
Intelligent Systems with Applications 22 (2024) 200357

Contents lists available at ScienceDirect

Intelligent Systems with Applications

journal homepage: www.journals.elsevier.com/intelligent-systems-with-applications

Cluster-based oversampling with area extraction from representative points

for class imbalance learning
Zakarya Farou a,∗, Yizhi Wang a, Tomáš Horváth b,c

a ELTE – Eötvös Loránd University, Faculty of Informatics, Institute of Industry-Academia Innovation, Department of Data Science and Engineering, Pázmány Péter
sétány 1/C, H-1117, Budapest, Hungary
b Edinburgh Napier University, School of Computing, Engineering & Built Environment, 10 Colinton Road, EH10 5DT Edinburgh, Scotland, UK
c Pavol Jozef Šafárik University, Faculty of Science, Institute of Computer Science, Jesenná 5, 040 01 Košice, Slovakia

A R T I C L E I N F O A B S T R A C T

Dataset link: https://
github .com /ghostqriver /AROSS

Keywords:
Class imbalance
Adaptive oversampling
Clustering analysis
Predicting benchmark
k-Nearest neighbor

Class imbalance learning is challenging in various domains where training datasets exhibit disproportionate
samples in a specific class. Resampling methods have been used to adjust the class distribution, but they
often have limitations for small disjunct minority subsets. This paper introduces AROSS, an adaptive cluster-
based oversampling approach that addresses these limitations. AROSS utilizes an optimized agglomerative
clustering algorithm with the Cophenetic Correlation Coefficient and the Bayesian Information Criterion to
identify representative areas of the minority class. Safe and half-safe areas are obtained using an incremental k-
Nearest Neighbor strategy, and oversampling is performed with a truncated hyperspherical Gaussian distribution.
Experimental evaluations on 70 binary datasets demonstrate the effectiveness of AROSS in improving class
imbalance learning performance, making it a promising solution for mitigating class imbalance challenges,
especially for small disjunct minority subsets.
1. Introduction

Data is crucial in various domains, powering innovation and
decision-making in healthcare (Cios & Moore, 2002), finance (Lusardi
& Mitchell, 2014), education (Zoric, 2019), and technology (Merrild
et al., 2008). In healthcare, patient records and medical data support
precise diagnoses and research. Finance uses data analytics for invest-
ment, risk management, and fraud detection. Educational institutions
enhance learning with data, while technology companies improve user
experiences and refine products. Data’s value is essential in optimizing
processes, predicting trends, and driving progress across diverse fields.
In the dynamic landscape of machine learning (ML), the importance of
data cannot be overstated. The success of ML algorithms relies heav-
ily on the richness and balance of the datasets they are trained on.
However, the persistent challenges of imbalanced datasets and limited
data availability underscore the critical need for innovative solutions
in the dynamic landscape of ML, especially that the problem of class
imbalance is prevalent in many domains, where the dataset is charac-
terized by a disproportionate number of samples belonging to a specific
class. This imbalance can occur naturally, as seen in rare disease detec-
tion and credit card fraud scenarios, or unnaturally due to challenges

* Corresponding author.

in acquiring minority-class data, such as privacy constraints. Address-
ing ML challenges under class imbalance, referred to as class imbalance
learning (CIL), has been a subject of extensive research. Researchers
have proposed various strategies to tackle CIL, which can be broadly
classified into algorithm-level and data-level methods. Algorithm-level
methods, such as cost-sensitive learning (Thai-Nghe et al., 2010) and
ensemble learning (Bi & Zhang, 2018), aim to adjust classifiers to pri-
oritize accurate classification of the minority class. However, these
methods often require domain-specific knowledge and rely on spe-
cific learning algorithms. As an example, Hazarika and Gupta (2021,
2022, 2023), Hazarika et al. (2023) proposed several algorithmic level
solutions based on Support Vector Machines (SVM) to address class
imbalance problems. Despite their computational power, the reliance
on SVM intricacies may introduce unnecessary complexity for small
datasets, where simpler, interpretable classification algorithms are of-
ten more suitable.

In contrast, data-level solutions focus on modifying the class dis-
tribution to create a balanced training set, enabling their application
across multiple classifiers. Moreover, data-level solutions enhance the
dataset’s diversity, providing the predictive models with richer infor-
mation and contributing to a more robust and generalized learning
Available online 16 March 2024
2667-3053/© 2024 The Author(s). Published by Elsevier Ltd. This is an open acces
nc/4.0/).

E-mail addresses: zakaryafarou@inf.elte.hu (Z. Farou), srgfxm@inf.elte.hu (Y. Wa

https://doi.org/10.1016/j.iswa.2024.200357
Received 7 August 2023; Received in revised form 9 February 2024; Accepted 8 Ma
s article under the CC BY-NC license (http://creativecommons.org/licenses/by-

ng), T.Horvath@napier.ac.uk, Tomas.Horvath@upjs.sk (T. Horváth).

rch 2024

http://www.ScienceDirect.com/
http://www.journals.elsevier.com/intelligent-systems-with-applications
https://github.com/ghostqriver/AROSS
https://github.com/ghostqriver/AROSS
mailto:zakaryafarou@inf.elte.hu
mailto:srgfxm@inf.elte.hu
mailto:T.Horvath@napier.ac.uk
mailto:Tomas.Horvath@upjs.sk
https://doi.org/10.1016/j.iswa.2024.200357
https://doi.org/10.1016/j.iswa.2024.200357
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Z. Farou, Y. Wang and T. Horváth

experience, particularly crucial in scenarios of class imbalance. As a re-
sult, these solutions have gained attention for their potential to address
CIL challenges effectively. By adjusting the class distribution through
techniques such as oversampling (Gosain & Sardana, 2017) or under-
sampling (Liu & Tsoumakas, 2020), data-level methods aim to enhance
the performance of classification algorithms in imbalanced scenarios.

One approach that has attracted significant interest in recent years is
cluster analysis, which is well-suited for identifying data distributions
for resampling purposes (Jiang, Zhao, et al., 2023, Lu et al., 2022).
In these methods, majority and minority samples are assigned to dis-
tinct clusters, and either oversampling or undersampling is performed
within these clusters to achieve a balanced class distribution. Most ex-
isting cluster-based resampling methods utilize unsupervised clustering
on labeled data. However, the absence of class information can hinder
the clustering process in finding the optimal solution for resampling and
subsequent classification. Challenges arise in selecting the appropriate
number of clusters or determining the suitable linkage for hierarchi-
cal clustering in cluster-based methods. To overcome these limitations,
leveraging unsupervised clustering with the support of prior knowledge
embedded in labeled data can effectively improve clustering perfor-
mance. Nonetheless, this potential remains relatively unexplored in CIL,
with limited existing solutions (Douzas & Bacao, 2017, Jiang, Zhao, et
al., 2023, Wang et al., 2023, Zhang et al., 2017).

This paper introduces an adaptive cluster-based resampling method,
named AROSS, that runs an agglomerative clustering on labeled data to
discover sub-spaces of the minority class for efficient resampling. While
optimization is crucial for AROSS’s performance, it is essential to clar-
ify that the optimization of execution time is beyond the scope of this
research. Primarily, we propose an optimized agglomerative clustering
that incorporates the usage of cophenetic correlation coefficient (CPCC,
described in Farris (1969)) as a linkage validation metric and Bayesian
information criterion (𝐵𝑠𝑐𝑜𝑟𝑒, described in Schwarz (1978)) for clus-
ter optimization. CPCC measures how well a dendrogram describes the
pairwise distances between the data points, while 𝐵𝑠𝑐𝑜𝑟𝑒 specifies the
optimal number of clusters. The proposed approach aims to oversam-
ple sub-spaces of the minority class, pure, i.e., safe clusters containing
labeled data from the majority class are not actively utilized during the
oversampling process, but instead, they are ignored, while a set of repre-
sentative points symbolizes the remaining clusters. Then the proposed
incremental k-Nearest Neighbor (k-NN) strategy is used to substitute
the clusters with so-called half-safe areas and safe areas. A generator
following a truncated hyperspherical Gaussian distribution is utilized
to sample data using a Gaussian function to oversample these regions.
The proposed oversampling considers the specific distribution of the
minority class within the small disjunct areas and allows for more fine-
grained control over the generation of synthetic samples. Moreover, the
suggested approach can be easily implemented with existing classifica-
tion algorithms, making it suitable for a wide range of class-imbalanced
tasks.

The proposed method is compared with state-of-the-art resampling
methods on 66 real-world and 4 synthetic datasets. The results of an
extensive experiment demonstrate that the proposed approach has com-
petitive or significant superiority over the compared baseline methods.
The contributions of this paper are the following:

• A novel adaptive cluster-based resampling method is presented
that introduces an optimized agglomerative clustering algorithm
to extract the representative areas within the minority class and ef-
ficiently capture the underlying data distribution to facilitate the
resampling process.

• An incremental kNN approach is introduced, a strategy to esti-
mate an area from cluster’s sub-space starting from a representative
point to substitute clusters with so-called half-safe and safe areas.

• An oversampling approach that utilizes a truncated hyperspheri-
cal Gaussian distribution to sample data for the minority class is
2

presented. Unlike conventional interpolation-based oversampling
Intelligent Systems with Applications 22 (2024) 200357

methods, our approach ensures a more uniform distribution of
generated instances around representative points, which serve as
centroids for specific areas. This novel approach enhances the ef-
fectiveness of oversampling by promoting a more balanced and
representative augmentation of the training set.

• Extensive experiments on 70 datasets are conducted to show the
effectiveness of the proposed cluster-based resampling method. The
result demonstrates that AROSS can improve the performance of
CIL algorithms.

The rest of this paper is organized as follows: Section 2 describes
problems related with CIL and proposes a taxonomy for data-level re-
sampling methods. After illustrating the general structure of the pro-
posed solution, Section 3 presents the optimized agglomerative clus-
tering algorithm, the extraction and classification of minority class
representative areas, and how these areas are populated. The experi-
mental settings and empirical results of the proposed algorithm against
CIL baseline are reported in Section 4 and 5 respectively. Finally, we
conclude the paper and describe possible future work in Section 6.

2. Basic concepts and literature review

In this chapter, the main concepts related to the presented work are
introduced, together with literature review categorized by different CIL
approaches.

Definition 1 (Learning – classification). Let  = {(𝐱𝑖, 𝑦𝑖) | 𝑖 ∈ {1, … , 𝑛}}
be a set of 𝑛 labeled training examples, where, without loss of gen-
erality, 𝐱𝑖 ∈ ℝ𝑑 is the 𝑖𝑡ℎ input and 𝑦𝑖 ∈ ℤ is the corresponding out-
put. A classification algorithm takes  as input and learns a function
𝑓 ∶ ℝ𝑑 → ℝ that minimizes a specified loss function 𝐿(𝑦𝑖, 𝑓 (𝐱𝑖)) over
the training data. The learned function 𝑓 (𝐱) can then be used to predict
the output 𝑦 for a new, unseen input 𝐱.

Definition 2 (Class imbalance – imbalance ratio). Let  =  ∪ be a
binary labeled dataset, i.e.  = {(𝐱𝑖, 𝑦𝑖) | 𝑖 ∈ {1, … , 𝑛}, 𝑦𝑖 = +1} and
 = {(𝐱𝑖, 𝑦𝑖) | 𝑖 ∈ {1, … , 𝑛}, 𝑦𝑖 = −1}. Without loss of generality, 
is called the minority class while  is called the majority class. If || ≪ | | then  is called imbalanced. Class imbalance is measured
by the imbalance ratio (Cordón et al., 2018).

𝐼𝑅 = ||| | (1)

2.1. Data intrinsic characteristics in CIL

CIL comprises several learning barriers, including small sample size,
class overlapping, within-class imbalance, and imbalanced distribution,
explained in detail in the following sections.

2.1.1. Small sample size and imbalanced class distribution
When the training set has a fair amount of data, the classification al-

gorithm can learn the underlying patterns and affinities in the data that
are essential for accurate predictions. With more additional data, the al-
gorithm can capture a broader range of variations in the data, leading
to a more robust model that can better generalize to new examples. Fur-
thermore, adequate training sample size reduces the risk of overfitting,
which occurs when the algorithm learns the noise or random variations
in the training data instead of the underlying patterns, leading to poor
performance on new, unseen data.

Recently, we observed that Deep Neural Networks (DNNs) had
achieved great success in solving diverse ML problems (Alshemali &
Kalita, 2020), mainly for a unique reason, i.e., the availability of a mas-
sive number of samples (Big Data). Therefore, insufficient data and a
lack of instances are commonly linked to CIL. Thus, it will be challeng-
ing to discover regularities and pattern uniformity, especially in the mi-

nority class. For imbalanced datasets, the imbalance class distribution

Z. Farou, Y. Wang and T. Horváth

Fig. 1. Small sample size effect in imbalance problem; Real (solid line) and
estimated (dashed line) decision boundaries while using appropriate number
of samples from the minority class (a) and while using insufficient number of
samples from the minority class (b).

further affects the training process as the minority class is underrepre-
sented, especially in the case of small disjoint minority class subsets.
Imbalance class distribution directly connects with the IR (Eq. (1)).

Shi et al. (2022) pointed out that training sets with a nearly bal-
anced class distribution, i.e., IR∈ [0.7, 1.5], generally give better results.
Fig. 1 emphasizes that a small number of samples in  and, thus, a high
IR influences the classification performance. Indeed, Fig. 1(a) reveals
that using a reasonable number of samples referring to  will enable
a given classifier to estimate decision boundaries (dashed line) that are
very close to the expected decision boundaries (solid line). However,
Fig. 1(b) reveals that the insufficient number of samples in  sam-
ples have infected the estimated decision boundaries (dashed line). The
shortage in training data did not help to learn the natural boundaries
between classes, thus, classifiers’ performance will deteriorate.

It is often assumed that achieving a balanced class distribution (with
IR close to 1) would lead to favorable results in CIL. Consequently, we
might think that generating additional samples for  would be a so-
lution for CIL challenges. However, it is important to note that IR’s
tolerability depends on the specific characteristics of the dataset. While
having a larger number of training samples is generally beneficial, sim-
ply increasing the sample size or synthesizing new data will not address
all the complexities associated with class imbalance. Other issues, such
as class overlapping or the presence of small disjunct subsets, can still
pose challenges. Therefore, when considering data resampling tech-
niques, it is crucial to consider all the intricacies and problems related
to CIL.

2.1.2. Class overlapping and within class imbalance
Class overlapping as described in Fig. 2(a), is a common problem

while dealing with imbalanced datasets. Indeed, in real-life applica-
tions, we rarely encounter a dataset where class instances are linearly
separable. Some classification methods, such as Support Vector Ma-
chines (SVMs), apply kernel functions1 to solve the linearity issue, yet,
the lack of the data persists and penalizes classifiers’ performances.
Other studies, such as Shi et al. (2022), used resampling algorithms
based on sample concatenation (Re-SC). Re-SC transforms an imbal-
anced training dataset in the original sample space into a concatenated
dataset in a new sample space. In the transformation process, Re-SC
considers both the distribution of the original dataset and that of the
majority samples, thereby alleviating the loss of valuable samples and
reducing the class overlapping region. However, the non-linearity of
the data is not the only problem that ruined the separability among
classes. Another issue is known as small disjoint subsets or within class

1 Projection of data into a higher dimensional space (and distance computa-
3

tion within).
Intelligent Systems with Applications 22 (2024) 200357

Fig. 2. Imbalance learning problems; (a) Class overlapping (b) Within class
imbalance.

Fig. 3. Proposed taxonomy for Data-level resampling solutions for CIL.

imbalance problem, illustrated in Fig. 2(b), which would appear when a
minority class  is compromised of 𝑠 dispatched subsets 𝑖 of different
sizes, where

⋂𝑠

𝑖=1 𝑖 = ∅,
⋃𝑠

𝑖=1𝑖 =  and 𝑠 > 1.
Hardly separating  from  is a critical factor; it complicates the

learning process of small classes, which is, as previously mentioned,
the target classes. It will likely increase the complexity of the problem,
and thus, the performance of the learning method might decrease dra-
matically. In such scenarios, supervised methods cannot generate dis-
criminating patterns to correctly separate  from  . As instances from
 are present in huge numbers, standard supervised methods that try
to maximize classification’s performance will treat  instances belong-
ing to the overlapping region, as illustrated in Fig. 2(b), as noise (Weiss,
2004). As a result, the overlapping zone as well as the underrepresented
disjoint subsets 𝑖 ∈  will be misclassified due to the bias toward  ,
which will make the recognition of instances from the target class even
harder.

2.2. Data-level resampling methods for CIL

As illustrated in Fig. 3, we categorize data-level solutions into ran-
dom, synthetic, and cluster-based sampling techniques.

2.2.1. Random sampling
Random sampling approaches are non-heuristic methods that seek

to balance class distribution via the arbitrary replication of the sam-
ples from  (random oversampling, i.e., ROS), the random dismissal
of samples from  (random oversampling, i.e., RUS), or by hybridiza-
tion between ROS and RUS (Wongvorachan et al., 2023). Miscellaneous
studies consider that ROS can raise the likelihood of occurring overfit-

ting. Chawla (2010) has pointed out that ROS might lead to a smaller

Z. Farou, Y. Wang and T. Horváth

and more specific decision region by simply replicating minority sam-
ples, especially on those classifiers based on error-based objective func-
tions. In contrast, the significant drawback of RUS is that it may discard
essential data for the induction process (Batista et al., 2005, Santoso et
al., 2017). Hybridization of ROS and RUS originate from the mentioned
drawbacks. It pursues to trade-off between removing instances from 
and replicating others from  to reach the best possible performance in
any imbalanced dataset.

2.2.2. Synthetic sampling
In synthetic sampling, we create new samples using existing data

points to expand || using data generation. There are several tech-
niques for data generation, including synthetic minority oversampling
(SMOTE), introduced by Chawla et al. (2002), which is the traditional
data resampling method.

In SMOTE, additional minority samples are created along the line
segment among the minority samples, although with no indication of
any kind to the samples available in the confrontational majority class.
SMOTE has been applied in various domains, including finance (Sun et
al., 2020), fraud detection (Xia et al., 2023), medical diagnosis (Bokhare
et al., 2023, Kamarulzalis et al., 2018) and image classification (Khan
& Sheikh, 2023). It has shown promising results in improving the clas-
sification accuracy of models in these domains. However, SMOTE has
some limitations, mainly when dealing with small disjunct subsets and
overlapping regions, where the existing examples may not represent the
actual distribution of  . In such cases, SMOTE would probably produce
noisy examples, leading to overfitting and decreasing the model’s per-
formance. Furthermore, its narrow sample generation range may cause
the over-dense of synthetic samples on a line segment, meaning that the
overall distribution of  is not uniform, especially when the IR is large,
or the number of nearest neighbors within the clusters is too small.

To overcome these limitations, researchers have proposed various
modifications to SMOTE to improve the quality of synthetic examples
and reduce the risk of overfitting. Borderline-SMOTE1 and Borderline-
SMOTE2 methods, introduced by Han et al. (2005), prioritize the class
boundary’s vicinity for classifier construction. Zhang and Li (2014)
proposed a random walk oversampling (RWO) that generates diverse
and realistic synthetic samples by employing random walks in the fea-
ture space. In contrast, Sandhan and Choi (2014) introduced partially
guided oversampling (GS) that extracts linear and nonlinear patterns
from the minority class to guide the random imputation process and
generate synthetic samples in each feature dimension. Additionally,
Rivera (2017) introduced noise reduction apriori synthetic oversam-
pling (NRAS). NRAS incorporates propensity scores as additional fea-
tures to improve the selection of nearest neighbors and reduce noise.
These techniques enhance the quality and diversity of synthetic sam-
ples, leading to improved handling of class imbalance. In addition
to these techniques, adaptative solutions such as adaptive synthetic
sampling (AS, He et al. (2008)), deterministic SMOTE (SD, Torres et
al. (2016)), adaptive neighbor synthetic minority oversampling (ANS,
Siriseriwan and Sinapiromsaran (2017)) and synthetic minority based
on the probabilistic distribution (SMPD, Kunakorntum et al. (2020))
improve SMOTE according to specific criteria and only generate syn-
thetic samples with adaptive weights in particular regions that are
considered helpful for the learning algorithm. However, similar to
SMOTE, adaptative synthetic sampling solutions cannot efficiently tar-
get the within-class imbalance issue. Data cleaning solutions such as
SMOTE-Tomeklink (STL, Swana et al. (2022)) and SMOTE with Wilson’s
edited nearest neighbor rule (SENN, Parthasarathy et al. (2023)) im-
prove the quality of augmented data with a post-processing mechanism
that would remove noisy, ambiguous or wrongly located samples. It
is important to note that STL and SENN are extensions of the Tomek-
link (TL, Tomek (1976)) and the Wilson’s edited nearest neighbor rule
(ENN, Wilson (1972)) undersampling approaches. However, TL and
ENN may not be effective when  and  overlap, as TL can re-
4

move correctly classified examples but close to the decision boundary.
Intelligent Systems with Applications 22 (2024) 200357

In contrast, ENN may remove correctly classified instances but have a
high-density overlap with  . Therefore, synthetic sampling with data
cleaning has limited applicability as it may not be effective for all class
imbalance problems, particularly those with small disjunct minority
class subsets.

2.2.3. Cluster-based sampling
Cluster-based sampling methods are commonly used to uncover the

underlying data structure in resampling techniques (Jiang, Zhao, et al.,
2023) and are more effective than random or synthetic sampling for
identifying 𝑃𝑖 ∈  . Several approaches have been proposed to address
CIL, for instance, Jo and Japkowicz (2004) applied k-means clustering
beforehand, assuming clusters  and  as disjunct subsets. Then, repli-
cated samples in clusters to make the data size of subsets within each
class and between classes consistent. Similarly, Cieslak et al. (2006)
adopted cluster-SMOTE to resample  . Furthermore, Douzas et al.
(2018) proposed an adaptive approach based on k-means and SMOTE,
namely kmeans-SMOTE (KS). KS clusters training samples and measures
the sparsity for clusters dominated by  . SMOTE is applied in those
clusters, and the number of synthetic samples generated in each cluster
depends on the minority samples’ sparsity so that minority distribution
can be compensated more in sparse clusters. Compared to conventional
approaches, the experiments prove the effectiveness of the method,
especially for within-class imbalance. However, k-means clustering is
sensitive to 𝑘, which the authors did not give a feasible optimization so-
lution in their proposed approach. Another issue with k-means is that it
is good at capturing equally sized-spherical clusters. Thus it may inhibit
the detection capability of disjoints with various shapes and sizes. Un-
like previous methods which use k-means for clustering, Bunkhumporn-
pat et al. (2012) proposed DB-SMOTE (DBS) to cluster  and exclude
noises by DBSCAN (Ester et al., 1996) and perform oversampling along
the shortest density-reachable path from each minority instance to the
most central instance of the cluster. DBS assumes well-separated minor-
ity instances and may generate synthetic samples in non-representative
regions when there is class overlap. Another adaptive approach, the
self-organizing map oversampling (SOMO), introduced by Douzas and
Bacao (2017), transforms the training data into a two-dimensional space
using self-organizing map (SOM). Each map of SOM is considered a
cluster. Then for clusters dominated by  , SMOTE is applied within
and between neighboring clusters by the weight, where the weight
is inversely proportional to  ’s density, such that synthetic samples
will be generated by a greater weight in sparser areas. While SOMO
has shown promising results, it may not be a good fit when  has a
poor representation which is the case in small disjunct problems, or the
dataset is non-linearly separable. As SOMO assumes a linear relation-
ship between examples, it may not be able to capture non-linear de-
cision boundaries. Adaptive semi-unsupervised weighted oversampling
(ASWO, Nekooeimehr and Lai-Yuen (2016)) combines oversampling
with semi-unsupervised learning but may not effectively balance small
disjunct minority classes. The reason is that ASWO relies on density dis-
tributions to specify the weights for oversampling. However, in small
disjunct minority class problems, the density distribution may be very
different from that of larger, more overlapping minority classes, which
can make it difficult for ASWO to identify and accurately generate ex-
amples for  . In their study, Yang and Cha (2021) proposed GMOTE
to address SMOTE’s overfitting issue. GMOTE uses distribution-based
generators instead of linear interpolation and employs a Gaussian Mix-
ture Model (GMM) to estimate the minority class distribution. However,
experimental results showed that GMOTE’s oversampling has limited ef-
fectiveness for small disjunct minority class subsets and could lead to
the misclassification of nearby majority instances. Last but not least,
Ma and Fan (2017) introduced CURE-SMOTE (CS) that integrates the
CURE algorithm (Guha et al., 1998) to generate representative clusters
and then applies SMOTE to oversample  within each cluster. Using the
CURE algorithm seeks to create more representative clusters than tra-

ditional clustering methods, which would help capture the underlying

Intelligent Systems with Applications 22 (2024) 200357Z. Farou, Y. Wang and T. Horváth

Fig. 4. The AROSS training process.
structure of  more accurately. However, the authors did not assume
linkage validation and used single linkage (S-Link) to extract clusters.
The main side-effect of S-Link is the potential of building long-chained
data points, also known as chaining (Seifoddini, 1989). Chaining occurs
when we join clusters using S-Link based on the similarity between their
closest points, which may result in long, narrow chains of points, which
would introduce new and none existing patterns and relationships in
the original data. Also, they set static values for the number of clusters
and representative points. These values can lead to sub-optimal perfor-
mance for some datasets, leading to a poor exploration of  sub-spaces,
especially when we have a within-class problem. As a result, CS would
overpopulate some regions in  and leave others underrepresented.

Considering CS advantages and disadvantages, designing a new
cluster-based sampling approach called AROSS is proposed in this ar-
ticle, which incorporates linkage determination, optimized number of
clusters, and representative points selection to enhance clustering accu-
racy and address CIL challenges.

3. Area-based representative points oversampling with shifting
(AROSS)

Let  be a binary labeled, imbalanced dataset, with its minority and
majority classes  and  , respectively, as introduced in Definition 2.

As represented in Fig. 4, AROSS starts by standardizing the dataset
using z-score normalization. After that,  is clustered into 𝑐 clusters
1, 2, … , 𝑐 , i.e.  = 1 ∪ 2 ∪⋯ ∪ 𝑐 , using the given optimized ag-
glomerative clustering. Then the representative points 𝑖 from each
cluster 𝑖 are extracted, forming the set  of all representative points,
i.e.  =

⋃𝑐

𝑖=1𝑖. Then, clusters are substituted with safe and half-safe
5

areas given as output from the incremental kNN algorithm. After that,
AROSS generates samples inside these areas using the Gaussian gener-
ator. The augmented dataset comprises the original and the synthetic
data generated by AROSS.

The modules and implementation steps of AROSS are described in
details in the following sub-sections.

3.1. Clustering using optimized agglomerative clustering

As formerly mentioned in Sect. 2.1.2, the small disjuncts imbalance
problem emerges when there are one or more sub-classes with very
few examples dissimilar from those in other sub-classes but all of which
characterize the minority class. To address this case, one could use clus-
tering, a method that tends to group similar instances into clusters, to
locate these small disjuncts. One of the clustering strategies, belong-
ing to hierarchical clustering techniques and producing interpretable
results, is agglomerative clustering (AC, Lukasová (1979)). AC begins
with each data object2 (𝐱𝑖, 𝑦𝑖) ∈ as a standalone cluster 𝑖 = {(𝐱𝑖, 𝑦𝑖)}
and recursively merges the two closest clusters 𝑗 and 𝑙 , 1 ≤ 𝑖, 𝑗, 𝑙 ≤ 𝑛,
based on a specific distance measure (in this work, the most generic one,
the Euclidean distance) and a so-called linkage method until a stopping
criterion is met. The result is a dendrogram, a tree-like diagram used
to represent the hierarchical clustering of data, that can be visually ex-
amined and interpreted. As we consider only low-dimensional binary
datasets in this study, AC is a suitable choice due to its intuitive results,
ease of implementation, preservation of spatial proximity, flexibility in
linkage criteria, and scalability for low-dimensional datasets.

2 When performing clustering, the labels 𝑦𝑖 are not utilized, only the objects

𝐱𝑖 are used.

Intelligent Systems with Applications 22 (2024) 200357Z. Farou, Y. Wang and T. Horváth

Table 1

Different linkages for merging clusters 𝑗 and 𝑙 : 𝐜𝑗 and 𝐜𝑙 denote the centroids of 𝑗

and 𝑙 , respectively; 𝑑(𝐮, 𝐯) (𝑑(𝐜𝑗 , 𝐜𝑙)) denotes the (in our case, Euclidean) distance, i.e.
the dissimilarity measure, between objects 𝐮 and 𝐯 (𝐜𝑗 and 𝐜𝑙); 𝑤𝑐𝑠𝑠(𝑗) and 𝑤𝑐𝑠𝑠(𝑙)
denote the within-cluster sum of squared distances between objects in clusters 𝑗 and 𝑙 ,
respectively.

Linkage Distance between clusters 𝑗 and 𝑙 (1 ≤ 𝑗, 𝑙 ≤ 𝑛) Paper

S-Link (𝐿𝑆) 𝑑𝑆 (𝑗 ,𝑙) = min{𝑑(𝐮,𝐯) | 𝐮 ∈ 𝑗 ,𝐯 ∈ 𝑙} Sneath (1957)

A-Link (𝐿𝐴) 𝑑𝐴(𝑗 ,𝑙) =
1|𝑗 ||𝑙| ∑

𝐮∈𝑗

∑
𝐯∈𝑙

𝑑(𝐮,𝐯) Sokal (1958)

C-Link (𝐿𝐶) 𝑑𝐶 (𝑗 ,𝑙) = 𝑑(𝐜𝑗 , 𝐜𝑙) Sokal (1958)

M-Link (𝐿𝑀) 𝑑𝑀 (𝑗 ,𝑙) = max{𝑑(𝐮,𝐯) | 𝐮 ∈ 𝑗 ,𝐯 ∈ 𝑙} McQuitty (1960)

W-Link (𝐿𝑊) 𝑑𝑊 (𝑗 ,𝑙) =

√
(|𝑗 |+ |𝑙|) .𝑤𝑐𝑠𝑠(𝑗) .𝑤𝑐𝑠𝑠(𝑙)

(|𝑗 |+ |𝑙|)2 𝑑(𝐜𝑗 , 𝐜𝑙)2 Ward (1963)
3.1.1. Merging clusters and linkage selection
During the AC process, we combine each pair of clusters 𝑗 and 𝑙

(1 ≤ 𝑗, 𝑙 ≤ 𝑛) by using a linkage (Murtagh & Contreras, 2012), deter-
mining the distance between clusters of data points. For our work we
considered five different linkages, such that single (S-Link), complete
(M-Link), average (A-Link), centroid (C-Link) and ward (W-Link) link-
age. Different linkages may produce different dendrograms and each
linkage has its way of operating. For instance, in S-link, also known as
the min linkage, the distance between two clusters would be the min-
imum distance between any two points in 𝑗 and 𝑙 . As a result, we
would produce long, elongated clusters (chaining problem). However,
if we consider M-Link, also known as the max linkage, then the distance
between two clusters would be the maximum distance between any
two points in the two clusters. That would produce compact, spherical
clusters. Further, in A-Link, a compromise between S-Link and M-Link,
we compute the distance between two clusters as the average distance
between all pairs of points in the two clusters. In C-Link, the distance be-
tween two clusters is the distance between their centroids. This linkage
is computationally efficient and can produce well-separated clusters.
Last but not least, in W-Link, the distance between 𝑗 and 𝑙 is ex-
pressed as the increase in the sum of squared distances within the
resulting merged cluster compared to the sum of squared distances
within the separate clusters before merging. This linkage yields com-
pact, spherical clusters but is sensitive to cluster size and shape. Table 1
summarizes how each linkage is computed.

Choosing the wrong linkage would result in poor clustering per-
formance, forging none well-separated clusters, or clusters that do not
correspond to the underlying structure of the data. Therefore, it is es-
sential to consider the choice of linkage method carefully. On the other
hand, the choice of the distance measure has not as great influence as
the choice of the linkage, thus, a generic Euclidean distance is, usually,
a good choice.

Several clustering validation metrics can be used to optimize the
linkage selection in AC. One strategy is to employ the silhouette
score (Rousseeuw, 1987), which estimates the clustering quality by
quantifying the extent of separation between clusters, or the Davies-
Bouldin index (Davies & Bouldin, 1979), which measures the likeness
between clusters by assuming the ratio of the within-cluster scatter and
the between-cluster distance. Another good technique is the cophenetic
correlation coefficient (CPCC, Farris (1969)), which measures how well
a dendrogram describes the pairwise distances between the data points.

Definition 3 (Cophenetic correlation coefficient). Let 𝐱𝑖 and 𝐱𝑗 (1 ≤
𝑖, 𝑗 ≤ 𝑛) be two objects in the dendrogram, resulting from AC. Let
𝑑𝐸 (𝐱𝑖, 𝐱𝑗) denote the pairwise (Euclidean) distance between 𝐱𝑖 and 𝐱𝑗 ,
and 𝑑𝐶 (𝐱𝑖, 𝐱𝑗) denote the cophenetic (Euclidean) distance between 𝐱𝑖
and 𝐱𝑗 , i.e. the distance between the largest two clusters that contain
6

𝐱𝑖 and 𝐱𝑗 individually before they are merged into a single cluster that
contains both of these objects. The Cophenetic Correlation Coefficient
is computed as:

𝐶𝑃𝐶𝐶 = 2
𝑛(𝑛− 1)

𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑖+1

(
𝑑𝐸 (𝐱𝑖,𝐱𝑗) . 𝑑𝐶 (𝐱𝑖,𝐱𝑗)

)
(2)

CPCC can be considered better than the silhouette coefficient and
Davies-Bouldin index mainly for two reasons. First, CPCC assumes the
whole dendrogram, whereas the others only consider the pairwise dis-
tances between data points. In other words, CPCC can capture the
overall structure of the dendrogram, including the branching pattern
and the distances between the clusters. Second, unlike the silhouette co-
efficient and Davies-Bouldin index, CPCC is insensitive to the number
of clusters chosen, making it useful when comparing clustering results
with different numbers of clusters. For the mentioned advantages, we
only considered CPCC as a clustering validation metric in this work to
determine which linkage method, denoted as 𝐿𝑏𝑒𝑠𝑡, fits each dataset
well.

In the context of linkage selection, CPCC evaluates the quality of a
particular linkage method by comparing the pairwise distances between
the data points with the distances between the corresponding nodes in
the dendrogram. A high CPCC indicates that the dendrogram accurately
represents the pairwise distances between the data points, and therefore
the linkage method used to construct the dendrogram is a good choice
for clustering the data. Thus, the linkage with the highest CPCC value
is selected as the best method for agglomerative clustering. The algo-
rithm for linkage selection based on CPCC can be summarized as the
following:

• Step 1: Calculate the pairwise distances between the data points
using the Euclidean distance.

• Step 2: Construct a dendrogram using a particular linkage method.
• Step 3: Compute CPCC score for the dendrogram using Eq. (2).
• Step 4: Repeat steps 2 and 3 for different linkage methods.
• Step 5: Select the linkage method that produces the dendrogram

with the highest CPCC.

3.1.2. Cluster optimization
Cluster optimization is the process of determining the optimal num-

ber 𝑐 of clusters in a clustering algorithm, a challenging task, as it
depends on the dataset and the clustering algorithm used. Selecting
inappropriate 𝑐 can lead to inaccurate or irrelevant results. If there
are too few clusters, the data may be oversimplified, and subgroups
may be missed. On the other hand, if there are too many clusters, then
the data may be over-complicated, and the results may not be inter-
pretable or useful. Several methods have been developed for optimizing
𝑐, including the elbow method (Thorndike, 1953), silhouette analy-

sis (Rousseeuw, 1987), the Davies-Bouldin index (Davies & Bouldin,

Z. Farou, Y. Wang and T. Horváth

1979), and the Bayesian Information Criterion (𝐵𝑠𝑐𝑜𝑟𝑒, Schwarz (1978))
computed as:

𝐵𝑠𝑐𝑜𝑟𝑒 = −2 ln+ 𝑧 ln𝑛 (3)

with:

𝑧 = (𝑐 − 1) + (𝑑 . 𝑐) + 1

where  is the maximum likelihood of the data given the model, 𝑧 is
the number of parameters in the model, 𝑛 is the sample size and 𝑑 is
the dimensionality of the data (see Eq. (1)).

𝐵𝑠𝑐𝑜𝑟𝑒 penalizes models with more parameters, which helps to avoid
overfitting and ensures that the algorithm does not create excessive
clusters, preventing the overshadowing effect of large clusters. For op-
timizing 𝑐 in AC, we calculate 𝐵𝑠𝑐𝑜𝑟𝑒 for different numbers of clusters
and select 𝑐 that minimizes 𝐵𝑠𝑐𝑜𝑟𝑒.

Schubert (2022) compared several methods for selecting 𝑐 for the k-
means clustering algorithm and reported that the Elbow method could
be inconsistent (delivering sub-optimal clustering results), while the
silhouette analysis and Davies-Bouldin index often produce more trust-
worthy and informative results than the elbow criterion, especially for
well-separated and overlapping clusters. Their experimental results re-
veal that the 𝐵𝑠𝑐𝑜𝑟𝑒 always performed well3 despite using different
heuristics on synthetic datasets, such as well-separation, overlapping,
number of clusters, and uniform or normal data distribution.

3.2. Extraction and classification of representative points

A typical application of cluster-based sampling for imbalance learn-
ing is in disjunct subsets problems, where several disjoint sub-clusters
characterize  . In such cases, traditional oversampling methods may be
ineffective, as they tend to oversample the target class uniformly across
the feature space rather than focusing on the specific sub-clusters where
the minority class is most prevalent. However, class boundaries, which
play a critical role in most classifications (Han et al., 2005), are not of-
ten considered. Thus, instead of synthesizing data directly, we extract
clusters’ representative points in this work. Representative points, ele-
ments of the set  introduced before, are often more interpretable than
the original data points, making it easier to gain insight into the under-
lying patterns and relationships in the data, explore cluster’s sub-spaces,
and consider the distribution of both classes, especially the instances
nearby the borderlines. By contrast, the proposed approach is tailored
to each sub-cluster individually, allowing for more effective oversam-
pling of  in each region of the feature space. Which would probably
improve the classification performance, mainly when dealing with com-
plex and highly imbalanced datasets.

Thus, at this level, we would extract the representative points 𝑖

for each cluster 𝑖, but before that, we first should specify the number
of representative points |𝑖| per cluster (1 ≤ 𝑖 ≤ 𝑐), as defined in the
Eq. (4)

|𝑖| =
⎧⎪⎪⎨⎪⎪⎩
0, if 𝑝 = 0 ∧ |𝑖| ≥ 𝑘′

1, if (𝑝 = 0 ∧ |𝑖| < 𝑘′) ∨ (𝑝 = 1)
|𝑖| . |𝑆||𝑆|+(|𝑖|−1) , otherwise

(4)

where

|𝑆| = 𝑍2
𝛼
. 𝑝 . (1 − 𝑝)

(log |𝑖||𝑖| + 𝜖)2
(5)

and

3 Justified by an other experiment reported in https://towardsdatascience .
com /are -you -still -using -the -elbow -method -5d271b3063bd (last access:
7

26/07/2023).
Intelligent Systems with Applications 22 (2024) 200357

𝑝 =

∑
𝐱∈𝑖

𝜙(𝐱 ∈ )

|𝑖| (6)

𝑆 is inspired by the sample size formula in statistics (Cochran, 1977),
in which 𝜖 is the acceptable tolerance error that can be adjusted as re-
quired, 𝑍𝛼 is the critical value of the 𝑍 test at the significance level
𝛼 (Shi et al., 2022), 𝜙 is an indicator function,4 and 𝑝 is the variance
of a proportion denoting the percentage of a sample having a particular
characteristic,5 and 𝑘′ is a hyper-parameter related to the size of clus-
ters. Here, 𝑝 denotes the proportion of objects in the given cluster 𝑖
belonging to the minority class  .

In other words, |𝑖| will increase as the within-class impurity grows
i.e., 𝑝 ⋅ (1 − 𝑝) increases. 𝑍𝛼 is set to the value of 1.645, referring to
𝛼 = 90%, and the margin of error 𝜖 is set to 0.05. The function log(|𝑖|)|𝑖|
scales down the cardinality of the cluster 𝑖 into the interval (0, 1

𝜖
), and

is added to a fixed 𝜖, the square of which is inversely proportional to 𝑆 .
This would help us to limit |𝑖| for large clusters.

Moreover, |𝑖| = 0 solely if all the instances within a given cluster
𝑖 belong to  while the size of the cluster is greater than 𝑘′. If 𝑘′ is too
small (e.g., 𝑘′ = 1), it will be difficult to distinguish the features of dif-
ferent samples; if it is too large, it cannot capture the local property of
the representative point. Thus, referring to Napierala and Stefanowski
(2016), Shi et al. (2022), we use 𝑘′ = 5 to capture the local property
of each representative point. If |𝑖| ≥ 𝑘′, it would mean that the neigh-
boring area of the representative point is populated only by instances
from  . As we would use the incremental kNN strategy to extract safe
and half-safe areas (see Sect. 3.3) and only consider oversampling mi-
nority class regions, representative of size |𝑖| = 0 can neither be safe
nor half-safe. Thus, we will not extract any representative point in such
areas. In contrast, |𝑖| = 1 reflects that the cluster contains only in-
stances from  or less than five instances from  . Otherwise, |𝑖| is
computed by the third line in Eq. (4). The closer a cluster is to the bor-
derline, the more representative points will be extracted. It is important
to note that as we mainly deal with neighboring searches at current and
the following stages, KDTree (K-Dimensional Tree, Bentley (1990)) is
used to reduce the number of computational resources. The algorithm
can quickly find a point’s nearest neighbor and reduce the number of
pairwise distances that need to be computed. By using KDTree, the time
complexity of finding nearest neighbors can be reduced from (𝑛2) to
(𝑛 log𝑛), where 𝑛 is the number of data points. Overall, KDTree of-
fers fast nearest neighbor search and efficient range queries in low to
moderate dimensional spaces.

Once we set the size |𝑖|, we start extracting the representative
points 𝑖 for each cluster 𝑖 according to the well-scattered points ex-
traction strategy described by Algorithm 1, adopted from CURE (Guha
et al., 1998).

Algorithm 1 Extraction of representative points.
Input: Cluster 𝑖 , shifting rate 𝛿 ∈ [0, 1]
Output: A set of representative points 𝑖

1:  ← ∅
2: determine |𝑖| using Eq. (4)

3: 𝐜𝑖 ←
1|𝑖 | ∑𝐱∈𝑖

𝐱 ⊳ Get the cluster’s centroid

4: 𝐫1 ← argmax𝐱∈𝑖
𝑑(𝐱, 𝐜𝑖) ⊳ Select the first representative point

5:  ← ∪ {𝐫1}
6: for 𝑗 = 2, ..., |𝑖| do

7: 𝐫𝑗 ← argmax𝐱∈𝑖⧵min𝐫∈ 𝑑(𝐱, 𝐫) ⊳ Find the farthest point from 
8:  ← ∪ {𝐫𝑗}
9: end for

10: 𝑖 ← {𝐫 + 𝛿(𝐜𝑗 − 𝐫) | 𝐫 ∈} ⊳ Shift points toward the centroid
11: return 𝑖

4 𝜙(⋅) = 1 if the expression ⋅ in its parameter is true, otherwise 𝜙(⋅) = 0.
5 E.g., Taherdoost (2017) used 𝑝 = 0.4 to denote that 40% of the population
are female.

https://towardsdatascience.com/are-you-still-using-the-elbow-method-5d271b3063bd
https://towardsdatascience.com/are-you-still-using-the-elbow-method-5d271b3063bd

Z. Farou, Y. Wang and T. Horváth

For a cluster 𝑖 with |𝑖| = 1, its centroid 𝐜𝑖 will be used as a rep-
resentative point, while clusters with |𝑖| = 0 are discarded (ignored
in the subsequent steps). These clusters are populated only by instances
from  and are not considered during the generation process as they
are far away from the decision boundaries between  and  . For each
remaining cluster 𝑖, we take the farthest point 𝐫1 ∈ 𝑖 from its centroid
𝐜𝑖 as the first representative point. Then, in each subsequent iteration
𝑗 ∈ {2, … , |𝑖|}, we pick up an instance 𝐫𝑗 ∈ 𝑖, which is farthest from
the set of representative points 𝑖, considering the single linkage (S-
Link) distance between the two sets {𝐫𝑗} and  (see Table 1). After that,
we shift 𝐫1, … , 𝐫|𝑖| ∈𝑖 toward the centroid 𝐜𝑖 ∈ 𝑖 by 𝛿. The hyper-
parameter 𝛿, represented by 𝛼 in the original algorithm, as suggested by
Guha et al. (1998) and Cai and Liang (2018), should ideally fall within
the range of [0.2, 0.7]. This range helps mitigate the impact of noise and
outliers during cluster formation. A higher 𝛿 value leads to representa-
tives being positioned closer to the centroid, while in our research, 𝛿
denotes the shifting rate of representative points. These representatives
act as centroids around which synthetic samples are generated in sub-
sequent steps, affecting the spreads between synthetic data points and
each cluster’s centroid. A larger 𝛿 value would result in synthesizing
samples closer to the centroid, while a smaller 𝛿 value would allow for
more dispersion within the cluster. Considering the diverse characteris-
tics of each dataset, we retain the need to optimize 𝛿 to achieve optimal
performance.

Once all representative points 𝐫𝑗 ∈𝑖 (1 ≤ 𝑗 ≤ |𝑖|) are extracted,
we classify them into safe, half-safe or unsafe classes using Eq. (8). For
that, the 𝑘-nearest neighbors 𝐧𝑗1, … , 𝐧𝑗

𝑘
of each representative point 𝐫𝑗

are identified, and the proportion of the minority samples among these
nearest neighbors is adopted as the weight 𝑤𝑘(𝐫𝑗) ∈ [0, 1] of 𝐫𝑗 , com-
puted as:

𝑤𝑘(𝐫𝑗) =
1
𝑘

𝑘∑
𝑙=1

𝜙(𝐧𝑗
𝑙
∈ ) (7)

where 𝜙 is an indicator function, defined before, and 𝑘 is a hyper-
parameter. Based on 𝑤𝑘(𝐫𝑗), 𝐫𝑗 is classified as safe, half-safe or unsafe
as follows.

𝐫𝑗 =
⎧⎪⎨⎪⎩

safe, if 𝑤𝑘(𝐫𝑗) = 1
half-safe, if 0.5 <𝑤𝑘(𝐫𝑗) < 1
unsafe, otherwise

(8)

This indicates that a representative point 𝐫𝑗 ∈𝑖 is classified as safe
only if all its 𝑘-nearest neighbors belong to  . In contrast, 𝐫𝑗 is half-safe
if most of its 𝑘-nearest neighbors belong to  . If 𝐫𝑗 does not satisfy one
of the mentioned conditions, we categorize it as unsafe as most of its
𝑘-nearest neighbors belong to  and not  .

3.3. Areas estimation using incremental kNN

In order to extract minority class sub-spaces, we investigate in-
stances surrounding a representative point. The objective is to expand
representative point areas using incremental kNN as long as some pre-
requisites are satisfied. The details are presented in Algorithm 2. The
resulting areas are used as input for a given data generator to synthesize
artificial minority class samples with new characteristics unavailable in
the original data.

Considering the classification condition of the point (object) being
half-safe, the parameter of kNN should be an odd number and greater
than one. We choose 𝑘 = 3 to ensure that the disjunct subset with at
least three minority instances can be identified as a safe area, as larger
𝑘 values may result in bypassing some tiny but safe areas (Fig. 5). Fur-
thermore, the resulting representative points from the previous step are
initially classified by 3-NN.

Algorithm 2 treats each 𝐫𝑗 ∈ 𝑖 (1 ≤ 𝑗 ≤ |𝑖|) differently, relying
on Eq. (8). As described in Fig. 6(a), the algorithm keeps expanding the
8

safe area incrementally, by 𝑘 +1. The 𝑘 +1𝑡ℎ neighbor of 𝐫𝑗 is accepted
Intelligent Systems with Applications 22 (2024) 200357

Algorithm 2 Incremental kNN.
Input: The set of representative points 𝑖 of 𝑖

Output: Safe 𝑖
𝑠

and half-safe 𝑖
ℎ

areas of 𝑖

1: 𝑖
𝑠
, 𝑖

ℎ
← ∅

2: for 𝑗 = 1, 2, … , |𝑖| do

3: Calculate 𝑤𝑘(𝐫𝑗) by Eq. (7) ⊳ 𝐫𝑗 ∈𝑖 , 𝑘 = 3
4: if 𝑤𝑘(𝐫𝑗) = 1 then ⊳ Safe
5: 𝑘 =min

𝑙≥3
𝑤𝑙+1(𝐫𝑗) ≠ 1

6: 𝑖
𝑠
←𝑖

𝑠
∪ ⟨𝐫𝑗 , 𝐧𝑗

𝑘
⟩ ⊳ Store the safe area (from 𝐫𝑗 to its 𝑘-th nearest neighbor

𝐧𝑗

𝑘
)

7: else if 𝑤𝑘(𝐫𝑗) ≤ 0.5 then ⊳ Unsafe
8: 𝑘′ = min

𝑙∈[3,10]
𝑤𝑙(𝐫𝑗) > 0.5

9: 𝑘 = min
𝑘′≤10,𝑙≥𝑘′

(
𝑤𝑙+1(𝐫𝑗) ≤ 0.5 ∧𝜙(𝐧𝑗

𝑙+1 ∈ ) = 0
)

10: 𝑖
ℎ
←𝑖

ℎ
∪ ⟨𝐫𝑗 , 𝐧𝑗

𝑘
⟩ ⊳ Store the area that become half-safe after expansion

11: else ⊳ Half-safe
12: 𝑘 =min

𝑙≥3

(
𝑤𝑗+1(𝐫𝑗) ≤ 0.5 ∧𝜙(𝐧𝑗

𝑙+1 ∈ ) = 0
)

13: 𝑖
ℎ
←𝑖

ℎ
∪ ⟨𝐫𝑗 , 𝐧𝑗

𝑘
⟩ ⊳ Store the half-safe area

14: end if

15: end for

16: return 𝑖
𝑠
, 𝑖

ℎ

Fig. 5. A large 𝑘 may result in omitting some small safe minority disjunct sub-
sets.

Fig. 6. Examples of areas extraction using the incremental kNN strategy: (a) a
safe area populated from a safe representative point; (b) a half-safe area popu-
lated from a half-safe representative point; (c) a half-safe area populated from
an unsafe representative point; (d) a discarded unsafe area populated from an
unsafe point where max-iter is reached.

only when it is a minority instance; if not, the 𝑘th nearest neighbor 𝐧𝑗
𝑘

of 𝐫𝑗 would be the farthest point that keeps 𝐫𝑗 ’s area safe. For a half-
safe point, the algorithm keeps expanding its area as long as the area
remains half-safe (Fig. 6(b)).

For unsafe points, two possibilities may occur (see Fig. 4). An unsafe

point may remain unsafe or revert to half-safe. Thus, to avoid losing

Z. Farou, Y. Wang and T. Horváth

the local property of a given unsafe point, we set a max-iter parame-
ter for the incremental kNN. If max-iteration is reached and the point
stays unsafe, that area will be discarded (Fig. 6(d)) as it indicates an
overpopulated area by majority-class instances. However, if an unsafe
point changes to half-safe before reaching max-iter, we extend its area as
shown in Fig. 6(c) according to the strategy utilized for half-safe points.

The value for max-iter for identified unsafe areas in our incremen-
tal kNN algorithm was empirically set to 10 so that it would provide a
good, overall default setting for the datasets used in our experiments.
This choice aims to balance meaningful area expansion and prevent-
ing excessive growth. The goal is to ensure effective expansion without
compromising computational efficiency, addressing the need for mean-
ingful exploration while avoiding unnecessary computational burden.
Opting for a higher value of max-iter could result in unnecessary com-
putational costs, whereas a lower value might limit the algorithm’s ca-
pacity to identify potential minority class half-safe areas. By restricting
expansion, we also mitigate potential overlap issues with other areas,
preserving the algorithm’s ability to distinguish distinct minority class
sub-spaces. This constraint on iteration optimizes resource utilization,
allowing for the efficient capture of relevant sub-spaces. Additionally,
the finite nature of max-iter aids in identifying overpopulated majority-
class areas, preventing the consideration of regions dominated by the
majority class. However, we do realize that this hyper-parameter might
need fine-tuning in case of new datasets with different characteristics
than those used in our experiments.

3.4. Weighting safe and half-safe areas

Given the expected imbalance ratio, denoted as 𝐼𝑅𝑒, to specify the
desired balance level after the synthetic data generation process, and
the weights 𝑤𝑠 and 𝑤ℎ of safe and half safe areas, respectively, we
determine the number of synthetic data examples 𝛾 that we would gen-
erate using Algorithm 3 for  by Eq. (9), and which then we split
between safe areas and half-safe areas according to Eqs. (10) and (11),
respectively.

𝛾 = | |− ||
𝐼𝑅𝑒

(9)

|𝑠| = 𝛾 ⋅
𝑤𝑠 . |𝑠|

𝑤𝑠 . |𝑠|+𝑤ℎ . |ℎ| (10)|ℎ| = 𝛾 − |𝑠| (11)

𝜂𝑎 =
⎧⎪⎨⎪⎩

𝜇𝑎 . |𝑠|
𝜇𝑠

if 𝑎 ∈𝑠

𝜇𝑎 . |ℎ|
𝜇ℎ

if 𝑎 ∈ℎ

(12)

In practice, we set the value of 𝑤𝑠 and 𝑤ℎ equal to 1 by default,
which could be customized if needed. Then, the exact number 𝜂𝑎 ∈ ℕ
of points to generate for each area 𝑎 is determined based on 𝜇𝑎, the
number of minority instances that belongs to the area 𝑎. In Eqs. (10)
and (11), 𝜇𝑠 and 𝜇ℎ are the sum of the number of minority instances
that belongs to all 𝑎 ∈𝑠 and 𝑎 ∈ℎ, respectively. As the number of
synthetic samples |𝑠| that would be generated in safe areas, and the
number of synthetic samples |ℎ| in half-safe areas, as well as in a
given area 𝜂𝑎 are rounded, the remaining synthetic samples that were
not counted are added systematically into random safe areas to satisfy
𝛾 .

3.5. Synthetic data generation using Gaussian generator

When instances from the minority class are located in small, isolated
areas of the feature space, standard methods such as SMOTE find it hard
to generate synthetic samples useful for the classification task.

First, SMOTE can create dense areas in the feature space as it gener-
ates samples by interpolating between existing minority class samples.
This can create dense areas of synthetic samples that are not represen-
9

tative of the true underlying distribution (Fig. 7(a)). These dense areas
Intelligent Systems with Applications 22 (2024) 200357

Fig. 7. Gaussian random generator (right) compare to the interpolation method
(left).

can have several negative consequences: they may lead to overfitting
the machine learning model, as the model may learn to rely too heavily
on the dense clusters of synthetic samples rather than the true underly-
ing distribution. Thus, using a Gaussian generator, instead SMOTE, can
be seen as a more nuanced and context-sensitive approach. The adopted
Gaussian generator recognizes the non-normal distribution of imbal-
anced datasets. Rather than assuming a global normal distribution, it
targets specific sub-spaces within the minority class for oversampling,
allowing for more fine-grained control over the generation of synthetic
samples (Fig. 7(b)) and ensuring a more accurate representation of the
minority class without making assumptions about the overall dataset’s
normality. In contrast, SMOTE is a more general approach that does not
account for the specifics of the distribution of  , which can lead to the
generation of synthetic samples that are not representative of the true
underlying distribution of  . Overall, a Gaussian generator can improve
performance and a more accurate representation of  in small disjunct
areas. Its implementation is described in Algorithm 3.

Algorithm 3 Sampling from Truncated Hyper-spherical Gaussian Dis-
tribution.
Input: Representative area ⟨𝐫𝑗 , 𝐧𝑗

𝑘
⟩, standard deviation 𝜎

Output: Synthetic sample 𝐱
1: 𝑟 = 𝑑𝐸 (𝐫𝑗 , 𝐧𝑗

𝑘
) ⊳ (Euclidean) Radius of the hyper-sphere centered at 𝐫𝑗

2: do ⊳ check-point
3: 𝐳 ∼𝑁(0, 𝜎.𝐼𝑑) ⊳ 𝐼𝑑 is a 𝑑-dimensional identity matrix
4: 𝐱 = 𝐫𝑗 + 𝑟 . 𝐳 ⊳ generate a sample
5: while 𝑑𝐸 (𝐫𝑗 , 𝐱) > 𝑟

6: if ⟨𝐫𝑗 , 𝐧𝑗

𝑘
⟩ ∈ℎ then ⊳ The given area is half-safe

7: if 𝑤𝑘(𝐱) ≠ 1 then ⊳ Eq. (7)
8: Go back to step 2
9: end if

10: end if

11: return 𝐱

Initially, Algorithm 3 computes the radius 𝑟, which represents the
Euclidean distance between 𝐫𝑗 , the center of the hyper-spherical region
and 𝐧𝑗

𝑘
, the 𝑘-th nearest neighbor of 𝐫𝑗 estimated by Algorithm 2. This

process involves iteratively sampling a point 𝐳 from a Gaussian distri-
bution with a mean of 0 and a standard deviation of 𝜎, denoted as
𝑁(0, 𝜎 ⋅ 𝐼𝑑). Subsequently, a candidate sample 𝐱 is generated by scaling
𝐳 with the radius 𝑟 and translating it to the center 𝐫𝑗 . Following this,
the algorithm verifies whether the distance between 𝐫𝑗 and 𝐱 exceeds
𝑟, iterating until a valid sample within the hyper-sphere is obtained. In
case the representative area ⟨𝐫𝑗 , 𝐧𝑗𝑘⟩ ∈ℎ, an additional check is con-
ducted. Specifically, the algorithm examines the local property of 𝐱 by
evaluating whether its weight, denoted as 𝑤𝑘(𝐱), is not equal to 1. If
this condition is not satisfied, the algorithm returns to the sampling
step. Upon fulfilling all conditions, the algorithm outputs the synthetic
sample 𝐱.

As mentioned earlier, the algorithm involves iteratively sampling a
point 𝐳 from a Gaussian distribution with a mean of 0 and a standard
deviation of 𝜎, where 𝜎 ∈ [0, 1]. The value of 𝜎 reflects the degree of
convergence of the generated samples from the center 𝐫𝑗 of the given

area.

Intelligent Systems with Applications 22 (2024) 200357Z. Farou, Y. Wang and T. Horváth

Fig. 8. Effect of 𝜎 on synthetic instances.
Fig. 9. Illustration of the filter in a half safe area.

As described in Fig. 8(a) and Fig. 8(b), picking a small 𝜎 would yield
a dense area of generated instance near 𝐫𝑗 and do not fully cover the
extracted area’s sub-spaces, whereas a high 𝜎 (Fig. 8(c)) would cover
more sub-space but might generate instances out of the area’s borders
which might cause a problem if two extracted areas or more are over-
lapping. Therefore, we check whether a generated instance is within a
hyper-sphere (line 5 of Algorithm 3), and fixed 𝜎 to 0.8. To justify our
choice of 𝜎 = 0.8 in our study, we note that the Gaussian sampling re-
sults were highly comparable for values of 𝜎 greater than 0.8. Thus, by
selecting 𝜎 = 0.8, we can ensure a satisfactory level of diversity in the
generated data. Moreover, we found that 𝜎 = 0.8 accelerates our algo-
rithm’s convergence as it reduces the number of rejected instances due
to being outside the designated radius 𝑟 (line 1 of Algorithm 3). There-
fore, we determined that 𝜎 = 0.8 was suitable for our study based on
these considerations.

Given that our Algorithm 3 populates both safe and half-safe areas,
if we apply it directly in the half-safe area, we would probably induce
instances encircled by majority class instances. Such instances influ-
ence classes’ separability and further worsen the precision of majority
class (Kulkarni et al., 2020). Thus, we involve a filter (line 7 of Algo-
rithm 3) based on the nearest neighbors for each synthetic sample when
oversampling in half-safe areas. The filter can be seen as a post-step re-
straining the random vector from generating artificial instances only in
the minority class’s direction. We compute the weight 𝑤𝑘(𝐱) of each
sample 𝐱 using Eq. (7). The number of nearest neighbors 𝑘 is adapta-
tive to the half-safe area. When 𝜇𝑎 < 5 for a given area 𝑎, 𝑘 would be
equal to 𝜇𝑎. Otherwise, the filter fixes 𝑘 = 5. As illustrated in Fig. 9, 𝐱
10

is preserved if 𝑤𝑘(𝐱) = 1 meaning that all its neighbors belong to  .
4. Experiments

Using the taxonomy proposed in Fig. 3, we classify AROSS as a
cluster-based adaptive oversampling method due to its agglomerative
clustering module to extract data features and its adaptive generation of
synthetic samples in safe and half-safe regions using different weights.
The parameters 𝐿𝑏𝑒𝑠𝑡 (the best linkage), 𝑐 (the number of clusters), and |𝑖| (the number of representative points per cluster) are automatically
fine-tuned for each dataset based on the CPCC, 𝐵𝑠𝑐𝑜𝑟𝑒, and the sample
size formula, respectively, while 𝛿 (the shifting rate, see Algorithm 1) is
a customizable hyper-parameter.

To assess the performance of the proposed approach, we evaluate
it with two variants. The first one, without the use of shifting, denoted
as AROS (area-based representative points oversampling), uses 𝛿 = 0.
The second one, with shifting, designated as AROSS (area-based repre-
sentative points oversampling with shifting), optimizes 𝛿 based on the
recall measure. Luque et al. (2019) highlighted that recall is the sole
bias-free metric in imbalance learning that specifically emphasizes the
prediction of minority samples, which are frequently the target class.
While optimizing, various 𝛿 values from the interval [0, 1], using a step
length of 0.1 are considered. Selecting the optimal 𝛿 that maximizes
recall ensures that representative points are shifted within clusters to
populate ideal areas, capturing most of the minority data distribution
and generating effective synthetic samples.

To evaluate the performance of the proposed method, we present
the experimental comparison with state-of-the-art data-level resampling
methods highlighted in Table 2, and their ranges of hyper-parameters
in Table 3. Considering the scale of our experimental design, providing
a consolidated overview through the specification of hyper-parameter
ranges emerges as a pragmatic and informative strategy for presenting
the breadth of our experimentation.

4.1. Datasets

To assess the performance of AROS and AROSS, we utilized 70
imbalanced datasets for benchmarking. Among these, 66 were real
datasets sourced from the UCI (Asuncion & Newman, 2007) and
KEEL (Derrac et al., 2015) repositories. Additionally, we created four
artificial datasets with sample prefix. As we focus on binary classifica-
tion problems, datasets with more than two classes were converted into
two-class datasets. Detailed information about the 70 datasets can be
found in Table 5. We categorized the datasets into three groups to an-
alyze the imbalance severity based on their 𝐼𝑅 values. Specifically, 22
datasets were slightly imbalanced (𝐼𝑅 ≤ 5), 25 were moderately im-
balanced (5 < 𝐼𝑅 ≤ 10) while the remaining datasets were severely

imbalanced (𝐼𝑅 > 10).

Intelligent Systems with Applications 22 (2024) 200357Z. Farou, Y. Wang and T. Horváth

Table 2

Data-level CIL approaches involved in the experiments.

Category Sub-category CIL approach Acronym

Random sampling Oversampling Random oversampling ROS (Chawla, 2010)

Synthetic sampling

Data generation

Synthetic minority oversampling S (Chawla et al., 2002)
Noise reduction a priori synthetic oversampling NRAS (Rivera, 2017)
Random walk oversampling RWO (Zhang & Li, 2014)
Partially guided SMOTE oversampling GS (Sandhan & Choi, 2014)

Adaptive

Adaptive synthetic sampling AS (He et al., 2008)
Deterministic SMOTE DS (Torres et al., 2016)
Adaptive neighbor synthetic minority oversampling ANS (Siriseriwan & Sinapiromsaran, 2017)
Synthetic minority based on probabilistic distribution SMPD (Kunakorntum et al., 2020)

Data cleaning
SMOTE with Edited nearest neighbors SENN (Batista et al., 2004)
SMOTE with Tomek-link STL (Batista et al., 2004)

Cluster-based

Oversampling
DB-SMOTE DBS (Bunkhumpornpat et al., 2012)
Cure-SMOTE CS (Ma & Fan, 2017)

Adaptive

Kmeans-SMOTE KS (Douzas et al., 2018)
Self-organizing map oversampling SOMO (Douzas & Bacao, 2017)
Area-based representative points oversampling AROS (Farou et al., 2024)
Area-based representative points oversampling with shifting AROSS (Farou et al., 2024)

Fig. 10. The benchmark process.
4.2. Evaluation measures

To evaluate the performance of the different models, particularly
their ability to effectively classify samples from  , a set of commonly
used metrics computed from the confusion matrix (Table 4) for classifi-
cation tasks is employed, including the area under the curve (AUC), 𝐹1
score (𝐹1), geometric mean (GM), and recall (Rec). These metrics com-
prehensively assess the models’ performance and ability to distinguish
 from  .

• AUC is a metric that estimates the classifier’s ability to distinguish
between classes by calculating the area under the Receiver Oper-
ating Characteristic (ROC) curve. A high AUC signifies a stronger
ability to accurately classify samples from different classes.

• Rec (also called sensitivity) quantifies the proportion of correctly
classified  out of all the actual  . A high Rec signifies a higher
rate of correctly recognizing  .

• 𝐹1 is the harmonic mean of Precision (Pre) and Rec. It can be ex-
pressed as 𝐹1 = 2(𝑅𝑒𝑐×𝑃𝑟𝑒)∕(𝑅𝑒𝑐+𝑃𝑟𝑒), where 𝑅𝑒𝑐 = 𝑇𝑃∕(𝑇𝑃 +
𝐹𝑁) and 𝑃𝑟𝑒 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃). A high 𝐹1 indicate better model
performance.

• GM considers the balance of a classifier’s performance for both 
and  . It is calculated as the square root of the product of sensi-
tivity (Rec) and specificity (Spec), where 𝑆𝑝𝑒𝑐 = 𝑇𝑁∕(𝑇𝑁 + 𝐹𝑃).
Similarly to 𝐹1, a higher GM value indicates more balanced and
accurate performance.

GM and AUC are identified as the most appropriate evaluation met-
rics for CIL problems by Luque et al. (2019), suggesting that these
11

metrics have a null bias and consider the performance of both  and
 , providing a comprehensive two-dimensional assessment. Addition-
ally, Rec is recognized as the optimal bias-free metric for CIL (Luque
et al., 2019). It is a one-dimensional metric that focuses explicitly on
predicting minority samples. While there is a significant bias associated
with 𝐹1-score when used for CIL, it is essential to note that 𝐹1 have
a high frequency of usage in CIL problems and statistical analysis and
is considered a conventional metric for evaluating the performance of
binary classification models (Jiang, Lu, et al., 2023, Wang et al., 2023).

4.3. The experimental process

Fig. 10 illustrates the whole process of the benchmark analysis the
details of which are listed below.

Step 1: partitioning the train and test sets. To preserve class distribu-
tions and considering that some datasets have less than ten minority
instances, we use the repeated stratified five fold cross-validation ap-
proach (Prusty et al., 2022). This method is highly dependable and
resilient when dealing with limited or imbalanced data, as it helps mit-
igate bias, improve generalization, and provides valuable insights into
the model’s performance and variability. We perform stratified five fold
cross-validation for each dataset and repeat this procedure ten times,
resulting in 50 distinct split configurations.

Step 2: addressing the CIL problem. The baseline methods described in
Table 2 were implemented from imblearn (Lemaître et al., 2017) and
smote-variants (Kovács, 2019a) Python libraries. In addition to the
baselines, the experimental results on the original datasets were also
shown. These baselines are applied to the training sets generated in the
previous step. In this process, we employ the default balancing strat-

egy for each dataset, ensuring that the expected imbalance ratio 𝐼𝑅𝑒

Intelligent Systems with Applications 22 (2024) 200357Z. Farou, Y. Wang and T. Horváth

a
b

le
3

an
ge

s o
f a

ll
 h

yp
er

-p
ar

am
et

er
s o

f t
he

 re
po

rt
ed

 D
at

a-
le

ve
l C

IL
 m

et
ho

ds
.

R
an

do
m

Sy
nt

he
ti

c
sa

m
pl

in
g

C
lu

st
er

ba
se

d

hy
pe

r-
pa

ra
m

et
er

s
R

O
S

S
A

S
D

S
SM

PD
SE

N
N

ST
L

N
A

R
S

G
S

R
W

O
A

N
S

D
B

S
C

S
K

S
SO

M
O

A
R

O
S

A
R

O
SS

IR
𝑒

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
k_

ne
ig

hb
or

s
-

{3
,5

,7
,9

}
{3

,5
,7

,9
}

{3
,5

,7
,9

}
{3

,5
,7

,9
}

{3
,5

,7
,9

}
{3

,5
,7

,9
}

{3
,5

,7
,9

}
{3

,5
,7

,9
}

-
-

-
-

{3
,5

,7
,9

}
-

-
-

n_
cl

us
te

rs
-

-
-

-
-

-
-

-
-

-
-

-
{5

,1
0,

15
}

{2
,5

,1
0,

20
,5

0}
-

-
-

m
_n

ei
gh

bo
rs

-
-

-
-

{3
,5

,7
,9

}
-

-
-

-
-

-
-

-
-

-
-

-
le

ar
ni

ng
ra

te
-

-
-

-
-

-
-

-
-

-
-

-
-

-
{0

.3
,0

.5
}

-
-

n_
gr

id
-

-
-

-
-

-
-

-
-

-
-

-
-

-
{5

,9
,1

3}
-

-
m

in
_s

am
pl

es
-

-
-

-
-

-
-

-
-

-
-

{1
,3

,5
,7

,9
}

-
-

-
-

-
ep

s
-

-
-

-
-

-
-

-
-

-
-

{0
.5

,0
.8

,1
.2

}
-

-
-

-
-

th
re

sh
ol

d
(t

)
-

-
-

-
-

-
-

{0
.3

,0
.5

,0
.8

}
-

-
-

{0
.5

,0
.8

,1
.2

}
-

-
-

-
-

sh
if

ti
ng

ra
te

(𝛿
)

-
-

-
-

-
-

-
{0

.3
,0

.5
,0

.8
}

-
-

-
{0

.5
,0

.8
,1

.2
}

-
-

-
0

[0
,0

.1
,⋯

,1
]

Table 4

Confusion matrix for binary problems,
TP denotes the count of accurately pre-
dicted (true) positives, TN denotes the
count of accurately predicted (true)
negatives, FP denotes the count of
falsely predicted positives, and FN de-
notes the count of falsely predicted neg-
atives.

Actual

Positive Negative

P
re

d Positive 𝑇𝑃 𝐹𝑃

Negative 𝐹𝑁 𝑇𝑁

is set to 1. The augmented training sets ′ are obtained as the out-
come of this step. Mandating an 𝐼𝑅𝑒 of 1 enhances the efficacy of
classification models as it ensures equitable representation, particularly
favoring the identification of minority classes. According to Fotouhi et
al. (2019), classification algorithms are affected by high IRs, especially
when classes are non-linearly separated, underlining the importance of
mitigating imbalances for optimal model performance. Therefore, solv-
ing the dominance of majority classes by resampling techniques would
enable a potential model generalization and facilitate the impartial eval-
uation of diverse data-level methods. Furthermore, Shi et al. (2022)
pointed out that resampling approaches aim to decrease the IR to a bal-
anced or nearly balanced state, which could reduce or eliminate the bias
toward the majority class. Also, Kovács (2019b) highlighted in his em-
pirical comparison and evaluation of minority oversampling techniques
that models trained on datasets with 𝐼𝑅𝑒 of 1 provide a standardized
benchmark for comparing the effectiveness of various resampling tech-
niques, enabling well-informed decisions regarding the most suitable
methods. As a result, using an 𝐼𝑅𝑒 of 1 would help address dataset im-
balances, advocate for fairness, and yield robust and dependable results.

Step 3: training classification models. we trained four classifiers—k-
nearest neighbor (kNN),6 decision tree (DT),7 support vector classifier
(SVC),8 and random forest (RF)9—using the rebalanced training sets
denoted as ′. The implementation of these classification algorithms
utilized the scikit-learn library (Pedregosa et al., 2011) Python API
with their default hyper-parameter settings, displayed in Table 6.

The decision to maintain default parameters was strategic, as our
primary focus was investigating the impact of data-level solutions on
classification results. By adhering to default parameters, we ensured
that any observed variations in performance could be unequivocally
attributed to the resampling techniques, enabling a concentrated anal-
ysis of their effectiveness. Additionally, adopting default parameters
enhances our experimental setup’s simplicity and reproducibility and
aligns with considerations of computational efficiency. Moreover, Man-
tovani et al. (2015) concluded that, for highly imbalanced data sets,
tuning does not obtain much higher performance. Also, experiments
conducted by Horváth et al. (2023) showed that using default val-
ues worked considerably well for classification algorithms. Therefore,
given the study’s scope, retaining default parameters allows us to effi-
ciently explore the influence of data-level solutions without introducing
unnecessary computational complexity. However, we do realize that
hyper-parameter tuning, despite its high computational cost, might lead
to better results.

6 kNN implementation. https://scikit -learn .org /stable /modules /generated /
sklearn .neighbors .KNeighborsClassifier .html

7 DT implementation. https://scikit -learn .org /stable /modules /generated /
sklearn .tree .DecisionTreeClassifier .html

8 SVC implementation. https://scikit -learn .org /stable /modules /generated /
sklearn .svm .SVC .html

9 RF implementation. https://scikit -learn .org /stable /modules /generated /
12

T R
 sklearn .ensemble .RandomForestClassifier .html

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

IntelligentSystemswithApplications22(2024)200357

13

Z.Farou,
Y

.W
ang

and
T
.H

orváth

taset Att Samp % IR

IR > 10

ss016vs2 9 192 8.85 10.29

oli0147vs2356 7 336 8.63 10.59

7digit-02456789vs1 7 443 8.35 10.97

oli01vs5 6 240 8.33 11

ss06vs5 9 108 8.33 11

ss0146vs2 9 205 8.29 11.06

ss2 9 214 7.94 11.59

oli0147vs56 6 332 7.53 12.28

veland0vs4 13 173 7.51 12.31

oli0146vs5 6 280 7.14 13

ast1vs7 7 459 6.54 14.3

ss4 9 214 6.07 15.46

oli4 7 336 5.95 15.8

ge-blocks13vs4 10 472 5.93 15.86

alone918 8 731 5.75 16.4

ss016vs5 9 184 4.89 19.44

ss5 9 214 4.21 22.78

ast2vs8 8 482 4.15 23.1

ast4 8 1484 3.44 28.1

ast1289vs7 8 947 3.17 30.57

ast5 8 1484 2.96 32.73

oli0137vs26 7 281 2.49 39.14

lt 5 4339 1.71 57.64
Table 5

Description of datasets used for benchmark experiment.

Dataset Att Samp % IR # Dataset Att Samp % IR # Da

Skewness IR ≤ 5 5 < IR ≤ 10

D1 breast 30 569 37.26 1.68 D23 new-thyroid1 5 215 16.28 5.14 D48 gla

D2 wpbc 31 569 37.26 1.68 D24 ecoli2 7 336 14.48 5.46 D49 ec

D3 pimaindians-diabetes 8 768 34.89 1.87 D25 abalone510 8 749 15.35 5.51 D50 led

D4 seeds 7 210 33.33 2 D26 winequality-red3456vs78 11 1599 13.57 6.37 D51 ec

D5 wheat1 7 210 33.33 2 D27 glass6 9 214 13.55 6.38 D52 gla

D6 glass0 9 214 32.71 2.06 D28 yeast3 8 1484 10.98 8.1 D53 gla

D7 glass1 9 214 32.71 2.06 D29 ecoli3 7 336 10.42 8.6 D54 gla

D8 vertebral 6 310 32.26 2.1 D30 page-blocks1vs2345 10 5473 10.23 8.77 D55 ec

D9 eligibility-loan 11 614 31.27 2.2 D31 ecoli034vs5 7 200 10 9 D56 cle

D10 sampledata_3 2 1100 30.0 2.33 D32 yeast2vs4 8 514 9.92 9.08 D57 ec

D11 yeast1 8 1484 28.91 2.46 D33 ecoli067vs35 7 222 9.91 9.09 D58 ye

D12 maternal-risk-lmvsh 6 1014 26.82 2.73 D34 ecoli0234vs5 7 202 9.90 9.1 D59 gla

D13 haberman 3 306 26.47 2.78 D35 glass015vs2 9 172 9.88 9.12 D60 ec

D14 parkinsons 22 195 24.62 3.06 D36 yeast0359vs78 8 506 9.88 9.12 D61 pa

D15 glass0123vs456 9 214 23.83 3.2 D37 yeast0256vs3789 8 1004 9.86 9.14 D62 ab

D16 ecoli1 7 336 22.92 3.36 D38 ecoli046vs5 6 203 9.85 9.15 D63 gla

D17 page-blocks2vs4 10 417 21.1 3.74 D39 ecoli01vs235 7 244 9.84 9.17 D64 gla

D18 leaf 15 340 20.59 3.86 D40 ecoli0267vs35 7 224 9.82 9.18 D65 ye

D19 sampledata_2 2 1000 20.0 4 D41 glass04vs5 9 92 9.78 9.22 D66 ye

D20 page-blocks3vs5 10 143 19.58 4.11 D42 ecoli0346vs5 7 205 9.76 9.25 D67 ye

D21 sampledata 2 600 16.67 5 D43 ecoli0347vs56 7 257 9.73 9.28 D68 ye

D22 sampledata_1 2 900 16.67 5 D44 yeast05679vs4 8 528 9.66 9.35 D69 ec

D45 abalone48 8 625 9.12 9.96 D70 wi

D46 vowel0 13 988 9.11 9.98

D47 ecoli067vs5 6 220 9.09 10

Z. Farou, Y. Wang and T. Horváth

Table 6

Key hyperparameters of reported classification algorithms. Here 𝑑
refers to the number of features in the dataset, and Var(X) is the
variance of the features.

Classifier Hyperparameters

kNN Number of neighbors (k): 5, Weighting strategy: ‘uniform’

SVC Regularization (C): 1.0, Kernel: ‘rbf’, Gamma: 1
𝑑×𝑉 𝑎𝑟(𝑋)

Probability estimates: Enabled

DT Splitting criterion: ‘gini’

RF Number of trees: 100, Splitting criterion: ‘gini’

Step 4: evaluation and ranking. The performance measures that were
previously discussed are utilized to evaluate the models. Scores are com-
puted based on these measures and subsequently ranked in ascending
order to determine the results.

5. Empirical results

The empirical findings include how CIL algorithms performed across
the 70 datasets using the 4 performance measures. In the following
subsections, we begin by summarizing the experimental results and
comparing the results achieved by our proposed approach to the other
approaches. Subsequently, we delve deeper into the observed outcomes
and investigate their underlying reasons.

5.1. Benchmark analysis

Tables 7 and 8 present the average metric values and the average
ranks, respectively, for Rec, 𝐹1, GM, and AUC achieved by various clas-
sifiers using CIL approaches on a total of 70 datasets, where the best
CIL approach is indicated by boldface. Supplementary findings for each
dataset are accessible for further exploration.10 The higher average met-
ric values and smaller the ranking or score of a particular CIL method
under a specific metric, the better its effect, which means that the best
approach receives a ranking of 1, and the worst one gets an 18 while
average metric values are between [0, 1]. In Table 8, the penultimate
row, AvgR, referring to the mean average of ranks, highlights the per-
formance of different CIL approaches (classifier combinations). The last
row, Final score, is the ranking score of AvgR for each CIL method.
It can be observed from Table 7 that AROSS is superior to the com-
pared cluster-based approaches in terms of average Rec, 𝐹1, and GM
scores across all classification algorithms, and that AROS (AROSS with
𝛿 = 0) is superior to or competitive with the remaining cluster-based
techniques. Furthermore, the average rank of AROSS, as indicated in
Table 8, is significantly lower than the average rank scores of the com-
pared methods. AROSS achieves particularly low ranks in terms of Rec
(2.04), GM (2.93), and AUC (2.57) with DT, as well as in terms of 𝐹1
score with kNN (4.91). The rankings in AvgR results (Table 8) further
highlight that AROSS consistently ranks at the top, followed by AROS.
These results emphasize the importance of tuning the shifting rate 𝛿
in AROSS, as each dataset has unique characteristics and class distri-
butions. By optimizing the resampling process and generating more
representative synthetic instances, AROSS effectively captures the as-
pects of  within each cluster. Tuning 𝛿 based on recall is a reasonable
approach when the primary goal is to improve the performance of mi-
nority class classification. However, improving the correct prediction
rate for  may result in the loss of prediction rate for  . As suggested
by Chawla (2010), the primary purpose in CIL is to improve recall while
avoiding affecting precision. The test results of classifiers’ 𝐹1 scores and
ranks indicate that although AROSS is optimized for recall, it does not
adversely affect predictions for the majority  . In fact, AROSS exhibits

10 Detailed results. https://github .com /ghostqriver /AROSS /blob /main /
14

Detailed %20experimental %20results
Intelligent Systems with Applications 22 (2024) 200357

the highest average 𝐹1 scores and ranks compared to both cluster-based
approaches and other baselines.

When considering the average values and average 𝐹1 ranks, AROSS
consistently exhibited higher average values and lower average ranks
compared to all random sampling and synthetic baseline methods. How-
ever, in terms of Rec and GM, AROSS displayed lower average scores
and higher ranks compared to SENN and RWO, except when applied
with the DT classifier. In the case of DT classifier, AROSS surpassed all
baselines in terms of average Rec and GM values. Thus, SENN and RWO
are superior than AROSS except when applied with DT classifier where
it is superior to all baselines regarding the average Rec, and GM values.
These results can be interpreted based on the characteristics of the ENN
and AROSS approaches. As a data-cleaning approach ENN tends to re-
move some relevant instances from the majority class. This leads to a
lower precision (Pre) and, consequently, a lower 𝐹1 score than AROSS.
On the other hand, AROSS employs an adaptive oversampling technique
that focuses on generating synthetic instances that are more representa-
tive and relevant to the minority class. This results in a higher Pre and
𝐹1 score for AROSS. Additionally, the ranking results of RWO from Ta-
ble 8 suggest that the SVC classifier, which is highly influenced by the
distribution of data points and the presence of CIL problems, was influ-
enced by RWO. This could provide a favorable environment for SVC to
identify positive and negative instances correctly. In the case of AROSS,
it assists SVC in effectively classifying positive samples, potentially re-
ducing the false positive (FP) rate and improving the precision-recall
trade-off.

The results indicate that CIL approaches are competitive against
each other and no significant improvement is noticeable in AUC for
RF, SVC and kNN. Such high AUC scores across CIL methods indicate
that they have similar abilities to discriminate between positive and
negative samples. This also indicates that, in general, CIL approaches
enhance the predictive performances of classification models. The re-
sults from Tables 7 and 8 suggest that AROSS is a particularly effective
resampling approach when combined with DT, as it consistently out-
performs all baseline methods across multiple performance metrics. It
highlights the ability of AROSS to enhance the classification model’s ac-
curacy, discriminatory power and capturing positive instances, making
it a promising choice for addressing CIL in decision tree-based classi-
fication tasks. Overall, the AROSS algorithm outperforms cluster-based
baseline methods and most synthetic sampling approaches. It remains
competitive with SENN and RWO regarding Rec and AUC scores. Taking
into account the rankings in the AvgR results (Table 8), which sum-
marize all performed results, AROSS achieves the lowest score (5.72),
indicating its overall superiority. However, our proposed method is
based on the optimization of cluster analysis, and better classification
results come at the cost of more time complexity.

5.2. Statistical analysis using Welch’s t-test

Based on the previous analysis, our assertion that AROSS is supe-
rior to or competitive with the compared CIL methods is primarily
drawn from the average values and ranks of four metrics. However,
it is important to note that each method exhibits varying standard
deviations across different datasets. To thoroughly assess the statisti-
cal significance of AROSS’s performance, we employed Welch’s t-test
(𝑊𝑡𝑒𝑠𝑡, Derrick et al. (2016)). Several formal arguments substantiate the
selection of 𝑊𝑡𝑒𝑠𝑡 for benchmarking and comparing the performance
of data-level resampling approaches (Zhang et al., 2008, Ellis et al.,
2022, Shi et al., 2022, Darville et al., 2023). Unlike non-parametric
tests such as Friedman or Wilcoxon, 𝑊𝑡𝑒𝑠𝑡 is well-suited for handling
imbalanced datasets, accommodating variations in variances among dif-
ferent resampling techniques. Its parametric nature allows it to consider
both metrics average values and variances, providing a robust statistical
evaluation that is particularly advantageous when dealing with real-
world datasets exhibiting inherent imbalances (Shi et al., 2022). 𝑊𝑡𝑒𝑠𝑡,

computed by the Eq. (13), serves as a reliable measure to validate the

https://github.com/ghostqriver/AROSS/blob/main/Detailed%20experimental%20results
https://github.com/ghostqriver/AROSS/blob/main/Detailed%20experimental%20results

IntelligentSystemswithApplications22(2024)200357

15

Z.Farou,
Y

.W
ang

and
T
.H

orváth

d

CS KS SOMO AROS AROSS

0.66113 0.67142 0.66926 0.71142 0.81337

0.60918 0.61937 0.62066 0.60466 0.65809

0.74464 0.75155 0.75290 0.76083 0.82742

0.78588 0.79236 0.79190 0.80074 0.84667

0.64935 0.64224 0.64805 0.70211 0.75461

0.65021 0.65016 0.64971 0.65013 0.68575

0.73545 0.73018 0.73032 0.75892 0.80071

0.91565 0.91476 0.91663 0.91255 0.91316

0.70118 0.59044 0.64377 0.71981 0.78245

0.65946 0.59278 0.62359 0.63315 0.66774

0.73545 0.73018 0.73032 0.75892 0.80071

0.90114 0.90333 0.89871 0.89499 0.89826

0.72064 0.64556 0.66723 0.67730 0.74269

0.64483 0.61657 0.62689 0.63584 0.67415

0.78578 0.71365 0.73012 0.74580 0.79678

0.86898 0.86397 0.86555 0.86852 0.87480
Table 7

Average of metric values for CIL approaches across 70 datasets.

Random Synthetic sampling Cluster base

ORIG ROS S AS DS SMPD SENN STL NARS GS RWO ANS DBS

DT classifier

Rec 0.64810 0.64081 0.70624 0.70197 0.69886 0.65478 0.74953 0.70466 0.60253 0.68700 0.70290 0.66943 0.63311

𝐹1 0.60827 0.61410 0.62541 0.61782 0.61816 0.60849 0.61362 0.62447 0.59433 0.61978 0.62396 0.61812 0.60297

GM 0.73726 0.73146 0.77433 0.76779 0.76644 0.73831 0.78166 0.77437 0.70893 0.76083 0.77112 0.74919 0.72378

AUC 0.78265 0.78376 0.79824 0.77653 0.79973 0.78309 0.80323 0.80117 0.76858 0.79654 0.80327 0.79076 0.77713

RF classifier

Rec 0.61933 0.67131 0.72291 0.71540 0.71030 0.62008 0.77322 0.72299 0.60500 0.69938 0.72785 0.67111 0.62028

𝐹1 0.63835 0.66432 0.67317 0.65796 0.67193 0.63760 0.66484 0.67264 0.61855 0.66460 0.68020 0.66461 0.63663

GM 0.71348 0.75630 0.78941 0.77673 0.78302 0.71347 0.80704 0.78988 0.69882 0.77004 0.79006 0.75614 0.71296

AUC 0.91557 0.92132 0.92034 0.91664 0.92009 0.91585 0.91131 0.91982 0.89756 0.91867 0.92148 0.91632 0.91665

SVC classifier

Rec 0.53775 0.78625 0.77506 0.79397 0.75876 0.56797 0.80635 0.77403 0.63293 0.76769 0.79904 0.69821 0.68558

𝐹1 0.57177 0.65305 0.65531 0.63921 0.64629 0.59595 0.64543 0.65410 0.61439 0.65687 0.65021 0.66538 0.64423

GM 0.71348 0.75630 0.78941 0.77673 0.78302 0.71347 0.80704 0.78988 0.69882 0.77004 0.79006 0.75614 0.71296

AUC 0.90386 0.90592 0.90701 0.89906 0.90492 0.90223 0.90148 0.90628 0.89853 0.90483 0.90759 0.90232 0.89385

kNN classifier

Rec 0.58932 0.78564 0.80778 0.82697 0.78606 0.60671 0.83231 0.80860 0.67328 0.79695 0.80355 0.72095 0.66877

𝐹1 0.60565 0.63775 0.63528 0.62809 0.63755 0.61456 0.62255 0.63544 0.62043 0.64104 0.62982 0.65016 0.62630

GM 0.68458 0.81135 0.82237 0.82521 0.81512 0.69860 0.83154 0.82264 0.73767 0.82049 0.81937 0.78511 0.74488

AUC 0.86675 0.86051 0.87277 0.86177 0.87097 0.86678 0.86462 0.87177 0.84763 0.87018 0.87432 0.86734 0.86062

IntelligentSystemswithApplications22(2024)200357

16

Z.Farou,
Y

.W
ang

and
T
.H

orváth

sed

CS KS SOMO AROS AROSS

11.16 10.20 10.86 6.51 2.04

10.54 8.93 9.76 10.47 5.01

11.07 10.01 10.84 8.64 2.93

10.84 9.33 10.57 7.96 2.57

12.51 12.13 11.23 7.51 3.53

10.94 9.90 9.97 10.74 6.57

12.44 11.69 11.05 9.35 4.54

8.80 8.47 9.18 10.44 10.05

11.94 13.51 11.21 8.01 5.00

8.22 10.87 9.48 10.22 7.50

10.80 12.74 10.74 9.30 6.61

9.42 9.64 9.41 10.61 9.98

11.34 12.48 10.31 11.67 7.82

7.58 9.52 9.04 9.15 4.91

9.91 11.58 10.48 11.28 6.74

7.97 9.22 9.68 7.55 5.78

10.35 10.64 10.24 9.34 5.72

13 14 12 11 1
Table 8

Average rank scores for CIL approaches.

Random Synthetic sampling Cluster ba

ORIG ROS S AS DS SMPD SENN STL NARS GS RWO ANS DBS

DT classifier

Rec 11.80 12.87 6.87 6.87 7.69 11.43 4.96 7.34 15.20 8.56 7.41 9.49 13.14

𝐹1 10.20 9.66 8.74 8.99 9.43 10.21 8.81 8.56 10.77 9.16 9.01 8.76 10.79

GM 11.19 12.03 7.47 7.70 8.27 11.50 6.46 7.40 14.26 8.70 7.79 9.30 12.25

AUC 10.73 11.11 8.94 10.91 8.43 11.00 6.80 7.93 12.43 8.37 8.27 8.66 11.24

RF classifier

Rec 13.50 9.98 5.24 5.21 7.26 14.08 3.56 5.44 14.41 7.61 5.56 10.16 13.31

𝐹1 10.89 8.57 7.54 9.55 8.84 11.46 9.37 7.38 11.33 8.60 7.96 8.61 11.14

GM 12.86 9.79 6.33 7.09 8.10 13.46 6.13 6.01 13.36 8.11 6.41 9.97 12.74

AUC 9.32 7.94 8.64 10.48 9.27 8.42 11.21 9.00 12.45 8.50 6.75 9.12 9.34

SVC classifier

Rec 15.92 4.60 6.28 4.00 6.77 15.62 4.13 6.60 12.54 6.68 3.47 11.32 11.55

𝐹1 12.00 8.65 8.05 11.17 9.44 11.11 10.10 8.07 9.21 7.99 9.60 7.51 10.00

GM 15.02 6.97 6.88 7.70 7.92 14.64 6.98 6.82 11.27 7.22 6.48 9.68 11.41

AUC 8.60 8.51 8.16 11.22 9.00 8.80 10.41 8.41 10.84 8.85 7.77 8.98 10.65

kNN classifier

Rec 16.40 5.74 4.38 2.43 5.68 15.72 3.41 4.08 11.20 5.41 4.41 9.98 12.52

𝐹1 10.84 10.30 9.35 11.27 9.48 9.57 11.80 9.52 9.98 8.78 10.28 7.08 10.50

GM 14.75 8.44 6.58 7.42 7.50 14.05 7.77 6.54 10.68 6.88 7.20 9.01 12.15

AUC 7.78 12.82 8.67 12.42 9.34 7.54 11.50 9.07 13.21 9.54 7.88 7.81 11.32

AvgR 11.99 9.25 7.38 8.40 8.27 11.79 7.71 7.39 12.07 8.06 7.27 9.09 11.51

Final score 17 10 3 8 7 16 5 4 18 6 2 9 15

Z. Farou, Y. Wang and T. Horváth

previous results, as it considers the distribution characteristics beyond
just the mean values.

𝑊𝑡𝑒𝑠𝑡 =
𝑚2 −𝑚1√
𝑠22∕𝜅 + 𝑠21∕𝜅

(13)

The mean values of the metrics, such as Rec, 𝐹1, GM, or AUC scores,
for two CIL methods, are denoted as 𝑚1 and 𝑚2. Their standard devia-
tions are represented as 𝑠1 and 𝑠2, and the total number of evaluation
iterations is denoted as 𝜅. Since we employ a stratified five-fold cross-
validation approach repeated ten times, we have 𝜅 = 50. 𝑊𝑡𝑒𝑠𝑡 follows
a t-distribution, and its degree of freedom 𝜈 is approximately calculated
as:

𝜈 ≈
𝜅2(𝜅 − 1)(𝑠22∕𝜅 + 𝑠21∕𝜅)

2

𝑠42 + 𝑠41

(14)

The outcomes of the 𝑊𝑡𝑒𝑠𝑡, conducted between AROSS and the com-
pared CIL methods, with a significance level of 0.05, are presented in
Table 9, providing information on the number of datasets where AROSS
outperforms, performs equally to, or underperforms the other methods,
categorized as win-tie-lose, for each classifier.

For example, if we consider two sets of performance metrics, de-
noted as 𝑚𝑒𝑡ℎ𝑜𝑑𝐴 and 𝑚𝑒𝑡ℎ𝑜𝑑𝐵 . For 𝑚𝑒𝑡ℎ𝑜𝑑𝐴, the mean (𝑚1), variance
(𝑠21), and sample size (𝑛1) are 0.85, 0.0005, and 50, respectively. Corre-

spondingly, for 𝑚𝑒𝑡ℎ𝑜𝑑𝐵 , the mean (𝑚2), variance (𝑠22), and sample size
(𝑛2) are 0.82, 0.0003, and 50. Substituting the given values in Eq. (13)
and Eq. (14):

𝑊𝑡𝑒𝑠𝑡 =
0.85 − 0.82√

0.0005∕50 + 0.0003∕50
= 7.5

𝜈 ≈
502(50 − 1)((0.0003∕50) + (0.0005∕50))2

(0.0003)4 + (0.0005)4
≈ 18679.36

The next step involves consulting a t-distribution table to obtain the
critical values (𝑡critical) for a two-tailed test with 𝜈 ≈ 18679.36 degrees
of freedom at a significance level of 0.05. In the given example, the
critical value is calculated using the scipy.stats11 module in Python. For
a two-tailed test with 𝜈 = 18679.36 degrees of freedom and a signifi-
cance level of 0.05, the calculated 𝑡critical is approximately 1.96. The
decision-making process based on the t-statistic 𝑊𝑡𝑒𝑠𝑡 is formalized by
Eq. (15).

Decision =
⎧⎪⎨⎪⎩

win, if 𝑊𝑡𝑒𝑠𝑡 > 𝑡critical

loss, if 𝑊𝑡𝑒𝑠𝑡 < −𝑡critical

tie, if − 𝑡critical ≤𝑊𝑡𝑒𝑠𝑡 ≤ 𝑡critical

(15)

In Eq. (15) formulation, a win is given if the calculated t-statistic is
greater than the critical value, loss is given if the t-statistic is less than
the negative of the critical value, and tie is given if the t-statistic falls
within the range defined by the negative and positive critical values.
Since 𝑊𝑡𝑒𝑠𝑡 > 𝑡critical (in our example, 𝑊𝑡𝑒𝑠𝑡 > 1.96), we would reject
the null hypothesis, suggesting that 𝑚𝑒𝑡ℎ𝑜𝑑𝐴 statistically outperforms
𝑚𝑒𝑡ℎ𝑜𝑑𝐵 . Therefore, in this case, 𝑚𝑒𝑡ℎ𝑜𝑑𝐴 is considered to have a win
over 𝑚𝑒𝑡ℎ𝑜𝑑𝐵 .

Few implications can be derived from the 𝑊𝑡𝑒𝑠𝑡:

• AROSS versus ORIG: The proposed approach consistently out-
performs classification algorithms performance on the original
datasets that are not augmented, with only a few instances where
the original dataset performs better than AROSS.

• AROSS versus cluster-based methods: Compared to the five cluster-
based methods, AROSS shows superior performance in Rec, 𝐹1, GM,

11 scipy.stats documentation. https://docs .scipy .org /doc /scipy /reference /
17

stats .html
Intelligent Systems with Applications 22 (2024) 200357

and AUC scores. Specifically, when using DT, AROSS achieves a
significant number of wins (64) compared to CS, with only a few
ties (6) and no losses (0). However, when using kNN, AROSS has a
smaller number of wins (25) compared to CS, with a higher number
of ties (34) and a moderate number of losses (11). Overall, AROSS
achieves the highest number of wins (64) and the lowest number
of losses (0) compared to the cluster-based baselines. Furthermore,
AROSS demonstrates superiority in GM, with the highest number of
wins (51) and no losses (0). The advantage of AROSS over cluster-
based methods is also evident in 𝐹1 and AUC scores presented in
Table 9.

• AROSS versus data-level methods: Compared to data-level meth-
ods, namely random and synthetic sampling, AROSS consistently
outperforms them in terms of Rec, 𝐹1 score and GM, except for
some cases where AROSS has fewer wins compared to SENN with
RF, SVC, and kNN, with 16, 20, and 6 wins, respectively. Addi-
tionally, AROSS experiences losses in Rec against RWO with SVC
and kNN. The analysis of AUC scores across different classification
algorithms reveals a considerable number of ties, supporting the
conclusion drawn from Tables 7 and 8, such that CIL approaches
are competitive with each other and show no statistically signifi-
cant differences in terms of AUC.

Overall, the results presented in Table 9 demonstrate that AROSS
outperforms the compared cluster-based sampling methods statistically
for DT, RF, and SVC classifiers. Furthermore, AROSS proves to be su-
perior or competitive with kNN across the 70 datasets in a statistically
significant manner. Compared to the random and synthetic sampling
methods, AROSS outperforms them when paired with the DT classifier
and is statistically significantly superior or competitive with the remain-
ing classifiers.

5.3. Runtimes and system configurations

Runtime is an important aspect of data-level resampling techniques,
as some applications may require retraining, thus rapid resampling pro-
cedures. Due to the number of resampling techniques involved in the
experiments and parameters influencing their time complexities, pre-
senting and analyzing time complexities in big-O notation is beyond
the scope of this study. Nevertheless, we expect that the average run-
times of resampling techniques, as outlined in Table 10, can still offer
meaningful insights into their time efficiency. It is important to note
that runtimes are inherently contingent on the specific implementa-
tions employed. The simulations were executed in Jupyter Lab using
Python 3.11 on a server featuring an Intel Core i7 processor. The pro-
cessor has eight cores and 16 threads, with a max turbo frequency of
3.50 GHz and a processor base frequency of 2.50 GHz. Additionally, it
is equipped with 11 MB of cache. In terms of memory, the machine
is equipped with 64 GB of DDR4-2400 memory, and the maximum
memory speed is 2400 MHz. Table 10 details the average runtimes in
seconds for various data-level class imbalance approaches. ROS demon-
strates a 3.658 × 10−2 seconds runtime within the random category,
while synthetic approaches have runtimes ranging from 2.174 × 10−1
seconds for SMOTE to 7.231 × 10−1 seconds for SMPD. The cluster-
based approaches have runtimes spanning from 4.317 × 10−2 seconds
to 5.596 seconds. As expected, runtime disparities highlight the com-
putational efficiency variations, with the cluster-based approaches ex-
hibiting higher runtimes than random and synthetic methods. AROSS,
which demonstrated superior classification performance, is recognized
as the slowest approach in terms of runtime, attributed to incorporating
various optimization steps. Specifically, the parameters 𝐿𝑏𝑒𝑠𝑡, 𝑐, and |𝑖| undergo automatic fine-tuning for each dataset, while the shift-
ing rate 𝛿 (refer to Algorithm 1) is a customizable hyper-parameter,
contributing to the algorithm’s adaptability. While these optimization
steps contribute to the extended runtime, they are essential for tailoring

AROSS to the specific characteristics of each dataset, which is particu-

https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html

IntelligentSystemswithApplications22(2024)200357

18

Z.Farou,
Y

.W
ang

and
T
.H

orváth

Cluster based

DBS CS KS SOMO AROS

61-9-0 64-6-0 58-12-0 59-11-0 53-17-0

33-31-6 31-35-4 32-35-3 29-35-6 33-36-1

51-18-1 50-20-0 48-21-1 49-20-1 48-22-0

54-15-1 55-15-0 48-21-1 49-20-1 46-24-0

52-17-1 52-17-1 50-19-1 48-20-2 30-39-1

27-37-6 23-41-6 21-43-6 25-39-6 15-54-1

43-25-2 37-32-1 39-30-1 38-30-2 28-42-0

7-50-13 5-52-13 5-56-9 5-57-8 1-69-0

47-17-6 47-19-4 56-13-1 50-17-3 30-40-0

23-34-13 17-40-13 31-34-5 23-42-5 15-55-0

31-32-7 32-32-6 46-24-0 39-28-3 24-46-0

18-38-14 10-48-12 16-46-8 11-52-7 5-64-1

36-30-4 25-34-11 37-31-2 30-36-4 32-38-0

26-42-2 22-44-4 29-41-0 25-44-1 23-47-0

35-32-3 24-41-5 36-33-1 29-39-2 25-45-0

21-48-1 11-56-3 10-60-0 13-55-2 5-65-0
Table 9

Summary of Welch’s t-test results for AUC, Rec, GM, and 𝐹1 between CIL approaches and AROSS at a significance level of 0.05 (win-tie-lose).

Random Synthetic sampling

ORIG ROS S AS DS SMPD SENN STL NARS GS RWO ANS

DT classifier

Rec 62-8-0 61-8-1 54-14-2 53-15-2 54-16-0 59-11-0 40-23-7 54-15-1 68-2-0 57-13-0 54-16-0 55-15-0

𝐹1 35-32-3 33-30-7 31-32-7 31-29-10 32-33-5 36-30-4 23-40-7 29-35-6 35-33-2 32-34-4 28-37-5 27-39-4

GM 53-16-1 52-16-2 45-22-3 43-24-3 42-27-1 51-18-1 33-26-11 43-25-2 56-14-0 48-20-2 42-26-2 42-28-0

AUC 54-15-1 50-18-2 47-22-1 47-17-6 45-24-1 52-17-1 35-29-6 42-27-1 56-14-0 47-22-1 42-26-2 44-26-0

RF classifier

Rec 59-10-1 40-25-5 21-39-10 23-36-11 30-35-5 60-9-1 16-30-24 21-39-10 64-6-0 26-40-4 22-44-4 39-27-4

𝐹1 25-38-7 21-42-7 18-43-9 22-40-8 19-44-7 25-40-5 22-38-10 18-42-10 31-37-2 19-44-7 16-48-6 21-42-7

GM 49-20-1 31-34-5 20-40-10 25-34-11 23-41-6 50-19-1 19-33-18 19-40-11 52-18-0 22-43-5 18-48-4 26-40-4

AUC 7-51-12 5-54-11 7-47-16 12-40-18 5-51-14 7-49-14 15-40-15 8-48-14 26-35-9 4-47-19 1-60-9 5-55-10

SVC classifier

Rec 65-3-2 20-33-17 25-28-17 21-23-26 22-36-12 63-5-2 20-26-24 25-29-16 51-17-2 27-25-18 17-34-19 46-18-6

𝐹1 36-29-5 18-41-11 17-40-13 24-35-11 24-33-13 32-32-6 21-39-10 18-39-13 27-34-9 18-39-13 17-44-9 19-36-15

GM 53-17-0 18-36-16 21-35-14 25-29-16 22-36-12 52-18-0 16-39-15 19-37-14 39-28-3 19-38-13 14-41-15 30-33-7

AUC 14-41-15 13-41-16 14-41-15 19-33-18 13-44-13 13-43-14 18-40-12 14-41-15 19-41-10 13-43-14 11-44-15 10-47-13

kNN classifier

Rec 58-12-0 7-38-25 12-62-9 15-1-50 6-35-29 57-12-1 6-24-40 6-31-33 35-30-5 7-31-32 4-35-31 23-33-14

𝐹1 32-36-2 29-34-7 29-32-9 37-22-11 29-33-8 31-36-3 33-28-9 30-31-9 27-42-1 26-37-7 27-36-7 21-44-5

GM 48-22-0 15-43-12 10-39-21 16-32-22 10-48-12 48-22-0 11-39-20 12-37-21 31-38-1 11-43-16 11-42-17 17-46-7

AUC 12-57-1 29-39-2 16-47-7 27-32-11 14-49-7 14-55-1 26-38-6 18-45-7 32-37-1 17-48-5 10-54-6 9-55-6

Intelligent Systems with Applications 22 (2024) 200357Z. Farou, Y. Wang and T. Horváth

Table 10

Average runtime in seconds of Data-level CIL approaches involved in the exper-
iments.

Category Sub-category CIL approach (acronym) Runtime (seconds)

Random Oversampling ROS 3.658 × 10−2

Synthetic

Data generation

SMOTE 2.174 × 10−1
NRAS 3.668 × 10−1
RWO 7.264 × 10−2
GS 3.180 × 10−2

Adaptive

AS 2.806 × 10−2
DS 4.446 × 10−2
ANS 3.834 × 10−2
SMPD 7.231 × 10−1

Data cleaning
SENN 6.096 × 10−2
STL 5.296 × 10−2

Cluster-based

Oversampling
DBS 7.332 × 10−1
CS 4.317 × 10−2

Adaptive

KS 2.202
SOMO 1.468 × 10−1
AROS 2.678
AROSS 5.596

Fig. 11. Test results of different imbalance degrees when employing DT classifier.
larly beneficial for scenarios where we do not have enough data to train
models. Therefore, despite its runtime, AROSS is still swifter than the
alternative of collecting new data, making it an appealing option in
resource-constrained situations.

For faster solutions, we recommend using RWO and SMOTE. Ac-
cording to the experimental results highlighted in Table 8, these algo-
rithms were ranked 2nd and 3rd behind AROSS, concurrently sustaining
competitive performance levels. Additionally, they demonstrate lower
runtimes than AROSS. AROSS is a resilient solution characterized by
a reasonable trade-off between runtime and performance. At the same
time, RWO and SMOTE present swifter alternatives without substantial
compromises in performance.

5.4. Extended analysis over CIL problems

This chapter overviews the learning barriers primarily affecting the
performance of classification related to imbalance learning.

5.4.1. Small sample size and imbalanced class distribution
In the tables presented before, our proposed algorithm exhibits

strong efficacy in alleviating the problem of lacking minority instances,
19

further enhancing the predictive performance of classification on  .
Since we have 70 datasets with various class distributions, to present
the performance of the proposed method under different distributions,
we illustrate each test separately according to the dataset skewness.

Figs. 11-14 present the average evaluation results for different skew-
ness levels on the datasets. Each figure consists of subplots representing
the Rec, 𝐹1, GM and AUC scores, respectively. The 𝑥-axis represents
the skewness level, while the 𝑦-axis indicates the average performance
metric value. For clarity, the figures incorporate the original dataset
alongside representative baseline oversamplers, such as SMOTE (S) and
ADASYN (AS). Additionally, cluster-based oversamplers, including DB-
SMOTE (DBS), CURE-SMOTE (CS), Kmeans-SMOTE (KS) and SOMO, are
also included in these figures.

Overall, the performance on non-resampled dataset (the red dot)
worsens on each metric while increasing imbalance, except for AUC,
validating the previous hypothesis which states that a large 𝐼𝑅 in-
fluences the classification performance. From Fig. 11 and Fig. 12, if
we exclude AROSS, AROS (the green circle) achieved the best recall
with DT on slightly and medium imbalanced datasets while present-
ing competitive and positive results with severely imbalanced datasets
on DT and all datasets on RF. Despite the imbalance degree, AROSS

(the blue square) outperforms other oversamplers on DT and RF. How-

Intelligent Systems with Applications 22 (2024) 200357Z. Farou, Y. Wang and T. Horváth

Fig. 12. Test results of different imbalance degrees when employing RF classifier.

Fig. 13. Test results of different imbalance degrees when employing SVC classifier.
ever, it presents inferior AUC scores when employing RF, especially on
data sets with 𝐼𝑅 > 10. AROSS may surpass the oversamplers other
than SMOTE by a wider margin. As discussed, the proposed method
exhibits weaker capability than SMOTE and some variants when com-
bined with SVC and kNN. However, if concentrating on medium and
severely imbalanced datasets, as shown in all metrics except AUC of
SVC (Fig. 13) and 𝐹1 on kNN (Fig. 14), AROSS shows superior results,
nevertheless.

The performance discrepancy of the proposed approach can be at-
tributed to the interplay between the algorithm and the chosen clas-
sifiers. Decision trees excel in handling imbalanced class distributions,
while SVC and kNN classifiers have distinct sensitivities to class imbal-
ance. SVC aims for optimal hyperplane placement but can be biased
by imbalanced data, while kNN is influenced by data density and can
overshadow minority instances. The varying performance of AROS and
AROSS compared to other CIL approaches with different classifiers em-
phasizes the need to select appropriate resampling strategies based on
20

the task’s characteristics and algorithm sensitivities to class imbalance.
5.4.2. Class overlapping and small disjoint subsets
Overlapping between classes and small disjoint subsets of  might

impose complexity on the classification task, which are the main prob-
lems we want to solve with the proposed method. The results displayed
in Table 8 indicate that cluster-based sampling techniques may not be
as effective as anticipated, primarily due to the characteristics and di-
versity of the datasets utilized in the study. Thus, a two-dimensional
toy dataset has been created to describe how well cluster-based sam-
pling approaches overcome such issues. In this dataset,  consists of
several disjoint subsets and contains 200 data points. We then com-
pared the results on this toy dataset on the sampledata_2 dataset used in
the benchmarking process, which contains subsets with a higher density
of  points.

Combining the observations from Fig. 15 and Fig. 16, several in-
sights can be drawn regarding the performance of CIL approaches. In
Fig. 15, S and AS generate instances between nearest neighbors with-
out concern about the distribution of  . Thus, although they capture

instances in small disjuncts and enhance sub-regions of  , severe class

Intelligent Systems with Applications 22 (2024) 200357Z. Farou, Y. Wang and T. Horváth

Fig. 14. Test results of different imbalance degrees when employing kNN classifier.
21

Fig. 15. Artificial samples generated by different CIL methods on a toy dataset with disjoint minority subsets.

Intelligent Systems with Applications 22 (2024) 200357Z. Farou, Y. Wang and T. Horváth

Fig. 16. Artificial samples generated by different CIL methods on sampledata_2 dataset.
overlapping is caused due to the generation of many irrelevant syn-
thetic samples; setting an appropriate value for the parameter 𝑘 for
SMOTE and AS could improve the oversampling efficiency. However, it
is hard to determine 𝑘 visually on a high-dimensional dataset with an
implicit within-class imbalance issue, and the impact caused by noise is
still unsolved. Therefore, Fig. 15 validates that cluster-based oversam-
pling approaches effectively identify disjoint subsets. While DBS and
CS also ignore the distribution of  , they are dedicated to generat-
ing samples in the core regions of  , where DBS generates along the
skeleton path, and CS generates between the representative instances
within clusters. Indeed, this type of approach is secure enough but does
not help much to improve classification decisions, as points around
the class border are the ones most relevant to building discriminative
boundaries for classification models (Mullick et al., 2019). The invalid-
ity of SOMO is attributed to its SOM clustering method which struggles
to capture the complex distribution patterns and boundaries present in
 , particularly on 2-dimensional datasets. KS tends to eliminate clus-
ters dominated by majority instances, potentially leading to the loss of
many important minority class features. Thus, disjunct subsets may not
be identified properly. Whereas AROSS consider both classes’ distribu-
tion and generate instances in areas centered from representative points
extracted from clusters instead of generating in clusters directly, where
the representative points densely extracted from  and borderline could
fragment the data space into sub-spaces and capture more refined sam-
ple distribution characteristics. Hereby, AROSS could identify almost
22

every small disjunct subset of  and generate synthetic instances in the
absence of overlapping. In addition, limited by the threshold 𝑘 and half-
safe condition in the incremental kNN strategy, singleton noises among
majority instances will be ruled out of areas, thus, no samples will be
generated nearby them.

Furthermore, in Fig. 16, DBS and KS apply SMOTE within clusters,
resulting in similar effects as SMOTE. CS and SOMO focus on oversam-
pling within the core regions of  . However, KS and SOMO generate
irrelevant instances that overlap across the two subsets of  . AS over-
samples along the borderline regions of minority subsets, but fails to
detect some boundary instances and neglects critical features. While it
enhances minority instances along the borderline, the increased density
of synthetic instances can negatively impact the predictive correctness
of nearby majority instances, leading to undesirable 𝐹1 scores, particu-
larly in kNN classification.

In sampledata_2 dataset, SMOTE yields more favorable results. Still,
from both Fig. 15 and Fig. 16, we observed that oversampling ef-
fects of SMOTE and its variants present that synthetic samples are
distributed along polygonal edges caused by the linear interpolation
between minority class neighbors that SMOTE uses. Previously we men-
tioned that during the experimental phase, we set 𝐼𝑅𝑒 to 1 by default,
which indicates that the same number of samples will be generated
for each method. However, the figures show that samples generated
by the SMOTE-based method are mainly aggregated in line segments.
By applying the Gaussian generator, AROSS could synthesize samples
to populate the sub-regions that minority instances may exist in, i.e.,

sub-spaces among minority instances without majority class invasion.

Z. Farou, Y. Wang and T. Horváth

In addition, it can be found that the synthetic samples are widely
distributed among the boundaries of  without overlapping with the
sub-spaces of  .

These observations underscore the distinct characteristics and lim-
itations of different CIL approaches, highlighting the effectiveness of
AROS and AROSS in generating synthetic samples that preserve the
intrinsic boundaries of  without compromising the predictive perfor-
mance on  .

6. Conclusion

In this article, we tackled the challenges associated with class im-
balance learning (CIL) by introducing a novel adaptive oversampling
method called AROSS, which relies on cluster-based techniques. Our
approach utilized an agglomerative clustering algorithm enhanced by
integrating the cophenetic correlation coefficient (CPCC) and Bayesian
information criterion (𝐵𝑠𝑐𝑜𝑟𝑒), enabling us to efficiently determine the
appropriate linkage and number of clusters, thereby pinpointing repre-
sentative zones within the minority class. To better capture and enhance
hard-to-learn minority instances more effectively, we applied a statisti-
cal sample size formula to identify the number of representatives in
each identified zone. Subsequently, these zones were refined through
an incremental kNN strategy to outline safe and semi-safe regions more
effectively.

To address limitations observed in traditional SMOTE-based over-
sampling methods, which often cause subspace over-densing, we in-
troduced a truncated hypercube Gaussian Generator. This innovation
facilitated the even drawing of samples from safe areas following a
Gaussian distribution, resulting in more precise and representative syn-
thetic sample generation.

Our extensive experimental evaluation on 66 real-world and 4 syn-
thetic datasets demonstrated the efficacy of AROSS in improving CIL
performance, particularly with tree-based classifiers such as decision
trees and random forests. AROSS consistently outperformed existing
cluster-based, random, and synthetic sampling methods across various
metrics, including Recall, 𝐹1 score, Geometric mean, and AUC scores.
The method exhibited significant advantages and minimal drawbacks,
highlighting its robustness and versatility. Additionally, oversampling
results on a toy dataset and the sampledata_2 dataset validated the ef-
fectiveness of our cluster-based oversampling approach for addressing
small disjoint subsets imbalance problems. AROSS performed excep-
tionally well by precisely detecting small disjuncts without exacerbating
class overlapping, making it particularly suitable for handling within-
class imbalance issues.

However, it’s crucial to acknowledge the limitation of our current
implementation regarding runtime performance optimization. While
our focus has been on the core resampling algorithm’s effectiveness, we
recognize the potential for further improvement in runtime efficiency.

Future work could explore the application of AROSS in other clas-
sification tasks, investigate its performance with different clustering
algorithms to mitigate time complexity concerns, and consider approxi-
mating the number of clusters based on dataset characteristics as a sub-
stitute for 𝐵𝑠𝑐𝑜𝑟𝑒. Additionally, integrating domain-specific knowledge
and analyzing the impact of various hyper-parameters could further en-
hance the adaptability and effectiveness of AROSS in diverse real-world
scenarios.

CRediT authorship contribution statement

Zakarya Farou: Conceptualization, Data curation, Investigation,
Methodology, Software, Validation, Visualization, Writing – original
draft, Writing – review & editing. Yizhi Wang: Data curation, Inves-
tigation, Methodology, Software, Validation, Visualization, Writing –
original draft. Tomáš Horváth: Methodology, Supervision, Writing –
23

review & editing.
Intelligent Systems with Applications 22 (2024) 200357

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data and code availability

The source code and related datasets are available at https://github .
com /ghostqriver /AROSS.

Acknowledgements

This research is supported by the ÚNKP-22-3 New National Excel-
lence Program of the Ministry for Innovation and Technology from the
source of the National Research, Development, and Innovation Fund,
grant number ÚNKP-22-3-II-ELTE-393.

References

Alshemali, B., & Kalita, J. (2020). Improving the reliability of deep neural networks in
nlp: A review. Knowledge-Based Systems, 191, Article 105210.

Asuncion, A., & Newman, D. (2007). Uci machine learning repository.
Batista, G. E., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several

methods for balancing machine learning training data. ACM SIGKDD Explorations
Newsletter, 6, 20–29.

Batista, G. E., Prati, R. C., & Monard, M. C. (2005). Balancing strategies and class over-
lapping. In Proceedings 6. Advances in intelligent data analysis VI: 6th international
symposium on intelligent data analysis, IDA 2005, proceedings 6 (pp. 24–35). Springer.

Bentley, J. L. (1990). K-d trees for semidynamic point sets. In Proceedings of the sixth
annual symposium on computational geometry SCG ’90. New York, NY, USA: Association
for Computing Machinery (pp. 187–197).

Bi, J., & Zhang, C. (2018). An empirical comparison on state-of-the-art multi-class imbal-
ance learning algorithms and a new diversified ensemble learning scheme. Knowledge-
Based Systems, 158, 81–93.

Bokhare, A., Bhagat, A., & Bhalodia, R. (2023). Multi-layer perceptron for heart failure
detection using smote technique. SN Computer Science, 4, 182.

Bunkhumpornpat, C., Sinapiromsaran, K., & Lursinsap, C. (2012). Dbsmote: Density-based
synthetic minority over-sampling technique. Applied Intelligence, 36, 664–684.

Cai, M., & Liang, Y. (2018). An improved cure algorithm. In Intelligence science II: Third
IFIP TC 12 international conference, ICIS 2018, proceedings 2 (pp. 102–111). Springer.

Chawla, N. V. (2010). Data mining for imbalanced datasets: An overview. In Data mining
and knowledge discovery handbook (pp. 875–886).

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote: Syn-
thetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16,
321–357.

Cieslak, D. A., Chawla, N. V., & Striegel, A. (2006). Combating imbalance in network
intrusion datasets. In GrC (pp. 732–737).

Cios, K. J., & Moore, G. W. (2002). Uniqueness of medical data mining. Artificial Intelli-
gence in Medicine, 26, 1–24.

Cochran, W. G. (1977). Sampling techniques. John Wiley & Sons.
Cordón, I., García, S., Fernández, A., & Herrera, F. (2018). Imbalance: Oversampling al-

gorithms for imbalanced classification in R. Knowledge-Based Systems, 161, 329–341.
Darville, J., Yavuz, A., Runsewe, T., & Celik, N. (2023). Effective sampling for drift miti-

gation in machine learning using scenario selection: A microgrid case study. Applied
Energy, 341, Article 121048.

Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-1, 224–227. https://doi .org /10 .1109 /
TPAMI .1979 .4766909.

Derrac, J., Garcia, S., Sanchez, L., & Herrera, F. (2015). Keel data-mining software tool:
Data set repository, integration of algorithms and experimental analysis framework.
Journal of Multiple-Valued Logic and Soft Computing, 17.

Derrick, B., Toher, D., & White, P. (2016). Why Welch’s test is type I error robust. The
Quantitative Methods for Psychology, 12, 30–38.

Douzas, G., & Bacao, F. (2017). Self-organizing map oversampling (somo) for imbalanced
data set learning. Expert Systems with Applications, 82, 40–52.

Douzas, G., Bacao, F., & Last, F. (2018). Improving imbalanced learning through a heuris-
tic oversampling method based on k-means and smote. Information Sciences, 465,
1–20.

Ellis, R. J., Sander, R. M., & Limon, A. (2022). Twelve key challenges in medical machine
learning and solutions.

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In Proceedings of the second
international conference on knowledge discovery and data mining KDD’96 (pp. 226–231).
AAAI Press.

Farris, J. S. (1969). On the cophenetic correlation coefficient. Systematic Zoology, 18,

279–285.

https://github.com/ghostqriver/AROSS
https://github.com/ghostqriver/AROSS
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib7EB7E97E5CA70C4B4FC6B5BD84E4603Bs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib7EB7E97E5CA70C4B4FC6B5BD84E4603Bs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib5876EC9C2BAD3426697A339AF0AF3220s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib57D70B54DAE5CEC89673CEC069AA6CBCs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib57D70B54DAE5CEC89673CEC069AA6CBCs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib57D70B54DAE5CEC89673CEC069AA6CBCs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibB38E6BE5D76F10BA34F0341EC72AF746s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibB38E6BE5D76F10BA34F0341EC72AF746s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibB38E6BE5D76F10BA34F0341EC72AF746s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib2414E58DA12E880D79A05B899253C320s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib2414E58DA12E880D79A05B899253C320s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib2414E58DA12E880D79A05B899253C320s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibFBEA1886412FC0D27868F3C627CA38CDs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibFBEA1886412FC0D27868F3C627CA38CDs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibFBEA1886412FC0D27868F3C627CA38CDs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib4A70724C8F105E75EC4ACF79BA44A874s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib4A70724C8F105E75EC4ACF79BA44A874s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibD3DE9339BD9C553DDD241E22AA0ABBD6s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibD3DE9339BD9C553DDD241E22AA0ABBD6s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib1D640E84AC7741D1789272F3CFFC1D27s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib1D640E84AC7741D1789272F3CFFC1D27s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibBE9C2348F0179C6E800394D35206F11Cs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibBE9C2348F0179C6E800394D35206F11Cs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib81312E2C9E085FD70ED30AE61F765D38s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib81312E2C9E085FD70ED30AE61F765D38s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib81312E2C9E085FD70ED30AE61F765D38s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibEA6767DD4D2B9F1CB564C37EF5C837C2s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibEA6767DD4D2B9F1CB564C37EF5C837C2s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib2BB27E9D255F3F18C91F3B700EB6F2E5s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib2BB27E9D255F3F18C91F3B700EB6F2E5s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibCEB4C52CA39EFC076CC73B2373444E8Cs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib69144F8070B440C8968B5822C1DAD0D3s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib69144F8070B440C8968B5822C1DAD0D3s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib6DED8D9E67DFD6A7E7D883AD3F2EE5E1s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib6DED8D9E67DFD6A7E7D883AD3F2EE5E1s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib6DED8D9E67DFD6A7E7D883AD3F2EE5E1s1
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1109/TPAMI.1979.4766909
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib9EE08337A84BACC823BF4620AC4A5C3Ds1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib9EE08337A84BACC823BF4620AC4A5C3Ds1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib9EE08337A84BACC823BF4620AC4A5C3Ds1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib0F4AFC77FF6D9CD24A2B1D71535D60CBs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib0F4AFC77FF6D9CD24A2B1D71535D60CBs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib8C57DDA3AA9273ADCD32CFA6A75B697Es1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib8C57DDA3AA9273ADCD32CFA6A75B697Es1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib3F7FB0985FCE90A9BB7F8290823F0C7Ds1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib3F7FB0985FCE90A9BB7F8290823F0C7Ds1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib3F7FB0985FCE90A9BB7F8290823F0C7Ds1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib25F5DD6B703252732D9E52C57AAD6A4As1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib25F5DD6B703252732D9E52C57AAD6A4As1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib72E563D77ED5FED1189E5B2B6E8E1273s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib72E563D77ED5FED1189E5B2B6E8E1273s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib72E563D77ED5FED1189E5B2B6E8E1273s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib72E563D77ED5FED1189E5B2B6E8E1273s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib0DF99E4141714EBB649313353FCB53E2s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib0DF99E4141714EBB649313353FCB53E2s1

Z. Farou, Y. Wang and T. Horváth

Fotouhi, S., Asadi, S., & Kattan, M. W. (2019). A comprehensive data level analysis
for cancer diagnosis on imbalanced data. Journal of Biomedical Informatics, 90, Ar-
ticle 103089. https://doi .org /10 .1016 /j .jbi .2018 .12 .003. https://www .sciencedirect .
com /science /article /pii /S1532046418302302.

Gosain, A., & Sardana, S. (2017). Handling class imbalance problem using oversampling
techniques: A review. In 2017 international conference on advances in computing, com-
munications and informatics (ICACCI) (pp. 79–85). IEEE.

Guha, S., Rastogi, R., & Shim, K. (1998). Cure: An efficient clustering algorithm for large
databases. ACM Sigmod Record, 27, 73–84.

Han, H., Wang, W.-Y., & Mao, B.-H. (2005). Borderline-smote: A new over-sampling
method in imbalanced data sets learning. In Advances in intelligent computing: Interna-
tional conference on intelligent computing, ICIC 2005, proceedings, part I 1 (pp. 878–887).
Springer.

Hazarika, B. B., & Gupta, D. (2021). Density-weighted support vector machines for binary
class imbalance learning. Neural Computing & Applications, 33, 4243–4261.

Hazarika, B. B., & Gupta, D. (2022). Density weighted twin support vector machines for
binary class imbalance learning. Neural Processing Letters, 54, 1091–1130.

Hazarika, B. B., & Gupta, D. (2023). Affinity based fuzzy kernel ridge regression classifier
for binary class imbalance learning. Engineering Applications of Artificial Intelligence,
117, Article 105544.

Hazarika, B. B., Gupta, D., & Borah, P. (2023). Fuzzy twin support vector machine based
on affinity and class probability for class imbalance learning. Knowledge and Informa-
tion Systems, 1–30.

He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). Adasyn: Adaptive synthetic sampling ap-
proach for imbalanced learning. In 2008 IEEE international joint conference on neural
networks (IEEE world congress on computational intelligence (pp. 1322–1328). IEEE.

Horváth, T., Mantovani, R. G., & de Carvalho, A. C. (2023). Hyper-parameter initialization
of classification algorithms using dynamic time warping: A perspective on pca meta-
features. Applied Soft Computing, 134, Article 109969.

Jiang, C., Lu, W., Wang, Z., & Ding, Y. (2023). Benchmarking state-of-the-art im-
balanced data learning approaches for credit scoring. Expert Systems with Appli-
cations, 213, Article 118878. https://doi .org /10 .1016 /j .eswa .2022 .118878. https://
www .sciencedirect .com /science /article /pii /S0957417422018966.

Jiang, Z., Zhao, L., Lu, Y., Zhan, Y., & Mao, Q. (2023). A semi-supervised resampling
method for class-imbalanced learning. Expert Systems with Applications, 221, Arti-
cle 119733.

Jo, T., & Japkowicz, N. (2004). Class imbalances versus small disjuncts. ACM SIGKDD
Explorations Newsletter, 6, 40–49.

Kamarulzalis, A. H., Mohd Razali, M. H., & Moktar, B. (2018). Data pre-processing us-
ing smote technique for gender classification with imbalance hu’s moments features.
In Proceedings of the second international conference on the future of ASEAN (ICoFA)
2017–volume 2: Science and technology (pp. 373–379). Springer.

Khan, M. T., & Sheikh, U. U. (2023). A hybrid convolutional neural network with fusion
of handcrafted and deep features for fhss signals classification. Expert Systems with
Applications, Article 120153.

Kovács, G. (2019a). Smote-variants: A python implementation of 85 minority oversam-
pling techniques. Neurocomputing, 366, 352–354.

Kovács, G. (2019b). An empirical comparison and evaluation of minority oversam-
pling techniques on a large number of imbalanced datasets. Applied Soft Comput-
ing, 83, Article 105662. https://doi .org /10 .1016 /j .asoc .2019 .105662. https://www .
sciencedirect .com /science /article /pii /S1568494619304429.

Kulkarni, A., Chong, D., & Batarseh, F. A. (2020). Foundations of data imbalance and
solutions for a data democracy. In Data democracy (pp. 83–106). Elsevier.

Kunakorntum, I., Hinthong, W., & Phunchongharn, P. (2020). A synthetic minority based
on probabilistic distribution (symprod) oversampling for imbalanced datasets. IEEE
Access, 8, 114692–114704.

Lemaître, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A python toolbox
to tackle the curse of imbalanced datasets in machine learning. Journal of Machine
Learning Research, 18, 559–563.

Liu, B., & Tsoumakas, G. (2020). Dealing with class imbalance in classifier chains via
random undersampling. Knowledge-Based Systems, 192, Article 105292.

Lu, H., Chen, C., Wei, H., Ma, Z., Jiang, K., & Wang, Y. (2022). Improved deep convo-
lutional embedded clustering with re-selectable sample training. Pattern Recognition,
127, Article 108611.

Lukasová, A. (1979). Hierarchical agglomerative clustering procedure. Pattern Recognition,
11, 365–381.

Luque, A., Carrasco, A., Martín, A., & de las Heras, A. (2019). The impact of class
imbalance in classification performance metrics based on the binary confusion
matrix. Pattern Recognition, 91, 216–231. https://doi .org /10 .1016 /j .patcog .2019 .02 .
023. https://www .sciencedirect .com /science /article /pii /S0031320319300950.

Lusardi, A., & Mitchell, O. S. (2014). The economic importance of financial literacy: The-
ory and evidence. American Economic Journal: Journal of Economic Literature, 52, 5–44.

Ma, L., & Fan, S. (2017). Cure-smote algorithm and hybrid algorithm for feature selection
and parameter optimization based on random forests. BMC Bioinformatics, 18, 1–18.

Mantovani, R. G., Rossi, A. L. D., Vanschoren, J., Bischl, B., & Carvalho, A. C. P. L. F.
(2015). To tune or not to tune: Recommending when to adjust SVM hyper-parameters
via meta-learning. In 2015 international joint conference on neural networks (IJCNN)
(pp. 1–8).

McQuitty, L. L. (1960). Hierarchical linkage analysis for the isolation of types. Educational
24

and Psychological Measurement, 20, 55–67.
Intelligent Systems with Applications 22 (2024) 200357

Merrild, H., Damgaard, A., & Christensen, T. H. (2008). Life cycle assessment of waste pa-
per management: The importance of technology data and system boundaries in assess-
ing recycling and incineration. Resources, Conservation and Recycling, 52, 1391–1398.

Mullick, S. S., Datta, S., & Das, S. (2019). Generative adversarial minority oversam-
pling. In Proceedings of the IEEE/CVF international conference on computer vision
(pp. 1695–1704).

Murtagh, F., & Contreras, P. (2012). Algorithms for hierarchical clustering: An overview.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2, 86–97.

Napierala, K., & Stefanowski, J. (2016). Types of minority class examples and their in-
fluence on learning classifiers from imbalanced data. Journal of Intelligent Information
Systems, 46, 563–597.

Nekooeimehr, I., & Lai-Yuen, S. K. (2016). Adaptive semi-unsupervised weighted over-
sampling (a-suwo) for imbalanced datasets. Expert Systems with Applications, 46,
405–416.

Parthasarathy, S., Jayaraman, V., et al. (2023). Predicting heart failure using smote-enn-
xgboost. In 2023 international conference on intelligent data communication technologies
and Internet of things (IDCIoT) (pp. 661–666). IEEE.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning
in python. Journal of Machine Learning Research, 12, 2825–2830.

Prusty, S., Patnaik, S., & Dash, S. K. (2022). Skcv: Stratified k-fold cross-validation
on ml classifiers for predicting cervical cancer. Frontiers in Nanotechnology, 4, Arti-
cle 972421.

Rivera, W. A. (2017). Noise reduction a priori synthetic over-sampling for class imbal-
anced data sets. Information Sciences, 408, 146–161.

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and val-
idation of cluster analysis. Journal of Computational and Applied Mathematics, 20,
53–65. https://doi .org /10 .1016 /0377 -0427(87)90125 -7. https://www .sciencedirect .
com /science /article /pii /0377042787901257.

Sandhan, T., & Choi, J. Y. (2014). Handling imbalanced datasets by partially guided hy-
brid sampling for pattern recognition. In 2014 22nd international conference on pattern
recognition (pp. 1449–1453). IEEE.

Santoso, B., Wijayanto, H., Notodiputro, K., & Sartono, B. (2017). Synthetic over sampling
methods for handling class imbalanced problems: A review. In IOP conference series:
Earth and environmental science. IOP publishing: Vol. 58, Article 012031.

Schubert, E. (2022). Stop using the elbow criterion for k-means and how to choose the
number of clusters instead. arXiv :2212 .12189.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics,
461–464.

Seifoddini, H. K. (1989). Single linkage versus average linkage clustering in machine cells
formation applications. Computers & Industrial Engineering, 16, 419–426.

Shi, H., Zhang, Y., Chen, Y., Ji, S., & Dong, Y. (2022). Resampling algorithms
based on sample concatenation for imbalance learning. Knowledge-Based Systems,
245, Article 108592. https://doi .org /10 .1016 /j .knosys .2022 .108592. https://www .
sciencedirect .com /science /article /pii /S0950705122002659.

Siriseriwan, W., & Sinapiromsaran, K. (2017). Adaptive neighbor synthetic minority over-
sampling technique under 1nn outcast handling. Songklanakarin Journal of Science &
Technology, 39.

Sneath, P. H. (1957). The application of computers to taxonomy. Microbiology, 17,
201–226.

Sokal, R. R. (1958). A statistical method for evaluating systematic relationships. The Uni-
versity of Kansas Science Bulletin, 38, 1409–1438.

Sun, J., Li, H., Fujita, H., Fu, B., & Ai, W. (2020). Class-imbalanced dynamic financial
distress prediction based on adaboost-svm ensemble combined with smote and time
weighting. Information Fusion, 54, 128–144.

Swana, E. F., Doorsamy, W., & Bokoro, P. (2022). Tomek link and smote approaches for
machine fault classification with an imbalanced dataset. Sensors, 22, 3246.

Taherdoost, H. (2017). Determining sample size; how to calculate survey sample size.
International Journal of Economics and Management Systems, 2.

Thai-Nghe, N., Gantner, Z., & Schmidt-Thieme, L. (2010). Cost-sensitive learning meth-
ods for imbalanced data. In The 2010 international joint conference on neural networks
(IJCNN) (pp. 1–8). IEEE.

Thorndike, R. (1953). Who belongs in the family? Psychometrika, 18, 267–276.
Tomek, I. (1976). Two modifications of cnn. IEEE Transactions on Systems, Man and Cyber-

netics, 6, 769–772.
Torres, F. R., Carrasco-Ochoa, J. A., & Martínez-Trinidad, J. F. (2016). Smote-d a deter-

ministic version of smote. In Pattern recognition: 8th Mexican conference, MCPR 2016,
proceedings 8 (pp. 177–188). Springer.

Wang, X., Gong, J., Song, Y., & Hu, J. (2023). Adaptively weighted three-way decision
oversampling: A cluster imbalanced-ratio based approach. Applied Intelligence, 53,
312–335.

Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of
the American Statistical Association, 58, 236–244.

Weiss, G. M. (2004). Mining with rarity: A unifying framework. ACM SIGKDD Explorations
Newsletter, 6, 7–19.

Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited data.
IEEE Transactions on Systems, Man and Cybernetics, 408–421.

Wongvorachan, T., He, S., & Bulut, O. (2023). A comparison of undersampling, over-
sampling, and smote methods for dealing with imbalanced classification in educa-
tional data mining. Information, 14. https://doi .org /10 .3390 /info14010054. https://

www .mdpi .com /2078 -2489 /14 /1 /54.

https://doi.org/10.1016/j.jbi.2018.12.003
https://www.sciencedirect.com/science/article/pii/S1532046418302302
https://www.sciencedirect.com/science/article/pii/S1532046418302302
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibBCE15984325177464EC407789862650As1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibBCE15984325177464EC407789862650As1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibBCE15984325177464EC407789862650As1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib61AB57F04F3BD33BF4A0B69307DEB21Es1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib61AB57F04F3BD33BF4A0B69307DEB21Es1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib2D1AA9DBA0A8D2A4926484CBB88CE8C5s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib2D1AA9DBA0A8D2A4926484CBB88CE8C5s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib2D1AA9DBA0A8D2A4926484CBB88CE8C5s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib2D1AA9DBA0A8D2A4926484CBB88CE8C5s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib37D2D62C8613EF97A995E8225D67C4DDs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib37D2D62C8613EF97A995E8225D67C4DDs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib9FB63E0199115B5FD3F4ECF18A5EEF18s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib9FB63E0199115B5FD3F4ECF18A5EEF18s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib91E271E7589FA87B83CB2A34FF53A1D2s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib91E271E7589FA87B83CB2A34FF53A1D2s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib91E271E7589FA87B83CB2A34FF53A1D2s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib973045845F53768679F4838B162D9C23s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib973045845F53768679F4838B162D9C23s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib973045845F53768679F4838B162D9C23s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib3002EF8E359DDBA77E3F5E7BEA9A6E84s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib3002EF8E359DDBA77E3F5E7BEA9A6E84s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib3002EF8E359DDBA77E3F5E7BEA9A6E84s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibF7B8D78BE915241D06F1A506EAF72383s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibF7B8D78BE915241D06F1A506EAF72383s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibF7B8D78BE915241D06F1A506EAF72383s1
https://doi.org/10.1016/j.eswa.2022.118878
https://www.sciencedirect.com/science/article/pii/S0957417422018966
https://www.sciencedirect.com/science/article/pii/S0957417422018966
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib265D6982D2DE569C8CA229CB23F608BFs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib265D6982D2DE569C8CA229CB23F608BFs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib265D6982D2DE569C8CA229CB23F608BFs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib3DF0AC0B1371FFD99195E9D1B4641ADBs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib3DF0AC0B1371FFD99195E9D1B4641ADBs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib1507BBD208775D71E0858E419940E17Cs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib1507BBD208775D71E0858E419940E17Cs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib1507BBD208775D71E0858E419940E17Cs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib1507BBD208775D71E0858E419940E17Cs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib052FA8C6EB09ABEAB8DCF8DF9399ACAEs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib052FA8C6EB09ABEAB8DCF8DF9399ACAEs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib052FA8C6EB09ABEAB8DCF8DF9399ACAEs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibE76B3956FB3B133DD11B018EF18CAD2Bs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibE76B3956FB3B133DD11B018EF18CAD2Bs1
https://doi.org/10.1016/j.asoc.2019.105662
https://www.sciencedirect.com/science/article/pii/S1568494619304429
https://www.sciencedirect.com/science/article/pii/S1568494619304429
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib01BAF36BBDFD6958A8F4FA68B8EB9138s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib01BAF36BBDFD6958A8F4FA68B8EB9138s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibFFC7A2525F343CF0AFF75B404CA9EA4Cs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibFFC7A2525F343CF0AFF75B404CA9EA4Cs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibFFC7A2525F343CF0AFF75B404CA9EA4Cs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib5FF91B27D290C1A06D750065F14F8249s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib5FF91B27D290C1A06D750065F14F8249s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib5FF91B27D290C1A06D750065F14F8249s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibA1B3AF50B2A716257A453786ABD8F513s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibA1B3AF50B2A716257A453786ABD8F513s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibE9B3116941F332E46C89AB48A615CFD4s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibE9B3116941F332E46C89AB48A615CFD4s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibE9B3116941F332E46C89AB48A615CFD4s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib3563490679DBA412DBC21874918B1840s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib3563490679DBA412DBC21874918B1840s1
https://doi.org/10.1016/j.patcog.2019.02.023
https://doi.org/10.1016/j.patcog.2019.02.023
https://www.sciencedirect.com/science/article/pii/S0031320319300950
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibDD4A6E2A639ECD15828C9F9FF6A16EA4s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibDD4A6E2A639ECD15828C9F9FF6A16EA4s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibBE71774D79BC24D0BE81F6041127617As1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibBE71774D79BC24D0BE81F6041127617As1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib7A4C3FE83383096B48EA5B755429E98Ds1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib7A4C3FE83383096B48EA5B755429E98Ds1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib7A4C3FE83383096B48EA5B755429E98Ds1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib7A4C3FE83383096B48EA5B755429E98Ds1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibCB6B437B3779D2A1B16F364805A6ABC0s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibCB6B437B3779D2A1B16F364805A6ABC0s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib3A38C2DEB5D1D20A90F1A925DE020DC0s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib3A38C2DEB5D1D20A90F1A925DE020DC0s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib3A38C2DEB5D1D20A90F1A925DE020DC0s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib411E996CAC6DE959CC1938E1D7BA2009s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib411E996CAC6DE959CC1938E1D7BA2009s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib411E996CAC6DE959CC1938E1D7BA2009s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibACA95CF3A75B4C70CB6F4A0B7E900191s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibACA95CF3A75B4C70CB6F4A0B7E900191s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib9F0998FDD888DCD37C2ECE9F7DFA7370s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib9F0998FDD888DCD37C2ECE9F7DFA7370s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib9F0998FDD888DCD37C2ECE9F7DFA7370s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib6E854894F657F7C7094B6D409FC0469Bs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib6E854894F657F7C7094B6D409FC0469Bs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib6E854894F657F7C7094B6D409FC0469Bs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib54B9A11340C950942C599DDA2257EEE6s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib54B9A11340C950942C599DDA2257EEE6s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib54B9A11340C950942C599DDA2257EEE6s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib1E37FE8AE148BF9CF67410C5AC97BB84s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib1E37FE8AE148BF9CF67410C5AC97BB84s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib1E37FE8AE148BF9CF67410C5AC97BB84s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib5B78D5642FE2FAEF411B637FC69E114Bs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib5B78D5642FE2FAEF411B637FC69E114Bs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib5B78D5642FE2FAEF411B637FC69E114Bs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib613A365D4D795C9B4038992049AB02F7s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib613A365D4D795C9B4038992049AB02F7s1
https://doi.org/10.1016/0377-0427(87)90125-7
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib0ECFB62DE9A63F6B7956FA1219EC0E72s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib0ECFB62DE9A63F6B7956FA1219EC0E72s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib0ECFB62DE9A63F6B7956FA1219EC0E72s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib08CD1760EAB3588BDB5AEEC5C6047DE0s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib08CD1760EAB3588BDB5AEEC5C6047DE0s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib08CD1760EAB3588BDB5AEEC5C6047DE0s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib83F79E2FBF0BCC032A1DFC7500A92C8As1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib83F79E2FBF0BCC032A1DFC7500A92C8As1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibDB3BD319138926F48E8CB4B61FED4DD5s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibDB3BD319138926F48E8CB4B61FED4DD5s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib731B164C722022847EF3DA719293804Bs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib731B164C722022847EF3DA719293804Bs1
https://doi.org/10.1016/j.knosys.2022.108592
https://www.sciencedirect.com/science/article/pii/S0950705122002659
https://www.sciencedirect.com/science/article/pii/S0950705122002659
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib7FC4EEB9FA2FB86E9F4BEF8707D852A7s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib7FC4EEB9FA2FB86E9F4BEF8707D852A7s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib7FC4EEB9FA2FB86E9F4BEF8707D852A7s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibB4AEB8243D7DA92F5842B6C2A2C40108s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibB4AEB8243D7DA92F5842B6C2A2C40108s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib458F658D78B46F58579BBE2415239A60s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib458F658D78B46F58579BBE2415239A60s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib7A01433C5A96BA6458033D09963DE00Bs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib7A01433C5A96BA6458033D09963DE00Bs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib7A01433C5A96BA6458033D09963DE00Bs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibD6D9283F920337008E048B51C1A1954Ds1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibD6D9283F920337008E048B51C1A1954Ds1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibAF254DBE6AB970A9159C14E21D91BBB3s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibAF254DBE6AB970A9159C14E21D91BBB3s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib70F8A8521A01E85E546E696ECBE29209s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib70F8A8521A01E85E546E696ECBE29209s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib70F8A8521A01E85E546E696ECBE29209s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib91B018A0656638F952E64A09FCD3B772s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib55B728BF44F2E55D33BE1377C8701196s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib55B728BF44F2E55D33BE1377C8701196s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib72FF5EB5AFA43780D0EBB20D4B9ABD17s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib72FF5EB5AFA43780D0EBB20D4B9ABD17s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib72FF5EB5AFA43780D0EBB20D4B9ABD17s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibB15FFC6A37AD7FF0A67E4F485B9E4BF5s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibB15FFC6A37AD7FF0A67E4F485B9E4BF5s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibB15FFC6A37AD7FF0A67E4F485B9E4BF5s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib65477ED40215E96E3E4B6C2CE0183900s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib65477ED40215E96E3E4B6C2CE0183900s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib729870E880C9DF563DFBC69A9644D94As1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib729870E880C9DF563DFBC69A9644D94As1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibBC25A7011629D045A0D660C0C57BE135s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibBC25A7011629D045A0D660C0C57BE135s1
https://doi.org/10.3390/info14010054
https://www.mdpi.com/2078-2489/14/1/54
https://www.mdpi.com/2078-2489/14/1/54

Intelligent Systems with Applications 22 (2024) 200357Z. Farou, Y. Wang and T. Horváth

Xia, H., An, W., & Zhang, Z. J. (2023). Credit risk models for financial fraud detection:
A new outlier feature analysis method of xgboost with smote. Journal of Database
Management (JDM), 34, 1–20.

Yang, S. J., & Cha, K. J. (2021). Gmote: Gaussian based minority oversampling technique
for imbalanced classification adapting tail probability of outliers. ArXiv preprint
arXiv :2105 .03855.

Zhang, H., & Li, M. (2014). Rwo-sampling: A random walk over-sampling approach to
imbalanced data classification. Information Fusion, 20, 99–116.

Zhang, J., Jiang, T., Liu, B., Jiang, X., & Zhao, H. (2008). Systematic benchmarking of
microarray data feature extraction and classification. International Journal of Computer
Mathematics, 85, 803–811.

Zhang, Z.-W., Jing, X.-Y., & Wang, T.-J. (2017). Label propagation based semi-supervised
learning for software defect prediction. Automated Software Engineering, 24, 47–69.

Zoric, A. B. (2019). Benefits of educational data mining. In Economic and social develop-
ment: Book of proceedings (pp. 1–7).
25

http://refhub.elsevier.com/S2667-3053(24)00033-4/bibC75605098936CF4356FBA09307D793A7s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibC75605098936CF4356FBA09307D793A7s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibC75605098936CF4356FBA09307D793A7s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibBDFC943A3DB72BD1E90D99C5E12D1B74s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibBDFC943A3DB72BD1E90D99C5E12D1B74s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibBDFC943A3DB72BD1E90D99C5E12D1B74s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibC1F1B48E77B8AF7BBD3A95254D4CC58Cs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibC1F1B48E77B8AF7BBD3A95254D4CC58Cs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibE314E982CF6EBDBD353C9AE53CDB1F70s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibE314E982CF6EBDBD353C9AE53CDB1F70s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibE314E982CF6EBDBD353C9AE53CDB1F70s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib7B485B7DEFA953AC4249E976A364909Cs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bib7B485B7DEFA953AC4249E976A364909Cs1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibBE3EC6F592ABFE772D2090875AB30638s1
http://refhub.elsevier.com/S2667-3053(24)00033-4/bibBE3EC6F592ABFE772D2090875AB30638s1

	Cluster-based oversampling with area extraction from representative points for class imbalance learning
	1 Introduction
	2 Basic concepts and literature review
	2.1 Data intrinsic characteristics in CIL
	2.1.1 Small sample size and imbalanced class distribution
	2.1.2 Class overlapping and within class imbalance

	2.2 Data-level resampling methods for CIL
	2.2.1 Random sampling
	2.2.2 Synthetic sampling
	2.2.3 Cluster-based sampling

	3 Area-based representative points oversampling with shifting (AROSS)
	3.1 Clustering using optimized agglomerative clustering
	3.1.1 Merging clusters and linkage selection
	3.1.2 Cluster optimization

	3.2 Extraction and classification of representative points
	3.3 Areas estimation using incremental kNN
	3.4 Weighting safe and half-safe areas
	3.5 Synthetic data generation using Gaussian generator

	4 Experiments
	4.1 Datasets
	4.2 Evaluation measures
	4.3 The experimental process

	5 Empirical results
	5.1 Benchmark analysis
	5.2 Statistical analysis using Welch’s t-test
	5.3 Runtimes and system configurations
	5.4 Extended analysis over CIL problems
	5.4.1 Small sample size and imbalanced class distribution
	5.4.2 Class overlapping and small disjoint subsets

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data and code availability
	Acknowledgements
	References

