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Class imbalance learning is challenging in various domains where training datasets exhibit disproportionate 
samples in a specific class. Resampling methods have been used to adjust the class distribution, but they 
often have limitations for small disjunct minority subsets. This paper introduces AROSS, an adaptive cluster-
based oversampling approach that addresses these limitations. AROSS utilizes an optimized agglomerative 
clustering algorithm with the Cophenetic Correlation Coefficient and the Bayesian Information Criterion to 
identify representative areas of the minority class. Safe and half-safe areas are obtained using an incremental k-
Nearest Neighbor strategy, and oversampling is performed with a truncated hyperspherical Gaussian distribution. 
Experimental evaluations on 70 binary datasets demonstrate the effectiveness of AROSS in improving class 
imbalance learning performance, making it a promising solution for mitigating class imbalance challenges, 
especially for small disjunct minority subsets.
1. Introduction

Data is crucial in various domains, powering innovation and 
decision-making in healthcare (Cios & Moore, 2002), finance (Lusardi 
& Mitchell, 2014), education (Zoric, 2019), and technology (Merrild 
et al., 2008). In healthcare, patient records and medical data support 
precise diagnoses and research. Finance uses data analytics for invest-
ment, risk management, and fraud detection. Educational institutions 
enhance learning with data, while technology companies improve user 
experiences and refine products. Data’s value is essential in optimizing 
processes, predicting trends, and driving progress across diverse fields. 
In the dynamic landscape of machine learning (ML), the importance of 
data cannot be overstated. The success of ML algorithms relies heav-
ily on the richness and balance of the datasets they are trained on. 
However, the persistent challenges of imbalanced datasets and limited 
data availability underscore the critical need for innovative solutions 
in the dynamic landscape of ML, especially that the problem of class 
imbalance is prevalent in many domains, where the dataset is charac-
terized by a disproportionate number of samples belonging to a specific 
class. This imbalance can occur naturally, as seen in rare disease detec-
tion and credit card fraud scenarios, or unnaturally due to challenges 
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in acquiring minority-class data, such as privacy constraints. Address-
ing ML challenges under class imbalance, referred to as class imbalance 
learning (CIL), has been a subject of extensive research. Researchers 
have proposed various strategies to tackle CIL, which can be broadly 
classified into algorithm-level and data-level methods. Algorithm-level 
methods, such as cost-sensitive learning (Thai-Nghe et al., 2010) and 
ensemble learning (Bi & Zhang, 2018), aim to adjust classifiers to pri-
oritize accurate classification of the minority class. However, these 
methods often require domain-specific knowledge and rely on spe-
cific learning algorithms. As an example, Hazarika and Gupta (2021, 
2022, 2023), Hazarika et al. (2023) proposed several algorithmic level 
solutions based on Support Vector Machines (SVM) to address class 
imbalance problems. Despite their computational power, the reliance 
on SVM intricacies may introduce unnecessary complexity for small 
datasets, where simpler, interpretable classification algorithms are of-
ten more suitable.

In contrast, data-level solutions focus on modifying the class dis-
tribution to create a balanced training set, enabling their application 
across multiple classifiers. Moreover, data-level solutions enhance the 
dataset’s diversity, providing the predictive models with richer infor-
mation and contributing to a more robust and generalized learning 
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experience, particularly crucial in scenarios of class imbalance. As a re-
sult, these solutions have gained attention for their potential to address 
CIL challenges effectively. By adjusting the class distribution through 
techniques such as oversampling (Gosain & Sardana, 2017) or under-
sampling (Liu & Tsoumakas, 2020), data-level methods aim to enhance 
the performance of classification algorithms in imbalanced scenarios.

One approach that has attracted significant interest in recent years is 
cluster analysis, which is well-suited for identifying data distributions 
for resampling purposes (Jiang, Zhao, et al., 2023, Lu et al., 2022). 
In these methods, majority and minority samples are assigned to dis-
tinct clusters, and either oversampling or undersampling is performed 
within these clusters to achieve a balanced class distribution. Most ex-
isting cluster-based resampling methods utilize unsupervised clustering 
on labeled data. However, the absence of class information can hinder 
the clustering process in finding the optimal solution for resampling and 
subsequent classification. Challenges arise in selecting the appropriate 
number of clusters or determining the suitable linkage for hierarchi-
cal clustering in cluster-based methods. To overcome these limitations, 
leveraging unsupervised clustering with the support of prior knowledge 
embedded in labeled data can effectively improve clustering perfor-
mance. Nonetheless, this potential remains relatively unexplored in CIL, 
with limited existing solutions (Douzas & Bacao, 2017, Jiang, Zhao, et 
al., 2023, Wang et al., 2023, Zhang et al., 2017).

This paper introduces an adaptive cluster-based resampling method, 
named AROSS, that runs an agglomerative clustering on labeled data to 
discover sub-spaces of the minority class for efficient resampling. While 
optimization is crucial for AROSS’s performance, it is essential to clar-
ify that the optimization of execution time is beyond the scope of this 
research. Primarily, we propose an optimized agglomerative clustering 
that incorporates the usage of cophenetic correlation coefficient (CPCC, 
described in Farris (1969)) as a linkage validation metric and Bayesian 
information criterion (𝐵𝑠𝑐𝑜𝑟𝑒, described in Schwarz (1978)) for clus-
ter optimization. CPCC measures how well a dendrogram describes the 
pairwise distances between the data points, while 𝐵𝑠𝑐𝑜𝑟𝑒 specifies the 
optimal number of clusters. The proposed approach aims to oversam-
ple sub-spaces of the minority class, pure, i.e., safe clusters containing 
labeled data from the majority class are not actively utilized during the 
oversampling process, but instead, they are ignored, while a set of repre-
sentative points symbolizes the remaining clusters. Then the proposed 
incremental k-Nearest Neighbor (k-NN) strategy is used to substitute 
the clusters with so-called half-safe areas and safe areas. A generator 
following a truncated hyperspherical Gaussian distribution is utilized 
to sample data using a Gaussian function to oversample these regions. 
The proposed oversampling considers the specific distribution of the 
minority class within the small disjunct areas and allows for more fine-
grained control over the generation of synthetic samples. Moreover, the 
suggested approach can be easily implemented with existing classifica-
tion algorithms, making it suitable for a wide range of class-imbalanced 
tasks.

The proposed method is compared with state-of-the-art resampling 
methods on 66 real-world and 4 synthetic datasets. The results of an 
extensive experiment demonstrate that the proposed approach has com-
petitive or significant superiority over the compared baseline methods. 
The contributions of this paper are the following:

• A novel adaptive cluster-based resampling method is presented 
that introduces an optimized agglomerative clustering algorithm 
to extract the representative areas within the minority class and ef-
ficiently capture the underlying data distribution to facilitate the 
resampling process.

• An incremental kNN approach is introduced, a strategy to esti-
mate an area from cluster’s sub-space starting from a representative 
point to substitute clusters with so-called half-safe and safe areas.

• An oversampling approach that utilizes a truncated hyperspheri-
cal Gaussian distribution to sample data for the minority class is 
2

presented. Unlike conventional interpolation-based oversampling 
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methods, our approach ensures a more uniform distribution of 
generated instances around representative points, which serve as 
centroids for specific areas. This novel approach enhances the ef-
fectiveness of oversampling by promoting a more balanced and 
representative augmentation of the training set.

• Extensive experiments on 70 datasets are conducted to show the 
effectiveness of the proposed cluster-based resampling method. The 
result demonstrates that AROSS can improve the performance of 
CIL algorithms.

The rest of this paper is organized as follows: Section 2 describes 
problems related with CIL and proposes a taxonomy for data-level re-
sampling methods. After illustrating the general structure of the pro-
posed solution, Section 3 presents the optimized agglomerative clus-
tering algorithm, the extraction and classification of minority class 
representative areas, and how these areas are populated. The experi-
mental settings and empirical results of the proposed algorithm against 
CIL baseline are reported in Section 4 and 5 respectively. Finally, we 
conclude the paper and describe possible future work in Section 6.

2. Basic concepts and literature review

In this chapter, the main concepts related to the presented work are 
introduced, together with literature review categorized by different CIL 
approaches.

Definition 1 (Learning – classification). Let  = {(𝐱𝑖, 𝑦𝑖) | 𝑖 ∈ {1, … , 𝑛}}
be a set of 𝑛 labeled training examples, where, without loss of gen-
erality, 𝐱𝑖 ∈ ℝ𝑑 is the 𝑖𝑡ℎ input and 𝑦𝑖 ∈ ℤ is the corresponding out-
put. A classification algorithm takes  as input and learns a function 
𝑓 ∶ ℝ𝑑 → ℝ that minimizes a specified loss function 𝐿(𝑦𝑖, 𝑓 (𝐱𝑖)) over 
the training data. The learned function 𝑓 (𝐱) can then be used to predict 
the output 𝑦 for a new, unseen input 𝐱.

Definition 2 (Class imbalance – imbalance ratio). Let  =  ∪ be a 
binary labeled dataset, i.e.  = {(𝐱𝑖, 𝑦𝑖) | 𝑖 ∈ {1, … , 𝑛}, 𝑦𝑖 = +1} and 
 = {(𝐱𝑖, 𝑦𝑖) | 𝑖 ∈ {1, … , 𝑛}, 𝑦𝑖 = −1}. Without loss of generality, 
is called the minority class while  is called the majority class. If || ≪ | | then  is called imbalanced. Class imbalance is measured 
by the imbalance ratio (Cordón et al., 2018).

𝐼𝑅 = ||| | (1)

2.1. Data intrinsic characteristics in CIL

CIL comprises several learning barriers, including small sample size, 
class overlapping, within-class imbalance, and imbalanced distribution, 
explained in detail in the following sections.

2.1.1. Small sample size and imbalanced class distribution
When the training set has a fair amount of data, the classification al-

gorithm can learn the underlying patterns and affinities in the data that 
are essential for accurate predictions. With more additional data, the al-
gorithm can capture a broader range of variations in the data, leading 
to a more robust model that can better generalize to new examples. Fur-
thermore, adequate training sample size reduces the risk of overfitting, 
which occurs when the algorithm learns the noise or random variations 
in the training data instead of the underlying patterns, leading to poor 
performance on new, unseen data.

Recently, we observed that Deep Neural Networks (DNNs) had 
achieved great success in solving diverse ML problems (Alshemali & 
Kalita, 2020), mainly for a unique reason, i.e., the availability of a mas-
sive number of samples (Big Data). Therefore, insufficient data and a 
lack of instances are commonly linked to CIL. Thus, it will be challeng-
ing to discover regularities and pattern uniformity, especially in the mi-

nority class. For imbalanced datasets, the imbalance class distribution 
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Fig. 1. Small sample size effect in imbalance problem; Real (solid line) and 
estimated (dashed line) decision boundaries while using appropriate number 
of samples from the minority class (a) and while using insufficient number of 
samples from the minority class (b).

further affects the training process as the minority class is underrepre-
sented, especially in the case of small disjoint minority class subsets. 
Imbalance class distribution directly connects with the IR (Eq. (1)).

Shi et al. (2022) pointed out that training sets with a nearly bal-
anced class distribution, i.e., IR∈ [0.7, 1.5], generally give better results. 
Fig. 1 emphasizes that a small number of samples in  and, thus, a high 
IR influences the classification performance. Indeed, Fig. 1(a) reveals 
that using a reasonable number of samples referring to  will enable 
a given classifier to estimate decision boundaries (dashed line) that are 
very close to the expected decision boundaries (solid line). However, 
Fig. 1(b) reveals that the insufficient number of samples in  sam-
ples have infected the estimated decision boundaries (dashed line). The 
shortage in training data did not help to learn the natural boundaries 
between classes, thus, classifiers’ performance will deteriorate.

It is often assumed that achieving a balanced class distribution (with 
IR close to 1) would lead to favorable results in CIL. Consequently, we 
might think that generating additional samples for  would be a so-
lution for CIL challenges. However, it is important to note that IR’s 
tolerability depends on the specific characteristics of the dataset. While 
having a larger number of training samples is generally beneficial, sim-
ply increasing the sample size or synthesizing new data will not address 
all the complexities associated with class imbalance. Other issues, such 
as class overlapping or the presence of small disjunct subsets, can still 
pose challenges. Therefore, when considering data resampling tech-
niques, it is crucial to consider all the intricacies and problems related 
to CIL.

2.1.2. Class overlapping and within class imbalance
Class overlapping as described in Fig. 2(a), is a common problem 

while dealing with imbalanced datasets. Indeed, in real-life applica-
tions, we rarely encounter a dataset where class instances are linearly 
separable. Some classification methods, such as Support Vector Ma-
chines (SVMs), apply kernel functions1 to solve the linearity issue, yet, 
the lack of the data persists and penalizes classifiers’ performances. 
Other studies, such as Shi et al. (2022), used resampling algorithms 
based on sample concatenation (Re-SC). Re-SC transforms an imbal-
anced training dataset in the original sample space into a concatenated 
dataset in a new sample space. In the transformation process, Re-SC 
considers both the distribution of the original dataset and that of the 
majority samples, thereby alleviating the loss of valuable samples and 
reducing the class overlapping region. However, the non-linearity of 
the data is not the only problem that ruined the separability among 
classes. Another issue is known as small disjoint subsets or within class 

1 Projection of data into a higher dimensional space (and distance computa-
3

tion within).
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Fig. 2. Imbalance learning problems; (a) Class overlapping (b) Within class 
imbalance.

Fig. 3. Proposed taxonomy for Data-level resampling solutions for CIL.

imbalance problem, illustrated in Fig. 2(b), which would appear when a 
minority class  is compromised of 𝑠 dispatched subsets 𝑖 of different 
sizes, where 

⋂𝑠

𝑖=1 𝑖 = ∅, 
⋃𝑠

𝑖=1𝑖 =  and 𝑠 > 1.
Hardly separating  from  is a critical factor; it complicates the 

learning process of small classes, which is, as previously mentioned, 
the target classes. It will likely increase the complexity of the problem, 
and thus, the performance of the learning method might decrease dra-
matically. In such scenarios, supervised methods cannot generate dis-
criminating patterns to correctly separate  from  . As instances from 
 are present in huge numbers, standard supervised methods that try 
to maximize classification’s performance will treat  instances belong-
ing to the overlapping region, as illustrated in Fig. 2(b), as noise (Weiss, 
2004). As a result, the overlapping zone as well as the underrepresented 
disjoint subsets 𝑖 ∈  will be misclassified due to the bias toward  , 
which will make the recognition of instances from the target class even 
harder.

2.2. Data-level resampling methods for CIL

As illustrated in Fig. 3, we categorize data-level solutions into ran-
dom, synthetic, and cluster-based sampling techniques.

2.2.1. Random sampling
Random sampling approaches are non-heuristic methods that seek 

to balance class distribution via the arbitrary replication of the sam-
ples from  (random oversampling, i.e., ROS), the random dismissal 
of samples from  (random oversampling, i.e., RUS), or by hybridiza-
tion between ROS and RUS (Wongvorachan et al., 2023). Miscellaneous 
studies consider that ROS can raise the likelihood of occurring overfit-

ting. Chawla (2010) has pointed out that ROS might lead to a smaller 



Z. Farou, Y. Wang and T. Horváth

and more specific decision region by simply replicating minority sam-
ples, especially on those classifiers based on error-based objective func-
tions. In contrast, the significant drawback of RUS is that it may discard 
essential data for the induction process (Batista et al., 2005, Santoso et 
al., 2017). Hybridization of ROS and RUS originate from the mentioned 
drawbacks. It pursues to trade-off between removing instances from 
and replicating others from  to reach the best possible performance in 
any imbalanced dataset.

2.2.2. Synthetic sampling
In synthetic sampling, we create new samples using existing data 

points to expand || using data generation. There are several tech-
niques for data generation, including synthetic minority oversampling 
(SMOTE), introduced by Chawla et al. (2002), which is the traditional 
data resampling method.

In SMOTE, additional minority samples are created along the line 
segment among the minority samples, although with no indication of 
any kind to the samples available in the confrontational majority class. 
SMOTE has been applied in various domains, including finance (Sun et 
al., 2020), fraud detection (Xia et al., 2023), medical diagnosis (Bokhare 
et al., 2023, Kamarulzalis et al., 2018) and image classification (Khan 
& Sheikh, 2023). It has shown promising results in improving the clas-
sification accuracy of models in these domains. However, SMOTE has 
some limitations, mainly when dealing with small disjunct subsets and 
overlapping regions, where the existing examples may not represent the 
actual distribution of  . In such cases, SMOTE would probably produce 
noisy examples, leading to overfitting and decreasing the model’s per-
formance. Furthermore, its narrow sample generation range may cause 
the over-dense of synthetic samples on a line segment, meaning that the 
overall distribution of  is not uniform, especially when the IR is large, 
or the number of nearest neighbors within the clusters is too small.

To overcome these limitations, researchers have proposed various 
modifications to SMOTE to improve the quality of synthetic examples 
and reduce the risk of overfitting. Borderline-SMOTE1 and Borderline-
SMOTE2 methods, introduced by Han et al. (2005), prioritize the class 
boundary’s vicinity for classifier construction. Zhang and Li (2014)
proposed a random walk oversampling (RWO) that generates diverse 
and realistic synthetic samples by employing random walks in the fea-
ture space. In contrast, Sandhan and Choi (2014) introduced partially 
guided oversampling (GS) that extracts linear and nonlinear patterns 
from the minority class to guide the random imputation process and 
generate synthetic samples in each feature dimension. Additionally, 
Rivera (2017) introduced noise reduction apriori synthetic oversam-
pling (NRAS). NRAS incorporates propensity scores as additional fea-
tures to improve the selection of nearest neighbors and reduce noise. 
These techniques enhance the quality and diversity of synthetic sam-
ples, leading to improved handling of class imbalance. In addition 
to these techniques, adaptative solutions such as adaptive synthetic 
sampling (AS, He et al. (2008)), deterministic SMOTE (SD, Torres et 
al. (2016)), adaptive neighbor synthetic minority oversampling (ANS, 
Siriseriwan and Sinapiromsaran (2017)) and synthetic minority based 
on the probabilistic distribution (SMPD, Kunakorntum et al. (2020)) 
improve SMOTE according to specific criteria and only generate syn-
thetic samples with adaptive weights in particular regions that are 
considered helpful for the learning algorithm. However, similar to 
SMOTE, adaptative synthetic sampling solutions cannot efficiently tar-
get the within-class imbalance issue. Data cleaning solutions such as 
SMOTE-Tomeklink (STL, Swana et al. (2022)) and SMOTE with Wilson’s 
edited nearest neighbor rule (SENN, Parthasarathy et al. (2023)) im-
prove the quality of augmented data with a post-processing mechanism 
that would remove noisy, ambiguous or wrongly located samples. It 
is important to note that STL and SENN are extensions of the Tomek-
link (TL, Tomek (1976)) and the Wilson’s edited nearest neighbor rule 
(ENN, Wilson (1972)) undersampling approaches. However, TL and 
ENN may not be effective when  and  overlap, as TL can re-
4

move correctly classified examples but close to the decision boundary. 
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In contrast, ENN may remove correctly classified instances but have a 
high-density overlap with  . Therefore, synthetic sampling with data 
cleaning has limited applicability as it may not be effective for all class 
imbalance problems, particularly those with small disjunct minority 
class subsets.

2.2.3. Cluster-based sampling
Cluster-based sampling methods are commonly used to uncover the 

underlying data structure in resampling techniques (Jiang, Zhao, et al., 
2023) and are more effective than random or synthetic sampling for 
identifying 𝑃𝑖 ∈  . Several approaches have been proposed to address 
CIL, for instance, Jo and Japkowicz (2004) applied k-means clustering 
beforehand, assuming clusters  and  as disjunct subsets. Then, repli-
cated samples in clusters to make the data size of subsets within each 
class and between classes consistent. Similarly, Cieslak et al. (2006)
adopted cluster-SMOTE to resample  . Furthermore, Douzas et al. 
(2018) proposed an adaptive approach based on k-means and SMOTE, 
namely kmeans-SMOTE (KS). KS clusters training samples and measures 
the sparsity for clusters dominated by  . SMOTE is applied in those 
clusters, and the number of synthetic samples generated in each cluster 
depends on the minority samples’ sparsity so that minority distribution 
can be compensated more in sparse clusters. Compared to conventional 
approaches, the experiments prove the effectiveness of the method, 
especially for within-class imbalance. However, k-means clustering is 
sensitive to 𝑘, which the authors did not give a feasible optimization so-
lution in their proposed approach. Another issue with k-means is that it 
is good at capturing equally sized-spherical clusters. Thus it may inhibit 
the detection capability of disjoints with various shapes and sizes. Un-
like previous methods which use k-means for clustering, Bunkhumporn-
pat et al. (2012) proposed DB-SMOTE (DBS) to cluster  and exclude 
noises by DBSCAN (Ester et al., 1996) and perform oversampling along 
the shortest density-reachable path from each minority instance to the 
most central instance of the cluster. DBS assumes well-separated minor-
ity instances and may generate synthetic samples in non-representative 
regions when there is class overlap. Another adaptive approach, the 
self-organizing map oversampling (SOMO), introduced by Douzas and 
Bacao (2017), transforms the training data into a two-dimensional space 
using self-organizing map (SOM). Each map of SOM is considered a 
cluster. Then for clusters dominated by  , SMOTE is applied within 
and between neighboring clusters by the weight, where the weight 
is inversely proportional to  ’s density, such that synthetic samples 
will be generated by a greater weight in sparser areas. While SOMO 
has shown promising results, it may not be a good fit when  has a 
poor representation which is the case in small disjunct problems, or the 
dataset is non-linearly separable. As SOMO assumes a linear relation-
ship between examples, it may not be able to capture non-linear de-
cision boundaries. Adaptive semi-unsupervised weighted oversampling 
(ASWO, Nekooeimehr and Lai-Yuen (2016)) combines oversampling 
with semi-unsupervised learning but may not effectively balance small 
disjunct minority classes. The reason is that ASWO relies on density dis-
tributions to specify the weights for oversampling. However, in small 
disjunct minority class problems, the density distribution may be very 
different from that of larger, more overlapping minority classes, which 
can make it difficult for ASWO to identify and accurately generate ex-
amples for  . In their study, Yang and Cha (2021) proposed GMOTE 
to address SMOTE’s overfitting issue. GMOTE uses distribution-based 
generators instead of linear interpolation and employs a Gaussian Mix-
ture Model (GMM) to estimate the minority class distribution. However, 
experimental results showed that GMOTE’s oversampling has limited ef-
fectiveness for small disjunct minority class subsets and could lead to 
the misclassification of nearby majority instances. Last but not least, 
Ma and Fan (2017) introduced CURE-SMOTE (CS) that integrates the 
CURE algorithm (Guha et al., 1998) to generate representative clusters 
and then applies SMOTE to oversample  within each cluster. Using the 
CURE algorithm seeks to create more representative clusters than tra-

ditional clustering methods, which would help capture the underlying 
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Fig. 4. The AROSS training process.
structure of  more accurately. However, the authors did not assume 
linkage validation and used single linkage (S-Link) to extract clusters. 
The main side-effect of S-Link is the potential of building long-chained 
data points, also known as chaining (Seifoddini, 1989). Chaining occurs 
when we join clusters using S-Link based on the similarity between their 
closest points, which may result in long, narrow chains of points, which 
would introduce new and none existing patterns and relationships in 
the original data. Also, they set static values for the number of clusters 
and representative points. These values can lead to sub-optimal perfor-
mance for some datasets, leading to a poor exploration of  sub-spaces, 
especially when we have a within-class problem. As a result, CS would 
overpopulate some regions in  and leave others underrepresented.

Considering CS advantages and disadvantages, designing a new 
cluster-based sampling approach called AROSS is proposed in this ar-
ticle, which incorporates linkage determination, optimized number of 
clusters, and representative points selection to enhance clustering accu-
racy and address CIL challenges.

3. Area-based representative points oversampling with shifting 
(AROSS)

Let  be a binary labeled, imbalanced dataset, with its minority and 
majority classes  and  , respectively, as introduced in Definition 2.

As represented in Fig. 4, AROSS starts by standardizing the dataset 
using z-score normalization. After that,  is clustered into 𝑐 clusters 
1, 2, … , 𝑐 , i.e.  = 1 ∪ 2 ∪⋯ ∪ 𝑐 , using the given optimized ag-
glomerative clustering. Then the representative points 𝑖 from each 
cluster 𝑖 are extracted, forming the set  of all representative points, 
i.e.  =

⋃𝑐

𝑖=1𝑖. Then, clusters are substituted with safe and half-safe
5

areas given as output from the incremental kNN algorithm. After that, 
AROSS generates samples inside these areas using the Gaussian gener-
ator. The augmented dataset comprises the original and the synthetic 
data generated by AROSS.

The modules and implementation steps of AROSS are described in 
details in the following sub-sections.

3.1. Clustering using optimized agglomerative clustering

As formerly mentioned in Sect. 2.1.2, the small disjuncts imbalance 
problem emerges when there are one or more sub-classes with very 
few examples dissimilar from those in other sub-classes but all of which 
characterize the minority class. To address this case, one could use clus-
tering, a method that tends to group similar instances into clusters, to 
locate these small disjuncts. One of the clustering strategies, belong-
ing to hierarchical clustering techniques and producing interpretable 
results, is agglomerative clustering (AC, Lukasová (1979)). AC begins 
with each data object2 (𝐱𝑖, 𝑦𝑖) ∈ as a standalone cluster 𝑖 = {(𝐱𝑖, 𝑦𝑖)}
and recursively merges the two closest clusters 𝑗 and 𝑙 , 1 ≤ 𝑖, 𝑗, 𝑙 ≤ 𝑛, 
based on a specific distance measure (in this work, the most generic one, 
the Euclidean distance) and a so-called linkage method until a stopping 
criterion is met. The result is a dendrogram, a tree-like diagram used 
to represent the hierarchical clustering of data, that can be visually ex-
amined and interpreted. As we consider only low-dimensional binary 
datasets in this study, AC is a suitable choice due to its intuitive results, 
ease of implementation, preservation of spatial proximity, flexibility in 
linkage criteria, and scalability for low-dimensional datasets.

2 When performing clustering, the labels 𝑦𝑖 are not utilized, only the objects 

𝐱𝑖 are used.
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Table 1

Different linkages for merging clusters 𝑗 and 𝑙 : 𝐜𝑗 and 𝐜𝑙 denote the centroids of 𝑗

and 𝑙 , respectively; 𝑑(𝐮, 𝐯) (𝑑(𝐜𝑗 , 𝐜𝑙)) denotes the (in our case, Euclidean) distance, i.e. 
the dissimilarity measure, between objects 𝐮 and 𝐯 (𝐜𝑗 and 𝐜𝑙); 𝑤𝑐𝑠𝑠(𝑗 ) and 𝑤𝑐𝑠𝑠(𝑙)
denote the within-cluster sum of squared distances between objects in clusters 𝑗 and 𝑙 , 
respectively.

Linkage Distance between clusters 𝑗 and 𝑙 (1 ≤ 𝑗, 𝑙 ≤ 𝑛) Paper

S-Link (𝐿𝑆 ) 𝑑𝑆 (𝑗 ,𝑙) = min{𝑑(𝐮,𝐯) | 𝐮 ∈ 𝑗 ,𝐯 ∈ 𝑙} Sneath (1957)

A-Link (𝐿𝐴) 𝑑𝐴(𝑗 ,𝑙) =
1|𝑗 ||𝑙| ∑

𝐮∈𝑗

∑
𝐯∈𝑙

𝑑(𝐮,𝐯) Sokal (1958)

C-Link (𝐿𝐶 ) 𝑑𝐶 (𝑗 ,𝑙) = 𝑑(𝐜𝑗 , 𝐜𝑙) Sokal (1958)

M-Link (𝐿𝑀 ) 𝑑𝑀 (𝑗 ,𝑙) = max{𝑑(𝐮,𝐯) | 𝐮 ∈ 𝑗 ,𝐯 ∈ 𝑙} McQuitty (1960)

W-Link (𝐿𝑊 ) 𝑑𝑊 (𝑗 ,𝑙) =

√
(|𝑗 |+ |𝑙|) .𝑤𝑐𝑠𝑠(𝑗 ) .𝑤𝑐𝑠𝑠(𝑙)

(|𝑗 |+ |𝑙|)2 𝑑(𝐜𝑗 , 𝐜𝑙)2 Ward (1963)
3.1.1. Merging clusters and linkage selection
During the AC process, we combine each pair of clusters 𝑗 and 𝑙

(1 ≤ 𝑗, 𝑙 ≤ 𝑛) by using a linkage (Murtagh & Contreras, 2012), deter-
mining the distance between clusters of data points. For our work we 
considered five different linkages, such that single (S-Link), complete 
(M-Link), average (A-Link), centroid (C-Link) and ward (W-Link) link-
age. Different linkages may produce different dendrograms and each 
linkage has its way of operating. For instance, in S-link, also known as 
the min linkage, the distance between two clusters would be the min-
imum distance between any two points in 𝑗 and 𝑙 . As a result, we 
would produce long, elongated clusters (chaining problem). However, 
if we consider M-Link, also known as the max linkage, then the distance 
between two clusters would be the maximum distance between any 
two points in the two clusters. That would produce compact, spherical 
clusters. Further, in A-Link, a compromise between S-Link and M-Link, 
we compute the distance between two clusters as the average distance 
between all pairs of points in the two clusters. In C-Link, the distance be-
tween two clusters is the distance between their centroids. This linkage 
is computationally efficient and can produce well-separated clusters. 
Last but not least, in W-Link, the distance between 𝑗 and 𝑙 is ex-
pressed as the increase in the sum of squared distances within the 
resulting merged cluster compared to the sum of squared distances 
within the separate clusters before merging. This linkage yields com-
pact, spherical clusters but is sensitive to cluster size and shape. Table 1
summarizes how each linkage is computed.

Choosing the wrong linkage would result in poor clustering per-
formance, forging none well-separated clusters, or clusters that do not 
correspond to the underlying structure of the data. Therefore, it is es-
sential to consider the choice of linkage method carefully. On the other 
hand, the choice of the distance measure has not as great influence as 
the choice of the linkage, thus, a generic Euclidean distance is, usually, 
a good choice.

Several clustering validation metrics can be used to optimize the 
linkage selection in AC. One strategy is to employ the silhouette 
score (Rousseeuw, 1987), which estimates the clustering quality by 
quantifying the extent of separation between clusters, or the Davies-
Bouldin index (Davies & Bouldin, 1979), which measures the likeness 
between clusters by assuming the ratio of the within-cluster scatter and 
the between-cluster distance. Another good technique is the cophenetic 
correlation coefficient (CPCC, Farris (1969)), which measures how well 
a dendrogram describes the pairwise distances between the data points.

Definition 3 (Cophenetic correlation coefficient). Let 𝐱𝑖 and 𝐱𝑗 (1 ≤
𝑖, 𝑗 ≤ 𝑛) be two objects in the dendrogram, resulting from AC. Let 
𝑑𝐸 (𝐱𝑖, 𝐱𝑗 ) denote the pairwise (Euclidean) distance between 𝐱𝑖 and 𝐱𝑗 , 
and 𝑑𝐶 (𝐱𝑖, 𝐱𝑗 ) denote the cophenetic (Euclidean) distance between 𝐱𝑖
and 𝐱𝑗 , i.e. the distance between the largest two clusters that contain 
6

𝐱𝑖 and 𝐱𝑗 individually before they are merged into a single cluster that 
contains both of these objects. The Cophenetic Correlation Coefficient 
is computed as:

𝐶𝑃𝐶𝐶 = 2
𝑛(𝑛− 1)

𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑖+1

(
𝑑𝐸 (𝐱𝑖,𝐱𝑗 ) . 𝑑𝐶 (𝐱𝑖,𝐱𝑗 )

)
(2)

CPCC can be considered better than the silhouette coefficient and 
Davies-Bouldin index mainly for two reasons. First, CPCC assumes the 
whole dendrogram, whereas the others only consider the pairwise dis-
tances between data points. In other words, CPCC can capture the 
overall structure of the dendrogram, including the branching pattern 
and the distances between the clusters. Second, unlike the silhouette co-
efficient and Davies-Bouldin index, CPCC is insensitive to the number 
of clusters chosen, making it useful when comparing clustering results 
with different numbers of clusters. For the mentioned advantages, we 
only considered CPCC as a clustering validation metric in this work to 
determine which linkage method, denoted as 𝐿𝑏𝑒𝑠𝑡, fits each dataset 
well.

In the context of linkage selection, CPCC evaluates the quality of a 
particular linkage method by comparing the pairwise distances between 
the data points with the distances between the corresponding nodes in 
the dendrogram. A high CPCC indicates that the dendrogram accurately 
represents the pairwise distances between the data points, and therefore 
the linkage method used to construct the dendrogram is a good choice 
for clustering the data. Thus, the linkage with the highest CPCC value 
is selected as the best method for agglomerative clustering. The algo-
rithm for linkage selection based on CPCC can be summarized as the 
following:

• Step 1: Calculate the pairwise distances between the data points 
using the Euclidean distance.

• Step 2: Construct a dendrogram using a particular linkage method.
• Step 3: Compute CPCC score for the dendrogram using Eq. (2).
• Step 4: Repeat steps 2 and 3 for different linkage methods.
• Step 5: Select the linkage method that produces the dendrogram 

with the highest CPCC.

3.1.2. Cluster optimization
Cluster optimization is the process of determining the optimal num-

ber 𝑐 of clusters in a clustering algorithm, a challenging task, as it 
depends on the dataset and the clustering algorithm used. Selecting 
inappropriate 𝑐 can lead to inaccurate or irrelevant results. If there 
are too few clusters, the data may be oversimplified, and subgroups 
may be missed. On the other hand, if there are too many clusters, then 
the data may be over-complicated, and the results may not be inter-
pretable or useful. Several methods have been developed for optimizing 
𝑐, including the elbow method (Thorndike, 1953), silhouette analy-

sis (Rousseeuw, 1987), the Davies-Bouldin index (Davies & Bouldin, 
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1979), and the Bayesian Information Criterion (𝐵𝑠𝑐𝑜𝑟𝑒, Schwarz (1978)) 
computed as:

𝐵𝑠𝑐𝑜𝑟𝑒 = −2 ln+ 𝑧 ln𝑛 (3)

with:

𝑧 = (𝑐 − 1) + (𝑑 . 𝑐) + 1

where  is the maximum likelihood of the data given the model, 𝑧 is 
the number of parameters in the model, 𝑛 is the sample size and 𝑑 is 
the dimensionality of the data (see Eq. (1)).

𝐵𝑠𝑐𝑜𝑟𝑒 penalizes models with more parameters, which helps to avoid 
overfitting and ensures that the algorithm does not create excessive 
clusters, preventing the overshadowing effect of large clusters. For op-
timizing 𝑐 in AC, we calculate 𝐵𝑠𝑐𝑜𝑟𝑒 for different numbers of clusters 
and select 𝑐 that minimizes 𝐵𝑠𝑐𝑜𝑟𝑒.

Schubert (2022) compared several methods for selecting 𝑐 for the k-
means clustering algorithm and reported that the Elbow method could 
be inconsistent (delivering sub-optimal clustering results), while the 
silhouette analysis and Davies-Bouldin index often produce more trust-
worthy and informative results than the elbow criterion, especially for 
well-separated and overlapping clusters. Their experimental results re-
veal that the 𝐵𝑠𝑐𝑜𝑟𝑒 always performed well3 despite using different 
heuristics on synthetic datasets, such as well-separation, overlapping, 
number of clusters, and uniform or normal data distribution.

3.2. Extraction and classification of representative points

A typical application of cluster-based sampling for imbalance learn-
ing is in disjunct subsets problems, where several disjoint sub-clusters 
characterize  . In such cases, traditional oversampling methods may be 
ineffective, as they tend to oversample the target class uniformly across 
the feature space rather than focusing on the specific sub-clusters where 
the minority class is most prevalent. However, class boundaries, which 
play a critical role in most classifications (Han et al., 2005), are not of-
ten considered. Thus, instead of synthesizing data directly, we extract 
clusters’ representative points in this work. Representative points, ele-
ments of the set  introduced before, are often more interpretable than 
the original data points, making it easier to gain insight into the under-
lying patterns and relationships in the data, explore cluster’s sub-spaces, 
and consider the distribution of both classes, especially the instances 
nearby the borderlines. By contrast, the proposed approach is tailored 
to each sub-cluster individually, allowing for more effective oversam-
pling of  in each region of the feature space. Which would probably 
improve the classification performance, mainly when dealing with com-
plex and highly imbalanced datasets.

Thus, at this level, we would extract the representative points 𝑖

for each cluster 𝑖, but before that, we first should specify the number 
of representative points |𝑖| per cluster (1 ≤ 𝑖 ≤ 𝑐), as defined in the 
Eq. (4)

|𝑖| =
⎧⎪⎪⎨⎪⎪⎩
0, if 𝑝 = 0 ∧ |𝑖| ≥ 𝑘′

1, if (𝑝 = 0 ∧ |𝑖| < 𝑘′) ∨ (𝑝 = 1)
|𝑖| . |𝑆||𝑆|+(|𝑖|−1) , otherwise

(4)

where

|𝑆| = 𝑍2
𝛼
. 𝑝 . (1 − 𝑝)

( log |𝑖||𝑖| + 𝜖)2
(5)

and

3 Justified by an other experiment reported in https://towardsdatascience .
com /are -you -still -using -the -elbow -method -5d271b3063bd (last access: 
7

26/07/2023).
Intelligent Systems with Applications 22 (2024) 200357

𝑝 =

∑
𝐱∈𝑖

𝜙(𝐱 ∈ )

|𝑖| (6)

𝑆 is inspired by the sample size formula in statistics (Cochran, 1977), 
in which 𝜖 is the acceptable tolerance error that can be adjusted as re-
quired, 𝑍𝛼 is the critical value of the 𝑍 test at the significance level 
𝛼 (Shi et al., 2022), 𝜙 is an indicator function,4 and 𝑝 is the variance 
of a proportion denoting the percentage of a sample having a particular 
characteristic,5 and 𝑘′ is a hyper-parameter related to the size of clus-
ters. Here, 𝑝 denotes the proportion of objects in the given cluster 𝑖
belonging to the minority class  .

In other words, |𝑖| will increase as the within-class impurity grows 
i.e., 𝑝 ⋅ (1 − 𝑝) increases. 𝑍𝛼 is set to the value of 1.645, referring to 
𝛼 = 90%, and the margin of error 𝜖 is set to 0.05. The function log(|𝑖|)|𝑖|
scales down the cardinality of the cluster 𝑖 into the interval (0, 1

𝜖
), and 

is added to a fixed 𝜖, the square of which is inversely proportional to 𝑆 . 
This would help us to limit |𝑖| for large clusters.

Moreover, |𝑖| = 0 solely if all the instances within a given cluster 
𝑖 belong to  while the size of the cluster is greater than 𝑘′. If 𝑘′ is too 
small (e.g., 𝑘′ = 1), it will be difficult to distinguish the features of dif-
ferent samples; if it is too large, it cannot capture the local property of 
the representative point. Thus, referring to Napierala and Stefanowski 
(2016), Shi et al. (2022), we use 𝑘′ = 5 to capture the local property 
of each representative point. If |𝑖| ≥ 𝑘′, it would mean that the neigh-
boring area of the representative point is populated only by instances 
from  . As we would use the incremental kNN strategy to extract safe 
and half-safe areas (see Sect. 3.3) and only consider oversampling mi-
nority class regions, representative of size |𝑖| = 0 can neither be safe 
nor half-safe. Thus, we will not extract any representative point in such 
areas. In contrast, |𝑖| = 1 reflects that the cluster contains only in-
stances from  or less than five instances from  . Otherwise, |𝑖| is 
computed by the third line in Eq. (4). The closer a cluster is to the bor-
derline, the more representative points will be extracted. It is important 
to note that as we mainly deal with neighboring searches at current and 
the following stages, KDTree (K-Dimensional Tree, Bentley (1990)) is 
used to reduce the number of computational resources. The algorithm 
can quickly find a point’s nearest neighbor and reduce the number of 
pairwise distances that need to be computed. By using KDTree, the time 
complexity of finding nearest neighbors can be reduced from (𝑛2) to 
(𝑛 log𝑛), where 𝑛 is the number of data points. Overall, KDTree of-
fers fast nearest neighbor search and efficient range queries in low to 
moderate dimensional spaces.

Once we set the size |𝑖|, we start extracting the representative 
points 𝑖 for each cluster 𝑖 according to the well-scattered points ex-
traction strategy described by Algorithm 1, adopted from CURE (Guha 
et al., 1998).

Algorithm 1 Extraction of representative points.
Input: Cluster 𝑖 , shifting rate 𝛿 ∈ [0, 1]
Output: A set of representative points 𝑖

1:  ← ∅
2: determine |𝑖| using Eq. (4)

3: 𝐜𝑖 ←
1|𝑖 | ∑𝐱∈𝑖

𝐱 ⊳ Get the cluster’s centroid

4: 𝐫1 ← argmax𝐱∈𝑖
𝑑(𝐱, 𝐜𝑖) ⊳ Select the first representative point

5:  ← ∪ {𝐫1}
6: for 𝑗 = 2, ..., |𝑖| do

7: 𝐫𝑗 ← argmax𝐱∈𝑖⧵min𝐫∈ 𝑑(𝐱, 𝐫) ⊳ Find the farthest point from 
8:  ← ∪ {𝐫𝑗}
9: end for

10: 𝑖 ← {𝐫 + 𝛿(𝐜𝑗 − 𝐫) | 𝐫 ∈} ⊳ Shift points toward the centroid
11: return 𝑖

4 𝜙(⋅) = 1 if the expression ⋅ in its parameter is true, otherwise 𝜙(⋅) = 0.
5 E.g., Taherdoost (2017) used 𝑝 = 0.4 to denote that 40% of the population 
are female.

https://towardsdatascience.com/are-you-still-using-the-elbow-method-5d271b3063bd
https://towardsdatascience.com/are-you-still-using-the-elbow-method-5d271b3063bd
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For a cluster 𝑖 with |𝑖| = 1, its centroid 𝐜𝑖 will be used as a rep-
resentative point, while clusters with |𝑖| = 0 are discarded (ignored 
in the subsequent steps). These clusters are populated only by instances 
from  and are not considered during the generation process as they 
are far away from the decision boundaries between  and  . For each 
remaining cluster 𝑖, we take the farthest point 𝐫1 ∈ 𝑖 from its centroid 
𝐜𝑖 as the first representative point. Then, in each subsequent iteration 
𝑗 ∈ {2, … , |𝑖|}, we pick up an instance 𝐫𝑗 ∈ 𝑖, which is farthest from 
the set of representative points 𝑖, considering the single linkage (S-
Link) distance between the two sets {𝐫𝑗} and  (see Table 1). After that, 
we shift 𝐫1, … , 𝐫|𝑖| ∈𝑖 toward the centroid 𝐜𝑖 ∈ 𝑖 by 𝛿. The hyper-
parameter 𝛿, represented by 𝛼 in the original algorithm, as suggested by 
Guha et al. (1998) and Cai and Liang (2018), should ideally fall within 
the range of [0.2, 0.7]. This range helps mitigate the impact of noise and 
outliers during cluster formation. A higher 𝛿 value leads to representa-
tives being positioned closer to the centroid, while in our research, 𝛿
denotes the shifting rate of representative points. These representatives 
act as centroids around which synthetic samples are generated in sub-
sequent steps, affecting the spreads between synthetic data points and 
each cluster’s centroid. A larger 𝛿 value would result in synthesizing 
samples closer to the centroid, while a smaller 𝛿 value would allow for 
more dispersion within the cluster. Considering the diverse characteris-
tics of each dataset, we retain the need to optimize 𝛿 to achieve optimal 
performance.

Once all representative points 𝐫𝑗 ∈𝑖 (1 ≤ 𝑗 ≤ |𝑖|) are extracted, 
we classify them into safe, half-safe or unsafe classes using Eq. (8). For 
that, the 𝑘-nearest neighbors 𝐧𝑗1, … , 𝐧𝑗

𝑘
of each representative point 𝐫𝑗

are identified, and the proportion of the minority samples among these 
nearest neighbors is adopted as the weight 𝑤𝑘(𝐫𝑗 ) ∈ [0, 1] of 𝐫𝑗 , com-
puted as:

𝑤𝑘(𝐫𝑗 ) =
1
𝑘

𝑘∑
𝑙=1

𝜙(𝐧𝑗
𝑙
∈ ) (7)

where 𝜙 is an indicator function, defined before, and 𝑘 is a hyper-
parameter. Based on 𝑤𝑘(𝐫𝑗 ), 𝐫𝑗 is classified as safe, half-safe or unsafe 
as follows.

𝐫𝑗 =
⎧⎪⎨⎪⎩

safe, if 𝑤𝑘(𝐫𝑗 ) = 1
half-safe, if 0.5 <𝑤𝑘(𝐫𝑗 ) < 1
unsafe, otherwise

(8)

This indicates that a representative point 𝐫𝑗 ∈𝑖 is classified as safe 
only if all its 𝑘-nearest neighbors belong to  . In contrast, 𝐫𝑗 is half-safe 
if most of its 𝑘-nearest neighbors belong to  . If 𝐫𝑗 does not satisfy one 
of the mentioned conditions, we categorize it as unsafe as most of its 
𝑘-nearest neighbors belong to  and not  .

3.3. Areas estimation using incremental kNN

In order to extract minority class sub-spaces, we investigate in-
stances surrounding a representative point. The objective is to expand 
representative point areas using incremental kNN as long as some pre-
requisites are satisfied. The details are presented in Algorithm 2. The 
resulting areas are used as input for a given data generator to synthesize 
artificial minority class samples with new characteristics unavailable in 
the original data.

Considering the classification condition of the point (object) being 
half-safe, the parameter of kNN should be an odd number and greater 
than one. We choose 𝑘 = 3 to ensure that the disjunct subset with at 
least three minority instances can be identified as a safe area, as larger 
𝑘 values may result in bypassing some tiny but safe areas (Fig. 5). Fur-
thermore, the resulting representative points from the previous step are 
initially classified by 3-NN.

Algorithm 2 treats each 𝐫𝑗 ∈ 𝑖 (1 ≤ 𝑗 ≤ |𝑖|) differently, relying 
on Eq. (8). As described in Fig. 6(a), the algorithm keeps expanding the 
8

safe area incrementally, by 𝑘 +1. The 𝑘 +1𝑡ℎ neighbor of 𝐫𝑗 is accepted 
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Algorithm 2 Incremental kNN.
Input: The set of representative points 𝑖 of 𝑖

Output: Safe 𝑖
𝑠

and half-safe 𝑖
ℎ

areas of 𝑖

1: 𝑖
𝑠
, 𝑖

ℎ
← ∅

2: for 𝑗 = 1, 2, … , |𝑖| do

3: Calculate 𝑤𝑘(𝐫𝑗 ) by Eq. (7) ⊳ 𝐫𝑗 ∈𝑖 , 𝑘 = 3
4: if 𝑤𝑘(𝐫𝑗 ) = 1 then ⊳ Safe
5: 𝑘 =min

𝑙≥3
𝑤𝑙+1(𝐫𝑗 ) ≠ 1

6: 𝑖
𝑠
←𝑖

𝑠
∪ ⟨𝐫𝑗 , 𝐧𝑗

𝑘
⟩ ⊳ Store the safe area (from 𝐫𝑗 to its 𝑘-th nearest neighbor 

𝐧𝑗

𝑘
)

7: else if 𝑤𝑘(𝐫𝑗 ) ≤ 0.5 then ⊳ Unsafe
8: 𝑘′ = min

𝑙∈[3,10]
𝑤𝑙(𝐫𝑗 ) > 0.5

9: 𝑘 = min
𝑘′≤10,𝑙≥𝑘′

(
𝑤𝑙+1(𝐫𝑗 ) ≤ 0.5 ∧𝜙(𝐧𝑗

𝑙+1 ∈ ) = 0
)

10: 𝑖
ℎ
←𝑖

ℎ
∪ ⟨𝐫𝑗 , 𝐧𝑗

𝑘
⟩ ⊳ Store the area that become half-safe after expansion

11: else ⊳ Half-safe
12: 𝑘 =min

𝑙≥3

(
𝑤𝑗+1(𝐫𝑗 ) ≤ 0.5 ∧𝜙(𝐧𝑗

𝑙+1 ∈ ) = 0
)

13: 𝑖
ℎ
←𝑖

ℎ
∪ ⟨𝐫𝑗 , 𝐧𝑗

𝑘
⟩ ⊳ Store the half-safe area

14: end if

15: end for

16: return 𝑖
𝑠
, 𝑖

ℎ

Fig. 5. A large 𝑘 may result in omitting some small safe minority disjunct sub-
sets.

Fig. 6. Examples of areas extraction using the incremental kNN strategy: (a) a 
safe area populated from a safe representative point; (b) a half-safe area popu-
lated from a half-safe representative point; (c) a half-safe area populated from 
an unsafe representative point; (d) a discarded unsafe area populated from an 
unsafe point where max-iter is reached.

only when it is a minority instance; if not, the 𝑘th nearest neighbor 𝐧𝑗
𝑘

of 𝐫𝑗 would be the farthest point that keeps 𝐫𝑗 ’s area safe. For a half-
safe point, the algorithm keeps expanding its area as long as the area 
remains half-safe (Fig. 6(b)).

For unsafe points, two possibilities may occur (see Fig. 4). An unsafe 

point may remain unsafe or revert to half-safe. Thus, to avoid losing 
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the local property of a given unsafe point, we set a max-iter parame-
ter for the incremental kNN. If max-iteration is reached and the point 
stays unsafe, that area will be discarded (Fig. 6(d)) as it indicates an 
overpopulated area by majority-class instances. However, if an unsafe 
point changes to half-safe before reaching max-iter, we extend its area as 
shown in Fig. 6(c) according to the strategy utilized for half-safe points.

The value for max-iter for identified unsafe areas in our incremen-
tal kNN algorithm was empirically set to 10 so that it would provide a
good, overall default setting for the datasets used in our experiments. 
This choice aims to balance meaningful area expansion and prevent-
ing excessive growth. The goal is to ensure effective expansion without 
compromising computational efficiency, addressing the need for mean-
ingful exploration while avoiding unnecessary computational burden. 
Opting for a higher value of max-iter could result in unnecessary com-
putational costs, whereas a lower value might limit the algorithm’s ca-
pacity to identify potential minority class half-safe areas. By restricting 
expansion, we also mitigate potential overlap issues with other areas, 
preserving the algorithm’s ability to distinguish distinct minority class 
sub-spaces. This constraint on iteration optimizes resource utilization, 
allowing for the efficient capture of relevant sub-spaces. Additionally, 
the finite nature of max-iter aids in identifying overpopulated majority-
class areas, preventing the consideration of regions dominated by the 
majority class. However, we do realize that this hyper-parameter might 
need fine-tuning in case of new datasets with different characteristics 
than those used in our experiments.

3.4. Weighting safe and half-safe areas

Given the expected imbalance ratio, denoted as 𝐼𝑅𝑒, to specify the 
desired balance level after the synthetic data generation process, and 
the weights 𝑤𝑠 and 𝑤ℎ of safe and half safe areas, respectively, we 
determine the number of synthetic data examples 𝛾 that we would gen-
erate using Algorithm 3 for  by Eq. (9), and which then we split 
between safe areas and half-safe areas according to Eqs. (10) and (11), 
respectively.

𝛾 = | |− ||
𝐼𝑅𝑒

(9)

|𝑠| = 𝛾 ⋅
𝑤𝑠 . |𝑠|

𝑤𝑠 . |𝑠|+𝑤ℎ . |ℎ| (10)|ℎ| = 𝛾 − |𝑠| (11)

𝜂𝑎 =
⎧⎪⎨⎪⎩

𝜇𝑎 . |𝑠|
𝜇𝑠

if 𝑎 ∈𝑠

𝜇𝑎 . |ℎ|
𝜇ℎ

if 𝑎 ∈ℎ

(12)

In practice, we set the value of 𝑤𝑠 and 𝑤ℎ equal to 1 by default, 
which could be customized if needed. Then, the exact number 𝜂𝑎 ∈ ℕ
of points to generate for each area 𝑎 is determined based on 𝜇𝑎, the 
number of minority instances that belongs to the area 𝑎. In Eqs. (10)
and (11), 𝜇𝑠 and 𝜇ℎ are the sum of the number of minority instances 
that belongs to all 𝑎 ∈𝑠 and 𝑎 ∈ℎ, respectively. As the number of 
synthetic samples |𝑠| that would be generated in safe areas, and the 
number of synthetic samples |ℎ| in half-safe areas, as well as in a 
given area 𝜂𝑎 are rounded, the remaining synthetic samples that were 
not counted are added systematically into random safe areas to satisfy 
𝛾 .

3.5. Synthetic data generation using Gaussian generator

When instances from the minority class are located in small, isolated 
areas of the feature space, standard methods such as SMOTE find it hard 
to generate synthetic samples useful for the classification task.

First, SMOTE can create dense areas in the feature space as it gener-
ates samples by interpolating between existing minority class samples. 
This can create dense areas of synthetic samples that are not represen-
9

tative of the true underlying distribution (Fig. 7(a)). These dense areas 
Intelligent Systems with Applications 22 (2024) 200357

Fig. 7. Gaussian random generator (right) compare to the interpolation method 
(left).

can have several negative consequences: they may lead to overfitting 
the machine learning model, as the model may learn to rely too heavily 
on the dense clusters of synthetic samples rather than the true underly-
ing distribution. Thus, using a Gaussian generator, instead SMOTE, can 
be seen as a more nuanced and context-sensitive approach. The adopted 
Gaussian generator recognizes the non-normal distribution of imbal-
anced datasets. Rather than assuming a global normal distribution, it 
targets specific sub-spaces within the minority class for oversampling, 
allowing for more fine-grained control over the generation of synthetic 
samples (Fig. 7(b)) and ensuring a more accurate representation of the 
minority class without making assumptions about the overall dataset’s 
normality. In contrast, SMOTE is a more general approach that does not 
account for the specifics of the distribution of  , which can lead to the 
generation of synthetic samples that are not representative of the true 
underlying distribution of  . Overall, a Gaussian generator can improve 
performance and a more accurate representation of  in small disjunct 
areas. Its implementation is described in Algorithm 3.

Algorithm 3 Sampling from Truncated Hyper-spherical Gaussian Dis-
tribution.
Input: Representative area ⟨𝐫𝑗 , 𝐧𝑗

𝑘
⟩, standard deviation 𝜎

Output: Synthetic sample 𝐱
1: 𝑟 = 𝑑𝐸 (𝐫𝑗 , 𝐧𝑗

𝑘
) ⊳ (Euclidean) Radius of the hyper-sphere centered at 𝐫𝑗

2: do ⊳ check-point
3: 𝐳 ∼𝑁(0, 𝜎.𝐼𝑑 ) ⊳ 𝐼𝑑 is a 𝑑-dimensional identity matrix
4: 𝐱 = 𝐫𝑗 + 𝑟 . 𝐳 ⊳ generate a sample
5: while 𝑑𝐸 (𝐫𝑗 , 𝐱) > 𝑟

6: if ⟨𝐫𝑗 , 𝐧𝑗

𝑘
⟩ ∈ℎ then ⊳ The given area is half-safe

7: if 𝑤𝑘(𝐱) ≠ 1 then ⊳ Eq. (7)
8: Go back to step 2
9: end if

10: end if

11: return 𝐱

Initially, Algorithm 3 computes the radius 𝑟, which represents the 
Euclidean distance between 𝐫𝑗 , the center of the hyper-spherical region 
and 𝐧𝑗

𝑘
, the 𝑘-th nearest neighbor of 𝐫𝑗 estimated by Algorithm 2. This 

process involves iteratively sampling a point 𝐳 from a Gaussian distri-
bution with a mean of 0 and a standard deviation of 𝜎, denoted as 
𝑁(0, 𝜎 ⋅ 𝐼𝑑 ). Subsequently, a candidate sample 𝐱 is generated by scaling 
𝐳 with the radius 𝑟 and translating it to the center 𝐫𝑗 . Following this, 
the algorithm verifies whether the distance between 𝐫𝑗 and 𝐱 exceeds 
𝑟, iterating until a valid sample within the hyper-sphere is obtained. In 
case the representative area ⟨𝐫𝑗 , 𝐧𝑗𝑘⟩ ∈ℎ, an additional check is con-
ducted. Specifically, the algorithm examines the local property of 𝐱 by 
evaluating whether its weight, denoted as 𝑤𝑘(𝐱), is not equal to 1. If 
this condition is not satisfied, the algorithm returns to the sampling 
step. Upon fulfilling all conditions, the algorithm outputs the synthetic 
sample 𝐱.

As mentioned earlier, the algorithm involves iteratively sampling a 
point 𝐳 from a Gaussian distribution with a mean of 0 and a standard 
deviation of 𝜎, where 𝜎 ∈ [0, 1]. The value of 𝜎 reflects the degree of 
convergence of the generated samples from the center 𝐫𝑗 of the given 

area.
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Fig. 8. Effect of 𝜎 on synthetic instances.
Fig. 9. Illustration of the filter in a half safe area.

As described in Fig. 8(a) and Fig. 8(b), picking a small 𝜎 would yield 
a dense area of generated instance near 𝐫𝑗 and do not fully cover the 
extracted area’s sub-spaces, whereas a high 𝜎 (Fig. 8(c)) would cover 
more sub-space but might generate instances out of the area’s borders 
which might cause a problem if two extracted areas or more are over-
lapping. Therefore, we check whether a generated instance is within a 
hyper-sphere (line 5 of Algorithm 3), and fixed 𝜎 to 0.8. To justify our 
choice of 𝜎 = 0.8 in our study, we note that the Gaussian sampling re-
sults were highly comparable for values of 𝜎 greater than 0.8. Thus, by 
selecting 𝜎 = 0.8, we can ensure a satisfactory level of diversity in the 
generated data. Moreover, we found that 𝜎 = 0.8 accelerates our algo-
rithm’s convergence as it reduces the number of rejected instances due 
to being outside the designated radius 𝑟 (line 1 of Algorithm 3). There-
fore, we determined that 𝜎 = 0.8 was suitable for our study based on 
these considerations.

Given that our Algorithm 3 populates both safe and half-safe areas, 
if we apply it directly in the half-safe area, we would probably induce 
instances encircled by majority class instances. Such instances influ-
ence classes’ separability and further worsen the precision of majority 
class (Kulkarni et al., 2020). Thus, we involve a filter (line 7 of Algo-
rithm 3) based on the nearest neighbors for each synthetic sample when 
oversampling in half-safe areas. The filter can be seen as a post-step re-
straining the random vector from generating artificial instances only in 
the minority class’s direction. We compute the weight 𝑤𝑘(𝐱) of each 
sample 𝐱 using Eq. (7). The number of nearest neighbors 𝑘 is adapta-
tive to the half-safe area. When 𝜇𝑎 < 5 for a given area 𝑎, 𝑘 would be 
equal to 𝜇𝑎. Otherwise, the filter fixes 𝑘 = 5. As illustrated in Fig. 9, 𝐱
10

is preserved if 𝑤𝑘(𝐱) = 1 meaning that all its neighbors belong to  .
4. Experiments

Using the taxonomy proposed in Fig. 3, we classify AROSS as a 
cluster-based adaptive oversampling method due to its agglomerative 
clustering module to extract data features and its adaptive generation of 
synthetic samples in safe and half-safe regions using different weights. 
The parameters 𝐿𝑏𝑒𝑠𝑡 (the best linkage), 𝑐 (the number of clusters), and |𝑖| (the number of representative points per cluster) are automatically 
fine-tuned for each dataset based on the CPCC, 𝐵𝑠𝑐𝑜𝑟𝑒, and the sample 
size formula, respectively, while 𝛿 (the shifting rate, see Algorithm 1) is 
a customizable hyper-parameter.

To assess the performance of the proposed approach, we evaluate 
it with two variants. The first one, without the use of shifting, denoted 
as AROS (area-based representative points oversampling), uses 𝛿 = 0. 
The second one, with shifting, designated as AROSS (area-based repre-
sentative points oversampling with shifting), optimizes 𝛿 based on the 
recall measure. Luque et al. (2019) highlighted that recall is the sole 
bias-free metric in imbalance learning that specifically emphasizes the 
prediction of minority samples, which are frequently the target class. 
While optimizing, various 𝛿 values from the interval [0, 1], using a step 
length of 0.1 are considered. Selecting the optimal 𝛿 that maximizes 
recall ensures that representative points are shifted within clusters to 
populate ideal areas, capturing most of the minority data distribution 
and generating effective synthetic samples.

To evaluate the performance of the proposed method, we present 
the experimental comparison with state-of-the-art data-level resampling 
methods highlighted in Table 2, and their ranges of hyper-parameters 
in Table 3. Considering the scale of our experimental design, providing 
a consolidated overview through the specification of hyper-parameter 
ranges emerges as a pragmatic and informative strategy for presenting 
the breadth of our experimentation.

4.1. Datasets

To assess the performance of AROS and AROSS, we utilized 70
imbalanced datasets for benchmarking. Among these, 66 were real 
datasets sourced from the UCI (Asuncion & Newman, 2007) and 
KEEL (Derrac et al., 2015) repositories. Additionally, we created four 
artificial datasets with sample prefix. As we focus on binary classifica-
tion problems, datasets with more than two classes were converted into 
two-class datasets. Detailed information about the 70 datasets can be 
found in Table 5. We categorized the datasets into three groups to an-
alyze the imbalance severity based on their 𝐼𝑅 values. Specifically, 22
datasets were slightly imbalanced (𝐼𝑅 ≤ 5), 25 were moderately im-
balanced (5 < 𝐼𝑅 ≤ 10) while the remaining datasets were severely 

imbalanced (𝐼𝑅 > 10).
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Table 2

Data-level CIL approaches involved in the experiments.

Category Sub-category CIL approach Acronym

Random sampling Oversampling Random oversampling ROS (Chawla, 2010)

Synthetic sampling

Data generation

Synthetic minority oversampling S (Chawla et al., 2002)
Noise reduction a priori synthetic oversampling NRAS (Rivera, 2017)
Random walk oversampling RWO (Zhang & Li, 2014)
Partially guided SMOTE oversampling GS (Sandhan & Choi, 2014)

Adaptive

Adaptive synthetic sampling AS (He et al., 2008)
Deterministic SMOTE DS (Torres et al., 2016)
Adaptive neighbor synthetic minority oversampling ANS (Siriseriwan & Sinapiromsaran, 2017)
Synthetic minority based on probabilistic distribution SMPD (Kunakorntum et al., 2020)

Data cleaning
SMOTE with Edited nearest neighbors SENN (Batista et al., 2004)
SMOTE with Tomek-link STL (Batista et al., 2004)

Cluster-based

Oversampling
DB-SMOTE DBS (Bunkhumpornpat et al., 2012)
Cure-SMOTE CS (Ma & Fan, 2017)

Adaptive

Kmeans-SMOTE KS (Douzas et al., 2018)
Self-organizing map oversampling SOMO (Douzas & Bacao, 2017)
Area-based representative points oversampling AROS (Farou et al., 2024)
Area-based representative points oversampling with shifting AROSS (Farou et al., 2024)

Fig. 10. The benchmark process.
4.2. Evaluation measures

To evaluate the performance of the different models, particularly 
their ability to effectively classify samples from  , a set of commonly 
used metrics computed from the confusion matrix (Table 4) for classifi-
cation tasks is employed, including the area under the curve (AUC), 𝐹1
score (𝐹1), geometric mean (GM), and recall (Rec). These metrics com-
prehensively assess the models’ performance and ability to distinguish 
 from  .

• AUC is a metric that estimates the classifier’s ability to distinguish 
between classes by calculating the area under the Receiver Oper-
ating Characteristic (ROC) curve. A high AUC signifies a stronger 
ability to accurately classify samples from different classes.

• Rec (also called sensitivity) quantifies the proportion of correctly 
classified  out of all the actual  . A high Rec signifies a higher 
rate of correctly recognizing  .

• 𝐹1 is the harmonic mean of Precision (Pre) and Rec. It can be ex-
pressed as 𝐹1 = 2(𝑅𝑒𝑐×𝑃𝑟𝑒)∕(𝑅𝑒𝑐+𝑃𝑟𝑒), where 𝑅𝑒𝑐 = 𝑇𝑃∕(𝑇𝑃 +
𝐹𝑁) and 𝑃𝑟𝑒 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃 ). A high 𝐹1 indicate better model 
performance.

• GM considers the balance of a classifier’s performance for both 
and  . It is calculated as the square root of the product of sensi-
tivity (Rec) and specificity (Spec), where 𝑆𝑝𝑒𝑐 = 𝑇𝑁∕(𝑇𝑁 + 𝐹𝑃 ). 
Similarly to 𝐹1, a higher GM value indicates more balanced and 
accurate performance.

GM and AUC are identified as the most appropriate evaluation met-
rics for CIL problems by Luque et al. (2019), suggesting that these 
11

metrics have a null bias and consider the performance of both  and 
 , providing a comprehensive two-dimensional assessment. Addition-
ally, Rec is recognized as the optimal bias-free metric for CIL (Luque 
et al., 2019). It is a one-dimensional metric that focuses explicitly on 
predicting minority samples. While there is a significant bias associated 
with 𝐹1-score when used for CIL, it is essential to note that 𝐹1 have 
a high frequency of usage in CIL problems and statistical analysis and 
is considered a conventional metric for evaluating the performance of 
binary classification models (Jiang, Lu, et al., 2023, Wang et al., 2023).

4.3. The experimental process

Fig. 10 illustrates the whole process of the benchmark analysis the 
details of which are listed below.

Step 1: partitioning the train and test sets. To preserve class distribu-
tions and considering that some datasets have less than ten minority 
instances, we use the repeated stratified five fold cross-validation ap-
proach (Prusty et al., 2022). This method is highly dependable and 
resilient when dealing with limited or imbalanced data, as it helps mit-
igate bias, improve generalization, and provides valuable insights into 
the model’s performance and variability. We perform stratified five fold 
cross-validation for each dataset and repeat this procedure ten times, 
resulting in 50 distinct split configurations.

Step 2: addressing the CIL problem. The baseline methods described in 
Table 2 were implemented from imblearn (Lemaître et al., 2017) and
smote-variants (Kovács, 2019a) Python libraries. In addition to the 
baselines, the experimental results on the original datasets were also 
shown. These baselines are applied to the training sets generated in the 
previous step. In this process, we employ the default balancing strat-

egy for each dataset, ensuring that the expected imbalance ratio 𝐼𝑅𝑒
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Confusion matrix for binary problems, 
TP denotes the count of accurately pre-
dicted (true) positives, TN denotes the 
count of accurately predicted (true) 
negatives, FP denotes the count of 
falsely predicted positives, and FN de-
notes the count of falsely predicted neg-
atives.

Actual

Positive Negative

P
re

d Positive 𝑇𝑃 𝐹𝑃

Negative 𝐹𝑁 𝑇𝑁

is set to 1. The augmented training sets ′ are obtained as the out-
come of this step. Mandating an 𝐼𝑅𝑒 of 1 enhances the efficacy of 
classification models as it ensures equitable representation, particularly 
favoring the identification of minority classes. According to Fotouhi et 
al. (2019), classification algorithms are affected by high IRs, especially 
when classes are non-linearly separated, underlining the importance of 
mitigating imbalances for optimal model performance. Therefore, solv-
ing the dominance of majority classes by resampling techniques would 
enable a potential model generalization and facilitate the impartial eval-
uation of diverse data-level methods. Furthermore, Shi et al. (2022)
pointed out that resampling approaches aim to decrease the IR to a bal-
anced or nearly balanced state, which could reduce or eliminate the bias 
toward the majority class. Also, Kovács (2019b) highlighted in his em-
pirical comparison and evaluation of minority oversampling techniques 
that models trained on datasets with 𝐼𝑅𝑒 of 1 provide a standardized 
benchmark for comparing the effectiveness of various resampling tech-
niques, enabling well-informed decisions regarding the most suitable 
methods. As a result, using an 𝐼𝑅𝑒 of 1 would help address dataset im-
balances, advocate for fairness, and yield robust and dependable results.

Step 3: training classification models. we trained four classifiers—k-
nearest neighbor (kNN),6 decision tree (DT),7 support vector classifier 
(SVC),8 and random forest (RF)9—using the rebalanced training sets 
denoted as ′. The implementation of these classification algorithms 
utilized the scikit-learn library (Pedregosa et al., 2011) Python API 
with their default hyper-parameter settings, displayed in Table 6.

The decision to maintain default parameters was strategic, as our 
primary focus was investigating the impact of data-level solutions on 
classification results. By adhering to default parameters, we ensured 
that any observed variations in performance could be unequivocally 
attributed to the resampling techniques, enabling a concentrated anal-
ysis of their effectiveness. Additionally, adopting default parameters 
enhances our experimental setup’s simplicity and reproducibility and 
aligns with considerations of computational efficiency. Moreover, Man-
tovani et al. (2015) concluded that, for highly imbalanced data sets, 
tuning does not obtain much higher performance. Also, experiments 
conducted by Horváth et al. (2023) showed that using default val-
ues worked considerably well for classification algorithms. Therefore, 
given the study’s scope, retaining default parameters allows us to effi-
ciently explore the influence of data-level solutions without introducing 
unnecessary computational complexity. However, we do realize that 
hyper-parameter tuning, despite its high computational cost, might lead 
to better results.

6 kNN implementation. https://scikit -learn .org /stable /modules /generated /
sklearn .neighbors .KNeighborsClassifier .html

7 DT implementation. https://scikit -learn .org /stable /modules /generated /
sklearn .tree .DecisionTreeClassifier .html

8 SVC implementation. https://scikit -learn .org /stable /modules /generated /
sklearn .svm .SVC .html

9 RF implementation. https://scikit -learn .org /stable /modules /generated /
12
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 sklearn .ensemble .RandomForestClassifier .html

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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taset Att Samp % IR

IR > 10

ss016vs2 9 192 8.85 10.29

oli0147vs2356 7 336 8.63 10.59

7digit-02456789vs1 7 443 8.35 10.97

oli01vs5 6 240 8.33 11

ss06vs5 9 108 8.33 11

ss0146vs2 9 205 8.29 11.06

ss2 9 214 7.94 11.59

oli0147vs56 6 332 7.53 12.28

veland0vs4 13 173 7.51 12.31

oli0146vs5 6 280 7.14 13

ast1vs7 7 459 6.54 14.3

ss4 9 214 6.07 15.46

oli4 7 336 5.95 15.8

ge-blocks13vs4 10 472 5.93 15.86

alone918 8 731 5.75 16.4

ss016vs5 9 184 4.89 19.44

ss5 9 214 4.21 22.78

ast2vs8 8 482 4.15 23.1

ast4 8 1484 3.44 28.1

ast1289vs7 8 947 3.17 30.57

ast5 8 1484 2.96 32.73

oli0137vs26 7 281 2.49 39.14

lt 5 4339 1.71 57.64
Table 5

Description of datasets used for benchmark experiment.

# Dataset Att Samp % IR # Dataset Att Samp % IR # Da

Skewness IR ≤ 5 5 < IR ≤ 10

D1 breast 30 569 37.26 1.68 D23 new-thyroid1 5 215 16.28 5.14 D48 gla

D2 wpbc 31 569 37.26 1.68 D24 ecoli2 7 336 14.48 5.46 D49 ec

D3 pimaindians-diabetes 8 768 34.89 1.87 D25 abalone510 8 749 15.35 5.51 D50 led

D4 seeds 7 210 33.33 2 D26 winequality-red3456vs78 11 1599 13.57 6.37 D51 ec

D5 wheat1 7 210 33.33 2 D27 glass6 9 214 13.55 6.38 D52 gla

D6 glass0 9 214 32.71 2.06 D28 yeast3 8 1484 10.98 8.1 D53 gla

D7 glass1 9 214 32.71 2.06 D29 ecoli3 7 336 10.42 8.6 D54 gla

D8 vertebral 6 310 32.26 2.1 D30 page-blocks1vs2345 10 5473 10.23 8.77 D55 ec

D9 eligibility-loan 11 614 31.27 2.2 D31 ecoli034vs5 7 200 10 9 D56 cle

D10 sampledata_3 2 1100 30.0 2.33 D32 yeast2vs4 8 514 9.92 9.08 D57 ec

D11 yeast1 8 1484 28.91 2.46 D33 ecoli067vs35 7 222 9.91 9.09 D58 ye

D12 maternal-risk-lmvsh 6 1014 26.82 2.73 D34 ecoli0234vs5 7 202 9.90 9.1 D59 gla

D13 haberman 3 306 26.47 2.78 D35 glass015vs2 9 172 9.88 9.12 D60 ec

D14 parkinsons 22 195 24.62 3.06 D36 yeast0359vs78 8 506 9.88 9.12 D61 pa

D15 glass0123vs456 9 214 23.83 3.2 D37 yeast0256vs3789 8 1004 9.86 9.14 D62 ab

D16 ecoli1 7 336 22.92 3.36 D38 ecoli046vs5 6 203 9.85 9.15 D63 gla

D17 page-blocks2vs4 10 417 21.1 3.74 D39 ecoli01vs235 7 244 9.84 9.17 D64 gla

D18 leaf 15 340 20.59 3.86 D40 ecoli0267vs35 7 224 9.82 9.18 D65 ye

D19 sampledata_2 2 1000 20.0 4 D41 glass04vs5 9 92 9.78 9.22 D66 ye

D20 page-blocks3vs5 10 143 19.58 4.11 D42 ecoli0346vs5 7 205 9.76 9.25 D67 ye

D21 sampledata 2 600 16.67 5 D43 ecoli0347vs56 7 257 9.73 9.28 D68 ye

D22 sampledata_1 2 900 16.67 5 D44 yeast05679vs4 8 528 9.66 9.35 D69 ec

D45 abalone48 8 625 9.12 9.96 D70 wi

D46 vowel0 13 988 9.11 9.98

D47 ecoli067vs5 6 220 9.09 10
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Table 6

Key hyperparameters of reported classification algorithms. Here 𝑑
refers to the number of features in the dataset, and Var(X) is the 
variance of the features.

Classifier Hyperparameters

kNN Number of neighbors (k): 5, Weighting strategy: ‘uniform’

SVC Regularization (C): 1.0, Kernel: ‘rbf’, Gamma: 1
𝑑×𝑉 𝑎𝑟(𝑋)

Probability estimates: Enabled

DT Splitting criterion: ‘gini’

RF Number of trees: 100, Splitting criterion: ‘gini’

Step 4: evaluation and ranking. The performance measures that were 
previously discussed are utilized to evaluate the models. Scores are com-
puted based on these measures and subsequently ranked in ascending 
order to determine the results.

5. Empirical results

The empirical findings include how CIL algorithms performed across 
the 70 datasets using the 4 performance measures. In the following 
subsections, we begin by summarizing the experimental results and 
comparing the results achieved by our proposed approach to the other 
approaches. Subsequently, we delve deeper into the observed outcomes 
and investigate their underlying reasons.

5.1. Benchmark analysis

Tables 7 and 8 present the average metric values and the average 
ranks, respectively, for Rec, 𝐹1, GM, and AUC achieved by various clas-
sifiers using CIL approaches on a total of 70 datasets, where the best 
CIL approach is indicated by boldface. Supplementary findings for each 
dataset are accessible for further exploration.10 The higher average met-
ric values and smaller the ranking or score of a particular CIL method 
under a specific metric, the better its effect, which means that the best 
approach receives a ranking of 1, and the worst one gets an 18 while 
average metric values are between [0, 1]. In Table 8, the penultimate 
row, AvgR, referring to the mean average of ranks, highlights the per-
formance of different CIL approaches (classifier combinations). The last 
row, Final score, is the ranking score of AvgR for each CIL method. 
It can be observed from Table 7 that AROSS is superior to the com-
pared cluster-based approaches in terms of average Rec, 𝐹1, and GM
scores across all classification algorithms, and that AROS (AROSS with 
𝛿 = 0) is superior to or competitive with the remaining cluster-based 
techniques. Furthermore, the average rank of AROSS, as indicated in 
Table 8, is significantly lower than the average rank scores of the com-
pared methods. AROSS achieves particularly low ranks in terms of Rec
(2.04), GM (2.93), and AUC (2.57) with DT, as well as in terms of 𝐹1
score with kNN (4.91). The rankings in AvgR results (Table 8) further 
highlight that AROSS consistently ranks at the top, followed by AROS. 
These results emphasize the importance of tuning the shifting rate 𝛿
in AROSS, as each dataset has unique characteristics and class distri-
butions. By optimizing the resampling process and generating more 
representative synthetic instances, AROSS effectively captures the as-
pects of  within each cluster. Tuning 𝛿 based on recall is a reasonable 
approach when the primary goal is to improve the performance of mi-
nority class classification. However, improving the correct prediction 
rate for  may result in the loss of prediction rate for  . As suggested 
by Chawla (2010), the primary purpose in CIL is to improve recall while 
avoiding affecting precision. The test results of classifiers’ 𝐹1 scores and 
ranks indicate that although AROSS is optimized for recall, it does not 
adversely affect predictions for the majority  . In fact, AROSS exhibits 

10 Detailed results. https://github .com /ghostqriver /AROSS /blob /main /
14
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the highest average 𝐹1 scores and ranks compared to both cluster-based 
approaches and other baselines.

When considering the average values and average 𝐹1 ranks, AROSS 
consistently exhibited higher average values and lower average ranks 
compared to all random sampling and synthetic baseline methods. How-
ever, in terms of Rec and GM, AROSS displayed lower average scores 
and higher ranks compared to SENN and RWO, except when applied 
with the DT classifier. In the case of DT classifier, AROSS surpassed all 
baselines in terms of average Rec and GM values. Thus, SENN and RWO 
are superior than AROSS except when applied with DT classifier where 
it is superior to all baselines regarding the average Rec, and GM values. 
These results can be interpreted based on the characteristics of the ENN 
and AROSS approaches. As a data-cleaning approach ENN tends to re-
move some relevant instances from the majority class. This leads to a 
lower precision (Pre) and, consequently, a lower 𝐹1 score than AROSS. 
On the other hand, AROSS employs an adaptive oversampling technique 
that focuses on generating synthetic instances that are more representa-
tive and relevant to the minority class. This results in a higher Pre and 
𝐹1 score for AROSS. Additionally, the ranking results of RWO from Ta-
ble 8 suggest that the SVC classifier, which is highly influenced by the 
distribution of data points and the presence of CIL problems, was influ-
enced by RWO. This could provide a favorable environment for SVC to 
identify positive and negative instances correctly. In the case of AROSS, 
it assists SVC in effectively classifying positive samples, potentially re-
ducing the false positive (FP) rate and improving the precision-recall 
trade-off.

The results indicate that CIL approaches are competitive against 
each other and no significant improvement is noticeable in AUC for 
RF, SVC and kNN. Such high AUC scores across CIL methods indicate 
that they have similar abilities to discriminate between positive and 
negative samples. This also indicates that, in general, CIL approaches 
enhance the predictive performances of classification models. The re-
sults from Tables 7 and 8 suggest that AROSS is a particularly effective 
resampling approach when combined with DT, as it consistently out-
performs all baseline methods across multiple performance metrics. It 
highlights the ability of AROSS to enhance the classification model’s ac-
curacy, discriminatory power and capturing positive instances, making 
it a promising choice for addressing CIL in decision tree-based classi-
fication tasks. Overall, the AROSS algorithm outperforms cluster-based 
baseline methods and most synthetic sampling approaches. It remains 
competitive with SENN and RWO regarding Rec and AUC scores. Taking 
into account the rankings in the AvgR results (Table 8), which sum-
marize all performed results, AROSS achieves the lowest score (5.72), 
indicating its overall superiority. However, our proposed method is 
based on the optimization of cluster analysis, and better classification 
results come at the cost of more time complexity.

5.2. Statistical analysis using Welch’s t-test

Based on the previous analysis, our assertion that AROSS is supe-
rior to or competitive with the compared CIL methods is primarily 
drawn from the average values and ranks of four metrics. However, 
it is important to note that each method exhibits varying standard 
deviations across different datasets. To thoroughly assess the statisti-
cal significance of AROSS’s performance, we employed Welch’s t-test 
(𝑊𝑡𝑒𝑠𝑡, Derrick et al. (2016)). Several formal arguments substantiate the 
selection of 𝑊𝑡𝑒𝑠𝑡 for benchmarking and comparing the performance 
of data-level resampling approaches (Zhang et al., 2008, Ellis et al., 
2022, Shi et al., 2022, Darville et al., 2023). Unlike non-parametric 
tests such as Friedman or Wilcoxon, 𝑊𝑡𝑒𝑠𝑡 is well-suited for handling 
imbalanced datasets, accommodating variations in variances among dif-
ferent resampling techniques. Its parametric nature allows it to consider 
both metrics average values and variances, providing a robust statistical 
evaluation that is particularly advantageous when dealing with real-
world datasets exhibiting inherent imbalances (Shi et al., 2022). 𝑊𝑡𝑒𝑠𝑡, 

computed by the Eq. (13), serves as a reliable measure to validate the 

https://github.com/ghostqriver/AROSS/blob/main/Detailed%20experimental%20results
https://github.com/ghostqriver/AROSS/blob/main/Detailed%20experimental%20results
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CS KS SOMO AROS AROSS

0.66113 0.67142 0.66926 0.71142 0.81337

0.60918 0.61937 0.62066 0.60466 0.65809

0.74464 0.75155 0.75290 0.76083 0.82742

0.78588 0.79236 0.79190 0.80074 0.84667

0.64935 0.64224 0.64805 0.70211 0.75461

0.65021 0.65016 0.64971 0.65013 0.68575

0.73545 0.73018 0.73032 0.75892 0.80071

0.91565 0.91476 0.91663 0.91255 0.91316

0.70118 0.59044 0.64377 0.71981 0.78245

0.65946 0.59278 0.62359 0.63315 0.66774

0.73545 0.73018 0.73032 0.75892 0.80071

0.90114 0.90333 0.89871 0.89499 0.89826

0.72064 0.64556 0.66723 0.67730 0.74269

0.64483 0.61657 0.62689 0.63584 0.67415

0.78578 0.71365 0.73012 0.74580 0.79678

0.86898 0.86397 0.86555 0.86852 0.87480
Table 7

Average of metric values for CIL approaches across 70 datasets.

Random Synthetic sampling Cluster base

ORIG ROS S AS DS SMPD SENN STL NARS GS RWO ANS DBS

DT classifier

Rec 0.64810 0.64081 0.70624 0.70197 0.69886 0.65478 0.74953 0.70466 0.60253 0.68700 0.70290 0.66943 0.63311

𝐹1 0.60827 0.61410 0.62541 0.61782 0.61816 0.60849 0.61362 0.62447 0.59433 0.61978 0.62396 0.61812 0.60297

GM 0.73726 0.73146 0.77433 0.76779 0.76644 0.73831 0.78166 0.77437 0.70893 0.76083 0.77112 0.74919 0.72378

AUC 0.78265 0.78376 0.79824 0.77653 0.79973 0.78309 0.80323 0.80117 0.76858 0.79654 0.80327 0.79076 0.77713

RF classifier

Rec 0.61933 0.67131 0.72291 0.71540 0.71030 0.62008 0.77322 0.72299 0.60500 0.69938 0.72785 0.67111 0.62028

𝐹1 0.63835 0.66432 0.67317 0.65796 0.67193 0.63760 0.66484 0.67264 0.61855 0.66460 0.68020 0.66461 0.63663

GM 0.71348 0.75630 0.78941 0.77673 0.78302 0.71347 0.80704 0.78988 0.69882 0.77004 0.79006 0.75614 0.71296

AUC 0.91557 0.92132 0.92034 0.91664 0.92009 0.91585 0.91131 0.91982 0.89756 0.91867 0.92148 0.91632 0.91665

SVC classifier

Rec 0.53775 0.78625 0.77506 0.79397 0.75876 0.56797 0.80635 0.77403 0.63293 0.76769 0.79904 0.69821 0.68558

𝐹1 0.57177 0.65305 0.65531 0.63921 0.64629 0.59595 0.64543 0.65410 0.61439 0.65687 0.65021 0.66538 0.64423

GM 0.71348 0.75630 0.78941 0.77673 0.78302 0.71347 0.80704 0.78988 0.69882 0.77004 0.79006 0.75614 0.71296

AUC 0.90386 0.90592 0.90701 0.89906 0.90492 0.90223 0.90148 0.90628 0.89853 0.90483 0.90759 0.90232 0.89385

kNN classifier

Rec 0.58932 0.78564 0.80778 0.82697 0.78606 0.60671 0.83231 0.80860 0.67328 0.79695 0.80355 0.72095 0.66877

𝐹1 0.60565 0.63775 0.63528 0.62809 0.63755 0.61456 0.62255 0.63544 0.62043 0.64104 0.62982 0.65016 0.62630

GM 0.68458 0.81135 0.82237 0.82521 0.81512 0.69860 0.83154 0.82264 0.73767 0.82049 0.81937 0.78511 0.74488

AUC 0.86675 0.86051 0.87277 0.86177 0.87097 0.86678 0.86462 0.87177 0.84763 0.87018 0.87432 0.86734 0.86062
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11.16 10.20 10.86 6.51 2.04

10.54 8.93 9.76 10.47 5.01

11.07 10.01 10.84 8.64 2.93

10.84 9.33 10.57 7.96 2.57

12.51 12.13 11.23 7.51 3.53

10.94 9.90 9.97 10.74 6.57

12.44 11.69 11.05 9.35 4.54

8.80 8.47 9.18 10.44 10.05

11.94 13.51 11.21 8.01 5.00

8.22 10.87 9.48 10.22 7.50

10.80 12.74 10.74 9.30 6.61

9.42 9.64 9.41 10.61 9.98

11.34 12.48 10.31 11.67 7.82

7.58 9.52 9.04 9.15 4.91

9.91 11.58 10.48 11.28 6.74

7.97 9.22 9.68 7.55 5.78

10.35 10.64 10.24 9.34 5.72

13 14 12 11 1
Table 8

Average rank scores for CIL approaches.

Random Synthetic sampling Cluster ba

ORIG ROS S AS DS SMPD SENN STL NARS GS RWO ANS DBS

DT classifier

Rec 11.80 12.87 6.87 6.87 7.69 11.43 4.96 7.34 15.20 8.56 7.41 9.49 13.14

𝐹1 10.20 9.66 8.74 8.99 9.43 10.21 8.81 8.56 10.77 9.16 9.01 8.76 10.79

GM 11.19 12.03 7.47 7.70 8.27 11.50 6.46 7.40 14.26 8.70 7.79 9.30 12.25

AUC 10.73 11.11 8.94 10.91 8.43 11.00 6.80 7.93 12.43 8.37 8.27 8.66 11.24

RF classifier

Rec 13.50 9.98 5.24 5.21 7.26 14.08 3.56 5.44 14.41 7.61 5.56 10.16 13.31

𝐹1 10.89 8.57 7.54 9.55 8.84 11.46 9.37 7.38 11.33 8.60 7.96 8.61 11.14

GM 12.86 9.79 6.33 7.09 8.10 13.46 6.13 6.01 13.36 8.11 6.41 9.97 12.74

AUC 9.32 7.94 8.64 10.48 9.27 8.42 11.21 9.00 12.45 8.50 6.75 9.12 9.34

SVC classifier

Rec 15.92 4.60 6.28 4.00 6.77 15.62 4.13 6.60 12.54 6.68 3.47 11.32 11.55

𝐹1 12.00 8.65 8.05 11.17 9.44 11.11 10.10 8.07 9.21 7.99 9.60 7.51 10.00

GM 15.02 6.97 6.88 7.70 7.92 14.64 6.98 6.82 11.27 7.22 6.48 9.68 11.41

AUC 8.60 8.51 8.16 11.22 9.00 8.80 10.41 8.41 10.84 8.85 7.77 8.98 10.65

kNN classifier

Rec 16.40 5.74 4.38 2.43 5.68 15.72 3.41 4.08 11.20 5.41 4.41 9.98 12.52

𝐹1 10.84 10.30 9.35 11.27 9.48 9.57 11.80 9.52 9.98 8.78 10.28 7.08 10.50

GM 14.75 8.44 6.58 7.42 7.50 14.05 7.77 6.54 10.68 6.88 7.20 9.01 12.15

AUC 7.78 12.82 8.67 12.42 9.34 7.54 11.50 9.07 13.21 9.54 7.88 7.81 11.32

AvgR 11.99 9.25 7.38 8.40 8.27 11.79 7.71 7.39 12.07 8.06 7.27 9.09 11.51

Final score 17 10 3 8 7 16 5 4 18 6 2 9 15
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previous results, as it considers the distribution characteristics beyond 
just the mean values.

𝑊𝑡𝑒𝑠𝑡 =
𝑚2 −𝑚1√
𝑠22∕𝜅 + 𝑠21∕𝜅

(13)

The mean values of the metrics, such as Rec, 𝐹1, GM, or AUC scores, 
for two CIL methods, are denoted as 𝑚1 and 𝑚2. Their standard devia-
tions are represented as 𝑠1 and 𝑠2, and the total number of evaluation 
iterations is denoted as 𝜅. Since we employ a stratified five-fold cross-
validation approach repeated ten times, we have 𝜅 = 50. 𝑊𝑡𝑒𝑠𝑡 follows 
a t-distribution, and its degree of freedom 𝜈 is approximately calculated 
as:

𝜈 ≈
𝜅2(𝜅 − 1)(𝑠22∕𝜅 + 𝑠21∕𝜅)

2

𝑠42 + 𝑠41

(14)

The outcomes of the 𝑊𝑡𝑒𝑠𝑡, conducted between AROSS and the com-
pared CIL methods, with a significance level of 0.05, are presented in 
Table 9, providing information on the number of datasets where AROSS 
outperforms, performs equally to, or underperforms the other methods, 
categorized as win-tie-lose, for each classifier.

For example, if we consider two sets of performance metrics, de-
noted as 𝑚𝑒𝑡ℎ𝑜𝑑𝐴 and 𝑚𝑒𝑡ℎ𝑜𝑑𝐵 . For 𝑚𝑒𝑡ℎ𝑜𝑑𝐴, the mean (𝑚1), variance 
(𝑠21), and sample size (𝑛1) are 0.85, 0.0005, and 50, respectively. Corre-

spondingly, for 𝑚𝑒𝑡ℎ𝑜𝑑𝐵 , the mean (𝑚2), variance (𝑠22), and sample size 
(𝑛2) are 0.82, 0.0003, and 50. Substituting the given values in Eq. (13)
and Eq. (14):

𝑊𝑡𝑒𝑠𝑡 =
0.85 − 0.82√

0.0005∕50 + 0.0003∕50
= 7.5

𝜈 ≈
502(50 − 1)((0.0003∕50) + (0.0005∕50))2

(0.0003)4 + (0.0005)4
≈ 18679.36

The next step involves consulting a t-distribution table to obtain the 
critical values (𝑡critical) for a two-tailed test with 𝜈 ≈ 18679.36 degrees 
of freedom at a significance level of 0.05. In the given example, the 
critical value is calculated using the scipy.stats11 module in Python. For 
a two-tailed test with 𝜈 = 18679.36 degrees of freedom and a signifi-
cance level of 0.05, the calculated 𝑡critical is approximately 1.96. The 
decision-making process based on the t-statistic 𝑊𝑡𝑒𝑠𝑡 is formalized by 
Eq. (15).

Decision =
⎧⎪⎨⎪⎩

win, if 𝑊𝑡𝑒𝑠𝑡 > 𝑡critical

loss, if 𝑊𝑡𝑒𝑠𝑡 < −𝑡critical

tie, if − 𝑡critical ≤𝑊𝑡𝑒𝑠𝑡 ≤ 𝑡critical

(15)

In Eq. (15) formulation, a win is given if the calculated t-statistic is 
greater than the critical value, loss is given if the t-statistic is less than 
the negative of the critical value, and tie is given if the t-statistic falls 
within the range defined by the negative and positive critical values. 
Since 𝑊𝑡𝑒𝑠𝑡 > 𝑡critical (in our example, 𝑊𝑡𝑒𝑠𝑡 > 1.96), we would reject 
the null hypothesis, suggesting that 𝑚𝑒𝑡ℎ𝑜𝑑𝐴 statistically outperforms 
𝑚𝑒𝑡ℎ𝑜𝑑𝐵 . Therefore, in this case, 𝑚𝑒𝑡ℎ𝑜𝑑𝐴 is considered to have a win
over 𝑚𝑒𝑡ℎ𝑜𝑑𝐵 .

Few implications can be derived from the 𝑊𝑡𝑒𝑠𝑡:

• AROSS versus ORIG: The proposed approach consistently out-
performs classification algorithms performance on the original 
datasets that are not augmented, with only a few instances where 
the original dataset performs better than AROSS.

• AROSS versus cluster-based methods: Compared to the five cluster-
based methods, AROSS shows superior performance in Rec, 𝐹1, GM, 

11 scipy.stats documentation. https://docs .scipy .org /doc /scipy /reference /
17
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and AUC scores. Specifically, when using DT, AROSS achieves a 
significant number of wins (64) compared to CS, with only a few 
ties (6) and no losses (0). However, when using kNN, AROSS has a 
smaller number of wins (25) compared to CS, with a higher number 
of ties (34) and a moderate number of losses (11). Overall, AROSS 
achieves the highest number of wins (64) and the lowest number 
of losses (0) compared to the cluster-based baselines. Furthermore, 
AROSS demonstrates superiority in GM, with the highest number of 
wins (51) and no losses (0). The advantage of AROSS over cluster-
based methods is also evident in 𝐹1 and AUC scores presented in 
Table 9.

• AROSS versus data-level methods: Compared to data-level meth-
ods, namely random and synthetic sampling, AROSS consistently 
outperforms them in terms of Rec, 𝐹1 score and GM, except for 
some cases where AROSS has fewer wins compared to SENN with 
RF, SVC, and kNN, with 16, 20, and 6 wins, respectively. Addi-
tionally, AROSS experiences losses in Rec against RWO with SVC 
and kNN. The analysis of AUC scores across different classification 
algorithms reveals a considerable number of ties, supporting the 
conclusion drawn from Tables 7 and 8, such that CIL approaches 
are competitive with each other and show no statistically signifi-
cant differences in terms of AUC.

Overall, the results presented in Table 9 demonstrate that AROSS 
outperforms the compared cluster-based sampling methods statistically 
for DT, RF, and SVC classifiers. Furthermore, AROSS proves to be su-
perior or competitive with kNN across the 70 datasets in a statistically 
significant manner. Compared to the random and synthetic sampling 
methods, AROSS outperforms them when paired with the DT classifier 
and is statistically significantly superior or competitive with the remain-
ing classifiers.

5.3. Runtimes and system configurations

Runtime is an important aspect of data-level resampling techniques, 
as some applications may require retraining, thus rapid resampling pro-
cedures. Due to the number of resampling techniques involved in the 
experiments and parameters influencing their time complexities, pre-
senting and analyzing time complexities in big-O notation is beyond 
the scope of this study. Nevertheless, we expect that the average run-
times of resampling techniques, as outlined in Table 10, can still offer 
meaningful insights into their time efficiency. It is important to note 
that runtimes are inherently contingent on the specific implementa-
tions employed. The simulations were executed in Jupyter Lab using 
Python 3.11 on a server featuring an Intel Core i7 processor. The pro-
cessor has eight cores and 16 threads, with a max turbo frequency of 
3.50 GHz and a processor base frequency of 2.50 GHz. Additionally, it 
is equipped with 11 MB of cache. In terms of memory, the machine 
is equipped with 64 GB of DDR4-2400 memory, and the maximum 
memory speed is 2400 MHz. Table 10 details the average runtimes in 
seconds for various data-level class imbalance approaches. ROS demon-
strates a 3.658 × 10−2 seconds runtime within the random category, 
while synthetic approaches have runtimes ranging from 2.174 × 10−1
seconds for SMOTE to 7.231 × 10−1 seconds for SMPD. The cluster-
based approaches have runtimes spanning from 4.317 × 10−2 seconds 
to 5.596 seconds. As expected, runtime disparities highlight the com-
putational efficiency variations, with the cluster-based approaches ex-
hibiting higher runtimes than random and synthetic methods. AROSS, 
which demonstrated superior classification performance, is recognized 
as the slowest approach in terms of runtime, attributed to incorporating 
various optimization steps. Specifically, the parameters 𝐿𝑏𝑒𝑠𝑡, 𝑐, and |𝑖| undergo automatic fine-tuning for each dataset, while the shift-
ing rate 𝛿 (refer to Algorithm 1) is a customizable hyper-parameter, 
contributing to the algorithm’s adaptability. While these optimization 
steps contribute to the extended runtime, they are essential for tailoring 

AROSS to the specific characteristics of each dataset, which is particu-

https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
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Cluster based

DBS CS KS SOMO AROS

61-9-0 64-6-0 58-12-0 59-11-0 53-17-0

33-31-6 31-35-4 32-35-3 29-35-6 33-36-1

51-18-1 50-20-0 48-21-1 49-20-1 48-22-0

54-15-1 55-15-0 48-21-1 49-20-1 46-24-0

52-17-1 52-17-1 50-19-1 48-20-2 30-39-1

27-37-6 23-41-6 21-43-6 25-39-6 15-54-1

43-25-2 37-32-1 39-30-1 38-30-2 28-42-0

7-50-13 5-52-13 5-56-9 5-57-8 1-69-0

47-17-6 47-19-4 56-13-1 50-17-3 30-40-0

23-34-13 17-40-13 31-34-5 23-42-5 15-55-0

31-32-7 32-32-6 46-24-0 39-28-3 24-46-0

18-38-14 10-48-12 16-46-8 11-52-7 5-64-1

36-30-4 25-34-11 37-31-2 30-36-4 32-38-0

26-42-2 22-44-4 29-41-0 25-44-1 23-47-0

35-32-3 24-41-5 36-33-1 29-39-2 25-45-0

21-48-1 11-56-3 10-60-0 13-55-2 5-65-0
Table 9

Summary of Welch’s t-test results for AUC, Rec, GM, and 𝐹1 between CIL approaches and AROSS at a significance level of 0.05 (win-tie-lose).

Random Synthetic sampling

ORIG ROS S AS DS SMPD SENN STL NARS GS RWO ANS

DT classifier

Rec 62-8-0 61-8-1 54-14-2 53-15-2 54-16-0 59-11-0 40-23-7 54-15-1 68-2-0 57-13-0 54-16-0 55-15-0

𝐹1 35-32-3 33-30-7 31-32-7 31-29-10 32-33-5 36-30-4 23-40-7 29-35-6 35-33-2 32-34-4 28-37-5 27-39-4

GM 53-16-1 52-16-2 45-22-3 43-24-3 42-27-1 51-18-1 33-26-11 43-25-2 56-14-0 48-20-2 42-26-2 42-28-0

AUC 54-15-1 50-18-2 47-22-1 47-17-6 45-24-1 52-17-1 35-29-6 42-27-1 56-14-0 47-22-1 42-26-2 44-26-0

RF classifier

Rec 59-10-1 40-25-5 21-39-10 23-36-11 30-35-5 60-9-1 16-30-24 21-39-10 64-6-0 26-40-4 22-44-4 39-27-4

𝐹1 25-38-7 21-42-7 18-43-9 22-40-8 19-44-7 25-40-5 22-38-10 18-42-10 31-37-2 19-44-7 16-48-6 21-42-7

GM 49-20-1 31-34-5 20-40-10 25-34-11 23-41-6 50-19-1 19-33-18 19-40-11 52-18-0 22-43-5 18-48-4 26-40-4

AUC 7-51-12 5-54-11 7-47-16 12-40-18 5-51-14 7-49-14 15-40-15 8-48-14 26-35-9 4-47-19 1-60-9 5-55-10

SVC classifier

Rec 65-3-2 20-33-17 25-28-17 21-23-26 22-36-12 63-5-2 20-26-24 25-29-16 51-17-2 27-25-18 17-34-19 46-18-6

𝐹1 36-29-5 18-41-11 17-40-13 24-35-11 24-33-13 32-32-6 21-39-10 18-39-13 27-34-9 18-39-13 17-44-9 19-36-15

GM 53-17-0 18-36-16 21-35-14 25-29-16 22-36-12 52-18-0 16-39-15 19-37-14 39-28-3 19-38-13 14-41-15 30-33-7

AUC 14-41-15 13-41-16 14-41-15 19-33-18 13-44-13 13-43-14 18-40-12 14-41-15 19-41-10 13-43-14 11-44-15 10-47-13

kNN classifier

Rec 58-12-0 7-38-25 12-62-9 15-1-50 6-35-29 57-12-1 6-24-40 6-31-33 35-30-5 7-31-32 4-35-31 23-33-14

𝐹1 32-36-2 29-34-7 29-32-9 37-22-11 29-33-8 31-36-3 33-28-9 30-31-9 27-42-1 26-37-7 27-36-7 21-44-5

GM 48-22-0 15-43-12 10-39-21 16-32-22 10-48-12 48-22-0 11-39-20 12-37-21 31-38-1 11-43-16 11-42-17 17-46-7

AUC 12-57-1 29-39-2 16-47-7 27-32-11 14-49-7 14-55-1 26-38-6 18-45-7 32-37-1 17-48-5 10-54-6 9-55-6
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Table 10

Average runtime in seconds of Data-level CIL approaches involved in the exper-
iments.

Category Sub-category CIL approach (acronym) Runtime (seconds)

Random Oversampling ROS 3.658 × 10−2

Synthetic

Data generation

SMOTE 2.174 × 10−1
NRAS 3.668 × 10−1
RWO 7.264 × 10−2
GS 3.180 × 10−2

Adaptive

AS 2.806 × 10−2
DS 4.446 × 10−2
ANS 3.834 × 10−2
SMPD 7.231 × 10−1

Data cleaning
SENN 6.096 × 10−2
STL 5.296 × 10−2

Cluster-based

Oversampling
DBS 7.332 × 10−1
CS 4.317 × 10−2

Adaptive

KS 2.202
SOMO 1.468 × 10−1
AROS 2.678
AROSS 5.596

Fig. 11. Test results of different imbalance degrees when employing DT classifier.
larly beneficial for scenarios where we do not have enough data to train 
models. Therefore, despite its runtime, AROSS is still swifter than the 
alternative of collecting new data, making it an appealing option in 
resource-constrained situations.

For faster solutions, we recommend using RWO and SMOTE. Ac-
cording to the experimental results highlighted in Table 8, these algo-
rithms were ranked 2nd and 3rd behind AROSS, concurrently sustaining 
competitive performance levels. Additionally, they demonstrate lower 
runtimes than AROSS. AROSS is a resilient solution characterized by 
a reasonable trade-off between runtime and performance. At the same 
time, RWO and SMOTE present swifter alternatives without substantial 
compromises in performance.

5.4. Extended analysis over CIL problems

This chapter overviews the learning barriers primarily affecting the 
performance of classification related to imbalance learning.

5.4.1. Small sample size and imbalanced class distribution
In the tables presented before, our proposed algorithm exhibits 

strong efficacy in alleviating the problem of lacking minority instances, 
19

further enhancing the predictive performance of classification on  . 
Since we have 70 datasets with various class distributions, to present 
the performance of the proposed method under different distributions, 
we illustrate each test separately according to the dataset skewness.

Figs. 11-14 present the average evaluation results for different skew-
ness levels on the datasets. Each figure consists of subplots representing 
the Rec, 𝐹1, GM and AUC scores, respectively. The 𝑥-axis represents 
the skewness level, while the 𝑦-axis indicates the average performance 
metric value. For clarity, the figures incorporate the original dataset 
alongside representative baseline oversamplers, such as SMOTE (S) and 
ADASYN (AS). Additionally, cluster-based oversamplers, including DB-
SMOTE (DBS), CURE-SMOTE (CS), Kmeans-SMOTE (KS) and SOMO, are 
also included in these figures.

Overall, the performance on non-resampled dataset (the red dot) 
worsens on each metric while increasing imbalance, except for AUC, 
validating the previous hypothesis which states that a large 𝐼𝑅 in-
fluences the classification performance. From Fig. 11 and Fig. 12, if 
we exclude AROSS, AROS (the green circle) achieved the best recall 
with DT on slightly and medium imbalanced datasets while present-
ing competitive and positive results with severely imbalanced datasets 
on DT and all datasets on RF. Despite the imbalance degree, AROSS 

(the blue square) outperforms other oversamplers on DT and RF. How-
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Fig. 12. Test results of different imbalance degrees when employing RF classifier.

Fig. 13. Test results of different imbalance degrees when employing SVC classifier.
ever, it presents inferior AUC scores when employing RF, especially on 
data sets with 𝐼𝑅 > 10. AROSS may surpass the oversamplers other 
than SMOTE by a wider margin. As discussed, the proposed method 
exhibits weaker capability than SMOTE and some variants when com-
bined with SVC and kNN. However, if concentrating on medium and 
severely imbalanced datasets, as shown in all metrics except AUC of 
SVC (Fig. 13) and 𝐹1 on kNN (Fig. 14), AROSS shows superior results, 
nevertheless.

The performance discrepancy of the proposed approach can be at-
tributed to the interplay between the algorithm and the chosen clas-
sifiers. Decision trees excel in handling imbalanced class distributions, 
while SVC and kNN classifiers have distinct sensitivities to class imbal-
ance. SVC aims for optimal hyperplane placement but can be biased 
by imbalanced data, while kNN is influenced by data density and can 
overshadow minority instances. The varying performance of AROS and 
AROSS compared to other CIL approaches with different classifiers em-
phasizes the need to select appropriate resampling strategies based on 
20

the task’s characteristics and algorithm sensitivities to class imbalance.
5.4.2. Class overlapping and small disjoint subsets
Overlapping between classes and small disjoint subsets of  might 

impose complexity on the classification task, which are the main prob-
lems we want to solve with the proposed method. The results displayed 
in Table 8 indicate that cluster-based sampling techniques may not be 
as effective as anticipated, primarily due to the characteristics and di-
versity of the datasets utilized in the study. Thus, a two-dimensional 
toy dataset has been created to describe how well cluster-based sam-
pling approaches overcome such issues. In this dataset,  consists of 
several disjoint subsets and contains 200 data points. We then com-
pared the results on this toy dataset on the sampledata_2 dataset used in 
the benchmarking process, which contains subsets with a higher density 
of  points.

Combining the observations from Fig. 15 and Fig. 16, several in-
sights can be drawn regarding the performance of CIL approaches. In 
Fig. 15, S and AS generate instances between nearest neighbors with-
out concern about the distribution of  . Thus, although they capture 

instances in small disjuncts and enhance sub-regions of  , severe class 
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Fig. 14. Test results of different imbalance degrees when employing kNN classifier.
21

Fig. 15. Artificial samples generated by different CIL methods on a toy dataset with disjoint minority subsets.
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Fig. 16. Artificial samples generated by different CIL methods on sampledata_2 dataset.
overlapping is caused due to the generation of many irrelevant syn-
thetic samples; setting an appropriate value for the parameter 𝑘 for 
SMOTE and AS could improve the oversampling efficiency. However, it 
is hard to determine 𝑘 visually on a high-dimensional dataset with an 
implicit within-class imbalance issue, and the impact caused by noise is 
still unsolved. Therefore, Fig. 15 validates that cluster-based oversam-
pling approaches effectively identify disjoint subsets. While DBS and 
CS also ignore the distribution of  , they are dedicated to generat-
ing samples in the core regions of  , where DBS generates along the 
skeleton path, and CS generates between the representative instances 
within clusters. Indeed, this type of approach is secure enough but does 
not help much to improve classification decisions, as points around 
the class border are the ones most relevant to building discriminative 
boundaries for classification models (Mullick et al., 2019). The invalid-
ity of SOMO is attributed to its SOM clustering method which struggles 
to capture the complex distribution patterns and boundaries present in 
 , particularly on 2-dimensional datasets. KS tends to eliminate clus-
ters dominated by majority instances, potentially leading to the loss of 
many important minority class features. Thus, disjunct subsets may not 
be identified properly. Whereas AROSS consider both classes’ distribu-
tion and generate instances in areas centered from representative points 
extracted from clusters instead of generating in clusters directly, where 
the representative points densely extracted from  and borderline could 
fragment the data space into sub-spaces and capture more refined sam-
ple distribution characteristics. Hereby, AROSS could identify almost 
22

every small disjunct subset of  and generate synthetic instances in the 
absence of overlapping. In addition, limited by the threshold 𝑘 and half-
safe condition in the incremental kNN strategy, singleton noises among 
majority instances will be ruled out of areas, thus, no samples will be 
generated nearby them.

Furthermore, in Fig. 16, DBS and KS apply SMOTE within clusters, 
resulting in similar effects as SMOTE. CS and SOMO focus on oversam-
pling within the core regions of  . However, KS and SOMO generate 
irrelevant instances that overlap across the two subsets of  . AS over-
samples along the borderline regions of minority subsets, but fails to 
detect some boundary instances and neglects critical features. While it 
enhances minority instances along the borderline, the increased density 
of synthetic instances can negatively impact the predictive correctness 
of nearby majority instances, leading to undesirable 𝐹1 scores, particu-
larly in kNN classification.

In sampledata_2 dataset, SMOTE yields more favorable results. Still, 
from both Fig. 15 and Fig. 16, we observed that oversampling ef-
fects of SMOTE and its variants present that synthetic samples are 
distributed along polygonal edges caused by the linear interpolation 
between minority class neighbors that SMOTE uses. Previously we men-
tioned that during the experimental phase, we set 𝐼𝑅𝑒 to 1 by default, 
which indicates that the same number of samples will be generated 
for each method. However, the figures show that samples generated 
by the SMOTE-based method are mainly aggregated in line segments. 
By applying the Gaussian generator, AROSS could synthesize samples 
to populate the sub-regions that minority instances may exist in, i.e., 

sub-spaces among minority instances without majority class invasion. 
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In addition, it can be found that the synthetic samples are widely 
distributed among the boundaries of  without overlapping with the 
sub-spaces of  .

These observations underscore the distinct characteristics and lim-
itations of different CIL approaches, highlighting the effectiveness of 
AROS and AROSS in generating synthetic samples that preserve the 
intrinsic boundaries of  without compromising the predictive perfor-
mance on  .

6. Conclusion

In this article, we tackled the challenges associated with class im-
balance learning (CIL) by introducing a novel adaptive oversampling 
method called AROSS, which relies on cluster-based techniques. Our 
approach utilized an agglomerative clustering algorithm enhanced by 
integrating the cophenetic correlation coefficient (CPCC) and Bayesian 
information criterion (𝐵𝑠𝑐𝑜𝑟𝑒), enabling us to efficiently determine the 
appropriate linkage and number of clusters, thereby pinpointing repre-
sentative zones within the minority class. To better capture and enhance 
hard-to-learn minority instances more effectively, we applied a statisti-
cal sample size formula to identify the number of representatives in 
each identified zone. Subsequently, these zones were refined through 
an incremental kNN strategy to outline safe and semi-safe regions more 
effectively.

To address limitations observed in traditional SMOTE-based over-
sampling methods, which often cause subspace over-densing, we in-
troduced a truncated hypercube Gaussian Generator. This innovation 
facilitated the even drawing of samples from safe areas following a 
Gaussian distribution, resulting in more precise and representative syn-
thetic sample generation.

Our extensive experimental evaluation on 66 real-world and 4 syn-
thetic datasets demonstrated the efficacy of AROSS in improving CIL 
performance, particularly with tree-based classifiers such as decision 
trees and random forests. AROSS consistently outperformed existing 
cluster-based, random, and synthetic sampling methods across various 
metrics, including Recall, 𝐹1 score, Geometric mean, and AUC scores. 
The method exhibited significant advantages and minimal drawbacks, 
highlighting its robustness and versatility. Additionally, oversampling 
results on a toy dataset and the sampledata_2 dataset validated the ef-
fectiveness of our cluster-based oversampling approach for addressing 
small disjoint subsets imbalance problems. AROSS performed excep-
tionally well by precisely detecting small disjuncts without exacerbating 
class overlapping, making it particularly suitable for handling within-
class imbalance issues.

However, it’s crucial to acknowledge the limitation of our current 
implementation regarding runtime performance optimization. While 
our focus has been on the core resampling algorithm’s effectiveness, we 
recognize the potential for further improvement in runtime efficiency.

Future work could explore the application of AROSS in other clas-
sification tasks, investigate its performance with different clustering 
algorithms to mitigate time complexity concerns, and consider approxi-
mating the number of clusters based on dataset characteristics as a sub-
stitute for 𝐵𝑠𝑐𝑜𝑟𝑒. Additionally, integrating domain-specific knowledge 
and analyzing the impact of various hyper-parameters could further en-
hance the adaptability and effectiveness of AROSS in diverse real-world 
scenarios.
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