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A B S T R A C T

The Quasi oppositional smell agent optimization (QOBL-SAO) and its levy flight variant (LFQOBL-SAO) are
two cutting-edge software tools for optimizing PV/wind/battery power systems. They can also be used to solve
real-world CEC2020 optimization problems and are as good as top-performing software such as IUDE, 𝜖 MAgES
and the iLSHAD 𝜀. The QOBL-SAO exploits the random mode’s weakness and then adds a number to the initial
population. The LFQOBL-SAO, on the other hand, improves the random mode’s weakness in order to solve
this problem. The LFQOBL-SAO improves performance and search space by using levy flight instead of random
code.
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1. Introduction

It was recently discovered that hybrid renewable energy systems
(HRES), including photovoltaic (PV)/wind/battery systems, are the
most cost-effective and viable options for electrifying off-grid loca-
tions. [1–4]. The economic and technical planning of the PV/wind/
battery system design are complex for a number of reasons. The re-
newable energy sources unpredictability and dependence on weather
are two of such reasons [5–7]. To meet energy demand, these systems
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are often oversized or undersized [8–10]. An oversized system wastes
energy and has a high operating cost. Conversely, a microgrid that
is undersized will not be able to provide the necessary amounts of
electricity to the loads. A robust energy management plan must be
paired with appropriate sizing for a wind, battery and PV power system
to yield maximum benefits [11]. As a result, the LFQOBL-SAO and
QOBL-SAO are novel software’s developed intended to effectively
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Fig. 1. 1 SAO software flowchart (SM = smell molecules, FE = number of function evaluations, 𝐼𝑡𝑟𝑚𝑎𝑥 = maximum iteration and Itr = Iteration).
optimize HRES and have demonstrated faster convergence than the
conventional SAO. They are as good as the best performing functions
and particularly good at solving real-world CEC2020 optimization com-
petition problems [12]. They can also reduce the net present cost (NPC)
and the Lowest Cost of Energy (LCOE) of renewable energy projects.

2. Software description

The SAO is a member of the paradigm class of swarm intelli-
gence [13]. The SAO optimization procedures were inspired by the
notion that an agent can use chemosensory receptors in the olfactory
organ to track a portion of a smell molecule [14]. This SAO has three
distinct phases: trailing, random, and sniffing. The inspiration for the
sniffing mode was derived from the hydrostatic gas theory, which
posits that smell molecules disperse in the direction of the source.
This evaporation is initiated by generating a random population of
smell molecules. Evaporation results from the random generation of
the original population of smell molecules in the trailing mode. All
molecules generated in the previous mode have a chance of becoming
smell agents in the trailing modes, depending on their position. In this
particular scenario, while the agent is conducting a search in hyper-
space, it is possible for the aggregation of smell molecules to rise above
the designated location. To circumvent the issue of becoming trapped in
local minima, the agent will ultimately transition to the random mode
when the trailing mode fails to discover an optimal solution [13]. This
study introduces two software applications, namely LFQOBL-SAO and
QOBL-SAO, which are adaptations of the SAO software. Fig. 1 is the
description of the conventional SAO.
2

2.1. QOBL-SAO and the LF-QOBL

The QOBL-SAO employs generation jumping and quasi-opposition-
based initialization [15]. In this particular case, employing the anti-
thetical points, also referred to as the antithetical population, produces
more favorable initial conditions, even in the absence of prior knowl-
edge regarding the solutions. The objective of the QOBL-SAO is to
produce a population of olfactory agents that is the antithesis of the
original population, with the intention of effectively broadening the
scope of the search. As demonstrated in Algorithm 1, a function utiliz-
ing the QOBL-SAO pseudocode was developed in order to implement
the QOBL-SAO. Among the three characteristics of SAO, the random
mode exhibits a comparatively lower level of conceptual comprehen-
sion. The incorporation of a randomly generated number within the
initial population does not yield a substantial impact on the algorithm’s
rate of convergence. The introduction of the LFQOBL-SAO aims to en-
hance the inherent limitations of the random mode, thereby providing a
solution to this issue. Both search space and performance are enhanced
by the LFQOBL-SAO [16]. When implementing the LFQOBL-SAO, care
must be taken because an oversized step may result in a better solution
that outperforms the true solution; on the other hand, a small step
size may cause the convergence rate to drop and the algorithm to
perform poorly. The LFQOBL-SAO algorithm integrates the levy flight
function as a substitute for the random code. Algorithm 2 introduces
the LFQOBL-SAO algorithm.

Eqs. (2.1)–(2.3) are used to compute the respective parameters of

the LFQOBL-SAO pseudocode.
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Step_size (τ) = s(τ) × 0.01; (2.2)

𝑥′𝑖 (𝜏 + 1) = 𝑥′𝑖 (𝜏) + Step_size (τ) × U(0, 1) (2.3)

3. Software impacts

First, the LFQOBL-SAO and QOBL-SAO software demonstrate a high
level of effectiveness in optimizing systems that combine wind and
battery, as well as the PV/battery and PV/wind/battery configurations.
The LFQOBL-SAO and QOBL-SAO outperformed the SAO in terms of
convergence time, LCOE, and total annualized cost [17]. The most
cost-effective configuration for the HRES system is achieved by uti-
lizing the LFQOBL-SAO and QOBL-SAO and strategies. Second, both
the LFQOBL-SAO and QOBL-SAO algorithms have demonstrated their
ability to effectively address real-world optimization challenges and
yield outcomes that are on par with leading software solutions such as
IUDE, 𝜖 MAgES, and the iLSHAD 𝜀 [17]. These include the process syn-
hesis problem [18], tension/compression spring design [19], weight
inimization of a speed reducer [20], the design of gear train [21] and

he three-bar trust design problem [22].
3

In this study, the capabilities of SAO, QOBL-SAO, and LFQOBL-
SAO to address challenging problems derived from CEC 2020 [12],
have been harnessed, encompassing the process synthesis problem,
tension/compression spring design, weight minimization of a speed re-
ducer, the design of a gear train, and the three-bar trust design problem.
Users can seamlessly apply this software to tackle these specific CEC
2020 benchmark functions by configuring the algorithm parameters,
problem constraints, and objectives pertinent to each case.

The software facilitates a friendly interface, which allows researchers
and practitioners to input their problem specifications easily. The im-
plementation intelligently explores the solution space, iteratively opti-
mizing the design variables to reach optimal or near-optimal solutions
for the stated problems. The impact of the software on the analysis lies
in its ability to efficiently and effectively converge towards optimal
solutions. These offer valuable insights into the design and synthesis
challenges outlined in CEC 2020. Its adaptability ensures broad per-
tinence, making it a valuable asset for researchers seeking to address
diverse optimization problems within the specified domains.

The LFQOBL-SAO and QOBL-SAO software applications are de-
signed for the purpose of facilitating applied research conducted by
researchers and scientists in the field of developing optimization strate-
gies for microgrids that incorporate renewable energy sources. These
software tools are capable of effectively addressing intricate optimiza-

tion problems.



A.A. Mas’ud, A.T. Salawudeen, A.A. Umar et al. Software Impacts 19 (2024) 100630
4. Future work and limitations

Future research efforts will be directed towards enhancing and
optimizing the QOBL-SAO and LFQOBL-SAO algorithms. This can be
achieved by integrating supplementary optimization techniques, em-
ploying novel hybrid methodologies, or incorporating a number of
deep learning algorithms. The objective is to augment the efficacy
of these algorithms. Further investigation can be conducted to assess
the scalability of the QOBL-SAO and LFQOBL-SAO and algorithms
in the context of engineering optimization problems and larger-scale
HRES. The convergence behavior of the system can be analyzed when
considering the increase in system size and complexity. This analysis
incorporates a range of factors, such as the existence of diverse load
conditions, dynamic operating states and multiple renewable sources.
Additional areas of future research encompass conducting a sensitiv-
ity analysis on the LFQOBL-SAO and QOBL-SAO models in order to
assess their resilience in the face of variations in input parameters,
optimization objectives and system configurations. This analysis has the
potential to offer valuable insights into the performance of algorithms
in various scenarios and facilitate the identification of key factors
that influence their effectiveness. A potential constraint of the current
study is the absence of verification for the QOBL-SAO LFQOBL-SAO
software through the utilization of case studies derived from HRES and
real-world data. Moreover, it is crucial to conduct a comprehensive
examination of policy and economic factors to assess the policy im-
plications and financial viability linked to the adoption of optimized
HRES. To fully assess the scheme’s practical implications, a number of
factors, such as regulatory frameworks, market dynamics, government
incentives, and tariff structures, should be taken into consideration.
These factors may provide insightful managerial information for the
scheme’s successful execution.
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