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Abstract—With the rapid development of deep learning tech-
nology, many SAR target recognition algorithms based on convo-
lutional neural networks have achieved exceptional performance
on various datasets. However, conventional neural networks
are repeatedly iterated on a fixed dataset until convergence,
and once they learn new tasks, a large amount of previously
learned knowledge is forgotten, leading to a significant decline
in performance on old tasks. This paper presents an incremental
learning method based on strong separability features (SSF-IL) to
address the model’s forgetting of previously learned knowledge.
The SSF-IL employs both intra-class and inter-class scatter to
compute the feature separability loss, in order to enhance the
linear separability of features during incremental learning. In
the process of learning new classes, an intra-class clustering loss
is proposed to replace the conventional knowledge distillation.
This loss function constrains the old class features to cluster
around the saved class centers, maintaining the separability
among the old class features. Finally, a classifier bias correction
method based on boundary features is designed to reinforce the
classifier’s decision boundary and reduce classification errors.
SAR target incremental recognition experiments are conducted
on the MSTAR dataset, and the results are compared with
several existing incremental learning algorithms to demonstrate
the effectiveness of the proposed algorithm.

Index Terms—incremental learning, SAR target recognition,
feature separability, intra-class clustering, bias correction.

I. INTRODUCTION

SYNTHETIC Aperture Radar (SAR) is capable of acquir-
ing high-resolution images in almost any weather and at

any time of day [1]. Recently, automated target recognition of
SAR images based on neural network models have achieved
remarkable performance on various datasets [2], [3], [4]. How-
ever, conventional neural networks are “closed” to the dataset.
The learning process of neural networks involves repeated
iterations on a fixed training set until convergence, ultimately
enabling them to classify all classes in the current task [5],
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[6]. Once learning a new task, these models will encounter
”catastrophic forgetting”, which results in a significant decline
in performance on the old tasks [7]. In practical applications,
SAR images of various targets are usually obtained through
multiple detections and batches, rather than all at once [8],
[9], [10]. This necessitates that classification models are able
to process new samples and even learn new classes while pre-
serving previously learned knowledge. Currently, conventional
neural networks cannot meet these practical requirements.

Driven by the demand to handle dynamic data in real-world
scenarios, researchers have turned their attention to the field
of incremental learning. Fig. 1 illustrates the general process
of class incremental learning algorithms, in which the neural
network is first trained on a base task with several classes as
the base model, followed by the arrival of new tasks containing
new classes over time. Then the new model is initialized with
the previous model and updated to adapt to new classes. As
new tasks arrive sequentially, the neural network can recognize
an increasing number of classes, thereby achieving continuous
learning.
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Fig. 1. Incremental learning algorithm flowchart.

Currently, the core challenge faced by incremental learning
algorithms is to adapt to new data while preserving previously
learned knowledge [11]. The main reasons for the performance
degradation on old tasks include weight drift, inter-task con-
fusion, and data imbalance [10], [12], [13]. Neural network
weights are iteratively trained to achieve the optimal solution
for the current task. While learning a new task, the weights
related to old tasks are updated to adapt to new data, leading
to a decline in performance on previous tasks. Besides, classes
in different incremental learning tasks may be quite similar,
which makes it difficult for the model to fully distinguish
between them. Data imbalance refers to the situation where,
due to the constraints of memory and data security, complete
old data is inaccessible in the process of incremental learning,
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and new data outnumbers the old data. When learning on
imbalanced data, the model often exhibits a classification bias
towards the majority classes. For incremental learning, this
bias manifests as a tendency for the model to predict test
samples as newly learned classes, which is referred to as ”task-
time bias” [13], [14].

To reduce the forgetting of previously learned knowledge,
various incremental learning algorithms have employed differ-
ent methods, which gives rise to a new problem known as the
”stability-plasticity dilemma” [15]. In this dilemma, the ability
of a model to preserve learned knowledge corresponds to its
stability, and the ability to learn new knowledge corresponds
to its plasticity. For incremental learning algorithms, sorely
concentrating on the acquisition of new knowledge leads
to catastrophic forgetting, while predominantly preserving
learned knowledge impedes the learning of new tasks [12].
Thus, in practical algorithm design, the improvement of sta-
bility and plasticity often conflicts, making it challenging to
strike a balance between the two.

Additionally, according to [10], the inter-task confusion
discussed above is a prominent issue in SAR target incremen-
tal recognition. The same target appears different at varied
azimuths, while targets of different classes tend to be similar
at the same azimuth. As a result, samples from the same class
exhibit relatively large intra-class differences, whereas samples
from different classes show exactly the opposite characteristic.
This makes it more challenging for neural networks to extract
features that are easy to classify, resulting in the confusion
between different classes. Therefore, we directly focus on
the separability of features and propose a novel incremental
learning method to address the aforementioned problems. The
contributions of this paper are as follows:

(1) A feature separability enhancement method based on
intra-class scatter and inter-class scatter. By designing a feature
separability loss that minimizes the intra-class scatter and
maximizes the inter-class scatter, features of each class are
brought closer to their corresponding centers while different
classes are separated from each other. As a result, the spatial
gap between different classes is enlarged, which reduces the
feature confusion.

(2) A method for preserving learned knowledge based
on intra-class clustering loss. By constraining the old class
features with the intra-class clustering loss during model
updating, the proposed algorithm keeps all old class features
clustered around their corresponding centers, thus maintaining
the feature separability between different classes and avoiding
catastrophic forgetting of learned knowledge.

(3) A classifier bias correction method based on boundary
features. By saving a predetermined number of boundary
features of old classes, the classifier parameters are fine-
tuned using these features after each new task is learned.
This approach enables the classifier to modify the decision
boundary of old classes and mitigate the classification bias
towards new classes, which improves the overall SAR target
recognition performance.

II. RELATED WORKS

A. Incremental Learning

In recent years, with the rapid development of deep learn-
ing technology, incremental learning has received widespread
attention. Unlike traditional models built on static tasks, in-
cremental learning focuses on dynamic tasks, which require
dealing with more complex scenarios, such as the continuous
arrival of new data, the temporary storage of old data, and
the need for efficient computation [12]. Therefore, incremental
learning algorithms need to meet additional requirements.
According to [16], these requirements are as follows:

(1) The model should be trainable on data streams.
(2) The model should be able to distinguish all previously

learned classes at any stage.
(3) The overall computational resources consumed by the

model should be controlled within a relatively reasonable
range instead of increasing without limitation as the number
of learned classes increases.

Currently, researchers have proposed various incremental
learning methods from different perspectives to address the
aforementioned needs. The existing incremental learning algo-
rithms can be classified into three categories: regularization,
data replay, and bias correction [17].

Regularization aims to restrict the direction of model up-
dates so that the updated model maintains good classification
performance on old classes [7]. Knowledge distillation is
the most widely used regularization method in incremental
learning. The model trained on old classes is used as the
teacher network to transfer the classification knowledge to
the new model. Based on the knowledge distillation, many
effective regularization methods have been developed in recent
research [18], [19], [20], [21], [22]. The Less Forgetting
Learning proposed by Jung et al. [20] preserves previously
learned knowledge by freezing the last layer of the model
and penalizing the differences between the activations before
the classifier. Douillard et al. [21] designed pooling output
distillation to preserve previously learned knowledge. The
calculation of pooling output distillation loss not only uses
the output logits, but also utilizes the pooling results of the
feature maps in intermediate layers of the network to further
preserve classification knowledge of old classes. Lee et al. [22]
presented global distillation, which utilizes external data to dis-
till knowledge from previous tasks. In SAR target incremental
recognition tasks, Li et al. [10] proposed an incremental learn-
ing method based on anchored class centers to reduce intra-
class differences and increase inter-class differences, helping
the model distinguish between new and old classes. Tang et
al. [15] put forward a knowledge distillation framework based
on multiple old task models to reduce cumulative errors in
incremental learning and better preserve learned knowledge.

Data replay methods save a small number of samples
for each old class, which are used to ”review” the learned
knowledge while learning new tasks [12]. Many studies have
proven that data replay is a simple and effective way for
mitigating the forgetting of learned knowledge [23], [24],
[25], [26], [27]. The key to data replay lies in the selection
method of exemplars. Rebuffi et al. [16] proposed an exemplar
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selection method based on the herding algorithm. Dang et
al. [26] put forward an exemplar selection method based on
the class boundaries for SAR images, with a priority given
to samples located in overlapping and marginal regions. In
addition, Shin et al. [27] introduced a generative adversarial
network to generate old class samples for replay, further
reducing the algorithm’s dependence on old data to address
stricter constraints of memory and data security.

Bias correction aims to improve task-time bias in incre-
mental learning for better recognition performance. Existing
research mainly includes methods such as data balancing
and weight correction [28], [29], [30], [31]. Belouadah and
Popescu [14] proposed to rectify the network predictions based
on the saved certainty statistics of previous task predictions
to counteract the impact of task-time bias. Castro et al. [29]
introduced an additional balanced training phase at the end
of each incremental learning phase to prevent task-time bias.
Zhao et al. [30] put forward to balance the weights of the
classifier parameters to mitigate classification bias. For SAR
images, Huang et al. [31] introduced a weight correction
method based on a memory-enhanced module to extract typ-
ical representations from old class weights and balance the
inductive bias between new and old classes.

B. Feature Distribution in Incremental Learning

When performing target recognition tasks, neural networks
typically use linear classifiers to classify extracted high-
dimensional features, which enables the training process to
be regarded as learning to map images of different classes to
linearly separable features. Similarly, preserving the knowl-
edge of old classes in incremental recognition can also be
considered as maintaining the linear separability of old class
features. Consequently, the strength of linear separability of
features during incremental learning process is an important
factor affecting the recognition performance.

Linear separability is a spatial distribution property of point
sets. In two-dimensional space, if there exists a line on the
plane such that one point set lies on one side of the line
while the other point set lies on the other side, then these two
sets of points are linearly separable. The linear separability of
multiple point sets is more complex. For multiple point sets
in a two-dimensional plane, if there exists a set of lines that
can separate the different sets of points, then these point sets
are linearly separable. This property can be extended to higher
dimensions by using hyperplanes instead of lines [32], [33].

Moreover, there are various cases of linear separability. The
difficulty of classifying linearly separable point sets belonging
to different cases also varies. Fig. 2 shows two common
scenarios of linear separability, but there is a significant
difference between these two situations. Specifically, the three
classes in Fig. 2(a) only satisfy the basic requirement of linear
separability: there exists a set of lines that can completely
separate different classes. On the other hand, the classes in
Fig. 2(b) satisfy an additional condition: any class is linearly
separable from all other classes. This means that the discussion
about the classification boundary between the red cluster and
the green cluster in Fig. 2(a) cannot be separated from the

blue cluster, as the blue cluster cannot be linearly separated
from both the red and green clusters simultaneously. All three
classes must be considered as a whole. In contrast, each class
in Fig. 2(b) can be considered individually in terms of a shared
classification boundary with all remaining classes, without
affecting the classification between the remaining classes.
Therefore, the scenario depicted in Fig. 2(a) has only one
possible classification, making it a more challenging situation,
while the scenario shown in Fig. 2(b) has multiple classifi-
cation options, making different classes easier to distinguish.
By quantitatively measuring the linear separability of high
dimensional features extracted by the feature extractor, we
can gain insight into the difficulty level of classifying these
features and help the model extract features with stronger
linear separability. However, we find it difficult to provide a
quantitative description of linear separability, both in terms of
its definition and classification strategy.

(a) (b)

Fig. 2. Comparison of two linearly separable scenarios. (a) Linearly separable
case with only one possible classification. (b) Linearly separable case with
multiple classification options.

Although it is currently difficult to quantitatively measure
linear separability, it can be inferred that the linear separability
in the case shown in Fig. 2(b) surpasses that in Fig. 2(a). The
main difference between the two is the relative position of
the cluster centers and the aggregation degree of each cluster
towards the corresponding center. In Fig. 2(b), the centers of
the point clusters are further apart from each other and the
degree of aggregation towards the center is higher. Therefore,
by controlling the relative positions of the centers of different
classes and the intra-class feature distribution of each class,
the feature extractor can extract a set of features with strong
linear separability.

III. METHODS

The structure of incremental learning based on strong sepa-
rability features (SSF-IL) is illustrated in Fig. 3. The algorithm
mainly consists of three parts: the input data streams, the
model updating strategy, and the neural network model. The
neural network model comprises a feature extractor composed
of convolutional layers and a classifier composed of fully
connected layers.

The model is first trained on a base task. The feature extrac-
tor maps input images into features of 64 dimensions, and the
classifier computes the predictions. To optimize the model,
the cross-entropy loss with label smoothing is used as the
classification loss. Both intra-class and inter-class scatter of the
features are calculated to obtain the feature separability loss,
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Fig. 3. The structure of the proposed SSF-IL algorithm.

which reinforces the linear separability of different classes.
After training, exemplar images are selected with the herding
algorithm, and the feature mean of each class is calculated as
the class center and saved. The boundary features, i.e., features
with the maximum Euclidean distance from the class centers,
are also saved. When learning new classes, the neural network
takes exemplar images and new class images as input data. In
addition to the cross-entropy loss and the feature separability
loss, an intra-class clustering loss is designed to preserve the
learned knowledge. It constrains the old class features to be
around the fixed class centers by reducing the Euclidean dis-
tance between them, thus maintaining the linear separability of
old class features and avoiding catastrophic forgetting. Finally,
the saved boundary features are used to fine-tune the classifier
parameters to correct the decision boundary and reduce the
classification bias towards new classes. The proposed methods
and the overall implementation process of the algorithm are
described in detail in the following subsections.

A. Feature Separability Loss

In classification problems, the linear separability of high-
dimensional features can significantly affect the results. By
leveraging the neural network to map the input images to
strongly linearly separable features, the confusion between
different classes can be effectively reduced. According to [34],
we utilize the eigenvalues of the feature covariance matrix to
describe the dispersion of the features.

Taking two-dimensional data as an example, Fig. 4 shows
the relationship between the spatial distribution of the features
and the eigenvalue-eigenvector pairs of feature covariance
matrix. The covariance matrix of two-dimensional data is also
two-dimensional and has two sets of eigenvalue-eigenvector
pairs. In Fig. 4, the cluster of points is the two-dimensional
data, and its two sets of eigenvalue-eigenvector pairs are

(
λ1,

⇀
q 1

)
and

(
λ2,

⇀
q 2

)
respectively. Assuming λ1 > λ2 and

starting from the center of the two-dimensional data, with
the orientation of the eigenvectors as the direction and the
magnitude of the eigenvalues as the length, we draw two
vectors: λ1∣∣∣⇀q 1

∣∣∣⇀
q 1 and λ2∣∣∣⇀q 2

∣∣∣⇀
q 2, which correspond to the red and

the green arrows. It can be seen that the eigenvectors point
in the directions of the spatial dispersion of the data, and
the magnitude of the corresponding eigenvalues is positively
correlated with the degree of dispersion in those directions.
Hence, we employ the magnitude of eigenvalues of the covari-
ance matrix to quantitatively describe the dispersion degree of
high-dimensional features.
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Fig. 4. The relationship between the eigenvalue-eigenvector pairs of the
covariance matrix and the data distribution.

(1) intra-class scatter
For high-dimensional features belonging to the same class,

the eigenvalues of the covariance matrix represent the disper-
sion degree of the features in all directions. We only need to
focus on the direction with the largest dispersion to control
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the intra-class distribution. Thus, the largest eigenvalue of the
covariance matrix is used as the intra-class scatter.

Assuming that Xi = {x1, x2, · · · , xNi
} are samples of class

yi and fθ : χ → Rn is the neural network, we first calculate
the feature mean µi of each class as the class center:

µi =
1

Ni

Ni∑
j=1

fθ (xj) (1)

Then, the feature covariance matrix Si for each class is
calculated respectively:

Si =
1

Ni − 1

Ni∑
j=1

(fθ (xj)− µi) (fθ (xj)− µi)
T (2)

We add all covariance matrices together to obtain the total
covariance matrix Sw:

Sw =

C∑
i=1

Si (3)

where C is the current total number of classes. Finally, the
maximum eigenvalue λw of the total covariance matrix is
calculated as the total intra-class scatter.

(2) inter-class scatter
During the process of minimizing intra-class scatter, the fea-

tures belonging to the same class gradually converge towards
the class center. By simply keeping class centers away from
each other, the overall distance between different classes can
be increased. Therefore, the inter-class scatter is calculated
using the center of each class.

Assuming that the set of feature means calculated using
Eq.1 is denoted as {µi}, the covariance matrix Sb of {µi} is
calculated as:

Sb =
1

C − 1

C∑
i=1

(µi − µ̄)(µi − µ̄)
T (4)

where C is the total number of classes and µ̄ is the mean of
{µi}:

µ̄=
1

C

C∑
i=1

µi (5)

Similarly, the magnitude of each eigenvalue of Sb represents
the spatial dispersion of all class centers in the direction
of corresponding eigenvector. According to [34], for the C
classification problem, the (C − 1)th largest eigenvalue λb is
used as the inter-class scatter.

By combining the intra-class scatter and the inter-class
scatter, a loss function is constructed to enhance the feature
separability:

Lseparability =
√
λw + 1

/√
λb (6)

The objective of this loss function is to minimize intra-class
scatter λw and maximize inter-class scatter λb, hence λb is
placed in the denominator. Since λw and λb have the same unit
as the square of the features, they are square rooted to avoid the

influence of squaring on optimization. Optimizing the feature
separability loss ensures that centers of different classes are
far apart from each other and the features belonging to the
same class are gathered towards the center. As a result, high-
dimensional features with strong separability are obtained.

B. Intra-class Clustering Loss

Currently, most incremental learning algorithms use conven-
tional knowledge distillation to transfer classification knowl-
edge of the old model to the new model. The logits output
by the old model are used as soft labels to calculate the
distillation loss together with the predictions of the new model.
Optimizing the distillation loss function can narrow the gap
between the outputs of the old and new models for old class
samples, thereby preserving the classification ability for old
classes on the new model. However, simply constraining the
logits can pose a challenge in balancing the model’s plasticity
and stability. Strong constraints may effectively preserve the
learned knowledge, but also result in the new model’s output
excessively resembling that of the old model, making it
difficult to adapt to new classes, which is unacceptable for
incremental learning algorithms. Loosening the constraints can
facilitate better adaptation to the new knowledge, but may
also cause significant forgetting of the previously learned
knowledge. This contradiction makes conventional knowledge
distillation unable to meet the needs of incremental learning
models.

To achieve a better balance between the model’s plasticity
and stability in incremental learning, we eschew conventional
knowledge distillation and instead devise an objective function
that forces the features of the old classes to be around their
saved class centers to preserve the model’s classification ability
for the old classes. With the feature separability loss as a
constraint, the saved centers of old classes exhibit strong
linear separability, enabling the features constrained around
them to be distinguished from features of other classes. Such
constraint does not necessitate consistency in the output of
the old and new models for old class samples, but rather
restricts the deviation range of old class features. This not
only provides strong constraints for old classes to reduce the
forgetting of learned knowledge, but also prevents the outputs
of the new model from converging with those of the old model.
As a result, the stability and plasticity of the model are well
balanced.

We refer to the designed objective function as intra-class
clustering loss. During a certain incremental learning phase,
the new class is denoted as yi, with training samples Xi =
{x1, x2, · · · , xNi

}. The neural network model fθ : χ → Rn

trained in this phase is used to extract features of the training
samples, and the feature mean µi of class yi is calculated and
saved as the class center with Eq.1. Then the average distance
between the features and the class center is calculated as:

davgi =
1

Ni

Ni∑
j=1

∥fθ (xj)− µi∥22 (7)

In the next incremental learning phase, the old class cen-
ters saved in all previous learning phases are denoted as
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{µ1, µ2, · · · , µt}. The average distance of each old class
between the features and their corresponding class center is
{davg1 , davg2 , · · · , davgt }. Samples from old classes are denoted
as ϕi = {e1, e2, · · · , ek} , i = 1, 2, · · · , t, and the current
neural network model is f ′

θ : χ → Rn. Around each old
class center, a target area for feature aggregation is set with
a radius of davgi /γ. γ is a hyperparameter, where the larger it
is, the smaller the target area, and the stronger the constraint
on features. The distance between the features of old class
samples and the target area is calculated as:

di =

k∑
j=1

(
∥µi − f ′

θ (ej)∥
2

2 −
davgi

γ

)
, i = 1, 2, · · · , t (8)

As the sum of the squared Euclidean distances between all
features of class yi and the target area, di equally reflects the
proximity of each feature belonging to class yi to its center.
Therefore, it can be regarded as a measure of the overall
aggregation level of class yi. We use the sum of di as the
intra-class clustering loss of all old classes:

Lcluster =

√∑t

i=1
di (9)

The sum of all di equally reflects the proximity of all old class
features to their corresponding centers. Since the unit of di is
the same as that of the square of the features, the square root
is taken after the summation to avoid the influence of squaring
on optimization.

Fig. 5 illustrates the process of the intra-class clustering.
As the model learns new classes, parameters deviating from
the optimal solution for old classes leads to the feature
confusion between different classes. The intra-class clustering
loss pulls old class features towards the saved class centers
and ultimately constrains the features to be around the class
centers. In this way, the linear separability of old class features
is well maintained during model updating, which avoids the
feature confusion between different classes.

Intra-class Clustering 

Loss

center of class 1

feature drift caused by model updating final feature distributionfeatures converge to the target area 

features of class 1

center of class 2

features of class 2

constrain

Fig. 5. Intra-class clustering process.

C. Classifier Bias Correction based on Boundary features

Bias correction aims to mitigate the classification bias of
the model towards new classes. Existing incremental learning
algorithms have proposed several solutions to this problem.
For example, samples are taken from new classes and com-
bined with old class exemplars to create a balanced training
set for parameter fine-tuning after model updating [13], [29].
The relative importance of old and new classes is balanced

by weighting the classifier parameters related to the new
classes [30]. However, reusing exemplar samples during the
fine-tuning stage after training cannot supplement the model
with additional knowledge of old classes, and weighting the
parameters related to new classes may affect the model’s
classification performance for them. These methods do not
address the needs of both old and new classes.

We propose a classifier bias correction method based on
boundary features to address these problems. Our algorithm
saves a fixed number of boundary features to correct the
classifier parameters. The bias towards new classes is essen-
tially the confusion between the classification boundaries of
old and new classes. By fine-tuning the classifier parameters
with boundary features from both old and new classes, the
decision boundary of the classifier is strengthened for both
types of classes. Additionally, our algorithm constrains old
class features around fixed class centers through the intra-class
clustering loss, minimizing the feature drift. As a result, the
saved boundary features of old classes continue to describe the
boundary of the corresponding class even after the model is
updated. Furthermore, features extracted by the neural network
are one-dimensional tensors, so saving a small number of
boundary features hardly increases the storage cost.

After each incremental learning phase, the trained neural
network model fθ : χ → Rn is used to extract features from
the training set Xi = {x1, x2, · · · , xNi

} of class yi, and the
feature mean µi is calculated as the class center with Eq.1.
Assuming that the total number of boundary features to be
saved is M , and the total number of learned classes is C, we
select m features with the maximum Euclidean distance from
the class center as the boundary features of class yi, where
m = M/C. When the model needs to save the boundary
features of a new class, the number of saved boundary features
for each class is updated to m′ = M/C

′ based on the current
total number C ′ of learned classes, and the closest m − m′

boundary features to the class center are removed.
After the updating of boundary features, the current feature

extractor parameters are frozen, while the classifier parameters
remain trainable. The saved boundary features are used to
fine-tune the classifier parameters. We use a fully connected
layer as the classifier. Boundary features of each class are
directly input into the classifier to calculate the output logits
and the cross-entropy loss. After multiple iterations, a modified
classifier is obtained.

D. Selection and Management of Exemplars

In incremental learning, saving a small number of samples
for each class as exemplars is a simple and effective way to
overcome the catastrophic forgetting problem. To implement
this, we adopt the exemplar selection and management method
proposed by iCaRL [16], which has proven successful in many
other algorithms.

The selection of exemplars is mainly divided into two steps.
The first step is to calculate the number of samples to be
saved for each class based on the current number of learned
classes. Assuming that the total number of exemplar samples
is fixed at K and the number of current classes is C, the
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number of samples saved for each class is m = K/C. The
second step is to calculate the feature mean for each class and
select samples based on the Euclidean distance between the
extracted features and the feature mean. The training set for
class yi is Xi = {x1, x2, · · · , xNi

}, and the feature extractor
is fθ : χ→ Rn. The feature mean µi for class yi is calculated
with Eq.1.

Exemplar samples of class yi are denoted as Ei =
{e1, e2, · · · , em}. The operation to select m samples is as
follows:

eq = argmin

∥∥∥∥∥µi −
1

q

[
fθ (x) +

q−1∑
p=1

ep

]∥∥∥∥∥ (10)

where eq is the qth selected sample, and x represents samples
in Xi. The above process iteratively selects samples that make
the feature mean of the current exemplar closest to that of
the corresponding class. Samples selected earlier have features
that are closer to the class feature mean, which makes them
more representative of the class. Therefore, the importance of
different samples is reflected from the selection order. When
the exemplars of new classes need to be established, the
number of samples for each class is updated to m′ = K/C ′,
where C ′ is the current total number of classes. All exemplars
of old classes remove the last selected m − m′ samples to
maintain a fixed number of exemplar samples.

E. Algorithm Implementation

The incremental learning algorithm proposed in this paper
jointly addresses the catastrophic forgetting of the model from
three aspects. It enhances feature separability by minimizing
the intra-class scatter and maximizing the inter-class scatter.
The intra-class clustering maintains the separability of old
class features during model updating. The classifier bias
correction based on boundary features mitigates the model’s
classification bias. Algorithm 1 describes the overall imple-
mentation process of the proposed algorithm.

It is worth noting that the proposed algorithm randomly
selects samples from each new class to construct a balanced
dataset along with the exemplars in each iteration. The sam-
pling process ensures that each class contributes relatively
equally when computing the feature separability loss. It also
effectively avoids situations where certain batches contain
only samples from the new classes, which would prevent the
calculation of the intra-class clustering loss. The parameters α
and β in the total loss function are scale factors to control the
strength of feature separability loss and intra-class clustering
loss, respectively.

IV. EXPERIMENT

To demonstrate the effectiveness of the proposed algorithm,
we carried out class incremental learning experiments on the
MSTAR dataset. The dataset and the experimental settings
are described in Section IV-A and IV-B. The analysis of
experimental results includes the comparison with existing
algorithms, ablation experiments, replay data analysis and time
consumption.

Algorithm 1: Implementation Process of SSF-IL.
Input: χ = (Xs+1, · · · , Xs+t), ε=(E1, · · · , Es) //

new class data, exemplar sets
Input: Θs, M=(µ1, · · · , µs) // current model, old

class centers
Input: Ω=(ω1, · · · , ωs) // boundary features of old

classes
Output: Θs+t // model trained on t new classes

1 for (x, y) in χ do
2 for epoch in epochs: do
3 φ← Xs+i + ε // randomly select a subset from

Xs+i to form a balanced train set with ε;
4 f, o = Θs+t (φ) // features f = (fold, fnew),

predictions o;
5 compute cross-entropy loss with (o, y) as the

classification loss LC ;
6 compute separability loss Lseparability with f ;
7 compute intra-class clustering loss Lcluster

with (fold,M);
8 Ltotal = LC + αLseparability + βLcluster

9 end
10 select exemplars from Xs+i and update ε;
11 select boundary features of Xs+i and update Ω;
12 fine-tune the classifier with the updated Ω
13 end

A. Data Set

The MSTAR dataset is derived from the Motion and Sta-
tionary Target Acquisition and Recognition Program, jointly
sponsored by the Defense Advanced Research Projects Agency
and the Air Force Research Laboratory. The dataset was
collected by high-resolution synthetic aperture radar with X-
band frequency and HH polarization [35]. It contains ten
classes of ground mobile targets, with each class containing
SAR images of azimuth angles from 0 degrees to 360 degrees
at two different elevation angles of 15 degrees and 17 degrees.
In practice, the images at 17-degree elevation angle are usually
used as the training set and the images at 15-degree elevation
angle are used as the testing set. The number of samples in
each class is summarized in Table I.

TABLE I
SAMPLE STATISTICS OF THE MSTAR DATASET

Target Type Training Set(17°) Testing Set(15°)

ZSU234 299 274
2S1 299 274

BRDM2 298 274
D7 299 274

BMP2 233 195
ZIL131 299 274
BTR60 256 195
BTR70 233 196

T62 299 273
T72 299 274

Total 2747 2425
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Fig. 6. Visualization of SSF-IL’s feature representation during incremental learning.

B. Experimental Setup

ResNet-18 [36] is utilized as the backbone for the experi-
ments, and the algorithm is implemented in the Pytorch frame-
work [37]. The model is trained using the Adam optimizer
for 80 epochs, with an initial learning rate of 0.0005 which is
halved every 25 epochs. During the classifier correction phase,
the model is iterated 20 times with a learning rate of 0.00025.
The feature extractor extracts high-dimensional features of 64
dimensions. Both the total number of exemplar samples and
the total number of boundary features are set to 200. In the
intra-class clustering loss function, γ is set to 5. In the total
loss function, α and β are set to 0.8 and 0.75.

The size of the images in the MSTAR dataset is uniformly
set to 128*128, and the batch size of training is set to 128.
The images are standardized and then input into the neural
network model. The model is trained in three incremental
learning scenarios: 10-phase, 5-phase, and 2-phase, with the
number of new classes learned by the model in each phase set
to 1, 2, and 5, respectively. After training, the model is tested
on all previously learned classes, and the testing results of all
models are displayed through classification accuracy curves
and tables.

C. Comparison Methods

We compare the proposed SSF-IL with some existing in-
cremental learning algorithms to demonstrate the classification
performance. The comparative algorithms are as follows:

• JointTraining trains the model on all samples of the old
and new classes in each learning phase, and can therefore
be considered as the upper limit of performance of all
incremental learning algorithms.

• LUCIR [13] applies cosine normalization to the features
and classifier weights, and proposes less forget loss and
rank margin loss to help distinguish different classes.

• iCaRL [16] is a classical replay-based incremental learn-
ing algorithm, which utilizes distillation loss and exem-
plars to preserve the learned knowledge.

• EEIL [29] samples data from each new class to create a
balanced dataset with exemplars. The model is modified
at a small learning rate to correct its bias towards new
classes.

• PODNet [21] proposes to perform pooling operations on
intermediate feature maps in different dimensions and

calculate distillation loss using the pooled feature maps
of the old and new models.

• DER [38] proposes a new feature representation called
”super feature” that allows freezing the dimensions re-
lated to old classes and increasing new dimensions to
adapt to new classes.

• FOSTER [39] divides incremental learning process into
two stages: boosting and compression. In the boosting
stage, new feature extractors are expanded and merged
with the old ones to preserve old class knowledge while
learning new knowledge. In the compression stage, the
expanded model is compressed with knowledge distilla-
tion to limit the model size.

• AFC [40] proposes a novel knowledge distillation method
that uses the changes of old class feature maps at each
layer to calculate the loss function.

D. Experimental Results

Following the settings in Section IV-B, we conducted incre-
mental learning experiments on the MSTAR dataset. Accord-
ing to the different numbers of new classes learned by the
model in each phase, the experimental scenarios are divided
into 10-phase, 5-phase, and 2-phase incremental learning. In
the 5-phase incremental learning scenario, the model initially
learns two classes and then proceeds to learn two new classes
in each subsequent phase. The experimental process for the
other two scenarios is similar to that of the 5-phase incremental
learning.

Fig. 6 shows the t-SNE [41] visualization of the feature
representation as the SSF-IL sequentially learns new classes.
The feature distribution at each phase under the 5-phase
scenario is respectively demonstrated in (a)-(e), with different
colored clusters representing the features of different classes,
and the class centers are marked with stars. The visualized
feature distribution demonstrates that, under the constraint of
feature separability loss, the features of different classes are
clustered around their respective class centers while the class
centers are far apart from each other, leading to a large spatial
gap between different feature clusters and strong separability.
When the model updates parameters to learn new classes,
the intra-class clustering loss ensures that the features of old
classes are still distributed around the corresponding class
centers, despite some deviation. Since the features of new
classes are far from old classes due to the feature separability
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loss, old class features clustered around the fixed class centers
can maintain good separability from other classes. Further-
more, the classifier correction at each phase provides more
reasonable initial parameters for the next incremental learning
phase, which helps the model achieve better performance. In
summary, the proposed algorithm avoids significant feature
confusion between different classes during model updating,
and achieves slow forgetting of previously learned knowledge
in the incremental learning process.

1) Recognition Accuracy: As shown in Fig. 7, subfigures
(a), (b), and (c) illustrate the target recognition accuracy
of the proposed SSF-IL and several comparative algorithms
in the 10-phase, 5-phase, and 2-phase incremental learning
scenarios, respectively. JointTraining uses all the training data
of all classes in each phase, representing the performance
upper bound for incremental recognition. Other algorithms
experience a gradual decrease in recognition accuracy as they
cannot use the complete training set of old classes and forget
the learned knowledge.

(a)

(b)

(c)

Fig. 7. Comparison of classification accuracy among different incremental
learning algorithms. (a) 10-phase. (b) 5-phase. (c) 2-phase.

In all three scenarios, all algorithms achieve almost the
same recognition accuracy in the base task. In the 2-phase
scenario, FOSTER exhibits the closest recognition accuracy
to JointTraining, while SSF-IL is only slightly lower than
FOSTER and outperforms other algorithms excluding FOS-
TER. In the 5-phase and 10-phase scenarios, SSF-IL has

the slowest decline in recognition accuracy and achieves the
best recognition results. Among the comparative algorithms,
iCaRL, LUCIR, and EEIL do not impose additional constraints
on the features, resulting in a smaller feature space gap
between similar classes, which makes it difficult to distinguish
them. PODNet uses pooling output distillation loss, which
better preserves the learned knowledge through reinforced
constraints, but also decreases the model’s adaptability to
new classes. FOSTER compresses the expanded model using
the knowledge distillation. When there are fewer incremental
learning phases, the expanded model effectively adapts to new
knowledge, and the loss of old knowledge through distillation
is not significant. However, with more incremental learning
phases, the gradual accumulation of forgotten old knowledge
due to model compression eventually leads to a decline in
recognition performance. These methods have not solved the
stability-plasticity dilemma of the model in scenarios with
more incremental learning phases. SSF-IL uses the feature
separability loss to enhance the linear separability of features
of all classes, reducing the confusion between old and new
classes. Then, an intra-class clustering loss is proposed to
replace the knowledge distillation in order to preserve the
learned knowledge and limit the offset of old class features
within an acceptable range, which better balances the model’s
stability and plasticity. Finally, a classifier bias correction
method based on boundary features is designed to reinforce
the decision boundary of the classifier. The combination of
the three mitigates the forgetting of the learned knowledge in
scenarios with more incremental learning phases.

After learning 10 classes, the target recognition accuracy of
SSF-IL reaches 98.35% in the 2-phase scenario, 96.16% in
the 5-phase scenario, and 93.94% in the 10-phase scenario,
with a smaller decline compared with the base task. These
results indicate that SSF-IL effectively avoids the catastrophic
forgetting of the model and achieves good performance in SAR
target incremental recognition tasks.

TABLE II
MEAN AND STANDARD DEVIATION OF CLASSIFICATION ACCURACY FOR

THREE SCENARIOS.

Method Average Accuracy ± Standard Deviations(%)
10-phase 5-phase 2-phase

JointTraining 98.86±0.40 99.23±0.19 99.38±0.09
iCaRL [16] 91.00±5.21 94.47±4.82 96.68±2.62
LUCIR [13] 85.66±7.68 88.56±7.64 90.09±9.38
EEIL [29] 87.96±7.80 89.28±7.49 96.24±2.88

PODNet [21] 93.65±3.56 96.31±3.00 97.86±1.70
DER [38] 94.21±3.24 94.90±4.17 97.41±0.30

FOSTER [39] 96.46±2.45 96.96±2.06 99.07±0.31
AFC [40] 85.97±8.82 88.18±8.47 97.85±0.35

SSF-IL(ours) 97.62±1.60 98.05±1.22 99.00±0.65

Table II presents the mean and standard deviation of recog-
nition accuracy for all models in the three incremental learning
scenarios. In the 2-phase scenario, FOSTER achieves the best
recognition performance. The mean and standard deviation
of recognition accuracy of SSF-IL are very close to FOS-
TER’s and superior to other comparative algorithms outside
of FOSTER. In the 5-phase and 10-phase scenarios, SSF-
IL has a higher average recognition accuracy and a smaller
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TABLE III
MODELS USED FOR THE ABLATION EXPERIMENTS

Model Cross-Entropy Loss Knowledge Distillation Feature Separability Loss Intra-class Clustering Loss Classifier Bias Correction
Hybrid1 ✓ ✓
Hybrid2 ✓ ✓
Hybrid3 ✓ ✓ ✓
Hybrid4 ✓ ✓ ✓
SSF-IL ✓ ✓ ✓ ✓

standard deviation, which indicates less significant fluctuations
in accuracy. The significant fluctuations in accuracy mean that
the newly learned knowledge causes a great impact on the
knowledge of old classes, which reflects the lack of model
stability in the incremental recognition task. The comparative
models all have larger fluctuations in recognition accuracy
than SSF-IL in adjacent phases, while SSF-IL effectively
avoids mutual interference between the features of old and
new classes by reinforcing and maintaining the separability of
features during incremental learning. Thus SSF-IL achieves
better model stability.

Furthermore, as shown in Table II, it can be seen that with
an increase in incremental learning phases, there is a decrease
in the average recognition accuracy and an increase in the
accuracy standard deviation, indicating more forgetting of the
learned knowledge. For the same algorithm and dataset, the
model performs best in the 2-phase incremental learning sce-
nario, followed by the 5-phase scenario, with the recognition
accuracy dropping fastest in the 10-phase scenario. Compared
with the 2-phase incremental learning scenario, comparative
algorithms, such as iCaRL, EEIL, PODNet, and DER, exhibit
a significant recognition performance decrease in the 5-phase
and 10-phase scenarios, with the accuracy dropping over
7%. In contrast, the proposed SSF-IL has less degradation
in target recognition performance when switching scenarios.
After learning 10 classes, the recognition accuracy difference
between the 2-phase and 5-phase scenarios is approximately
2%, and the difference between the 5-phase and 10-phase
scenarios is also 2%. SSF-IL exhibits a more stable target
recognition performance compared with other algorithms and
can effectively handle various incremental learning scenarios.

2) Ablation Experiments: The algorithm proposed in this
paper combines feature separability loss, intra-class clustering
loss, and classifier bias correction to mitigate the neural
network model’s forgetting of previously learned knowledge.
To analyze the contribution of the proposed methods to in-
cremental recognition tasks, five models are compared in this
section. The differences between these models are shown in
Table III.

The ablation experiment is conducted in the 5-phase incre-
mental learning scenario, and Fig. 8 displays the recognition
accuracy of the comparative models. All comparative models
use cross-entropy loss as the classification loss. Hybrid1 em-
ploys knowledge distillation without imposing any additional
constraints on features. It suffers significant forgetting of
previously learned knowledge during model updates, resulting
in the lowest recognition accuracy. Hybrid2, on the other
hand, uses intra-class clustering loss instead of knowledge
distillation to preserve learned knowledge. It achieves better

recognition performance compared to Hybrid1, demonstrating
that the proposed intra-class clustering loss can replace tra-
ditional knowledge distillation and play a better role in SAR
target incremental recognition tasks. To illustrate the impact
of intra-class clustering loss on model stability and plasticity,
the misclassification counts of new and old classes for Hybrid1
and Hybrid2 are presented in Table IV. Hybrid1 exhibits fewer
misclassifications for new classes, but a considerable number
of classification errors on old classes. In comparison, Hybrid2
shows a slight increase in misidentifying new classes but
significantly reduces errors in recognizing old classes, result-
ing in an overall reduction in misclassifications. Obviously,
the intra-class clustering loss better balances model stability
and plasticity compared to knowledge distillation. In addition,
it should be noted that Hybrid2 does not reinforce feature
separability, therefore the γ in Eq.8 needs to be sufficiently
large to ensure strong constraints on the features of old classes.

Hybrid3 adds feature separability loss based on Hybrid1.
After learning all 10 target classes, its recognition accuracy
surpasses Hybrid1 by more than 3%. Thus, the introduction
of feature separability loss effectively improves the model’s
incremental recognition performance. Hybrid4 simultaneously
utilizes feature separability loss and intra-class clustering loss,
further increasing recognition accuracy compared to Hybrid2
and Hybrid3. This indicates that the proposed feature sep-
arability loss and intra-class clustering loss can collaborate
effectively in improving incremental recognition performance.
SSF-IL, built upon Hybrid4 by incorporating classifier bias
correction, ultimately achieves the highest recognition accu-
racy. This result validates the positive contribution of the
proposed classifier bias correction method based on boundary
features to incremental recognition.

Fig. 8. Comparison of classification accuracy in ablation experiments.

To further demonstrate the constraining effects of the pro-
posed feature separability loss and intra-class clustering loss
on the features, changes in feature distribution during the
incremental learning for Hybrid1, Hybrid3, and Hybrid4 are
shown in Fig. 9. Subfigures (a)-(e) correspond to Hybrid1, (f)-
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TABLE IV
COMPARISON OF MODEL STABILITY AND PLASTICITY UNDER SEPARATE CONSTRAINTS OF INTRA-CLASS CLUSTERING LOSS AND KNOWLEDGE

DISTILLATION.

Model Number of misclassifications in new classes Number of misclassifications in old classes
phase 1 phase 2 phase 3 phase 4 phase 5 phase 1 phase 2 phase 3 phase 4 phase 5

Hybrid1 5 1 1 0 11 - 11 111 143 386
Hybrid2 5 3 12 22 49 - 12 69 146 196

(j) to Hybrid3, and (k)-(o) to Hybrid4. The features extracted
by Hybrid1 are only highly separable in phase 1 and 2.
Starting from phase 3, the features extracted by Hybrid1
become increasingly confused, and this confusion continues to
worsen in subsequent phases, indicating that Hybrid1 forgets
a lot of the learned knowledge during model updating. After
learning all classes, there is a serious overlap in the features
of BTR70, BTR60, and BMP2, making it difficult for the
classifier to distinguish these classes. Additionally, there is
some confusion between the features of T62 and BRDM2.
As a result, the recognition accuracy of Hybrid1 in phase 5
decreases significantly compared with phase 1.

Hybrid3 incorporates the feature separability loss on the
basis of Hybrid1. As can be seen from the figures, the features
of the same class extracted by Hybrid1 have relatively loose
distribution and the feature clusters of different classes are
close in space. Hybrid3 reinforces the linear separability of
features, resulting in closer distribution of same-class features
around the feature center. Moreover, the feature clusters of
different classes are more evenly distributed in space, and the
distance between class centers is larger, which makes it easier
for the classifier to differentiate. Compared with Hybrid1,
Hybrid3 significantly reduces the confusion between features
of different class in phase 3, 4, and 5, leading to effective
improvement of classification accuracy.

(a) Hybrid1-phase 1 (b) Hybrid1-phase 2 (c) Hybrid1-phase 3 (e) Hybrid1-phase 5(d) Hybrid1-phase 4

(k) Hybrid4-phase 1 (l) Hybrid4-phase 2 (m) Hybrid4-phase 3 (n) Hybrid4-phase 4 (o) Hybrid4-phase 5
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Fig. 9. The visualized feature distribution of Hybrid1, Hybrid3 and Hybrid4.

Hybrid4 replaces the knowledge distillation with the intra-
class clustering loss on the basis of Hybrid3. Compared
with Hybrid3, Hybrid4 further mitigates the feature confusion
among old classes and between new and old classes. After
learning new classes, all features still distribute uniformly in

space, with only a few features from different classes having
slight overlap at the boundary. Thus, the linear separability of
features is well maintained during model updating, resulting
in less forgetting of learned knowledge. As a result, the
incremental recognition accuracy of Hybrid4 is significantly
better than that of Hybrid3 and Hybrid1. In conclusion, the
feature separability loss can effectively optimize the spatial
distribution of features and enhance separability, while the
intra-class clustering loss can maintain the linear separability
of features and avoid confusion among different classes. The
combination of the two yields high classification performance
in incremental recognition tasks.

Fig. 10 shows the confusion matrices of the recognition
results of Hybrid4 and SSF-IL in each incremental learn-
ing phase, where (a)-(e) correspond to Hybrid4 and (f)-(j)
correspond to SSF-IL. It can be seen that Hybrid4 exhibits
a stronger classification bias towards new classes compared
with SSF-IL in each incremental learning phase, with more
old class samples being misclassified as new classes. SSF-
IL builds on Hybrid4 by incorporating a classifier bias cor-
rection method based on boundary features. By fine-tuning
the classifier parameters, the proposed bias correction method
strengthens the decision boundaries between the old and new
classes, enabling the classifier to better differentiate samples
that are prone to confusion with other classes. In the recog-
nition results of SSF-IL, there is a significant reduction in
the number of old class samples mistakenly classified as new
classes, while the classification performance of new classes
remains relatively unchanged. This overall improvement in
classification performance validates the effectiveness of the
classifier correction method based on boundary features.

(a) Hybrid4-phase 1 (b) Hybrid4-phase 2 (c) Hybrid4-phase 3 (d) Hybrid4-phase 4 (e) Hybrid4-phase 5

(f) SSF-IL-phase 1 (g) SSF-IL-phase 2 (h) SSF-IL-phase 3 (i) SSF-IL-phase 4 (j) SSF-IL-phase 5

new classes new classes new classes new classes

Fig. 10. Comparison between confusion matrices with and without classifier
correction.

3) Replay Data Analysis: Fig. 11 illustrates the impact of
the total number of exemplar samples K and the number
of preserved boundary features M on incremental recogni-
tion performance. Experimental results indicate that the more
exemplar samples preserved, the better the performance of
incremental recognition. However, in comparison to preserving
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200 exemplar samples, saving 400 exemplar samples leads to a
slight improvement in incremental recognition accuracy while
significantly increasing storage resource consumption. More-
over, when K is set to 150 or 100, there is a significant decrease
in recognition accuracy. Thus, setting the total number of
exemplar samples to 200 can strike a balance between higher
recognition accuracy and lower storage consumption. Similar
to the exemplar, the more boundary features preserved, the
higher the recognition accuracy. Considering the contribution
to recognition performance and computational cost, we set the
total number of preserved boundary features to 200.

(b)(a)

Fig. 11. The impact of the number of replay data on recognition performance.
(a) Exemplar. (b) Boundary features.

4) Time Consumption: As mentioned earlier, one of the
requirements for incremental learning algorithms is that the
computational resources consumed by the algorithm do not
increase linearly with the increasing amount of classes. Un-
der identical training conditions, the computational costs of
different algorithms can be reflected by the training time.
Fig. 12 illustrates the training time of all algorithms in
three incremental learning scenarios. As shown in Fig. 12,
iCaRL, due to its simple structure, has the shortest training
time. The training time of SSF-IL is close to that of iCaRL
and significantly lower than other models such as PODNet,
FOSTER, and DER. Additionally, when SSF-IL learns new
classes, it randomly selects samples from different new classes
to form a balanced dataset with exemplars for each iteration.
Therefore, the training time of SSF-IL when learning new
classes is reduced compared to the basic training that uses
all samples in each iteration, and remains almost unchanged
in the subsequent phases. It can be concluded that the SSF-IL
proposed in this paper can effectively control the computa-
tional resources consumed during model updating and limit
them to a relatively reasonable range.

V. CONCLUSION

In this paper, we present a novel SAR target incremental
recognition approach based on strong separability features.
The proposed method enhances the linear separability of
features by minimizing the intra-class scatter and maximizing
the inter-class scatter, avoiding confusion between different
classes. The intra-class clustering loss better balances the
stability and plasticity of the model and maintains the strong
separability of old class features during model updating to

(a) (b)

(c)

Fig. 12. Comparison of time consumption. (a) 2-phase. (b) 5-phase. (c) 10-
phase.

preserve the learned knowledge. Finally, a classifier bias
correction method based on boundary features is designed
to modify the classifier’s decision boundary and reduce the
classifier’s bias towards new classes.

The effectiveness of the proposed algorithm is verified
through target recognition experiments on the MSTAR dataset.
SSF-IL not only achieves higher recognition accuracy on the
testing set but also effectively controls the computational cost
of model updating, meeting practical needs for incremental
recognition tasks.
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