
the other hand, objective fitness is calculated as the difference in
performance between the target solver and the next best solver in
the portfolio, with the goal of maximising this value. After each it-
eration, the archive of past solutions is updated in two ways. Firstly,
we randomly select a sample of individuals from the current popu-
lation and insert it in the archive with a probability of 1% following
common practice in the literature [34]. Then, any individual from
the current generation that has a novelty score greater than a pre-
defined threshold 𝑡𝑎 is also included into the archive. The algorithm
returns a set of solutions. Figure 3 graphically describes the process
and a pseudo-code is provided in procedure 𝑁𝑆𝑁𝑁 of Algorithm 1.

4 EXPERIMENTAL EVALUATION
Weuse the𝐶𝑀𝐴−𝐸𝑆 implementation from the frameworkDEAP [7]
to evolve a population of 𝑁𝑁 parameters. Table 2 provides the
parameter setting of 𝐶𝑀𝐴 − 𝐸𝑆 and 𝑁𝑁𝑁𝑁 for the experimental
evaluation. It is important to note that (1) 𝜆 and 𝐺 parameters of
𝐶𝑀𝐴 − 𝐸𝑆 are set to ensure computation is tractable; and (2) the
remaining parameters are set to the default values provided by
DEAP [7, 12]. NS parameters are set according to previous work
of Marrero et al. [18]. At the end of the runs, the individual that
scores the highest 𝑓 is compared with the other NS approaches
proposed by Marrero et al. [18]; i.e., an NS algorithm that uses the
8D descriptor to search for novelty (𝑁𝑆𝑓8𝐷), three 𝑁𝑆𝑃𝐶𝐴 methods
which transform a high-dimensional descriptor into a projected
2D descriptor using PCA and finally, an ensemble of the three
𝑁𝑆𝑃𝐶𝐴 methods known as 𝑁𝑆𝑃𝐶𝐴𝑐

. The source code of the NS was
made available by Marrero et al. [21] at Github2 and used directly.
Moreover, the instances generated from 𝑁𝑆𝑃𝐶𝐴 methods [18] and
used for comparison were downloaded from the publicly available
repository.3

To provide a fair comparison between methods, we then run
𝑁𝑆𝑁𝑁 using the same computational budget of [18] to generate

2https://github.com/dignea/dignea
3https://github.com/PAL-ULL/ns_pca_gecco23

210

https://github.com/dignea/dignea
https://github.com/PAL-ULL/ns_pca_gecco23

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

Table 2: Parameter settings for 𝐶𝑀𝐴 − 𝐸𝑆 which evolves a
population of NN parameters which evolves the diverse pop-
ulation of instances.

Method Parameter Value

𝐶𝑀𝐴 − 𝐸𝑆
𝜆 16
𝜇 8
𝐺 250
𝐵 20

Repetitions 10

𝑁𝑆𝑁𝑁

Knapsack items (𝑁) 50
Weight and profit upper bound 1000
Weight and profit lower bound 1

Population size 10
Crossover rate 0.8
Mutation rate 1 / (𝑁 × 2)

Crossover operator Uniform
Mutation operator Uniform One

Generations 1000
Repetitions (𝑅) 1
Distance metric Euclidean Distance

Neighbourhood size (𝑘) 3
Threshold (𝑡𝑎) 0.0001

diverse and discriminatory instances for each solver in the portfolio
using the best individual found by 𝐶𝑀𝐴 − 𝐸𝑆 . The instances from
𝑁𝑆𝑁𝑁 and the other methods were gathered into a single dataset,
which will be analysed in the following section.

5 RESULTS
We run the framework ten independent times and calculate the
distribution of the best 𝑓 found. The aggregate fitness values after
10 runs of the framework are𝑚𝑖𝑛 = 96,𝑚𝑎𝑥 = 113,𝑚𝑒𝑎𝑛 = 103.9,
𝑚𝑒𝑑𝑖𝑎𝑛 = 104.5 and 𝑠𝑑 = 4.721 bins filled. In order to provide
a direct comparison with previous work that aggregated results
over 10 runs of an 𝑁𝑆 algorithm with pre-defined novelty vectors,
additionally we run 𝑁𝑆𝑁𝑁 10 times using the projection obtained
from the best NN obtained from the framework (i.e. the NN that
filled 113 bins). However, the computational effort required to learn
this projectionwas significant:𝑁𝑆 was run 160,000 times to produce
the best individual found by the framework, i.e. (16 × 250 × 4) ×
10 = 160, 000 runs of NS. The source code used and the instances
generated are available through the following Github repository.

To compare the different NS methods, we calculate the space
coverage of the set of instances generated over 𝐻 . Table 3 presents
not only the number of cells filled by each method but also the num-
ber of instances generated per method and solver in the portfolio
after 10 runs of the method. Note that the maximum fitness, i.e. the
number of bins filled, that an individual can score is 160 since there
are 20 bins for each of the 8 dimensions of 𝐻 . Of interest here is
that, although 𝑁𝑆𝑓8𝐷 seems to provide better coverage of𝐻 , 𝑁𝑆𝑁𝑁

produced more than 13 times instances after 10 runs considering all
the solvers in the portfolio. At the same time, it can be observed that
𝑁𝑆𝑁𝑁 is particularly useful in finding instances for solvers Def and
MPW, for which the remaining methods struggle on. In the case

Table 3: Aggregated number of bins filled and instances gen-
erated by NS variant after 10 runs. Moreover, we include the
bins filled and instances generated by the best individual
found (𝐵𝑒𝑠𝑡) by the framework.

Method Bins filled Def MPW MaP MiW Combined

𝐵𝑒𝑠𝑡 113 907 817 830 0 2554

𝑁𝑆𝑁𝑁 115 3312 8288 6456 3311 21367
𝑁𝑆𝑓8𝐷 125 131 31 774 687 1623
𝑁𝑆𝑃𝐶𝐴8𝐷 87 140 21 900 740 1801
𝑁𝑆𝑃𝐶𝐴6𝐷 94 39 20 960 900 1919
𝑁𝑆𝑃𝐶𝐴4𝐷 72 270 10 640 680 1600
𝑁𝑆𝑃𝐶𝐴𝑐

109 449 51 2500 2320 5320

of MPW, differences between 𝑁𝑆𝑁𝑁 and the rest of methods are
even more significant. Finally, the results from the 𝐵𝑒𝑠𝑡 individual
found by the framework are also included in Table 3. Note that the
results of 𝐵𝑒𝑠𝑡 are calculated considering only one run per solver
in the portfolio of the NS.

These findings suggest that there is an overlap between 𝑁𝑆𝑁𝑁

and the other methods, particularly 𝑁𝑆𝑓8𝐷 . To provide more insight
into this finding, we calculate the overlap between 𝑁𝑆𝑁𝑁 , 𝑁𝑆𝑓8𝐷
and 𝑁𝑆𝑃𝐶𝐴𝑐

for each dimension in 𝐻 . Table 4 shows the overlap
among methods. Is it important to note that the maximum overlap
for each dimension is 𝐵 = 20. The results indicate that the instances
provided by 𝑁𝑆𝑁𝑁 provide less overlap with 𝑁𝑆𝑓8𝐷 and 𝑁𝑆𝑃𝐶𝐴
in comparison to 𝑁𝑆𝑓8𝐷 and 𝑁𝑆𝑃𝐶𝐴 among themselves. Also, note
how the larger overlap between𝑁𝑆𝑁𝑁 and other approaches occurs
in the features that are restricted in the parameter setting; i.e., the
maximum and minimum profits/weights of the instances to be
generated. In particular, 𝑁𝑆𝑁𝑁 and 𝑁𝑆𝑓8𝐷 filled the same 18 out of
20 bins considering the maximum profit dimension.

Table 4: Overlap of filled bins in 𝐻 between the different NS
methods. The NS part of the names is omitted to facilitate
the reading.

.

Method 𝑁𝑁 / 𝑃𝐶𝐴𝑐 𝑁𝑁 / 8𝐷 8𝐷 / 𝑃𝐶𝐴𝑐

𝐶 7 7 18
𝑚𝑎𝑥_𝑝 15 18 16
𝑚𝑎𝑥_𝑤 14 13 13
𝑚𝑖𝑛_𝑝 10 10 9
𝑚𝑖𝑛_𝑤 7 10 7
𝑎𝑣𝑔_𝑒 𝑓 𝑓 10 12 12
𝑚𝑒𝑎𝑛 13 14 13
𝑠𝑡𝑑 17 17 17

Total Overlap 93 101 105

Finally, we provide a qualitative analysis of the results. The
dataset of instances was used to obtain a 2D projection of the data
using the Uniform Manifold Approximation and Projection for
Dimension Reduction (UMAP) [22] algorithm for easy visualisation.
The projection was created considering the 8D feature descriptor of
every instance as input to UMAP, regardless of the method used to

211

https://github.com/PAL-ULL/ns_nn_gecco_24

Learning Descriptors for Novelty-Search Based Instance Generation via Meta-evolution GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

Figure 4: Instances generated by different NS algorithms represented in the same space. Purple diamonds represent the instances
from 𝑁𝑆𝑁𝑁 ; yellow crosses represent the instances from 𝑁𝑆𝑃𝐶𝐴 projecting 8D to 2D; green squares for 𝑁𝑆𝑃𝐶𝐴 projecting 6D to
2D; red pluses for 𝑁𝑆𝑃𝐶𝐴 projecting 4D to 2D

generate it. The input was scaled before applying the UMAP. Results
are shown in Figure 4. The figure shows that 𝑁𝑆𝑓8𝐷 are clustered
in a few regions of the space, and sometimes overlapping instances
from 𝑁𝑆𝑃𝐶𝐴 variants, while 𝑁𝑆𝑁𝑁 provides better coverage of
the centre of the space with a large number of clustered instances.
Finally, 𝑁𝑆𝑃𝐶𝐴 is also able to locate instances surrounding the
𝑁𝑆𝑓8𝐷 and 𝑁𝑆𝑁𝑁 ones.

6 CONCLUSIONS
Instance-generationmethods play a critical role in facilitating bench-
marking and providing data to train algorithm-selectors. However,
as described in Sections 1 and 2, current methods all exhibit one
or more weaknesses: they generate diverse or discriminatory in-
stances; they require the need to manually define features or in
the case of QD approaches, to define the dimensions of an archive
defining the dimensions of diversity; methods used to reduce di-
mensionality only find linear relationships between variables.

To address this, we proposed a new meta-EA that uses evolution
to learn a projection of a multi-dimensional feature space into a
2D space in which NS can be applied to find diverse and discrimi-
natory instances: optimising the coverage of an external reference
space drives the meta-algorithm to find spaces in which NS locates
instances that maximise this metric. The results demonstrate sig-
nificantly better performance in comparison to previous methods
that use PCA to define the search-space in terms of the coverage
metric. Although searching in the 8D space produces slightly higher
coverage than 𝑁𝑆𝑁𝑁 , it is clear that 𝑁𝑆𝑁𝑁 produces an order of
magnitude more instances. This has considerable benefit if the pur-
pose of instance-generation is to generate data to train models or
benchmark algorithms in terms of their strength and weaknesses.

Furthermore, 𝑁𝑆𝑁𝑁 outperformed all other methods in its ability
to find instances that were won by two solvers, Def and MPW. The
other methods failed to generate large sets of instances for these
particular solvers, specifically in the case of MPW. Table 4 indi-
cates that although there is overlap between pairs of methods in
terms of the bins covered, this never reaches 100%, showing that
an ensemble of methods can be useful to maximise coverage of the
space, with each method contributing something unique. 𝑁𝑆𝑁𝑁

instances have less overlap with 𝑁𝑆𝑓8𝐷 and 𝑁𝑆𝑃𝐶𝐴 in comparison
to the overlap arising among those two methods. The most signif-
icant overlap between 𝑁𝑆𝑁𝑁 and the other methods occurred in
features with restricted parameter settings, such as the maximum
and minimum profits/weights. Finally, qualitative analysis of the
results obtained by visualising with UMAP revealed that 𝑁𝑆𝑓8𝐷
instances were clustered in certain areas, occasionally overlapping
with 𝑁𝑆𝑃𝐶𝐴 variants, whereas 𝑁𝑆𝑁𝑁 cover more of the central
space, with several clusters of instances.

It is clear that any kind of meta framework requires considerable
computational effort, as the search algorithm used to generate
instances in the ‘inner’ loop of the framework needs to be run
completely in order to evaluate every individual in the outer-loop,
which searches for the definition of the space. However, although
we described results from running NS 10 times in the best space
found by the framework in order to exactly mimic the set up used
in previous work, Table 3 also shows that there is little to be gained
in terms of coverage by running additional runs of NS in the best
space found as this only increases coverage by two bins. Despite the
additional expense, the vast increase in instances produced appears
worth the trade-off in computational time.

212

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

An NN was an obvious choice of method to perform dimen-
sionality reduction, in that it creates a non-linear mapping, and
its weights can easily optimised via an EA. Future work could be
directed towards tuning the hyper-parameters of the NN used, in-
cluding its architecture. Other future work could consider other
approaches to learning a low-dimensional projection: for example,
the NN could be replaced with a more complex autoencoder to
find a suitable latent space. Alternatively, genetic-programming
(with an appropriate choice of functions) could be used to learn a
function that maps a high-dimensional feature vector to a 2D space.

ACKNOWLEDGEMENTS
The work of Alejandro Marrero was funded by “Agencia Canaria
de Investigación, Innovación y Sociedad de la Información de la
Consejería de Universidades, Ciencia e Innovación y Cultura y por
el Fondo Social Europeo Plus (FSE+) Programa Operativo Integrado
de Canarias 2021-2027, Eje 3 Tema Prioritario 74 (85%)” with grant
TESIS2020010005.
Prof. Emma Hart is supported by the EPSRC grant Keep Learning
EP/V026534/1.

REFERENCES
[1] Özgür Akgün, Nguyen Dang, Ian Miguel, András Z Salamon, Patrick Spracklen,

and Christopher Stone. 2020. Discriminating instance generation from abstract
specifications: A case studywith CP andMIP. In Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research: 17th International Conference,
CPAIOR 2020, Vienna, Austria, September 21–24, 2020, Proceedings 17. Springer,
41–51.

[2] Mohamad Alissa, Kevin Sim, and Emma Hart. 2019. Algorithm selection us-
ing deep learning without feature extraction. In Proceedings of the Genetic and
Evolutionary Computation Conference. 198–206.

[3] David M Bossens, Jean-Baptiste Mouret, and Danesh Tarapore. 2020. Learning
behaviour-performance maps with meta-evolution. In Proceedings of the 2020
Genetic and Evolutionary Computation Conference. 49–57.

[4] David M Bossens and Danesh Tarapore. 2022. Quality-Diversity Meta-Evolution:
Customizing Behavior Spaces to a Meta-Objective. IEEE Transactions on Evolu-
tionary Computation 26, 5 (2022), 1171–1181.

[5] Valentina Cacchiani, Manuel Iori, Alberto Locatelli, and Silvano Martello. 2022.
Knapsack Problems — An Overview of Recent Advances. Part I: Single Knapsack
Problems. Comput. Oper. Res. 143, C (jul 2022), 13 pages. https://doi.org/10.1016/
j.cor.2021.105692

[6] Nguyen Dang, Özgür Akgün, Joan Espasa, Ian Miguel, and Peter Nightingale.
2022. A framework for generating informative benchmark instances. arXiv
preprint arXiv:2205.14753 (2022).

[7] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algorithms Made Easy.
Journal of Machine Learning Research 13 (jul 2012), 2171–2175.

[8] Karl Pearson F.R.S. 1901. LIII. On lines and planes of closest fit to systems of
points in space. Philosophical Magazine Series 1 2 (1901), 559–572.

[9] Kunihiko Fukushima. 1975. Cognitron: A self-organizing multilayered neural
network. Biol. Cybern. 20, 3–4 (sep 1975), 121–136. https://doi.org/10.1007/
BF00342633

[10] Aurelien Geron. 2019. Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (2nd ed.).
O’Reilly Media, Inc.

[11] Luca Grillotti and Antoine Cully. 2022. Unsupervised Behavior Discovery With
Quality-Diversity Optimization. IEEE Transactions on Evolutionary Computation
26, 6 (2022), 1539–1552.

[12] Nikolaus Hansen, Sibylle D Müller, and Petros Koumoutsakos. 2003. Reducing
the time complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES). Evolutionary computation 11, 1 (2003), 1–18.

[13] Jorik Jooken, Pieter Leyman, and Patrick De Causmaecker. 2022. A new class
of hard problem instances for the 0–1 knapsack problem. European Journal of
Operational Research 301, 3 (2022), 841–854.

[14] Joel Lehman and Kenneth O. Stanley. 2011. Abandoning objectives: Evolution
through the search for novelty alone. Evolutionary Computation 19, 2 (2011),
189–222. https://doi.org/10.1162/EVCO_a_00025

[15] Andrew Lensen, Bing Xue, and Mengjie Zhang. 2019. Can genetic programming
do manifold learning too?. In European Conference on Genetic Programming.

Springer, 114–130.
[16] Andrew Lensen, Bing Xue, and Mengjie Zhang. 2021. Genetic Programming for

Manifold Learning: Preserving Local Topology. IEEE Transactions on Evolutionary
Computation (2021).

[17] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birat-
tari, and Thomas Stützle. 2016. The irace package: Iterated racing for automatic
algorithm configuration. Operations Research Perspectives 3 (2016), 43–58.

[18] Alejandro Marrero, Eduardo Segredo, Emma Hart, Jakob Bossek, and Aneta
Neumann. 2023. Generating Diverse and Discriminatory Knapsack Instances by
Searching for Novelty in Variable Dimensions of Feature-Space. In Proceedings of
the Genetic and Evolutionary Computation Conference (Lisbon, Portugal) (GECCO
’23). Association for Computing Machinery, New York, NY, USA, 312–320. https:
//doi.org/10.1145/3583131.3590504

[19] Alejandro Marrero, Eduardo Segredo, and Coromoto Leon. 2021. A Parallel
Genetic Algorithm to Speed up the Resolution of the Algorithm Selection Problem.
In Proceedings of the Genetic and Evolutionary Computation Conference Companion
(Lille, France) (GECCO ’21). Association for Computing Machinery, New York,
NY, USA, 1978–1981. https://doi.org/10.1145/3449726.3463160

[20] Alejandro Marrero, Eduardo Segredo, Coromoto León, and Emma Hart. 2022. A
Novelty-Search Approach To Filling An Instance-Space With Diverse And Dis-
criminatory Instances For The Knapsack Problem. In Parallel Problem Solving from
Nature – PPSN XVII: 17th International Conference, PPSN 2022, Dortmund, Germany,
September 10–14, 2022, Proceedings, Part I (Dortmund, Germany). Springer-Verlag,
Berlin, Heidelberg, 223–236. https://doi.org/10.1007/978-3-031-14714-2_16

[21] Alejandro Marrero, Eduardo Segredo, Coromoto León, and Emma Hart. 2023.
DIGNEA: A tool to generate diverse and discriminatory instance suites for opti-
misation domains. SoftwareX 22 (2023), 101355. https://doi.org/10.1016/j.softx.
2023.101355

[22] Leland McInnes, John Healy, and James Melville. 2020. UMAP: Uni-
form Manifold Approximation and Projection for Dimension Reduction.
arXiv:1802.03426 [stat.ML]

[23] Elliot Meyerson, Joel Lehman, and Risto Miikkulainen. 2016. Learning Be-
havior Characterizations for Novelty Search. In Proceedings of the Genetic and
Evolutionary Computation Conference 2016 (Denver, Colorado, USA) (GECCO
’16). Association for Computing Machinery, New York, NY, USA, 149–156.
https://doi.org/10.1145/2908812.2908929

[24] Jean-Baptiste Mouret and Jeff Clune. 2015. Illuminating search spaces by mapping
elites. arXiv preprint arXiv:1504.04909 (2015).

[25] David Pisinger. 2005. Where are the hard knapsack problems? Computers and
Operations Research 32, 9 (2005), 2271–2284. https://doi.org/10.1016/j.cor.2004.
03.002

[26] Luis Fernando Plata-González, Ivan Amaya, José Carlos Ortiz-Bayliss, Santi-
ago Enrique Conant-Pablos, Hugo Terashima-Marín, and Carlos A Coello Coello.
2019. Evolutionary-based tailoring of synthetic instances for the Knapsack prob-
lem. Soft Computing 23, 23 (2019), 12711–12728.

[27] Luis Fernando Plata-González, Ivan Amaya, José Carlos Ortiz-Bayliss, Santi-
ago Enrique Conant-Pablos, Hugo Terashima-Marín, and Carlos A. Coello Coello.
2019. Evolutionary-based tailoring of synthetic instances for the Knapsack prob-
lem. Soft Computing 23, 23 (2019), 12711–12728. https://doi.org/10.1007/s00500-
019-03822-w

[28] Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. 2016. Quality diversity: A
new frontier for evolutionary computation. Frontiers in Robotics and AI 3 (2016),
40.

[29] Finn Schofield and Andrew Lensen. 2021. Using Genetic Programming to Find
Functional Mappings for UMAP Embeddings. In 2021 IEEE Congress on Evolu-
tionary Computation (CEC). IEEE, 704–711.

[30] Kevin Sim and Emma Hart. 2022. Evolutionary Approaches to Improving the
Layouts of Instance-Spaces. In Parallel Problem Solving from Nature – PPSN
XVII: 17th International Conference, PPSN 2022, Dortmund, Germany, September
10–14, 2022, Proceedings, Part I (Dortmund, Germany). Springer-Verlag, Berlin,
Heidelberg, 207–219. https://doi.org/10.1007/978-3-031-14714-2_15

[31] Kate Smith-Miles, Jeffrey Christiansen, andMario AndrésMuñoz. 2021. Revisiting
where are the hard knapsack problems? via instance space analysis. Computers
& Operations Research 128 (2021), 105184.

[32] Kate Smith-Miles, Jano Van Hemert, and Xin Yu Lim. 2010. Understanding
TSP difficulty by learning from evolved instances. In Learning and Intelligent
Optimization: 4th International Conference, LION 4, Venice, Italy, January 18-22,
2010. Selected Papers 4. Springer, 266–280.

[33] Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. 2019. De-
signing neural networks through neuroevolution. Nature Machine Intelligence 1,
1 (2019), 24–35.

[34] Paul A. Szerlip, Gregory Morse, Justin K. Pugh, and Kenneth O. Stanley. 2015.
Unsupervised Feature Learning through Divergent Discriminative Feature Ac-
cumulation. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence (AAAI’15). AAAI Press, Austin, Texas, 2979–2985. https://doi.org/10.
1609/aaai.v29i1.9601

213

https://doi.org/10.1016/j.cor.2021.105692
https://doi.org/10.1016/j.cor.2021.105692
https://doi.org/10.1007/BF00342633
https://doi.org/10.1007/BF00342633
https://doi.org/10.1162/EVCO_a_00025
https://doi.org/10.1145/3583131.3590504
https://doi.org/10.1145/3583131.3590504
https://doi.org/10.1145/3449726.3463160
https://doi.org/10.1007/978-3-031-14714-2_16
https://doi.org/10.1016/j.softx.2023.101355
https://doi.org/10.1016/j.softx.2023.101355
https://arxiv.org/abs/1802.03426
https://doi.org/10.1145/2908812.2908929
https://doi.org/10.1016/j.cor.2004.03.002
https://doi.org/10.1016/j.cor.2004.03.002
https://doi.org/10.1007/s00500-019-03822-w
https://doi.org/10.1007/s00500-019-03822-w
https://doi.org/10.1007/978-3-031-14714-2_15
https://doi.org/10.1609/aaai.v29i1.9601
https://doi.org/10.1609/aaai.v29i1.9601

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Instance Representation and Novelty Descriptors
	3.2 Algorithm Portfolio
	3.3 Novelty Search

	4 Experimental Evaluation
	5 Results
	6 Conclusions
	References

