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Abstract. Federated Learning (FL) is a method to train machine learn-
ing (ML) models in a decentralised manner, while preserving the privacy
of data from multiple clients. However, FL is vulnerable to malicious
attacks, such as poisoning attacks, and is challenged by the GDPR’s
“right to be forgotten”. This paper introduces a negative gradient-based
machine learning technique to address these issues. Experiments on the
MNIST dataset show that subtracting local model parameters can re-
move the influence of the respective training data on the global model
and consequently “unlearn” the model in the FL paradigm. Although
the performance of the resulting global model decreases, the proposed
technique maintains the validation accuracy of the model above 90%.
This impact on performance is acceptable for an FL model. It is impor-
tant to note that the experimental work carried out demonstrates that in
application areas where data deletion in ML is a necessity, this approach
represents a significant advancement in the development of secure and
robust FL systems.

Keywords: Federated Learning; Machine Unlearning; Negative Gradi-
ents; Model Rectification.

1 Introduction

The use of traditional Artificial Intelligence (AI) systems requires large amounts
of data to be collected and stored on a central server or cloud storage. However,
this can be difficult due to the various obstacles that can arise when transferring,
collecting, and integrating data. In reality, data is often collected from edge
devices such as smartphones and exists in isolated pieces. For example, health
records are typically kept in separate, disconnected entities that are unable or
unwilling to share data due to the privacy and security risks associated with
sharing personal information.

Federated Learning (FL) introduced by Google [18,19,27], allows the training
of Machine Learning (ML) models locally and the sharing of computations or
model parameters to build a federated global model. FL enables a large number
of participants to develop joint ML models without sharing their data and sac-
rificing their data privacy. However, recent work in FL revealed that poisoning
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attacks [1, 2, 11] significantly temper the security of the federated global model.
New data regulations, such as the General Data Protection Regulation (GDPR)
and the California Consumer Privacy Act (CCPA), cast further challenges on
data transactions. These new regulations emphasise on the user’s right to be
forgotten in light of current data regulations [14]. They raise the requirements
for data deletion to restore the poisoned model or delete user data due to privacy
regulations [3,10,15,16,21]. Although the problem can be solved trivially by re-
training the model with the absence of the designated data from scratch, model
retraining is not always sustainable and computationally feasible, especially in
the current popularity of large models.

This leads to the emergence of machine unlearning, a set of strategies to
eliminate the impact of training data on an ML model and its parameters in
particular. Training data may need to be removed in order to fix a model that has
been deliberately corrupted by a malicious user, or may need to be taken away
by a user for privacy purposes. Removing this data and its effects from the ML
model does not significantly reduce performance and is more computationally
efficient than retraining the model from scratch. The ideal outcome is that the
unlearned model is the same as or similar to the re-trained model.

In this paper, we introduce a machine learning technique based on negative
gradients to reduce the effect of the selected subset of training data on a feder-
ated global model. We use the Federated Averaging (FedAvg) algorithm [27] to
construct the global model in the context of this study. Additionally, we seek to
answer two research questions.

1) To what extent does subtracting local model parameters serve to reduce the
influence of the associated training data on the model to facilitate unlearn-
ing?

2) What impact does federated unlearning have on the performance of models?

The remainder of the paper is structured as follows. Section 2 provides a
review of related work. Section 3 describes the methodology of our research.
Section 4 presents and discusses the experimental results and analysis. Section 5
draws the conclusions of the investigation and the direction for future research.

2 Related Work

Federated models are created by combining updates from all participant models.
The model aggregator carries out secure aggregation and does not have access to
the updates given by individual models or their training data. The aggregation
process makes federated models vulnerable to model poisoning attacks. Machine
unlearning can be used when the model is contaminated/poisoned or a data
deletion request is made by a client due to their right to be forgotten under
current privacy laws.



Can Federated Models be Rectified through Learning Negative Gradients? 3

2.1 Model Poisoning and Defending Mechanisms

In order to comprehend the process of unlearning in FL systems, it is essential
to recognise the origins of model contamination. Model poisoning attacks can
be classified into label-flipping attacks and backdoor attacks. Model poisoning
incorporates data poisoning. Fig. 1 portrays the poisoning attack comprising
of the poisoner objective, the genuine objective, and the element space which
incorporates the attack target.

Fig. 1. Poisoning attack in Stochastic Gradient Descent (SGD). The red dotted vectors
represent contributions from malicious clients (Fung et al. [11])

Recent literature has explored poisoning attacks against FL. Sybil-based poi-
soning attack is studied in [11], which illustrates that a malicious client can in-
crease the effectiveness of attacks by exploiting Sybils [9] and presents a defence
strategy based on contribution similarity. The authors believed that a group of
Sybils could potentially provide updates with a similar objective resulting in a
lack of diversity amongst the malicious client updates.

The research, documented in [2], demonstrates a single malicious client-based
model poisoning attacks against FL, where the updates from the malicious client
were boosted to overwhelm the effect of benign clients. Furthermore, a strategy
was introduced to keep malicious updates undetected by alternately optimising
for the attack objective and training loss. The strategy keeps the validation ac-
curacy of the resulting global model above a specified threshold and the pairwise
distance between updates below a specific value to avoid attack detection.

In addition, backdoor attacks with a replacement model for FL are explored
in [1]. The work proposed a constraint and scale technique for model replace-
ment attacks, which uses the attacker’s loss function during training to stay
undetected.
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2.2 Detection of Poisoned Models

Detecting a poisoned model in a federated setting is essential and has received
increasing research interest [6, 7, 13, 23, 24, 32, 33]. Wang et al. [33] proposed the
‘Neural Cleanse’ model to identify and detect backdoor attacks in deep neural
networks. An optimisation scheme is used to determine the minimal trigger re-
quired to cause misclassification of all samples from other labels into the target
label. The size of each trigger is measured by the number of pixels it contains
and an outlier detection algorithm is applied to identify any significantly smaller
triggers, which represent real triggers for the backdoor attack.

In a similar fashion, [6] presents DeepInspect, a pioneering black-box back-
door detection and mitigation technique, which does not assume benign samples
or require full access to the model being tested, unlike Neural Cleanse. Instead,
it uses model inversion to create a substitution training set and a conditional
Generative Adversarial Network (cGAN) to recover potential triggers used by
the adversary for each output class. [24] proposes Artificial Brain Stimulation
(ABS), a model-level backdoor detection method.

2.3 Formulation of Machine Unlearning

Machine unlearning is a process that focusses on the removal of certain subsets of
training data to make it more efficient than the traditional retraining approach.
This is especially useful when adapting an ML model to a changing environment,
where a data subject may choose to exercise their right to be forgotten. By using
this method, information from the data subset can be effectively removed from
the trained model [36].

Recent studies are attempting to develop algorithms that can “exactly” or
“approximately” remove the details of a particular subset of training data from
a given ML model. In the context of machine unlearning, “Deletion” and “Effi-
ciently Deletable” can be mathematically described as the following problems.

Definition of Deletion Let D be a dataset and A be a learning algorithm,
such that

D ∈ Rn×d (1)

A : D → A(D) ∈ H (2)

where H refers to a hypothesis space (i.e., a model space or classifier space), such
as linear regression models, and the function A(D) returns model parameters
or weights. If a data point i is deleted from the dataset D, then the remaining
dataset can be represented as D−i. Consequently, a model trained on the dataset
D−i can be represented as A(D−i). The deletion operation R is another mapping
in the hypothesis space.

R : (D,A(D), i) → H (3)

s. t. R(D,A(D), i) = A(D−i) (4)
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where R(D,A(D), i) returns a model that belongs to the space H, defined by Eq.
(3). The deletion operation, R(D,A(D), i), defined in Eq. (4), results in a new
model that is identical to that trained using the datasetD−i. Eq. (4) implies that
the learning algorithm is deterministic. If the learning algorithm is randomised,
then Eq. (4) is then redefined as Eq. (5), which means that the two resulting
models are equal in distribution.

R(D,A(D), i)
d
=A(D−i) (5)

Definition of Efficiently Deletable In this work, we define Efficiently Deleta-
ble for the sequential learning algorithm A, which runs in time Ω(n). Ideally, the
deletion operation, R(D,A(D), i), is independent of the size of the dataset or, in
other words, constant in time and is part of efficiently deletable. However, for the
worst case, the algorithm is sublinear in time, which implies that an asymptotic
lower bound for n data points and m deletion operations should be Ω( n

m ).

2.4 Unlearning Federated Learning

Studies have sought to create a generic unlearning process for various learning
algorithms and ML models. Bourtoule et al. [3] proposed the well-known model-
agnostic SISA framework, which divides the data into shards and slices. Each
shard has a single model, and the final result is a combination of the various
models in these shards. A model checkpoint is saved for each slice of a shard
during training so that a new model can be re-trained from the interim state [3].

It may be difficult to create a model-agnostic unlearning framework due
to the complexity of ML algorithms and the training process in the federated
setting, where global weights are calculated using aggregation rather than simple
gradients and multiple clients are involved [12]. Therefore, the early unlearning
approaches cannot be simply transferred to the federated setting. In addition,
clients may have some data that overlap, making it hard to determine the effect
of each training item on model weights [25]. Applying conventional unlearning
methods, such as gradient manipulation, can lead to a decrease in accuracy or
extra privacy risks [20].

Data that need to be erased are assumed to belong to a single client in current
research on federated unlearning [20, 25, 31, 34]. This assumption makes it easy
to keep track of and delete the contributions a certain client has made to the
global model training.

The gradients obtained from the client’s data can be used to reverse the
effects on the global model [21]. However, the unlearning hypothesis may not be
the same as that initially learnt from the data. Removing the previous parameter
adjustments could still damage the overall model. To address this issue, there
are several potential solutions:

– Liu et al. [20] proposed calibration training to differentiate the individual
contributions of clients as much as possible. However, this technique does not
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work well for deep neural networks apart from basic architectures such as a
2-layer CNN or 2 fully connected layers. Additionally, there is a compromise
between scalability and accuracy due to the cost of storing historical data
on the federated server.

– Wu et al. [35] proposed a knowledge distillation strategy that uses a primary
global model to train the unlearned model on the remaining data. However,
since the server is unable to view the client’s data, it is necessary to sample
some unlabelled (fake) data that reflect the distribution of the entire dataset.
This requires additional rounds of communication between the client and the
server, which makes the process costly and approximate. Furthermore, if the
data is non-IID [22] , the results may be further distorted.

– In a different area of the field, Liu et al. developed a smart retraining ap-
proach for federated unlearning without communication protocols [22] . This
approach approximated the L-BFGS technique by using historical parameter
changes to retrain the entire model. Unfortunately, this strategy is only suit-
able for models with fewer than 10,000 parameters and requires the storage
of previous model snapshots, which contain past gradients and parameters
that could potentially breach privacy.

2.5 Challenges to Federated Unlearning

Many ML algorithms are stochastic, which means they incorporate randomness
in their optimisation or learning processes. This stochasticity is a fundamental
concept in ML and must be understood to accurately interpret the behaviour
of numerous predictive models. However, the randomness of ML algorithms
presents additional difficulties for federated unlearning [21]. To make the un-
learning hypothesis valid both mathematically and practically, the model to be
unlearnt must start from the same state or with the same random weights as
the original model. Additionally, randomness during optimisation could lead to
different hypotheses that may correspond to different local minima in the opti-
misation space.

Furthermore, the probability of violating privacy and security increases with
unlearning. This can take the form of:

– Information leakage [28]: The potential for unintentionally possessing confi-
dential information can arise if a model is created using a mixture of confi-
dential and non-confidential data.

– Reconstructing training data [5]: Malicious parties attempt to reconstruct
the data used to train a model.

– Model inversion attacks [37]: A well-known privacy violation attempts to
infer sensitive information from the training dataset, which leads to serious
privacy issues.

Other serious implications can arise from adversarial exploitation [29], and
systemic bias [17] among others. These can be addressed using a multifaceted
approach that includes federated learning.
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3 Methodology

A rudimentary approach to Federated Unlearning could involve retraining the
model without the client’s data, however, this is highly inefficient. Efficiently
deleting data from ML models is a computational problem. Furthermore, it
is important to formulate whether the data are “exactly” or “approximately”
deletable.

To answer the questions raised in Section 1, we have introduced a technique
that uses a negative gradient approach to unlearning the model. This method
can be implemented on the client side without the need for sharing the client’s
data. The gradients obtained from the model trained on the client’s data lo-
cally are used to subtract from the main global model. We reduce the impact
of stochasticity by beginning with the same initial parameters and eliminating
randomness in the training process.

The implementation of the proposed machine-unlearning solution involves
the preparation of non-IID data for FL and the subsequent unlearning process.
To achieve this, the unlearning hypothesis should be able to replicate the user
data in a manner similar to how it is represented in the original model. This is
because multiple hypotheses that follow different learning paths can be derived
from the same data.

3.1 Experimental Data

Non-IID input data are generated from MNIST data [8], a large database of
handwritten digits regularly used to train a variety of image processing systems
systems, for Federated Learning (FL). Pre-processing of MNIST is performed
using Leaf* [4], so that the data can be keyed by the original writer of the
MNIST digits, because of the unique style of each writer, this dataset becomes
the kind of non-IID data required for federated datasets.

The original 28×28 sized images are flattened into 784-element 1-D arrays,
which are shuffled and organised in batches. The features are renamed from
pixels and labelled input x and output y for use with PyTorch. The output y is
multiclass with 10 output classes.

3.2 Network Implementation

A 5-layer deep neural network model with 3 fully connected hidden Rectified Lin-
ear Unit (ReLU) layers is employed to train the MNIST images in PyTorch 1.7.1
[30] with torchvision 0.7.0 [26]. The Federated Averaging (FedAvg) algorithm is
implemented in PyTorch to add gradients and merge the local user models into
a federated main model. The FedAvg algorithm uses two optimisers: a client
side and a server optimiser. The client optimiser computes updates to the local
model, while the server optimiser averages the updates in the global model. The
process is tested with regular Stochastic Gradient Descent (SGD).

The implemented model ran with the following parameters:

* https: // github. com/ TalwalkarLab/ leaf

https://github.com/TalwalkarLab/leaf
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∗ Learning rate, η = 0.01.

∗ SGD learning algorithm, Momentum = 0.9.

∗ Number of Epochs, ϵ = 10.

∗ Batch size = 32.

∗ The loss function, CrossEntropyLoss(), is applied.

Five local client models were used to build the federated main model. Each
of the client models was trained on 10,000 samples, validated on 1,000, and was
also tested on 1,000 samples.

4 Experimental Results and Discussion

Two deep learning-based image recognition models are compared by training
them (1) centrally on all data and (2) with FL which trains five local client
models on their respective selected subsets of data, then merges them into a
main model using the FedAvg algorithm. Experimental results are depicted in
Figs. 2 and 3.

(a) The training and test loss rates of the
centrally trained model.

(b) The training and test accuracy rates of
the centrally trained model.

Fig. 2. Preliminary experimental results of the centrally trained model.

– The model that was trained centrally achieved the highest training accu-
racy of 99.54% and the highest test accuracy of 98.04%, as illustrated in
Fig. 2(b). Further details of the cross-entropy loss function and the train-
ing/test accuracy with the number of epochs can be seen in Figs. 2(a) and
2(b).

– The federated main model performs remarkably well, attaining a test accu-
racy of 98. 01% across the entire dataset, as seen in Fig. 3(b). It should be
noted that the federated main model begins with a much lower loss and a
much higher accuracy than the main model did in its initial run, as demon-
strated in Figs. 3(a) and 3(b).
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(a) The comparison of the test loss rates of
the centrally trained model and the feder-
ated main model.

(b) The comparison of the test accuracy
rates of the centrally trained model and
the federated main model.

Fig. 3. The comparison of the preliminary experimental results of the centrally trained
model and the federated main model.

4.1 Federated Main Model

In this section, we provide a comprehensive analysis of the federated main model,
which is established by averaging the five local models that have been individ-
ually trained on their own subset of data. Figs. 4(a) and 4(b) illustrate the
cross-entropy loss and accuracy of the model training and test in relation to the
number of epochs for the five models. The curves for the loss and accuracy of
model training and testing of all five models are very similar.

(a) The training and test loss rates of the
five local client models.

(b) The training and test accuracy rates of
the five local client models.

Fig. 4. Experimental results of the five local client models.

The detailed performance of the local client models on their respective par-
titioned datasets is given in Table 1. The local models of the five client/users
provide good accuracy rates of 94.28%, 95.39%, 94.44%, 94.83% and 96.04%,
respectively. The removal of each of the local models from the federated main
model reduces the accuracy of the main model in the respective partitions, as
illustrated in Table 1. The results show that
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– Removing any of the local model parameters from the main model will cause
a decrease in the resulting federated main model’s performance on all parti-
tions of the dataset,

– The resulting federated main model may not show lower accuracy on the
data that was removed from the original federated main model than on the
other partitions of the dataset,

– No relationship exists between the accuracy of the local model and that of
the resulting federated main model when the parameters of the local model
are removed from the original federated main model,

– The accuracy of the federated main model is reduced from 96.17% to 94.44%,
when the Local Client Model 2 with an accuracy of 95.39% is subtracted from
the main model,

– The accuracy of the federated main model is reduced to 91.83% when Local
Client Model 1 with an accuracy of 94.28% is subtracted from the main
model.

– Subtraction of Local Client Model 2 with accuracy 95.39% produces the least
reduction in the accuracy of the federated main model and subtraction of
Local Client Model 5 with accuracy 96.04% results in the largest reduction
in the accuracy of the performance of the federated main model.

Fig. 5. The performance of the federated main model after client model subtraction

The implementation of the negative gradient method results in the subtrac-
tion of the parameters of the local client model from the federated main model at
each epoch, illustrating a graph of the lower performance testing accuracy across
the entire dataset in Fig. 5. The figure illustrates that different local models can
potentially have different effects on the accuracy of the federated main model.

4.2 Retraining of Federated Main Model

Once the parameters of each local client model have been taken away from
the original federated main model one at a time, the various resulting federated
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main models are re-trained using the data from the models that were taken away
directly. The FedAvg algorithm is no longer involved; instead, local retraining
is used to update the federated model. This experiment demonstrates that after
unlearning the federated main model can be used to learn the same or new data
on the server or by a new user. Then, it can reach the same performance levels
as before. The retraining of the federated main model was then carried out using
data subsets 1 and 2. Fig. 6 shows the retraining of the federated main model
with data subsets 1 and 2.

(a) Retraining of federated main model on
data subset 1

(b) Retraining of federated main model on
data subset 2

Fig. 6. Re-training of the federated main model after unlearning the contributions of
Local Client Models 1 and 2 using the negative gradient technique.

Local Client Models 1 and 2 were trained on the data subsets 1 and 2 and
then removed from the original federated main model using the negative gradi-
ent technique. Subsequently, the resulting federated main model was re-trained
with the data subsets 1 and 2. The graph in Fig. 6(a) shows that the test accu-
racy of the federated learning model with the Local Client Model 1 subtracted
(corresponding to the data subset 1) increased from 93. 44% to 96. 06% in 10
epochs. Fig. 6(b) shows the retraining of a federated main model with the Local
Client Model 2 removed. This resulted in a 10-epoch improvement from 94.61%
to 96.33%.

The retraining of the federated main model was then performed on the data
subsets 3 and 4. The negative gradient method was used to remove Local Client
Models 3 and 4 from the federated main model. Subsequently, the federated
main model was re-trained using data subsets 3 and 4, as shown in Fig. 7. Figs.
7(a) and 7(b) show that the accuracy of the federated learning model with the
Local Client Models 3 and 4 subtracted, respectively, increased from 92.5% and
92.83% to 95.94% and 95.50% respectively, over the course of 10 epochs.

5 Conclusion

Federated unlearning has been shown to be a viable solution to the issues caused
by data deletion in Federated Learning (FL). This approach involves the removal
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(a) Retraining of federated model on data
subset 3

(b) Retraining of federated model on data
subset 4

Fig. 7. Retraining of federated main model after removal of user models 3 and 4 through
negative gradient technique.

of unwanted updates from a selection of clients, which can help reduce the neg-
ative impact of data deletion on the accuracy and dependability of federated
learning models.

This paper has introduced a technique for machine unlearning by using neg-
ative gradients of local models to erase their effect on the main model based on
FL. The results showed that subtracting local model parameters can be used
to eliminate the influence of the corresponding training data on the model and
unlearn it for the FL paradigm. Although there was a decrease in the model’s
performance on the data due to deletion, the performance of the model on the
overall data remained above 90%. It is important to note that the experimental
work conducted demonstrates that in application areas where data deletion in
machine learning is necessary, such as when a client may need to remove their
data from the model, potentially exercising the right to be forgotten, the model
performance will not be significantly affected.

Despite the fact that there are still difficulties to be solved in the implemen-
tation of federated unlearning, such as the possibility of privacy infringements
and the necessity of efficient detection of poisoning assaults, this method repre-
sents a major advance in the formation of secure and reliable federated learning
systems.
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