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Abstract

As the edge nodes of the Internet of Smart Grids (IoSG), smart sockets enable all kinds

of power load data to be analyzed at the edge, which create conditions for edge calcula-

tion and Real-time (RT) load forecasting. In this paper, an Edge-Cloud computing analysis

energy system is proposed to collect and analyze power load data, and a combination of

graph convolutional network with LSTM, called KGLSTM is used to achieve mid-long term

mixed sequential mode RT forecasting. In the proposed Edge-Cloud framework, distributed

intelligent sockets are regarded as edge nodes to collect, analyze and upload data to cloud

services for further processing. The proposed KGLSTM network adopts a double branch

structure. One branch extracts the data characteristics of mid-short term time-series data

through an encoding-decoding LSTM module; the other branch extracts the data features

of long term timing data through an adapted graph convolutional network (GCN). GCN

is used to extract spatial correlations between different nodes. In addition, by combining

a dynamic weighted loss function, the accuracy of peak forecasting is effectively improved.

Finally, through various experimental indicators, this paper shows that KGLSTM and

weighted KGLSTM have achieved significant performance improvement over recent meth-

ods in mid-long term time-series forecasting and peak forecasting.
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1 INTRODUCTION

Under the background of the various power acquisition equipment and the rapid development of the IoSG, Intelligent equipment is gradually used
for load data RT acquisition at various power consumption sides 1,2,3,4,5. The popularity of smart sockets creates favorable conditions for using
edge computing when processing and analyzing a large number of power load data 6,7. Since the end of the epidemic, the society has resumed
business and production, and the load power consumption of the whole society has increased sharply. At present, few companies embed efficient
AI algorithms in the products of the power industry. Therefore, it needs more practice and efforts to apply the improved RT algorithms to energy
sustainable projects. Further promoting supply side reform and strengthen demand side management, especially the construction of load RT
monitoring energy systems, will provide powerful help to ensure stable operation of load detection system and improve energy utilization 8,9.

The power industry is one of the large-scale infrastructures that put forward the informatization of physical systems earlier, but the efficient
integration of demand-side power data in terms of energy generation, distribution, management, and control, and feedback control is still in the
exploratory stage. With the optimization of acquisition equipment and RT intelligent methods, edge computing is gradually used in demand-side
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power data analysis. The collected load data is uploaded to the cloud service in the form of edge nodes, and is analyzed and stored through the
cloud server 10,11,12. Among them, RT load forecasting is an essential part of load monitoring. also, RT load forecasting is an important basis for
power security dispatching, and it provides a reliable guarantee for the stable, reliable and economic operation of the power system 13. The forecast
objects include user load electricity consumption, annual andmonthly electricity consumption and daily electricity load change process. In addition,
the power data after statistical analysis can also provide a basis for the intelligent configuration and planning of the State Grid, and ensure the
safety and reliability of the power grid operation 14,15. In the process of load data collection, due to the influence of communication quality, sensor
performance, network delay and other factors, there are sometimes abnormal jump values in the load data. This kind of data that deviates from
the normal value generated by the detection equipment or the transmission process is called "wild value" 16. The existence of outliers seriously
affects the feature extraction of data. Therefore, eliminating outliers is an important preliminary step for analyzing load data. Kalman filter has a
good data cleaning effect, its filtering effect is good, and its RT performance has been confirmed 17.

Figure 1Motivational Diagram.

Traditional RT load forecasting method has many disadvantages, such as simple forecasting method, low forecasting accuracy and poor ability
to process real-time data, which cannot meet demands of the current power grid energy system.At the same time, traditional RT load forecasting
method can only deal with forecasting situation with small fluctuation of load data. For short term RT load data, effect of traditional RT forecasting
method is not good 18. However, with the improvement and development of various intelligent algorithms, deep learning algorithms have been
widely used in RT forecasting 19. As shown in figure. 1, this paper combines GCN and LSTM to forecast load energy consumption data. From the
perspectives of time and space, analyzing characteristics of load energy consumption data, and making mid-short term RT load forecasting.

2 RELATED WORK

2.1 Big Data Quality Improvement

Power load has characteristics of non-linearity and multi time series scale, and it also shows certain regular fluctuation under the influence of
meteorological conditions and other factors 20.When considering influencing factors, two points should be paid attention to: First, Missing factors
will lead to one-sided feature extraction and affect forecasting accuracy. Second, different load data have different load characteristics, and themain
influencing factors should be screened according to various load characteristics.However, both influencing factors and load data all have missing
values, abnormal values, noise and other abnormal values 21. However,Data cleaning has received huge attention in the field of big data algorithms.
Data cleaning is mainly to solve the inconsistency problem by filling in missing values, smooth noise data, identifying or deleting outliers and other
methods 22. There are three commonly used data cleaning methods, namely binning method, clustering method, and regression method 23.The
Kalman filter method in the regression method used in this paper. Yang et al. in 2009 used Kalman filter to process the forecasted gyro signal, which
effectively improved the forecasting accuracy 24. Behrouz et al. in 2013 used Kalman filter to optimize the overall accuracy of the output data of
the ANN algorithm, and compared Kalman filter with other filtering methods 25. Various methods have proved that Kalman filter has an effective
effect on data cleaning in big data algorithms.
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2.2 Development of RT Load Forecasting

RT load forecasting algorithm can be divided into the following categories: conventional statistical RT forecasting method, RT load forecasting
method based on machine learning and RT load forecasting method based on artificial intelligence 26.

Conventional statistical RT forecasting methods include regression analysis method 27, multiple linear regression method 28, and gray coefficient
forecasting method 29. The regression analysis method uses the principle of data statistics to realize the forecasting of the data by establishing
the variables 30. Multiple linear regression is a method of using multiple variables to achieve linear regression, and is An improved single variable
linear regression algorithm. Moreover, the accuracy of multiple linear regression in RT load forecasting is much higher than that of a single linear
regression method 31,32. The regression model has a good forecasting effect for stationary sequences and high accuracy, and the model itself has
a relatively simple structure. However, for nonlinear and complex sequence data, the regression model has a general effect and weak self-learning
ability 33. Grey forecasting is the use of sequence operators to calculate the system evolution law of the original data, establish a grey system
model, and make quantitative forecasting for the future state of the system. It was first proposed by Professor Deng. This model has low data
requirements, and has a good forecastive effect on data with small amounts of data and many uncertain problems 34.

RT forecasting methods based on machine learning include SVM; Xgboost et al. SVM is an useful machine learning model for text classification
proposed by vapnic et al in 1964. It is a generalized linear classifier based on VC dimension theory and riskminimization 35.Xing Yan et al constructed
a new machine learning model by combining SVM and ARMAX to forecast the PJM power grid data. Compared with SVM and ARMAX, SVM-
ARMAX improves forecasting accuracy by calculating linear modules, and optimizes shortcomings of SVM in RT time series forecasting 36.De Yue
men et al in 2011 proposed an improved support vector machine method: LS-SVM and made forecasting using the data set of local history for 5
years 37.This method takes into account the trend component and the period component by introducing the SVM. Which improved accuracy of
time series forecasting.

Xgboost is an improved gradient lifting decision tree machine learning algorithm based on GBRT proposed by Chen and guestrin 38.At present,
Xgboost has been widely used in various fields 39.At the same time, scholars in various fields have adopted combinatorial optimization methods
to ensure the efficiency and accuracy of RT data forecasting models. Deng et al used bagging and Xgboost to analyze the relationship between
short term load data and weather influencing factors. At the same time, weighted similarity selection is substituted to improve RT load forecasting
accuracy of the model 40.Li et al constructed a RT sequence forecasting model based on Xgboost to make accurate RT forecasting for the instability
of crustal plate movement 41.

Compared with conventional statistical RT forecasting methods, advantage of RT forecasting methods based on machine learning is that it can
deal with both linear and nonlinear time series. What’s more, RT forecasting methods using machine learning can effectively avoid the situation of
data overfitting and the problem of local minimum caused by too large sample data 42.However, when using RT forecasting methods using machine
learning to forecast the time series data, complexity of the method could be high, and the time response is long for the second level RT response.

With the update of technology, artificial intelligence methods had been continuously introduced into RT load forecasting, and forecasting meth-
ods based on artificial intelligence forecasting have gradually received attention. The forecasting method based on artificial intelligence methods
can be divided into single neural forecasting network and combined neural forecasting network 43.

2.3 RT Load Forecasting Methods Using Single Neural Network

Commonly used single neural networks are CNN, LSTM, etc. CNN network was proposed by LeCun, Y et al in 1989. The local connection and
weight sharing method adopted by this model greatly improved the optimization degree of the network while reducing the risk of overfitting 44.
Maryam used CNN to extract the nonlinear relationship between power load data and relevant temperature. after model learned the hidden
nonlinear load temperature characteristics, the accuracy of RT residential load forecasting could be improved 45. LSTM network is an improvement
of RNNmodel that can learn long term dependency information. Of course, LSTMs and baseline RNNs are not particularly structurally different, but
they use different functions to compute "hidden" states 46,47,48.At the same time, in 2005, Alex Graves et al proposed an optimized LSTM network,
namely the bidirectional long term and short term memory network (vailla LSTM). Finally, this network developed into the neural network with
the best use effect at present 49. This network improves the advantages of the reserved RNN network, and also optimizes the disadvantages of
RNN for long time series processing. which can forecast the real-time data effectively. 50.Hossain applied LSTM to RT forecasting of photovoltaic
power generation, and combined the K-means algorithm to convert historical data into dynamic phenolic characteristics, so as to improve the
measurement accuracy 51.

Compared with RT forecasting methods based on machine learning. The RT forecasting method based on artificial intelligence has a significant
breakthrough in both foreasting accuracy and response time. However, there are many kinds of RT forecasting methods based on artificial intel-
ligence, which have their own advantages, but they cannot meet all the actual conditions. Therefore, scholars often adopt the hybrid model with
artificial intelligence algorithm as the core to make more accurate forecasting of various time series.
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2.4 RT Load Forecasting Method Using Combined Neural Network

Considering that a single neural network will have various defects. Scholars try to combine various types of neural networks to learn from each
other’s strengths to achieve better forecasting results. The combined neural network has now become the mainstream in load forecasting. Yang
et al aiming at the problem of low accuracy of RT precipitation forecasting caused by inaccuracy of radar echo motion trend and intensity. The
self-attention mechanism and LSTM are combined to form a self-attention integrated recursive unit (ST-LSTM) to capture temporal and spatial
characteristics of radar echoes and improved forecasting accuracy 52. Guokun Lai et al. proposed an efficient deep learning framework: the Long
Short Term Time Series Network (LSTNet). Using CNNs and RNNs to make long- and short term forecasting on data. And accurately forecast the
load data of the next hour on the load power data set from 2012 to 2014 53. Jihua Ye et al. proposed an Attention Based Spatio-Temporal Graph
Convolutional Network considering External Factors (ABSTGCN-EF) for multi-step traffic flow prediction 54. Yuan Gao et al. proposed a combined
spatial-temporal Energy Harvesting (EH) and relay selection scheme, which improved the Energy Efficiency (EE) and spectrum utilization of Cogni-
tive Wireless Powered Networks (CWPNs) 55. Shun-Yao Shih et al. proposed a self-attention mechanism neural network (TPA-LSTM) to solve the
multivariate time series forecasting problem. This model incorporates attention mechanism in recurrent neural network (RNN), experiments on the
typical MTS dataset and the polyphonic music dataset and forecasts the results 56.

With the convenient acquisition of more and more load data and the mature application of various network models, the application of deep
learning models for RT load forecasting methods has become the most active research direction in this field.

3 METHODOLOGY

3.1 Data Cleaning Method Enhanced by Kalman Filter

The Kalman filtering method is a method that uses noisy original data sets to forecast the next data. Kalman filter is a linear random state space
composed of state estimation and observation estimation equation. The state estimation equation is used to forecast the next data based on the
previous, and the observation estimation equation is used to transform the data to a estimation vector. The state estimation equation part and the
observation estimation equation part are composed of equations (1) and (2).

θk = Aθk−1 +Bµk−1 (1)
zk = Cθk + vk (2)

The best state of the filter is evaluated using a regression algorithm based on a linear unbiased least mean square estimation criterion, which results
in the best estimated state of the filter. The Kalman filter model consists of two states, forecasting and update.

• forecasted State:
The forecasted state is to forecast the current state according to the best forecast value of the previous state:

θk = Aθk−1 +Bµk−1 (3)
At the same time, the forecasted state begins to update the forecasted covariance:

Pk = APk−1A
T +Q (4)

• Update State:
The update state first calculates the Kalman gain of the current state:

Kg = PkC
T /

(
CPkC

T +R
) (5)

Then modify the optimal forecasting state of the system in the k state θ′k :
θ′k = θk +Kg (zk − Cθk) (6)

Finally update the covariance p′k of the optimal forecasting state of the system in the k state:
p′k = (I −KgC)Pk (7)

I is the identitymatrix, and for the case of a singlemodel and singlemeasurement, I = 1. For this reason, the Kalman filter algorithm continuously
calculates the covariance of the optimal forecasting state and the updated state according to the system process. Through this autoregressive
method, the optimal value of the system is obtained, so as to achieve the filtering effect, reducing data error of the original data, and improving
the effect of later forecasting. .
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3.2 Dynamic Weighted Loss Function

Considering the uneven electricity consumption of household loads over different time periods. In this paper, a weighted MSE loss function is
used to optimise this type of problem. Specifically, the corresponding weight size weight (Xi) is assigned to each load according to its intensity of
electricity consumption. This is shown in formula (8). Region num:[Max (Xi)−Min (Xi)] /5.

weight (Xi)



1, Xi < Region num
2, Region num < Xi < 2 ∗ Region num
5, 2 ∗ Region num < Xi < 3 ∗ Region num
7, 3 ∗ Region num < Xi < 4 ∗ Region num
10, 4 ∗ Region num < Xi

(8)

After optimization, the weighted loss function can be defined as: mse weight = 1
n

∑n
1

[ weight (Xi) ∗
(
Xp

i −Xt
i

)2]

3.3 Codec Forecasting Method Using Spatio-temporal Characteristics

The proposed codec forecasting model based on Kalman filter and GCN (KGLSTM) can be shown in Figure. 2. This model is a two-branch com-
binatorial forecasting network composed of LSTM decoder-encoder and GCN. The network structure consists of a data cleaning module and a
feature extraction module. The input is the power load data XT

i−m+1, . . . , X
T
i for t time period of the nth room, first through the data cleaning

module, filter out invalid data and clean the data to get the power load data XT0
i−m+1, . . . , X

T0
i . Then the cleaned time feature information and

spatial feature information are extracted through the feature extraction module. Finally, the final load forecasting dataXP
i is obtained through the

feature fusion algorithm in the forecasting module.

Figure 2 KGLSTM network structure diagram.
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3.3.1 Data Cleaning Module

The data cleaning module is composed of data division and Kalman filtering. The data input module divided the input data set into three categories:
the first 1/2 is the training data, the second 1/4 is the test data, and the last 1/4 is the verification data. Then input the segmented data into the
Kalman filter module for data cleaning to filter out the wrong data, filled in the missing data, and smoothed the data curve, so as to achieve the
purpose of improving the forecasting accuracy.

3.3.2 Feature Extraction Module

The feature extraction module including two modules. The first module is the GCN feature extraction module, and the other is the decoding time
sequence feature information analysis and extraction module of the LSTM.

• The information extraction module of GCN
GCN is a deep learning network that deals with graph structure. In a graph structure, the node characteristics of each graph node are composed

of the characteristics of the node itself and the characteristics of neighboring nodes around it. The goal of graph neural is to learn the state
embedding of each node. Among them, the GCN, as an extension of the convolutional neural network, applies the convolution operation to the
graph structure to realize the feature extraction of the graph node information. At present, there are roughly two types of graph convolution
methods, one is based on Graph convolution in the spatial domain; the other is spectral-based graph convolution 57. In this paper, spectral-based
graph convolution is used to extract relevant sequence feature information. The main idea of spectrum-based graph convolution is to use Fourier
transform to convert the input graph signal data into spectral data, and finally perform the convolution operation. Among them, The Laplace matrix
L calculated in the spectral convolution process is represented as follows:

L = D− 1
2 (D −A)D− 1

2 = IN −D− 1
2 AD− 1

2 (9)
In formula (9), D represents the degree matrix in the process of operation, defined asDii =

∑
i Aij ·IN , IN is a unit matrix with a size ofN ∗N .

Then, decompose and extract the eigenvalues of L to obtain:
L = UAUT (10)

In formula (10),A is a diagonal matrix composed of the eigenvalues ofL. Among them,U = {u1, u2, . . . . . . , un} is composed of the eigenvectors
of L, corresponding to a set of orthogonal bases in the RN space.

The transfer formula between spectral domain convolution operations used in this paper is:
Xl+1 = GCN(A,X) = σ

(
D̃

1
2 ÃD̃

1
2 XlW l

) (11)
In formula (11),W l represents the learning parameter and σ is the activation function.Ã = A + IN means the method of performing self-

circulation operation on the adjacencymatrix A itself, by adding an identity matrix, the central node itself is also added to the convolution operation.
D̃ =

∑
i Ãij ;Xl ∈ RN . The structure diagram of the GCN based on the spectrum can be shown in Figure. 3.

Figure 3 Spectrum-based GCN Structure Diagram.
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Encoder-Decoder is a sequence-to-sequence model that can be combined with commonly used forecast time series models such as LSTM
and RNN. In recent years, the network model combining encoder decoder and time series model has been applied to all kinds of long and short
time series forecasting For example, Yao Qin et al 58. combined Encoder-Decoder with LSTM in DA-RNN to forecast indoor temperature. Mina
Razghandi and others 59 combined Encoder-Decoder and LSTM to establish a sequence-to-sequence forecasting model. Used to forecast the load
power consumption of various household appliances.

This paper combines Encoder-Decoder and LSTM to extract the short term load power consumption characteristics of each room. Taking LSTM
as the basic unit, the encoder and the decoder are connected to each other through a fully connected layer, and finally the extracted feature
information is restored to the dimension information output consistent with the input dimension. The model structure can be shown in Figure. 4.

Figure 4 Encoder-Decoder Structure Diagram Combined with LSTM.

Although the LSTM encoder-decoder is based on the overall feature extraction effect of time series data, but for some special value (maximum
value, minimum value) features can’t be accurately extracted, considering that the span of this data set is long for 2-3 years, to extract the features
in the data set accurately, This model adds the attention machine model to the multi-layer LSTM module to extract the salient features in the time
series data.

The calculation steps of the attention algorithm are as follows: First, calculating the attention distribution rule of input sequence InputX :

[x1, x2, . . . . . . , xn]. The second is to obtain the relevant weighted average information by calculating the input sequence InputX :

[x1, x2, . . . . . . , xn] according to the obtained attention distribution, by giving the input sequence InputX : [x1, x2, . . . . . . , xn] gives different
weights, and reflects the importance of various information in the sequence through the relationship between the weights.

In order to find information related to a certain feature in the sequence InputX : [x1, x2, . . . . . . , xn], first introduce a representation information
related to the task, denoted as Q, and pass the scoring function to calculate the correlation between each input quantity and Q in the input
sequence InputX : [x1, x2, . . . . . . , xn]. The common scoring functions are dot product operations, scaled dot product operations, and bilinear
operations, respectively, as shown in formula (18), formula (19), and formula (20):

Similarity (Q,Xi) = Q ·Xi = Xi
TQ (12)

Similarity (Q,Xi) =
XT

i Q
√
d

(13)
Similarity (Q,Xi) = Xi

TWQ (14)
Depending on the specific generation method, the numerical value range is also different. In step 2, a calculation method similar to Softmax is

introduced to perform numerical conversion on the score calculated in step 1. Generally, the following formula is used to calculate:
ai = Softmax

( Similarity (Q,Xi)i
)

=
eSimilarity (Q,Xi)i∑Lx

j=1 Similarity (Q,Xj)j

(15)
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Finally, the obtained attention distribution ai and the input sequence InputX : [x1, x2, . . . . . . , xn] are summarized to obtain:
attenation (X,Q) =

N∑
n=1

an · xn (16)
The algorithm structure of attention mechanism can be shown in Figure. 5.

Figure 5 The algorithm structure of the attention mechanism.

The initial inputXT
i , after Kalman filtering,XT0

i is obtained, and the cleanedXT0
i getXP1

i andXP2
i respectively through the space load feature

extraction layer of GCN and time load feature extraction layer of encoding and decoding LSTM, and linearly stitches XP1
i and XP2

i to obtain the
final integrated feature data XP0

i . Finally, according to the load feature XP0
i obtained by the spatial load feature analysis layer of the GCN and

the time load feature processing layer of the encoding and decoding LSTM, the input load data at the next moment is forecasted to achieve the
purpose of improving the forecasting effect.

3.4 Edge-cloud Computing Test Bed

Based on IoSG, In the Edge-Cloud computing energy system, each unit is installed with corresponding specifications of smart sockets. These smart
sockets are installed in each room of each unit and can accurately record the load power consumption of each room. the Edge-Cloud computing
energy system uses each building as an edge node and each room as a bottom node to collect load power data in each building. At the same time,
The collected load power data is transmitted to the cloud server for load monitoring and analysis 60. Finally, the collected load power consumption
data is stored in the mirror backup server for retention on the one hand. On the other hand, the forecasting data is obtained through the analysis
of the cloud server, and then uploaded to the data storage server through the cloud service. At the same time, for some warning data exceeding
the threshold value, the cloud server will directly send the warning signal to the smart socket to avoid risks 61. The cloud server consists of data
preprocessing and data forecasting modules. The data forecasting module obtains the corresponding forecasting data from the preprocessed load
data through the deep learning algorithm, and feeds it back to the corresponding users through the Web application interface. The frame diagram
of the Edge-Cloud computing analysis platform can be shown in Figure. 6.
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Figure 6 Framework diagram of Edge-Cloud computing analysis platform.

4 EXPERIMENT EVALUATION

4.1 Graph Generation Method for Spatial Correlation

For the feature extraction of load power data, researchers will consider the various influencing factors on the load power. The mainstream in-
fluencing factors are: season, temperature, number of users, and house location 62,63. Among these consideration factors, Few people consider
the relationship between houses and houses. This model starts from the relationship between the house A and the house B, and generates the
corresponding topological structure network for the relationship between the house A and the house B. It proves that the relationship between
the house A and the house B is also one of the influencing factors. Feature extraction, and finally extract the load power characteristics of each
house. First, calculate the pearson correlation coefficient between the house and the house in the input load power time series data, that is, the
formula(23):

R =

∑n
i=n

(
Pi − P̄

) (
Zi − Z̄

)√∑n
i=n

(
Pi − P̄

)2√∑n
i=n

(
Zi − Z̄

)2 (17)
Among them, P and Z are the variables that need to be brought into the calculation. The final result is a symmetric matrix K with dimension

N ∗ N . This paper takes 10 houses with building number 1 and room numbers from 1 to 10 as examples, and draws the pearson correlation
coefficient diagram between each house and the house, which can be shown in Figure. 7.

Considering that the obtained pearson correlation coefficient matrix K contains spontaneous node information, the pearson correlation co-
efficient matrix K is transformed into the adjacency matrix K′, by formula (24), the correlation formula is as follows, where I0 is the identity
matrix.

K′ = I0 − |K| (18)
After obtaining the adjacency matrix K′ between the house and the house, K′ is normalized by Laplacian to perform eigen-decomposition. The
specific process is shown in formula (25-27).

K̃ = K′ + IN (19)
Dii =

N∑
j

K̃ij (20)
K̂ = D

1
2 K̃D

1
2 (21)

The decomposed feature information is brought into formula (28) for convolution calculation:
Al+1 = GCN(K,A) = σ

(
D̃

1
2 K̃D̃

1
2 AlW l

) (22)
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Figure 7 Pearson correlation coefficient diagram between houses 1-1 to 1-10.

Finally, from No. 1 to No. 10, the obtained graph structure information of the 10 rooms can be brought into the GCN network for feature
extraction from the perspective of spatial correlation.

5 DATASETS

The data set chosen in this experiment is the daily power consumption data of 500 houses in a city from January 1, 2013 to December 31, 2017.
The data set contains daily power consumption data in some communities, with 1 to 50 buildings per building, each of which contains 10 houses.
The forecasting objects are the daily power consumption data of building number 1 and house number. The training set selects the first 3/5 data
in the load data set, the test set selects the next 1/5 data, and the verification set selects the last 1/5 data.

At the same time, in order to confirm the generality of this paper proposed method and the reliability of the data set, the data set of the 2012
global energy forecasting competition is also used in this experiment(https://www.kaggle.com/c/global-energy-forecasting-competition-2012-
load-forecasting),The training set selects the first 3/5 data in the load data set, the test set selects the next 1/5 data, and the verification set selects
the last 1/5 data.

6 EVALUATION INDICATORS

To verify the validity of the proposed model, this paper selects 6 types of indicators to quantify the relevant experimental results. On the one hand,
accuracy of the model is measured by using theR2(R2−Srore);RMSE;MAE andMSE. On the other hand, considering that peak forecasting
is very important to RT load forecasting, this paper proposes a new type of peak forecasting standard: (Peak − Score) to measure the accuracy
of peak forecasting by various models.

• Peak forecasting: Peak − Score

Because TS index cannot judge the validity of the forecasted value beyond the real data. Therefore, a new peak index Peak − Score has been
proposed, which combines the threat score (TS) and the coefficient of determination (R2). the specific formula can be seen in formula (29). Among
them, the setting range of θ is between 0.4-0.6.

Peak − Score = θ ∗R2 + (1− θ) ∗ TS (23)

6.1 Comparison Model

In order to verify the reliability of the model which proposed in this paper, four kinds of optimization models for LSTM: BiGRU, CNN-LSTM, LSTNet
and DARNN, are selected, and compared with the KGLSTM and weighted KGLSTM (W-KGLSTM) proposed in this paper.The forecasting results
of various models for the two data sets can be shown in Figure. 8 and Figure. 9. The first type of data set selects the five-year power load data of
a city with building number 1 and house number 1, and selects the data of the fourth year to forecast the data of the fifth year. The second type
of data set selects the four-year power load data of a city with building number 1 and house number 3, and selects the data of the third year to
forecast the data of the fourth year. The number of units in the LSTM layer of the proposed W-KGLSTM will affect the accuracy of prediction. By
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Table 1 MAE loss of W-KGLSTM based on various settings of LSTM units

Number 32 64 96 128 160
MAE 0.10591 0.13017 0.08675 0.08297 0.09360

Figure 8 Six types of RT load forecasting results based on a city’s five-year data.

conducting experiments with different number settings on the GEFCom2012 dataset, it was determined based on the MAE evaluation index that
the optimal prediction effect was achieved when the number of units was set to 128. Table 1 shows the results.

As shown in Figure. 8, the comparison effect between various models and KGLSTM is shown. From the prominent part of the red box, it is
forecasted that the peak power consumption is higher than 3000 Watt hours. The forecasting results of BiGRU, CNN-LSTM, DARNN and LSTNet
are not as good as those of KGLSTM. When the power consumption is lower than 1000 watts, the effect of KGLSTM is slightly lower than that
of DARNN and CNN-LSTM. There is obvious error in the forecasting effect of LSTNet, and the forecasting effect of BiGRU is the worst. On the
whole, the forecasting effect of KGLSTMhas obvious advantages over that of BiGRU, CNN-LSTM, DARNN and LSTNet. Meanwhile, while retaining
the advantages of KGLSTM, W-KGLSTM can better forecast the peak power consumption of users by weighting the power consumption of each
interval. After weighted processing, the forecasting effect of W-KGLSTM is better than KGLSTM for data with power consumption lower than
1000 watt hours and data with power consumption higher than 3500 watt hours. It is added that for the forecasting data of the first 150 days in
the red box, the performance of forecasting in W-KGLSTM is better than KGLSTM. For the 150 days forecasting data in the red box, W-KGLSTM
outperforms KGLSTM in forecasting. The reason is that KGLSTM combines the advantages of GCN and LSTM coder-decoder. Considering the
gradient vanishing problem of LSTM for mid-long term and long term load forecasting, resulting in the decline of forecasting accuracy.

As shown in Figure. 8, the comparison effect between various models and KGLSTM is shown. Throughout the load forecasting curves of various
models, the RT load forecasting of KGLSTM andW-KGLSTM is more accurate than the other four types of forecasting curves, and the accuracy of
various wave peaks is also higher. AlthoughDARNN can show high forecasting results for the peak value, the overall forecasting accuracy is low and
there is a high deviation from the real data. LSTNet, BiGRU and CNN-LSTM perform generally in both peak forecasting and precision forecasting.
Compared with the first data set, the forecasting effect on GEFCom2012 data set, W-KGLSTM is better than KGLSTM in all time periods because
comparing with the load value of GEFCom2012.the peak value of the first type of data set is much smaller than that of GEFCom2012. Although
the forecasting effect of LSTM is excellent in the short term, the forecasting effect is lower than the weighted forecasting model for data with high
load value. Finally, the evaluation indicators in Chapter 4.2 are introduced to show the performance differences of the models, as shown in Table 2.

.
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Figure 9 Six types of RT load forecasting results based on gefcom2012 data.

Table 2 Results of various evaluation indicators based on the two data sets

Model Five year dataset of a city GEFCom2012 dataset
(Peak − Score) (R2− Score) (TS) (RMSE) (MAE) (MSE) (Peak − Score) (R2− Score) (TS) (RMSE) (MAE) (MSE)

BiGRU64 0.45283 0.75707 0.25 0.10494 0.078029 0.0110 0.27719 0.69297 0.0 0.11886 0.10334 0.01413
CNN-LSTM65 0.48536 0.87367 0.22727 0.07556 0.05847 0.0057 0.37402 0.75505 0.12 0.10558 0.0898 0.01114
LSTNet53 0.48370 0.91453 0.16666 0.04289 0.03245 0.0018 0.49106 0.91264 0.21 0.06340 0.04873 0.00401
DA-RNN58 0.56581 0.95925 0.33333 0.06185 0.04590 0.0038 0.46538 0.43346 0.32 0.21808 0.20075 0.04755
W-KGLSTM 0.75371 0.96763 0.61111 0.03847 0.02996 0.00148 0.64340 0.82850 0.52 0.08883 0.07824 0.00789
KGLSTM 0.67833 0.98994 0.47058 0.02136 0.01723 0.00045 0.50731 0.96827 0.2 0.03820 0.03057 0.00145

Table 2 shows that for the first type of data set (five-year data set of a city), the indicators ofR2− score,MAE,MSE andRMSE of KGLSTM
are higher than those of BiGRU, CNN-LSTM, LSTNet and DARNN, and the TS and Peak−Score of KGLSTM are also greater than those of BiGRU,
LSTNet, CNN-LSTM and DARNN. At the same time,in peak forecasting, the weighted loss KGLSTM (W-KGLSTM) has shown obvious advantages.
Compared with KGLSTM, TS number improved by 14.052% and Peak− Score number improved by 7.538%. However, indicators of R2− score,
MAE, MSE and RMSE were sacrificed. From the analysis of specific data, R2 − score decreased by 2.231%; MSE increased by 0.103%;
RMSE increased by 1.711%;MAE increased by 1.273%. Comparing BiGRU, CNN-LSTM, LSTNet and DARNN,W-KGLSTM still has advantages.

For GEFCom2012 dataset, the indicators of R2 − Score, MSE, RMSE and MAE of KGLSTM are higher than those of BiGRU, CNN-LSTM,
LSTNet and DARNN. LSTNet ranks second among the four indicators.Meanwhile, the weighted loss KGLSTM (W-KGLSTM) still shows obvious
advantages in peak forecasting, but still sacrifices some indicators. Compared with KGLSTM, the specific data analysis shows that R2 − score

decreases by 13.977%;MSE increased by 0.644%;RMSE increased by 5.063%;MAE increased by 4.767%. However, TS number increased by
32%; Peak−Score increased by 13.609%. Compared with LSTNet, WKGLSTM has little difference inR2− score,MSE,RMSE andMAE, but
the peak forecasting accuracy is greatly improved. Compared with BiGRU, CNN-LSTM, DARNN. W-KGLSTM has advantages in various indicators.

According to the experimental results of two data sets and four types of comparison models, KGLSTM greatly improves the forecasting accuracy
in time series, but there are deficiencies in peak forecasting. Weighted KGLSTM (W-KGLSTM) sacrifices some index accuracy. However, it has
obvious advantages in peak forecasting, and its forecasting accuracy is also maintained at a high level.

7 ABLATION EXPERIMENT

To prove the validity of the model design, careful ablation experiments were carried out. Specifically, one component at a time is removed in the
KGLSTM framework. Finally, the weighted KGLSTM and KGLSTM are compared to confirm the importance of the weighted loss function. The
KGLSTM with different components removed is named as follows:

• KGLSTMw/oLSTM:
The KGLSTM network model does not have LSTM codec module.
• KGLSTMw/oGCN:



Qi Liu et al 13

The KGLSTM network model does not have a GCN network module.
• W-KGLSTM:

Use a weighted loss function on the KGLSTM network model.
The comparison of forecasting results of KGLSTMw/oLSTM, KGLSTMw/oGCN, W-KGLSTM and KGLSTM based on two types of data can be

shown in Figure. 10 and Figure. 11. The detailed evaluation index comparison table of KGLSTMw/oLSTM and KGLSTMw/oGCN are shown in Table
3. By observing various forecasting charts and index reference tables, it can be seen that:

• The red box in Figure. 10 shows that for the forecasting data of the first 150 days, the forecasting results of KGLSTM is greater than
that of W-KGLSTM, and for the forecasting data of the next 150 days. The forecasting results of W-KGLSTM is greater than that of
KGLSTM. Meanwhile, for the forecasting data of the first 150 days, forecasting results of KGLSTMw/oGCN on the peak is better than
KGLSTMw/oLSTM, but for the forecasting data of the next 150 days, the overall forecasting effect of KGLSTMw/oGCN on the peak is
worse than KGLSTMw/oLSTM. This is consistent with the evidence theory in Figure. 8.

• The purple dotted line in Figure. 10 indicates the lowest value of KGLSTMw/oGCN for trough forecasting. Considering that
KGLSTMw/oGCN adopts LSTM network structure and bidirectional LSTM encoder, and injects attention mechanism at the same time, in
terms of weight, pay attention to the part with higher value, resulting in lower forecasting accuracy for trough.

• The red dotted line in Figure. 10 indicates the lowest value of KGLSTMw/oLSTM for the trough value, because the GCN network will not
have the problem of gradient disappearance compared with LSTM during training, and there is no attention injection mechanism. Therefore,
compared with KGLSTMw/oGCN, KGLSTMw/oLSTM has higher forecasting accuracy in the trough.

• The green and yellow dotted lines in Figure. 10 represent the lowest value of KGLSTM and W-KGLSTM for trough value. The forecasting
of KGLSTMw/oLSTM for wave trough is optimized. in addition, combined with the dynamic weighting method, W-KGLSTM has the best
forecasting accuracy in the overall forecasting effect, whether for the forecasting of peak or trough.

• Figure. 11 shows that W-KGLSTM has more outstanding accuracy in load peak forecasting. Compared with KGLSTM, KGLSTMw/oLSTM,
KGLSTMw/oGCN, W-KGLSTM has the best peak forecasting effect. However, there is obvious jitter in some time periods, such as the
time period around the 250th day. At the same time,RT load forecasting accuracy of W-KGLSTM is also lower than that of KGLSTM. This
proves once again that W-KGLSTM sacrifices the overall forecasting accuracy and improves the accuracy of load peak, which shows the
effectiveness of dynamic weighting algorithm in peak forecasting.

Table 3 Results of Ablation Experiment

Model Five year dataset of a city GEFCom2012 dataset
(R2− Score) (TS) (Peak − Score) (MSE) (RMSE) (MAE) (R2− Score) (TS) (Peak − Score) (MSE) (RMSE) (MAE)

KGLSTMw/oLSTM 0.91939 0.0 0.36775 0.00144 0.03825 0.02948 0.08864 0.0 0.03545 0.04193 0.20478 0.17489
KGLSTMw/oGCN 0.82968 0.0 0.33187 0.00180 0.04245 0.03415 0.50166 0.2 0.32066 0.02293 0.15143 0.13356

W-KGLSTM 0.96763 0.61111 0.75371 0.00148 0.03847 0.02996 0.82850 0.52 0.64340 0.00789 0.08883 0.07824
KGLSTM 0.98994 0.47058 0.67833 0.00045 0.02136 0.01723 0.96827 0.2 0.50731 0.00145 0.03820 0.03057

8 CONCLUSION

This paper constructs a framework of Edge-Cloud computing energy system, which is used to monitor and analyze the load data collected by edge
devices. At the same time, for the task of RT forecasting, a new deep learning framework is proposed. This framework analyzes the characteris-
tics of RT data from the space-time dimension. One branch establishes the relationship between each other from the time dimension, with the
time axis as the label and the load data as the characteristic information. One branch establishes mutual dependence from the spatial dimension
and takes the house location as the correlation. Taking the five-year load data of a city and the data set of the 2012 global energy forecasting
competition as an example, the forecasting of KGLSTM is verified. Experiments indicate that KGLSTM is able to forecast load data of the previous
year accurately. Finally, through the weighted processing of KGLSTM, although the weighted KGLSTM sacrifices some experimental accuracy, the
weighted KGLSTM can make a higher precision forecasting effect in peak forecasting.
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Figure 10 Comparison chart of Ablation Experiment Based on 5-year data set of a city.

Figure 11 GEFCom2012 ablation data set comparison.
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