
A Hierarchical Approach to Evolving
Behaviour-Trees for Swarm Control

Kirsty Montague1, Emma Hart1[0000−0002−5405−4413], and Ben
Paechter1[0000−0002−4841−0805]

Edinburgh Napier University,
{k.montague,e.hart,b.paechter}@napier.ac.uk

Abstract. Behaviour trees (BTs) are commonly used as controllers in
robotic swarms due their modular composition and to the fact that they
can be easily interpreted by humans. From an algorithmic perspective,
an additional advantage is that extra modules can easily be introduced
and incorporated into new trees. Genetic Programming (GP) has al-
ready been shown to be capable of evolving BTs to achieve a variety of
sub-tasks (primitives) of a higher-level goal. In this work we show that
a hierarchical controller can be evolved that first uses GP to evolve a
repertoire of primitives expressed as BTs, and then to evolve a high-
level BT controller that leverages the evolved repertoire for a foraging
task. We show that the hierarchical approach that uses BTs at two levels
outperforms a baseline in which the BTs are evolved using only low-level
nodes. In addition, we propose a method to improve the quality of the
primitive repertoire, which in turn results in improved high-level BTs.

Keywords: Swarm-robotics · Quality-Diversity · Genetic-Programming.

1 Introduction

Collective intelligence arises in a swarm via the interaction of multiple agents
that act individually according to their current perception of the environment.
Many approaches to designing a control mechanism that results in a desired be-
haviour at the swarm level exist in the literature. A common means of control
is to use a hierarchical controller in which a set of low-level control modules re-
ferred to as primitives are combined into a complex controller, referred to as an
arbitrator [11, 6, 14, 21]. The low-level modules (primitives) can either be hand-
designed [11] or auto-designed, e.g. using evolution to evolve a neural-network
controller [6, 14] or a behaviour-tree (BT) [24]. Quality-diversity approaches such
as MAP-Elites and Novelty search are increasingly being used to generate reper-
toires of primitives: Montague et. al. [24] use genetic programming combined
with MAP-Elites to generate BT primitives for a foraging task, while in [8, 15]
a repertoire of neural controllers is generated using novelty-search and neuro-
evolution. Arbitrators can also take many different forms: the AutoMoDe family
of controllers mainly uses probabilistic finite-state machines (PFSMs) [15], while



2 Montague et. al.

BTs are used in [17–19, 21]. Neural networks can also be evolved as arbitrators,
e.g. [13].

It is clear from the above that in developing a hierarchical controller, there
are many choices in terms of the representation of both primitives and arbitra-
tors. We suggest that BTs are an obvious choice for describing both primitives
and arbitrators. A BT is itself a hierarchical model which consists of actions,
conditions, and operators connected by directed edges [4]. They are modular in
the sense that the set of actions available to the tree can be easily modified, any
part of the tree can be extracted and reused, and the modules themselves can be
generated by multiple means. In addition, although neural controllers are more
common, they are not well-suited to crossing the reality-gap (i.e. obtaining con-
sistent performance between a simulated experiment and a physical experiment)
due to the fine-tuned precision obtained in simulation. Conversely, Francesca et.
al. [11] propose that increasing bias by constraining the evolutionary search to
pre-defined behaviour modules reduces variance and therefore sensitivity to the
reality gap. Furthermore, a neural network can also be difficult to analyse or
modify whereas BTs are human-readable and therefore go some way towards
being explainable [16].

In this paper, we build on an existing line of work in hierarchical controller
development by using evolutionary methods to develop a hierarchical control
system for a swarm which has an interpretable controller. Specifically, we use
two evolutionary methods to learn a hierarchical controller whose primitives and
arbitrator are both represented as BTs: to the best of our knowledge, there is no
existing hierarchical controller of this form. We leverage a set of primitives which
are evolved to fulfil several manually defined objectives for this purpose, using
(1) a multi-task version of GP (MTGP) and (2) MAP-Elites, both described by
[24]. We first extend the work of [24] in improving the quality of the primitive set
learned by MTGP by introducing the notion of compatible objectives (see section
3.2). We then use GP to evolve a BT arbitrator for a foraging task, comparing the
use of the different primitives’ repertoires evolved in the previous step as input.
We find that the arbitrator using primitives as nodes significantly outperforms
a learned controller that uses low-level behaviours directly. Secondly, our results
demonstrate that using a repertoire that contains multiple, diverse versions of
each primitive leads to higher performing arbitrators than using a repertoire
containing only a single high-performing primitive for each of the desired sub-
behaviours.

2 Background

Hierarchical forms of control in which a desired task is decomposed into a set of
simpler sub-tasks are common in many areas of robotics. Typically, an arbitrator
is designed that selects primitives that execute individual behaviours, where
the arbitrator can be informed by inputs from the environment or the robot’s
perceptions.



A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control 3

A long line of work in developing hierarchical controllers was spawned with
AutoMoDe [11] and its sequence of successors [3, 10, 19–22]. This family of meth-
ods almost all generate probabilistic finite-state machine (PFSM) arbitrators,
optimised using iterated F-race [23], with some exceptions e.g. IcePop [20] which
uses Simulated Annealing as the optimiser.

In another example Cully et. al. [6] evolve a large set of walking gaits using
a quality-diversity algorithm (MAP-Elites) for a legged robot, and an arbitrator
(using Bayesian optimisation) selects the most appropriate primitive given the
state of the robot and environment. Duarte et. al. [7] propose EvoRBC which
also uses a QD algorithm (Novelty-Search) to first evolve a repertoire of low-
level locomotion patterns (represented as vectors of parameters supplied to the
robot’s actuation system), and then to evolve a neural-network which acts as
an arbitrator. EvoRBC-II extended the EvoRBC approach to include the use
of closed-loop primitives. In the previously mentioned work, the goal of each
primitive is hand-designed: that is, the decomposition of the desired high-level
behaviour into primitives is performed by a human with knowledge of the desired
task, e.g. for a foraging task, specifying primitives such as ‘go-to-food’ or ’go-
to-nest’. In [15], a new approach is proposed which is mission agnostic, i.e. does
not rely on the definition of task specific primitives. Their framework ‘Nata’
automatically generates probabilistic finite-state machines (arbitrators) in which
states are selected from a repertoire of neural networks, and transition conditions
are selected from a set of rules based on the sensory capabilities of the robotic
platform considered [15]. A QD method is again used to generate a repertoire,
after which Iterated F-Race [23] is used to assemble them into PFSMs.

Many of the methods just mentioned use neural network controllers either
to create the repertoire of primitives or as the arbitrator. However, some con-
cerns have been raised that such finely tuned precision is not suited to crossing
the reality gap [11] while an additional concern is that a neural-network is a
black-box, i.e. it is difficult to analyse or modify. PFSMs go someway towards
addressing this criticism but require a compromise between reactivity and mod-
ularity: they cannot easily be broken down into their constituent parts because
of dependencies between components and they do not scale well as the num-
ber of states grows [5]. On the other hand, Behaviour Trees (BTs) have an
inherent capacity to reproduce the same functionality as PFSMs [4], but they
maintain independence between components which removes these trade-offs and
constraints. As noted by [16], they are also human-readable and therefore can
be useful in explaining behaviours. Montague et. al. [24] proposed a method of
evolving BT primitives using GP, exploring a multi-task GP method as well as
MAP-Elites, but did not extend this to evolving an arbitrator. MAPLE [18] and
Cedrata [19], both from the AutoMoDe family, use iterated F-Race to evolve
BT arbitrators but not primitives. In Kuckling et. al. [21], two new variants of
Cedrata are proposed, Cedrata-GP and Cedrata-GE which are based on genetic
programming and grammatical evolution, respectively. The performance of the
evolved BTs is compared against the performance of solutions created by a hu-
man designer, showing that Cedrata finds solutions that are also reliably found



4 Montague et. al.

by human designers. However, the automatic design methods fail to discover the
same communication strategies as the human designers.

In this paper we propose an approach in which for the first time both the
primitives and arbitrator are represented as BTs, leading to increased trans-
parency in interpreting them. We first extend the work described in [24] that
uses GP and QD methods to evolve a repertoire of primitives to improve the
quality of the repertoire. Then we evolve a BT arbitrator that leverages this
repertoire using GP, evaluating it on a foraging task that is common in swarm
robotics.

.

3 Methodology

The goal of this work is to evolve a hierarchical controller for a foraging task
which is composed of BTs at both the primitive and arbitrator level, evolved
by GP in both cases. We build directly on previous work by Montague et. al.
[24] which demonstrated that GP could be used to generate BT primitives for a
foraging task but stopped short of generating the high-level arbitrator. We make
the following contributions:

– Evolve an extended set of primitives to enlarge the repertoire available to
the arbitrator using (1) MAP-Elites in conjunction with GP (a Quality Di-
versity algorithm denoted QD) and (2) a multi-task GP method (denoted
MTGP1) that simultaneously evolves for multiple task fitnesses using an im-
plicit diversity mechanism. Specifically, we extend the set of primitives from
increase-neighbourhood-density, go-to-nest and go-to-food to include reduce-
neighbourhood-density, go-away-from-nest and go-away-from-food.

– Propose an approach to improve the quality of the repertoires generated by
the multi-task method MTGP that only considers compatible objectives in
its task set, i.e. does not include for example go-to-food and go-away-from-
food which cannot be satisfied by the same controller.

– Use GP to evolve a high-level BT controller for a foraging task leveraging the
primitive repertoires as input, comparing repertoires created by the different
methods outlined above.

3.1 Setup

We consider a foraging task in which the objective is for each robot in the swarm
to visit the food region and then the nest region as many times as possible over
the course of each simulated trial. A more detailed description can be found in
section 4.2.

As per [24], a swarm is composed of nine footbot robots (figure 1, [1]) de-
ployed in the arena shown in figure 2. Controllers are evaluated using the ARGoS

1 Note that the authors in [24] referred to this method as e.g. GPO1,O2,O3 however we
believe it is more correctly described as a multi-task algorithm, e.g. [26]



A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control 5

simulator [25]. We use the same set up as described in [24], where the robots
navigate by estimating the distance and direction of points of interest using
information from their neighbours, while a blackboard provides an interface be-
tween the BT controllers and the footbots’ sensor data. The reader is referred
to the publication of [24] for full details.

In each set of experiments (to evolve primitives or arbitrators) each controller
is evaluated over ten trials with randomised starting positions divided between
two predefined arena configurations. The only difference in the way that arbitra-
tors are evaluated compared with the primitives is that the length of each trial
is increased from 20 seconds to 100 seconds.

Fig. 1: A screenshot of a footbot
robot in the arena taken in AR-
GoS.

Fig. 2: The arena layout, with
nine robots initialised in random
starting positions.

In all of our experiments we evolve BT controllers with GP implemented using
DEAP [9]. For the quality-diversity approach we combine GP with MAP-Elites
using QDpy2. We use the same evolutionary parameters and BT implementation
as described in [24], except that we add a new condition - ifGotFood - which
indicates whether the robot has visited the food region since its last visit to the
nest region. In doing so, we introduce a new internal state. Tables 1 and 2 list
the nodes for evolving primitives for ease of reference. The reader is referred to
[24] for detailed descriptions of the algorithms and GP implementation.

Each algorithm is run with ten different random seeds for each objective
(or combination of objectives) for 1000 generations. The GP population size
and the MAP-Elites batch size are both set to 25, while MTGP is assigned a
population of 75 to reflect that it generates controllers for three objectives at
once (therefore does not have to be run 3 times as with the other methods). All
parameter settings are taken from [24]. Performance for each primitive is defined
according to the median over 10 runs of the metrics described in [24] for the three

2 https://pypi.org/project/qdpy/



6 Montague et. al.

primitive behaviours defined in [24] and for the three new primitive behaviours
as defined in Section 3.2 which we introduce in this paper. The fitness of a BT
arbitrator is defined in Section 4.2.

3.2 Evolving new primitives

As noted above, we first use Map-Elites (denoted QD from herein) and MTGP to
evolve three new primitives which provide the opposite behaviour to the original
primitives, increase density, go to nest and go to food. The motivation behind
this is to increase the number of options available to the arbitrator which in
turn might find better behaviours. We opted for ‘obvious’ objectives at this
stage, but there is clearly room for considering either further hand-crafted ones
or auto-generating them in future work. These primitives are described in detail
below:

– Decrease neighbourhood density maximises the difference between the
density of neighbouring robots at the beginning and end of each trial, which
we calculate by subtracting the final density from the initial density.

– Move away from the nest region maximises the difference in distance
estimated by each robot at the start and end of each trial based on the
shortest route by hops via neighbouring robots. The difference is calculated
by subtracting the final distance from the initial distance.

– Move away from the food region maximises the difference in the robots’
absolute distance to the food region at the beginning and end of each trial,
calculated by subtracting the initial distance from the final distance.

These primitives are evolved using the same nodes as in [24], as shown in
tables 1 and 2.

Table 1: Condition Nodes
If on food Returns success if the robot is within the food region

If food to left Returns success if the shortest route to the food region is to the
robot’s left

If food to right Returns success if the the shortest route to the food region is to
the robot’s right

If in nest Returns success if the robot is within the nest region

If nest to left Returns success if the shortest route to the nest region is to the
robot’s left

If nest to right Returns success if the shortest route to the nest region is to the
robot’s right

If robot to left Returns success if the nearest robot is to this robot’s left

If robot to right Returns success if the nearest robot is to this robot’s right



A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control 7

Table 2: Action Nodes
Stop No movement for one tick

Forwards Move forwards for one tick

Forwards left Right wheel forwards for one tick, rotating the robot anti-clockwise

Forwards right Left wheel forwards for one tick, rotating the robot clockwise

Reverse Move backwards for one tick

Reverse left Right wheel in reverse for one tick, rotating the robot clockwise

Reverse right Left wheel in reverse for one tick, rotating the robot anti-clockwise

The choice of primitives to be evolved can cause issues for MTGP: at each
iteration, this algorithm randomly selects one of the objective functions and
assigns a fitness based on the chosen function. This encourages generalisation and
was shown by [24] to improve performance for some objectives compared to a GP
algorithm that evolved for each objective individually. However, it should be clear
that some objectives are incompatible as previously mentioned. We therefore
evaluate two versions of MTGP: one in which only compatible objectives are
used, and another which includes objectives which are mutually exclusive. Hence,
the following algorithms for evolving primitives are compared:

– GP: A baseline GP algorithm that evolves controllers for one objective at a
time and is repeated for each primitive.

– MTGP: An algorithm that evolves controllers for multiple objectives at
once, selecting one objective at random as the fitness function for each tour-
nament used to select parents. We compare its performance using both in-
compatible (dubbed MTI) and compatible (dubbed MTC) combinations of
objectives.

– QD: A MAP-Elites algorithm that evolves a collection of solutions for one
objective at a time whose behaviours are diverse with respect to a set of user-
defined characteristics. The characteristics which distinguish them are taken
from [24] and are: difference in the ratios of forwards and backwards move-
ment; ratios of clockwise and anti-clockwise rotations; the ratio of condition
nodes and action nodes which are executed during simulation.

We define (increase density, go to nest and go away from food) as one set of
compatible objectives, and (reduce density, go away from nest and go to food) as
another3. We also define two sets of incompatible objectives: (increase density,
go to nest and go to food) and (reduce density, go away from nest and go away
from food).

3 Obviously objectives such as increase density and decrease density are mutually
exclusive and therefore are never considered together



8 Montague et. al.

3.3 Evolving an Arbitrator

To evolve a high-level foraging behaviour that leverages a repertoire of primitives
evolved above, we use the single objective GP algorithm denoted GP above.
This is exactly the same algorithm proposed by [24] except that the low-level
action nodes are replaced by the primitives in the chosen repertoire and the
set of condition nodes is restricted. We use the same evolutionary parameters
as used to evolve the primitive repertoire, maintaining the population size of
25 individuals and running the algorithm for 1000 generations. Foraging also
requires longer simulations so we increase the length of each trial in the arena
from 20 seconds for primitives to 100 seconds for the arbitrator.

The objective function for the arbitrator rewards robots for each visit to
the nest region which follows a visit to the food region. Upon visiting the food
region, a robot is considered to be carrying food. If it then enters the nest region
it reverts back to its default state and its score is incremented by one.

The fitness score S is defined as the number of times any robot carrying food
arrives in the nest f divided by the number of robots in the arena r (which is
nine in these experiments), i.e. S = f/r

We compare the following repertoires as input to this method:

– R1: the highest performing behaviour for each primitive found by QD.

– R2: the highest performing behaviour for each primitive returned by MTGP
using compatible behaviours4.

– R3: a repertoire containing multiple diverse BTs for each primitive. This is
obtained by dividing the whole container returned by MAP-Elites into two
equally sized bins along each axis, selecting the best controller from each
of the eight resulting bins. This results in 8 behaviours for each of the 6
objectives, i.e. a total of 48 action nodes in the repertoire.

– R4: a repertoire containing eight diverse BTs for each primitive obtained by
casting all individuals found by MTGP to the same MAP-Elites grid and
dividing the axes in the same way, retrieving the best BT from each of the
resulting eight bins.

– R5: a baseline experiment which uses the low-level action nodes used to
evolve the primitives.

Note that using the repertoires of evolved primitives makes several of the
condition nodes used by [24] obsolete. For example, condition nodes concerned
only with navigation such as ‘ifRobotToLeft/Right’ are irrelevant at the arbi-
trator’s level of abstraction and are therefore removed from the condition lists.
This leaves just three condition nodes: (1) Is this robot in the food region; (2)
Is this robot in the nest region; (3) Is this robot carrying food. The mutation
operators insert condition or action nodes with equal probability.

4 Experiments in Section 4.1 showed that the performance of MTGP using compatible
objectives was often better than using incompatible objectives



A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control 9

4 Results

We first evaluate the proposed approaches for improving the primitive reper-
toires, i.e. by adding additional objectives, and using two versions of MTGP
with compatible or incompatible subsets of objectives.

4.1 Extending and improving the primitive repertoire

Figure 3 shows boxplots of fitness over 10 repetitions of the performance of each
algorithm listed in Section 3.2 for each of the six primitive behaviours evolved.
To compare pairs of algorithms, a Shapiro-Wilk test was performed to check
for normality, after which either a Student t-test if the data was judged to be
normal or a Mann-Whitney test otherwise. The results of these tests are shown
in table 3: a confidence level of 0.05 is used to test for significance.

Table 3: Statistical testing results showing pairwise comparisons for different
combinations of objectives. Statistically significant results within a confidence
interval of 0.05 are shown in bold. The type of test applied is shown in italics:
italicised = Mann-Whitney, non-italics=T-test

G
P

vs
M
T
I

G
P

vs
M
T
C

G
P

vs
Q
D

M
T
I
vs

M
T
C

M
T
I
vs

Q
D

M
T
C

vs
Q
D

Increase density 0.7913 0.0580 0.5575 0.0640 0.3847 0.0760
Go to nest 0.4727 0.0452 0.5708 0.2204 0.0757 0.0257
Go to food 0.3217 0.3240 0.0270 0.0526 0.0168 0.2199
Reduce density 0.8067 0.3838 0.0352 0.4535 0.0037 0.0018
Go away from nest 0.0172 0.0211 0.0017 0.6980 0.9482 0.6372
Go away from food 0.0009 0.0259 0.2002 <0.0001 <0.0001 0.1414

Table 4: Median values for each algorithm with the highest median in bold
GP MTI MTC QD

Increase density 0.585309 0.582788 0.594218 0.585442
Go to nest 0.826672 0.839357 0.855242 0.826128
Go to food 0.847747 0.842908 0.850078 0.856015
Reduce density 0.535612 0.533996 0.533903 0.537092
Go away from nest 0.792973 0.811753 0.803499 0.813578
Go away from food 0.624641 0.609507 0.638132 0.629626



10 Montague et. al.

(a) Increase density (b) Reduce density

(c) Go to nest (d) Go away from nest

(e) Go to food (f) Go away from food

Fig. 3: Box-plots of the best fitness obtained for all three algorithms including
two variations of the multi-task algorithm (MTI/MTC). Where its three objec-
tives are compatible the performance is shown in blue; subsets of incompatible
objectives are shown in red.



A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control 11

Figure 3 shows that the highest median performance is obtained by MTC
for three objectives (increase density, go to nest, go away from food) and by QD
for the remaining three (reduce density, go away from nest, go to food). However,
as shown in table 3, the result is not always significant5. For four objectives, the
median performance obtained from the compatible version of MTGP is higher
than that of the incompatible version, although again the difference is not signif-
icant except in the case of go away from food. Surprisingly, for the go away from
nest and reduce density objectives, the incompatible version of MTGP produces
a higher median than its compatible counterpart although its variance is much
higher. For go away from food and go away from nest, the incompatible version
of MTGP performs significantly worse than the baseline.

Based on the results just described, we decide to discard the repertoires
obtained with the incompatible version of MTGP and proceed to evolve a high-
level arbitrator using only repertoires obtained from MTC and QD. These results
are described in the next section.

4.2 Foraging Experiments

We compare BT arbitrators evolved using GP from the four different repertoires
obtained by the methods described in Section 4.2. Recall that the goal is to
determine: (1) if the hierarchical approach outperforms a baseline that evolves a
single BT using the low-level nodes in table 2; (2) which repertoire of primitives
results in the best performing arbitrator.

Figure 4 shows boxplots of results over 10 repeated experiments. Statistical
test results are presented in table 5. It is immediately clear from Fig. 4 that all
experiments using repertoires of evolved primitives outperform the baseline6 (the
first four entries in table 5). This confirms that a hierarchical approach which
leverages a repertoire of pre-evolved primitives is preferable to directly evolving
an arbitrator using low-level actions. The best median fitness is obtained using
a repertoire containing 8 diverse behaviours per objective (QD8). MT8 provides
similar performance, suggesting that having a diverse repository of primitives
including multiple behaviours that optimise the same primitive is preferable to
simply using the single best primitive available for an objective in the repertoire.
Recall that QD produces the highest median fitness for a behaviour for 3 prim-
itives, and MTC for the remaining three primitives. Hence it is unsurprising
that QD8 and MT8 have similar performance, as they are both able to exploit
good repertoires. In the same vein, QD1 and MT1 have similar performance in
terms of the quality of the primitives in the repertoire, leading to similar quality
arbitrators.

5 Further work should increase the number of runs from the 10 performed to ascertain
whether we should be confident in this result

6 All experiments were run for the same amount of computational time taking into
account the time taken to evolve the primitives: thus the baseline experiments are
run for more generations than the arbitrator



12 Montague et. al.

Fig. 4: A baseline algorithm which evolves a foraging behaviour from primitive
actions nodes (go forwards, etc) compared with ones that use the best of each of
the sub-behaviours from the QD and MTGP repertoires instead, and ones which
use eight versions of each sub-behaviour from each of those repertoires.

Table 5: Statistical testing results showing pairwise comparisons for foraging.
Statistically significant results within a confidence interval of 0.05 are shown in
bold.

Comparison p-value Type of test

Baseline vs QD repertoires of one 0.0049 T-test
Baseline vs MT repertoires of one 0.0032 T-test
Baseline vs QD repertoires of eight 0.0001 T-test
Baseline vs MT repertoires of eight <0.0001 T-test

QD repertoires of one vs MT repertoires of one 0.9302 T-test
QD repertoires of eight vs MT repertoires of eight 0.9822 T-test

QD repertoires of one vs QD repertoires of eight 0.0665 T-test
MT repertoires of one vs MT repertoires of eight 0.0316 T-test

QD repertoires of one vs MT repertoires of eight 0.0312 T-test
MT repertoires of one vs QD repertoires of eight 0.0701 T-test

4.3 Readability

One of the main advantages of using BTs as opposed to NNs is that they are
amenable to being understood by humans. Figure 5b shows an example of one
of the high fitness BTs evolved, first in the full form return by the GP algorithm
and then with its redundant nodes pruned by hand. The latter can be interpreted
as follows: ‘If you have food go away from food, and then if you are not in the
nest, or you did not have food, check again if you have food. If you do then go
to food, otherwise reduce density ’.

A cursory examination will reveal that the use of go to food seems nonsensical.
However, there is no requirement for the arbitrator to use the sub-behaviours



A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control 13

(a) A verbose tree for foraging. Some of the condition nodes are duplicated and all
action nodes return success, so any subsequent children of a select node (denoted “?”)
will never be reached.

(b) The same tree with redundant nodes removed.

Fig. 5: Generated with repertoires of eight BTs per sub-behaviour from the QD
repertoire.

for the purpose imagined by the designer or rewarded by the fitness function: for
example we could speculate that go to food in figure 5b is being used simply to
propel the robot forwards or backwards, since this is often what ‘going to food’
amounts to. This in itself is a useful behaviour.

5 Conclusions and Further Work

This paper builds on a line of work that uses a hierarchical method of developing
a control system for a swarm of robots. At the primitive level, a set of controllers
are created that optimise sub-tasks of the desired goal. A higher-level controller



14 Montague et. al.

known as an arbitrator then combines the previously generated primitives into a
controller that executes the defined goal. Although the use of hierarchical meth-
ods is well-known (particularly regarding the AutoMoDe [12] series of control
software), previous methods have tended to use neural-networks or PFSMs as
arbitrators, with a small number of recent papers proposing BTs [21]. In this
paper, we propose a method that uses BTs at both levels of the hierarchy, i.e.
to evolve the primitives and then the arbitrator. As noted by [16], BTs offer
considerably more explanatory power than neural-networks.

Building on previous work by Montague et. al. [24] that proposed using BTs
to evolve primitives, we extend this work in several ways. First, we extended the
set of sub-tasks described in [24] to provide new primitives that could be useful
in a foraging task. Secondly we proposed an amendment to the multi-task GP
approach proposed in [24] that only considers compatible behaviours when gen-
erating multiple primitives simultaneously. Finally, we evolved an arbitrator as a
BT using GP that exploits the new evolved repertoires, showing that repertoires
that contain multiple BTs per primitive that achieve the same objective in dif-
ferent ways produce the highest performing controllers. We provide an example
of a BT to illustrate that it can be easily read and analysed to understand the
evolved behaviour.

There is much potential for future work. Rather than evolving primitives
then an arbitrator sequentially, a meta-evolutionary algorithm could be used
to search for the set of primitives that produce the best arbitrator, following a
similar process to [2]. While BTs are inherently readable, it would be interesting
to investigate the trade-off between readability and performance: replacing the
BT arbitrator with a neural-network or PFSM and repeating the experiment
would illustrate any such trade-off. The function of each of the primitives at the
lower level of the hierarchy is human-designed, as are the action and condition
nodes used by the GP algorithm to evolve primitives. A first step in removing the
need for human expertise has recently been described by Hasslemann et. al. [15]
which tries to automatically define primitives. This type of approach could also
be integrated with our proposed methodology. Finally, we proposed a first näıve
approach to selecting primitives for a repertoire from the much larger container
of solutions generated by both the QD and MTGP algorithms. An approach that
tried to maximise diversity might yield better results, or could itself be subject
to a search process, given that large containers are generated. Finally, repeating
the experiments in other collective tasks would provide further insights into the
generality of the approach.



A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control 15

References

1. Bonani, M., Longchamp, V., Magnenat, S., Retornaz, P., Burnier, D., Roulet, G.,
Vaussard, F., Bleuler, H., Mondada, F.: The marxbot, a miniature mobile robot
opening new perspectives for the collective-robotic research pp. 4187–4193 (01
2010). https://doi.org/10.1109/IROS.2010.5649153

2. Bossens, D.M., Mouret, J.B., Tarapore, D.: Learning behaviour-performance maps
with meta-evolution. In: Proceedings of the 2020 Genetic and Evolutionary Com-
putation Conference. p. 49–57. GECCO ’20, Association for Computing Ma-
chinery, New York, NY, USA (2020). https://doi.org/10.1145/3377930.3390181,
https://doi.org/10.1145/3377930.3390181

3. Cambier, N., Ferrante, E.: Automode-pomodoro: an evolutionary class of modular
designs. pp. 100–103 (07 2022). https://doi.org/10.1145/3520304.3529031

4. Colledanchise, M., Ögren, P.: How behavior trees modularize hybrid control sys-
tems and generalize sequential behavior compositions, the subsumption architec-
ture, and decision trees. IEEE Transactions on Robotics 33(2), 372–389 (2017).
https://doi.org/10.1109/TRO.2016.2633567

5. Colledanchise, M., Ögren, P.: Behavior trees in robotics and ai: An introduction.
CoRR abs/1709.00084 (2017), http://arxiv.org/abs/1709.00084

6. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like ani-
mals. Nature 521(7553), 503–507 (2015)

7. Duarte, M., Gomes, J., Oliveira, S., Christensen, A.: Evorbc: Evolutionary
repertoire-based control for robots with arbitrary locomotion complexity (07 2016).
https://doi.org/10.1145/2908812.2908855

8. Duarte, M., Gomes, J., Oliveira, S.M., Christensen, A.L.: Evolution of
repertoire-based control for robots with complex locomotor systems.
IEEE Transactions on Evolutionary Computation 22(2), 314–328 (2018).
https://doi.org/10.1109/TEVC.2017.2722101

9. Fortin, F.A., De Rainville, F.M., Gardner, M., Parizeau, M., Gagné, C.: Deap: Evo-
lutionary algorithms made easy. Journal of Machine Learning Research, Machine
Learning Open Source Software 13, 2171–2175 (07 2012)

10. Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn,
G., Reina, A., Soleymani, T., Salvaro, M., Pinciroli, C., Mascia, F., Trianni, V.,
Birattari, M.: Automode-chocolate: automatic design of control software for robot
swarms. Swarm Intelligence 9 (06 2015)

11. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: Automode:
A novel approach to the automatic design of control software for robot swarms.
Swarm Intell 8, 1–24 (06 2014). https://doi.org/10.1007/s11721-014-0092-4

12. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: Automode:
A novel approach to the automatic design of control software for robot swarms.
Swarm Intelligence 8, 89–112 (2014)

13. Gomes, J., Christensen, A.L.: Task-agnostic evolution of diverse repertoires of
swarm behaviours. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L.,
Reina, A., Trianni, V. (eds.) Swarm Intelligence. pp. 225–238. Springer Interna-
tional Publishing, Cham (2018)

14. Gomes, J., Oliveira, S.M., Christensen, A.L.: An approach to evolve and exploit
repertoires of general robot behaviours. Swarm and Evolutionary Computation 43,
265–283 (2018)

15. Hasselmann, K., Ligot, A., Birattari, M.: Automatic modular design
of robot swarms based on repertoires of behaviors generated via nov-



16 Montague et. al.

elty search. Swarm and Evolutionary Computation 83, 101395 (08 2023).
https://doi.org/10.1016/j.swevo.2023.101395

16. Hogg, E., Hauert, S., Harvey, D., Richards, A.: Evolving behaviour trees for su-
pervisory control of robot swarms. Artificial Life and Robotics 25, 569–577 (2020)

17. Kuckling, J., Ligot, A., Bozhinoski, D., Birattari, M.: Behavior trees as a control
architecture in the automatic modular design of robot swarms. In: Dorigo, M.,
Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) Swarm
Intelligence. pp. 30–43. Springer International Publishing, Cham (2018)

18. Kuckling, J., Ligot, A., Bozhinoski, D., Birattari, M.: Behavior trees as a control
architecture in the automatic modular design of robot swarms. In: International
Conference on Swarm Intelligence. pp. 30–43. Springer (2018)

19. Kuckling, J., van Pelt, V., Birattari, M.: Automatic modular design of behav-
ior trees for robot swarms with communication capabilites. In: Castillo, P.A.,
Jiménez Laredo, J.L. (eds.) Applications of Evolutionary Computation. pp. 130–
145. Springer International Publishing, Cham (2021)

20. Kuckling, J., Ubeda Arriaza, K., Birattari, M.: Automode-icepop: Automatic mod-
ular design of control software for robot swarms using simulated annealing. In:
Bogaerts, B., Bontempi, G., Geurts, P., Harley, N., Lebichot, B., Lenaerts, T.,
Louppe, G. (eds.) Artificial Intelligence and Machine Learning. pp. 3–17. Springer
International Publishing, Cham (2020)

21. Kuckling, J., Van Pelt, V., Birattari, M.: Automode-cedrata: automatic design of
behavior trees for controlling a swarm of robots with communication capabilities.
SN Computer Science 3(2), 136 (2022)

22. Ligot, A., Hasselmann, K., Birattari, M.: Automode-arlequin: Neural networks as
behavioral modules for the automatic design of probabilistic finite-state machines.
In: Dorigo, M., Stützle, T., Blesa, M.J., Blum, C., Hamann, H., Heinrich, M.K.,
Strobel, V. (eds.) Swarm Intelligence. pp. 271–281. Springer International Publish-
ing, Cham (2020)

23. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birat-
tari, M., Stützle, T.: The irace package: Iterated racing for auto-
matic algorithm configuration. Operations Research Perspectives 3,
43–58 (2016). https://doi.org/https://doi.org/10.1016/j.orp.2016.09.002,
https://www.sciencedirect.com/science/article/pii/S2214716015300270

24. Montague, K., Hart, E., Nitschke, G., Paechter, B.: A quality-diversity approach
to evolving a repertoire of diverse behaviour-trees in robot swarms. In: Correia,
J., Smith, S., Qaddoura, R. (eds.) Applications of Evolutionary Computation. pp.
145–160. Springer Nature Switzerland, Cham (2023)

25. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Math-
ews, N., Ferrante, E., Caro, G.A.D., Ducatelle, F., Birattari, M., Gambardella,
L.M., Dorigo, M.: Argos: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intelligence 6, 271–295 (2012)

26. Wei, T., Wang, S., Zhong, J., Liu, D., Zhang, J.: A review on evolutionary multi-
task optimization: Trends and challenges. IEEE Transactions on Evolutionary
Computation (2021)


