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A B S T R A C T

Background: Skin diseases are reported to contribute 1.79% of the global burden of disease. The accurate
diagnosis of specific skin diseases is known to be a challenging task due, in part, to variations in skin tone,
texture, body hair, etc. Classification of skin lesions using machine learning is a demanding task, due to
the varying shapes, sizes, colors, and vague boundaries of some lesions. The use of deep learning for the
classification of skin lesion images has been shown to help diagnose the disease at its early stages. Recent
studies have demonstrated that these models perform well in skin detection tasks, with high accuracy and
efficiency.
Objective: Our paper proposes an end-to-end framework for skin lesion classification, and our contributions
are two-fold. Firstly, two fundamentally different algorithms are proposed for segmenting and extracting
features from images during image preprocessing. Secondly, we present a deep convolutional neural network
model, S-MobileNet that aims to classify 7 different types of skin lesions.
Methods: We used the HAM10000 dataset, which consists of 10000 dermatoscopic images from different
populations and is publicly available through the International Skin Imaging Collaboration (ISIC) Archive. The
image data was preprocessed to make it suitable for modeling. Exploratory data analysis (EDA) was performed
to understand various attributes and their relationships within the dataset. A modified version of a Gaussian
filtering algorithm and SFTA was applied for image segmentation and feature extraction. The processed dataset
was then fed into the S-MobileNet model. This model was designed to be lightweight and was analyzed in
three dimensions: using the Relu Activation function, the Mish activation function, and applying compression at
intermediary layers. In addition, an alternative approach for compressing layers in the S-MobileNet architecture
was applied to ensure a lightweight model that does not compromise on performance.
Results: The model was trained using several experiments and assessed using various performance measures,
including, loss, accuracy, precision, and the F1-score. Our results demonstrate an improvement in model
performance when applying a preprocessing technique. The Mish activation function was shown to outperform
Relu. Further, the classification accuracy of the compressed S-MobileNet was shown to outperform S-MobileNet.
Conclusions: To conclude, our findings have shown that our proposed deep learning-based S-MobileNet model
is the optimal approach for classifying skin lesion images in the HAM10000 dataset. In the future, our approach
could be adapted and applied to other datasets, and validated to develop a skin lesion framework that can be
utilized in real-time.
1. Introduction

The skin is the body’s largest organ and consists of three layers:
the epidermis (outermost layer), dermis, and hypodermis (innermost

∗ Corresponding author.
E-mail addresses: razia.sulthana@gre.ac.uk (Razia Sulthana A), vinay.chamola@pilani.bits-pilani.ac.in (V. Chamola), zain.hussain@ed.ac.uk (Z. Hussain),

faisal.albalwy@manchester.ac.uk (F. Albalwy), a.hussain@napier.ac.uk (A. Hussain).

layer). Some common skin diseases include acne, eczema, psoriasis,
lesions, and skin cancer (Diepgen & Mahler, 2002). Skin lesions are
unusual patches or bumps on the skin and can be categorized into
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3 classes: those formed by fluids, those which are solid-like masses
in the skin, and those which are flat, like rashes. Manual detection
and classification of skin lesions is challenging because of the varying
shapes, sizes, colors, and vague boundaries of lesions. The earlier iden-
tification of skin diseases indirectly reduces the healthcare costs and
applying automated deep CNN techniques may reduce the misdiagnosis
of skin diseases and increases the prediction accuracy. While there
are a number of studies discussed in the literature section of this
paper on skin lesion image segmentation using Deep Learning (DL)
algorithms, Artificial Intelligence (AI) approach, and transfer learning,
in order to detect and classify skin lesions in a timely manner (Premal-
adha & Ravichandran, 2016; Sulthana, Gupta, Subramanian, & Mirza,
2020), the proposed work develops newer methods to improve the
segmentation’s and classification accuracy.

This paper aims to build an end-to-end deep convolutional neural
network (D-CNN) framework to classify skin lesion images. The pro-
posed S-MobileNet D-CNN model is a modified version of the MobileNet
architecture (Srinivasu et al., 2021). The clinical image dataset used
in this work is HAM10000 (Tschandl, Rosendahl, & Kittler, 2018).
The skin lesion images in the dataset are distributed among 7 classes:
Melanocytic nevi, Melanoma, Benign keratosis-like lesions, Basal cell
carcinoma, Actinic keratoses, Vascular lesions, and Dermatofibroma.
The skin lesion images were pre-processed before being fed into the
neural network (NN) model. Image preprocessing techniques viz. image
segmentation and feature extraction were carried out using the pro-
posed algorithms to identify the latent clean image from the hidden
layers. Exploratory data analysis (EDA) and hypothesis formulation was
carried out to obtain a better understanding of the data. An additional
analysis of the relationship between various attributes was conducted
to improve prediction. The dataset is split into train and test sets for
training and validation in the ratio of 80:20. The S-MobileNet model is
built, trained, and evaluated using various performance measures like
accuracy, precision, and F1 score. The main contributions of the paper
include

1. Two new algorithms are proposed for image segmentation and
feature extraction respectively. The former segments images by
analyzing the pixels by constructing a threshold and is more effective in
removing noise from the image. The latter is a modified version of the
Segmentation-based Fractal (SFTA) that determines the texture pattern
from the image.

2. A D-CNN S-MobileNet is built to extract low-level features of the
image and to automatically classify skin lesion images into 7 classes of
disease.

3. The proposed S-MobileNet model is fine-tuned and analyzed
using the Relu and Mish Activation functions. Hyperparameters are
fine-tuned to improve the model’s performance.

4. A lightweight S-MobileNet model is built by altering the archi-
tecture of the model and by compressing the intermediary layers to
enhance the classification performance.

The paper begins with a general introduction about the types of skin
cancer, an explanation of the problem statement, and the main contri-
butions. In Section 2, a literature survey is presented with a detailed
analysis of existing machine learning approaches and image prepro-
cessing techniques. Section 3 details the algorithm used for image
segmentation and feature extraction, methodology, and architecture
of the proposed S-MobileNet. Section 4 describes the implementation
setup, the experiments, and the corresponding results. Finally, the
paper is concluded in Section 5.

2. Background

A number of custom-made models are proposed by researchers in
recent years in relation to skin lesion classification and prediction.
Some of them related to the proposed problem statement are briefed in
Table 1. The Table aggregates the algorithms and performance metrics
used in the latest years to classify skin lesion images.
2

2.1. Machine learning approaches

Machine learning algorithms are used for image classification across
a number of applications (Sulthana et al., 2020). A specific focus of
this section is on image-based methods of classifying skin diseases.
In Tushabe, Mwebaze, and Kiwanuka (2011), as an initial preprocessing
step, the image data is rescaled, resized, and then classified using Naive
Bayes, k-Nearest Neighbour (KNN), Support Vector Machines (SVM),
Neural Network(NN). In spite of the high classification accuracy of the
model, prediction accuracy is a major concern. Self diagnosis of skin
diseases is introduced in Ajith et al. (2017) which uses image trans-
formation techniques like Discrete Cosine Transform (DCT), Discrete
Wavelet Transform (DWT), and Singular Value Decomposition (SVD).
A comparison of all the image analysis techniques is made and an
ensemble transformation technique is proposed by combining all three.
This approach is found to be faster in diagnosing the skin disease.

A semi-supervised Computer-Aided System (CAD) (George et al.,
2018) for Psoriasis image classification uses both unsupervised and
supervised image classification techniques. It builds a dictionary for
sparse image classification using aggregation methods deployed over
local features in an image. Multi-class machine learning classification
techniques like Random Forest (RF), SVM, and AlexNet are applied for
severity score calculation. A detailed analysis of pre-trained networks is
applied in Patnaik et al. (2018) for recognizing 20 skin abnormalities.
The performance of the different models is compared by generating the
confusion matrix and accuracy. However, the highest accuracy score
is generated by an ensemble model. Inspired by this work, the author
in Mittal et al. (2017) used the median filtration technique to remove
the noise from the image. Following this sobel edge detection is applied
to detect the edges of the images. The result shows an increase in
entropy value. Yet, ways to extract the discriminative features from the
image still remain fuzzy.

A mass of varying architectures of Convolution Neural Network
(CNN) (Al-Masni et al., 2018; Albahar, 2019; ALEnezi, 2019; Bhadula
et al., 2019; Roy et al., 2019) is applied in many research articles
for skin image segmentation and classification. The segmentation tech-
niques, in general, help to minimize the distortions from the images
and improves the accuracy of classification. Although the impact of
segmentation in the classification of images has been explored partially
in the literature work cited above, there is still a lot of room for further
research. D-CNN networks are also applied for building learning models
in Hekler et al. (2019), Kadampur and Al Riyaee (2020) and Shanthi
et al. (2020) to classify skin lesion images. Gradient boosting is applied
to classify around 300 heterogeneous skin lesions into 5 categories
in Hekler et al. (2019) and the results of the machine learning algorithm
are intervened by human interest and are cross analyzed to produce an
accuracy of 82.95%. Five custom-designed deep learning CNN models
are proposed in Kadampur and Al Riyaee (2020) by varying the con-
volution blocks, pooling blocks, and dropout blocks. In addition, the
model is tuned to bring the optimal results by modifying the activation
functions, and tuning the hyperparameters and so there is limited
evidence for considering this model as the de-facto standard.

Melanoma-affected skin lesion images are classified in multi-stage
by analyzing their pixels at the fine level using enhanced encoder–
decoder feature map (Shanthi et al., 2020). This approach compares
and classifies images in real-time using three segmentation techniques
with a minimal number of training parameters and resources. A real-
time algorithm using Generative Adversarial Network (GAN) to detect
melanin and sebum from skin images is proposed in Hu, Chen, Qiao,
Du, and Ye (2022). In the first step, grayscale images are converted
into black and white and enhanced before being passed on to the UNet
architecture. Failing to clearly identify melanin and sebum in the same
image is one drawback of this approach.

The Lyme skin infection is identified using the skin images taken
from the EM image dataset (Lin, Gao, & Sang, 2022) and applied to

the HAM10000 dataset using the transfer learning approach in Hossain,
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Table 1
Literature related to the proposed problem statement.

Ref Objective Algorithms used Performance metrics

Ajith, Goel, Vazirani, and Roja
(2017)

Classification of skin diseases DCT, DWT, SVD Accuracy

George, Aldeen, and Garnavi
(2018)

Comparative study of the proposed
system with AlexNet and other CNN
models

RF, SVM, boosting F1 Score

Patnaik, Sidhu, Gehlot,
Sharma, and Muthu (2018)

Propose a computer vision approach to
differentiate and recognize 20 skin
abnormalities with increased accuracy

Inception_v3, MobileNet, Resnet,
xception, RF, and LR

Accuracy

Mittal, Tanwar, and Khatri
(2017)

Apply segmentation and filtering
techniques to classify skin diseases.
Provides a visualization of the skin
images for improved identification and
classification of skin lesions

Sobel edge detection, median filtering Entropy

Al-Masni, Al-Antari, Choi,
Han, and Kim (2018)

Proposes a deep learning model called
FrCN for skin lesion segmentation
analysis

Full resolution convolutional networks Jaccard index, accuracy

Roy et al. (2019) Classification of skin images k-means clustering, morphology-based
image segmentation

Signal to noise ratio

Bhadula, Sharma, Juyal, and
Kulshrestha (2019)

Classification of skin images RF, Naive Bayes, LR, Kernel SVM, and
CNN

Accuracy and error rate

ALEnezi (2019) Classification of skin images CNN and SVM Accuracy

Albahar (2019) Classification of skin images CNN, Lasso regularization Accuracy, ROC curve

Hekler et al. (2019) Combines human intelligence with
artificial intelligence to classify skin
images

Deep learning, CNN Accuracy

Kadampur and Al Riyaee
(2020)

Classification of skin diseases Deep learning model ROC Curve

Shanthi, Sabeenian, and
Anand (2020)

Classification of skin images and build
an automatic grouping system of the
skin diseases

CNN Accuracy

Adegun and Viriri (2019) Builds a system based on D-CNN with a
supervised encoder–decoder network to
differentiate between melanoma and
non-melanoma lesions.

D-CNN Accuracy

Waweru, Ahmed, Miao, and
Kawan (2020)

Creates a web application for diagnosis
of skin lesion

D-CNN Accuracy

Goyal, Oakley, Bansal,
Dancey, and Yap (2019)

Build a deep learning model for
classification of skin images

Mask R-CNN and DeeplabV3+ Sensitivity, specificity

Zafar et al. (2020) Build a deep learning ensemble model
with U-Net and ResNet

CNN and transfer learning Jaccard index, accuracy

Abbas, Ramzan, and Ghani
(2021)

Investigates many deep learning and
transfer learning models in classification
of skin diseases

7 layered deep CNN Accuracy

Ali, Miah, Haque, Rahman,
and Islam (2021)

Classification of skin diseases and
comparative study of the proposed
D-CNN with existing models

D-CNN Accuracy

Alsaade, Aldhyani, and
Al-Adhaileh (2021)

Uses deep learning and artificial
intelligence to build an automated
system for skin disease

AI and CNN Accuracy
Nguifo and de Herve (2022). This study applies twenty-three well-
known CNN architectures and confirms a lightweight CNN model to
be very effective and useful in classifying the images. Additionally, the
extended study in Hossain, de Herve et al. (2022) by the same author
proposes a customized ResNet for classifying the skin images. In a way
similar to this, the proposed method creates a lightweight, customized
S-MobileNet to classify the skin lesion images in HAM10000.

Another article, Yu, Lee, and Yu (2021) introduces a customized
CNN with compression complexity pooling as compared to the con-
ventional pooling technique. The pooling technique extracts the spatial
features from the image by generating relatively complex feature maps.
The experimental results show the results of object detection with a
number of cropped and resized CNNs. Hence, in order to create a
model that is appropriate for the given dataset in the domain or across
domains, the convolution, pooling, and flattening layers of CNN and
3

the operations carried out in them can be modified in correspondence
with the application. Similarly, the layers of the proposed S-MobileNet
are pruned, customized and the activation functions are modified in
accordance to attain the proposed objective.

2.2. Image segmentation and feature extraction algorithms

The classification of skin images is been automated in recent years
and a number of researchers have proposed Automated Classification
Methods (ACM) (Okuboyejo, Olugbara, & Odunaike, 2013). In general,
a study of skin image analysis includes preprocessing of images; image
segmentation; image feature extraction, and image classification. Image
preprocessing (Lu & Weng, 2007) comprises a variety of procedures:
Downsampling, space transformations, contrast adjustments, normal-
ization, and artifact removal (Goyal et al., 2019). The accuracy of image

classification totally depends upon the algorithms used in these stages.
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In the process of segmentation, the infected area is extracted from
the dermoscopy image (Zafar et al., 2020) and the segmentation process
is carried out in three ways: Pixel-based segmentation, Region-based
segmentation, Edge-based segmentation (Cai, Gao, & Zhao, 2020; Ron-
neberger, Fischer, & Brox, 2015). In addition to the aforementioned
methods, clustering-based segmentation and threshold-based segmenta-
tion are also proposed in literature (Adegun & Viriri, 2021). The study
of inter-relation between pixels in the Region Of Interest (ROI) of an im-
age, facilitates proper segmentation. The authors in Barcelos and Pires
(2009) apply edge-based segmentation to find the rapid change in the
intensity of the pixels in an image. The color, texture, and contours of
the image are figured during the segmentation process. While another
segmentation approach that analyses every pixel and classifies each of
them to a specific class label named semantic segmentation is applied
in Wang, Tian, and Zhong (2022). Performance is measured in ResNet
with the VGG model. The model appears to be too complex with large
parameters that consume more time and memory.

Feature extraction is the process of converting the image into nu-
merical values. It analyzes the color, texture, shape, and other qualities
of the image. Numerous feature extraction methods is been explored
in literature like Gray Level Co-occurrence Matrix (GLCM), Local Bi-
nary Patterns, Bag of features, etc (Xu & Li, 2020). The extracted
features are subjected to correlation analysis, homogeneity, and en-
tropy analysis and further transformed in Chatterjee, Dey, Munshi,
and Gorai (2019) for increasing the predicting accuracy. In another
relevant article (Iqbal, Sharif, Khan, Nisar, & Alhaisoni, 2022) an UNet
CNN architecture is proposed over the ISIC 2018 skin lesion dataset
that fuses image segmentation with feature maps for segmentation.
A five cross-validation is applied and the performance is measured.
Alternatively, the model is characterized as computationally complex
because of the large number of parameters.

According to one of the related works, Lin et al. (2022) which
investigates the effect of frequency bias in CNN image classification,
a number of challenges prevent CNN from accurately extracting the
features when used alone. So it employs the use of the Gaussian kernel
function and suggests using feature discrimination in addition to CNN.
Following this direction, the suggested work applies a segmentation
method (modified Gaussian filtering) and feature extraction method
(modified version of Segmentation-based Fractal (SFTA)) before mov-
ing on to the CNN model, which significantly increases accuracy as
shown in 4. Image histogram, filtration and k-NN classifier is applied in
Glowacz and Glowacz (2016) on images of human finger that is injured.
Images of injured finger captured by mobile camera is processed after
60 h, 160 h and 450 h of injury. This research work consumes minimal
cost in capturing the image and processing it in real time.

An AI system is built with two standard types of eXplainable AI
(XAI) approaches namely: gradients and model agnostic approach ap-
plied on the results of Deep CNN to classify the skin lesion images
in HAM10000 datasets (Saarela & Geogieva, 2022). The former XAI
approach builds a stable and robust model, and the latter handles intu-
itive predictions producing an accuracy of 80% on HAM10000 dataset.
Nonetheless, the suggested method focuses on using XAI approaches,
allowing scope for improving the model’s accuracy. The challenges
in segmenting lesion in skin images is detailed in Zhang, Ye, Liu,
Wang, and Ding (2023) which notifies that the color, texture, shape,
hairs, veins and light reflections might add noise or decrease the seg-
mentation accuracy. The author applies the superpixel segmentation,
L2 normalization and captures the variations in the superpixels using
autoencoders. Given that L1 norm is quite robust than L2 norm pruning
(Brownlee, 2018), we apply L1 norm pruning while designing the CNN
model in our proposed system.

A MobileNet model is customized in DeepLabV3+ architecture, 186
deep layers and is trained in HAM10000 and few other skin lesion
datasets (Zafar et al., 2023). Slime mould algorithm is applied for fea-
ture selection and so optimizes the feature selection results. It produces
an accuracy of 92.01% on HAM10000 datasets.
4

Fig. 1. Images from dataset.

An end to end CNN is built using image segmentation techniques
for edge prediction in He, Wang, Zhao, and Chen (2023) to classify
the skin lesion images. The deep CNN is customized and integrated
with modules to identify and highlight lesion boundaries for effective
segmentation. Edge detection being a pivotal element, in the proposed
system, we use homogeneity predicates that distinguishes the change in
the pixel color and gradients across the edges and effectively segments
the lesion. Section 3 discusses in detail the proposed system.

2.3. Dataset

Human Against Medicine with 10 000 training images (HAM10000)
(Tschandl, 2018) is an archive of dermoscopic images from vary-
ing populations across the world (Fig. 1). The HAM10000 Dataset
is cleaned to remove the ambiguous images as some of the images
are similar but shown in different magnifications and angles. Around
50% of the image, lesions are taken from histopathology reports and
from expert’s microscopical examination. The images in the dataset
are tracked using the metadata file. The HAM10000 dataset is used
for skin lesion classification in Heller, Bussmann, Shah, Dean, and
Papanikolopoulos (2018), Hoang, Lee, Lee, and Kwon (2022), Khan,
Javed, Sharif, Saba, and Rehman (2019), Nasiri, Jung, Helsper, and
Fathi (2018) and Sae-Lim, Wettayaprasit, and Aiyarak (2019) and the
performance of the proposed Deep CNN framework is compared with
the aforementioned state of the art approaches.

The dataset includes images from 7 different categories of skin
disease. In order to avoid bias, an equal number of images are taken
from each of the 7 classes using a random image generator.

3. Materials and methods

Machine vision is generally categorized into low-level and high-
level vision. In the low-level vision, image processing operations are
performed to produce another new image with minimal noise and
edges being enhanced. On the other hand, high-level vision tries to
perform object recognition and scene interpretation. Both of these are
connected using the segmentation process. The block architecture of
the end-to-end Deep CNN is shown in Fig. 2. The first block, displays
the input, an image of the skin, is followed by two blocks for image
segmentation and feature extraction. These are followed by the blocks
of the customized S-MobileNet. Each block of customized S-MobileNet
indicates a layer in the CNN architecture and the two colored (yellow
and green) block signifies the depthwise and pointwise convolution
operations in the CNN layer. Also mentioned are the layer’s filters and
pruning percentages.
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Fig. 2. Block architecture of the proposed end-to-end Deep CNN framework.
Fig. 3. Original image and Gaussian filtered image.

3.1. Proposed image segmentation technique

As the first step in the proposed system, a modified version of
the Gaussian Filtering (D’Haeyer, 1989) algorithm is used for pixel-
level segmentation of images. An ideal segmentor segments regions
that are more uniform in texture, and homogeneous in gray tone, the
boundaries of the segmented image would be smooth and there would
be a significant difference in values between pixels of adjacent regions.
Contemporary Gaussian filtering is effective at eliminating noise from
images, and it outperforms median filtering in terms of effectiveness.
In Kumar and Sodhi (2020), the author compares Gaussian filtering,
median filtering, and denoise autoencoding to three performance mea-
sures, such as Normalization Mean Square Error, Structure Similarity,
and Peak Signal to Noise Ratio, demonstrating that a Gaussian filter
produces better results in a shorter period of time than two other
filtering methods.

A sample of the result of the Gaussian filtered images is shown in
Fig. 3.
5

Let A be some sample collection of pixels and N() be the homo-
geneity predicate on the connected pixels. The homogeneity predicate
specifies the property that the pixels are homogeneous or uniform. This
property is set to true for regions that are similar in color or edge
gradient. Mathematically the initial setup of pixel arrangements within
regions can be represented below:

1. The segmentation of A is simply the partitioning of the image
into regions {𝑅𝑒1, 𝑅𝑒2,… ., 𝑅𝑒𝑥} s.t
𝑥
⋃

𝑖=1
𝑅𝑒𝑖 = 𝐴 wherein 𝑅𝑒𝑖

⋂

𝑅𝑒𝑏 = ∅ ∀ 𝑖 ≠ 𝑏

.
2. The homogeneity predicate satisfies the condition 𝑃𝑟𝑜𝑏(𝑅𝑒𝑖) =

𝑇𝑅𝑈𝐸 ∀ 𝑖.
3. In addition, it is essential that the homogeneity predicate satis-

fies 𝑃𝑟𝑜𝑏(𝑅𝑒𝑖 ∪ 𝑅𝑒𝑏) = 𝐹𝐴𝐿𝑆𝐸, ∀ 𝑅𝑒𝑖 𝑏𝑒𝑖𝑛𝑔 𝑛𝑒𝑎𝑟 𝑡𝑜 𝑅𝑏
4. And (Re𝑖 ⊃ Re𝑏) ∧ (Re𝑏 ≠ ∅) ∧ (𝑃𝑟𝑜𝑏(Re𝑖) = 𝑇𝑅𝑈𝐸) ⟹

𝑃𝑟𝑜𝑏(Re𝑏) = 𝑇𝑅𝑈𝐸

Image segmentation is an ad hoc property and is applied based on
certain requirements like the nature of the image, size of the region,
etc. Often, the segmenter is applied at the cost of other properties of
the image. Disturbances like noise shatter the uniformity in the image
and fragment the segmentation results. Especially in large regions,
noise considerably disturbs the segmentation result. The fourth indices
mentioned above states that a large region is considered to be uniform
or noise-free if its subsets are uniform.

The proposed segmentation technique applies a modified version
of the Gaussian filtering algorithm for pixel-level segmentation. In
this approach, the pixels are classified based on the gray levels and
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Fig. 4. Gaussian filtering threshold level.

uniformity of the pixels. Owing to the fact that gray-level images are
very supportive (Fitriyah & Wihandika, 2018) in image classification
and hence segmentation, the skin images are converted to gray tones to
improve the accuracy of the model. The properties of grayscale images:
hue, saturation, and brightness enhance the correctness of classification
as compared to RGB.

A specified threshold value captures the line of separation between
the two modes: the gray level of the objects and the gray level of the
background pixels (Fig. 4). The modified Gaussian filtering algorithms
roots in the Bayes algorithm. It analyzes the pixel density of the object
pixels in the foreground as well as the background pixels. Let there
be an image with object level and background level classified into
dominant modes.

The threshold 𝑢 (𝑎, 𝑏) of the image 𝑣 (𝑎, 𝑏) is given as

𝑢 (𝑎, 𝑏) =

{

1 𝑖𝑓 (𝑎, 𝑏) > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,
0 𝑖𝑓 (𝑎, 𝑏) ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

This resultant would be a binary image and a sample of it is shown in
Fig. 5.

Algorithm 1 details the proposed segmentation approach. It con-
structs the histogram to classify the pixels between the object and
the background of the image. More importantly, an important feature
of this proposed algorithm is that the histogram is smoothened using
the moving average as the smoothing function to minimize the error
while interpreting the results. The resultant of the algorithm would
be a smoothened histogram suitable for finding the threshold value.
The central theme of classification is to apply the threshold value in
classifying the pixels (explained in Algorithm 2). Algorithm 2 identifies
the deep valley in the histogram and picks every pixel 𝑝 and marks it
to either of the two classes. The segmented skin lesion image is passed
on to the next level for feature extraction.

3.2. Proposed feature extraction technique

The critical aspect of image preprocessing is feature extraction. Ana-
lyzing the texture of the skin lesion images gives a better understanding
of whether the infected region is swollen/bulged or is built with dead
cells or has been rugged. Many researchers have been predominantly
using feature extraction in medical images for understanding the pat-
terns in an image. Nevertheless, the same feature extraction techniques
cannot be applied to all kinds of images, such as character recognition
or object detection, since each of them is unique. In the proposed work,
a modified version of Segmentation-based Fractal (SFTA) (Al-Areqi &
Konyar, 2022) is applied to break the components of the image into
6

Algorithm 1 Proposed Segmentation Algorithm - Building the
Histogram - Part 1
Assumption: The density function of object level pixels and
background level pixels are Gaussian in nature.

1. Construction of the histogram (H) to differentiate the density of the
pixels in the object vs the pixels in the background of the image
2. Let mean of the histogram be 𝐻𝜇 , standard deviation of the
histogram be 𝐻𝜎 and number of chosen gray levels or gray level
resolution be 𝐺_𝐿, given that 𝐺_𝐿 = 2𝑏𝑝𝑝 where bpp is the number of
𝑏𝑖𝑡𝑠
𝑝𝑖𝑥𝑒𝑙

𝐻𝜇 = 1
𝑋
∑

𝐻(𝑖) ∗ 𝑖 and 𝐻𝜎 =
√

1
𝑋

∑

𝐻(𝑖) ∗ (𝑖 −𝐻𝜇)
2

Here, 𝐻(𝑖) → 𝐻𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚𝑓𝑜𝑟𝑔𝑟𝑎𝑦𝑙𝑒𝑣𝑒𝑙𝑖, 𝑋 → 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠𝑖𝑛𝑤𝑖𝑛𝑑𝑜𝑤
Alternatively 𝑋 can take up values either 0 or 1 representing number
of pixels. If 𝑋 takes up a value 0 in the window, it leads to undefined
situation and hence a non negative constant 𝑐 is added to 𝐻𝜎

𝐻𝜎 =
√

1
𝑋

∑

𝐻(𝑖) ∗ (𝑖 −𝐻𝜇)
2 + 𝑐

3. Minimize the sum of the square of the offset of the below equation
in against to the 𝐻(𝑖) by altering the parameters included in it.

ℎ(𝑖) = 𝑁1
𝐻𝜎1

𝑒
−

(𝑖−𝐻𝜇1)
2

2𝐻𝜎12 + 𝑁2
𝐻𝜎2

𝑒
−

(𝑖−𝐻𝜇2)
2

2𝐻𝜎22

4. The next step is to alter the bins of the histogram and smoothen it
using the below equation. The smoothened histogram is analyzed to
find the deep valley (𝑑_𝑣) and that is considered to be the threshold to
partition the histogram.
Whilst the smoothening can be done in two steps:
(i)By using an moving average function 𝑊𝐹 = 1

(2𝑀+1)2

𝐻 ′(𝑖) = 1
2𝑀+1

∑2𝑀+1
𝑘=1 𝐻 (𝑖)

(ii)By using local weighted average
𝐻 𝑖(𝑖) = 𝐻(𝑖−2)+2𝐻(𝑖−1)+3𝐻(𝑖)+2𝐻(𝑖+1)+𝐻(𝑖+2)

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
5. The 𝑑_𝑣 in the histogram is taken up for dividing the 𝐻(𝑖) into two
histograms. The initial values of the parameters are given below:
𝑋1 =

∑𝑑_𝑣
𝑖=1 𝐻(𝑖)

𝑋2 =
∑𝐺_𝐿

𝑖=𝑑_𝑣+1 𝐻(𝑖)

𝐻𝜇1 =
1
𝑋1

∑𝑑_𝑣
𝑖=1 𝐻(𝑖) ∗ 𝑖

𝐻𝜇2 =
1
𝑋2

∑𝐺_𝐿
𝑖=𝑑_𝑣+1 𝐻(𝑖) ∗ 𝑖

𝐻𝜎1 =
√

1
𝑋1

∑𝑑_𝑣
𝑖=1 𝐻(𝑖)(𝑖 −𝐻𝜇1)

2

𝐻𝜎2 =
√

1
𝑋2

∑𝐺_𝐿
𝑖=𝑑_𝑣+1 𝐻(𝑖)(𝑖 −𝐻𝜇2)

2

smaller fractions and to determine the texture and other patterns in
them.

As stated earlier, the texture underpins the semantic nature of
the image and hence classifying images considering the surrounding
texture would yield greater accuracy. Especially when it comes to skin
images, the hair over the skin is always an obstacle in detecting its
texture. Regardless of it, the proposed approach is efficient in capturing
the granularity structure of the image.

The binary version of the grayscale image is represented as 𝐼𝑏𝑖𝑛𝑎𝑟𝑦
which is obtained by applying the threshold 𝑢(𝑎, 𝑏) on the image (from
Section 3.1). As the first step, a binary threshold image filter is applied
to the image with two threshold values as input. Let 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑙𝑜𝑤𝑒𝑟 and
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑢𝑝𝑝𝑒𝑟 be the lower and upper threshold values. The threshold
values are chosen between [0.0,1.0] and are very influential in extract-
ing patterns from the image. There is limited evidence from the existing
work that a randomly chosen threshold would increase the efficiency
of feature extraction. Nevertheless, in this work, the threshold values
are chosen from the histogram that is designed in Algorithm 1 which
improves the accuracy of the model. In addition, two intensity values
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Algorithm 2 Proposed Segmentation Algorithm - Classifying the Pixels
Part 2

1. Deepest valley calculation in histogram
𝑚𝑖𝑛

∑𝐺_𝐿
𝑖=1 [ℎ (𝑖) −𝐻 (𝑖)]2

2. For i being the deepest valley
𝑣𝑎𝑙𝑢𝑒 = |ℎ (𝑖) −𝐻 (𝑖)|
LABEL: Value Calculation:
𝑙𝑒𝑓 𝑡_𝑣𝑎𝑙𝑢𝑒 = |ℎ (𝑖 − 1) −𝐻 (𝑖 − 1)|
𝑟𝑖𝑔ℎ𝑡_𝑣𝑎𝑙𝑢𝑒 = |ℎ (𝑖 + 1) −𝐻 (𝑖 + 1)|

if 𝑙𝑒𝑓 𝑡_𝑣𝑎𝑙𝑢𝑒 ≤ 𝑣𝑎𝑙𝑢𝑒 then
𝑑𝑒𝑒𝑝𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑖 − 1

else if 𝑟𝑖𝑔ℎ𝑡_𝑣𝑎𝑙𝑢𝑒 ≤ 𝑣𝑎𝑙 then
𝑑𝑒𝑒𝑝𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑖 + 1

else
𝑑𝑒𝑒𝑝𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 𝑎𝑡 𝑖

end if
For any change in 𝑣𝑎𝑙𝑢𝑒 repeat to calculate new values for 𝑁1, 𝑁2, 𝐻𝜇1,
𝐻𝜇2, 𝐻𝜎1, 𝐻𝜎2 using Algorithm 1 and reestimate Value Calculation.
3. Let 𝑝 be a random gray pixel taken from the image. The pixel is
allotted to the object if

𝑁1
𝐻𝜎1

𝑒
−

(𝑝−𝐻𝜇1)
2

2𝐻𝜎12 > 𝑁2
𝐻𝜎2

𝑒
−

(𝑝−𝐻𝜇2)
2

2𝐻𝜎22

. The threshold value is defined when
𝑁1
𝐻𝜎1

𝑒
−

(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑣𝑎𝑙𝑢𝑒−𝐻𝜇1)
2

2𝐻𝜎12 = 𝑁2
𝐻𝜎2

𝑒
−

(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑣𝑎𝑙𝑢𝑒−𝐻𝜇2)
2

2𝐻𝜎22

here both the error equation are equal.
. And threshold value is supposed to satisfy

=
(

1
𝐻2

𝜎1
− 1

𝐻2
𝜎2

)

=
(

𝐻𝜇2
𝐻2

𝜎2
− 𝐻𝜇1

𝐻2
𝜎1

)

=
(

𝐻2
𝜇1

𝐻2
𝜎1

−
𝐻2

𝜇2
𝐻2

𝜎2

)

𝑍 = 2𝑙𝑛𝑋2𝐻𝜎1
𝑋1𝐻𝜎2

𝑉 ∗ thresholdvalue2 + 2 ∗ 𝑊 ∗ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑣𝑎𝑙𝑢𝑒 + 𝑌 +𝑍 = 0

are chosen for classifying the pixels in the image. The intensity values
range between [0,255]. Let the intensity value of the pixel be 𝑣1 and
2. Let the range of chosen intensity values be 1, 2, 3, 4, 5,… , 𝑔𝑙. Let 𝑝
e the pixel taken randomly from the binary image 𝐼𝑏𝑖𝑛𝑎𝑟𝑦. The pixel is
llotted to the values based on the following condition:

𝑣 =

⎧

⎪

⎨

⎪

⎩

v1 𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 < threshold𝑙𝑜𝑤𝑒𝑟

v2 threshold𝑙𝑜𝑤𝑒𝑟 ≤ 𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ threshold𝑢𝑝𝑝𝑒𝑟
v1 𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 > threshold𝑢𝑝𝑝𝑒𝑟

The 𝐼𝑏𝑖𝑛𝑎𝑟𝑦 is partitioned into smaller portions (𝑖𝑏𝑖𝑛𝑎𝑟𝑦) and the
threshold filter is applied to individual ones. The contiguous pairs of
threshold 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑝𝑎𝑖𝑟𝑠 are chosen randomly during this thresholding
process and {𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑙𝑜𝑤𝑒𝑟, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑢𝑝𝑝𝑒𝑟} ∈ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑝𝑎𝑖𝑟𝑠. Say the
thresholding process is done 𝑡 times over 𝑖𝑏𝑖𝑛𝑎𝑟𝑦 images, the number
of resultant binary images would be 2 ∗ 𝑡 ∗ 𝑔𝑙. The ⋃

𝑖𝑏𝑖𝑛𝑎𝑟𝑦 will
be the final image. Another important aspect of the proposed work is
that if thresholds are chosen from a histogram built from Section 3.1
and lying in the midrange of gray level intensity 1, 2, 3, 4, 5,… , 𝑔𝑙, the
feature extraction is further enhanced. It is undoubtedly possible to
choose threshold values in pairs to extract features from certain regions
of an image such as the middle portion or left corner which is difficult
to extract using a single threshold.

The Fig. 5 illustrates the feature extraction process. The image is
divided into smaller portions, with each portion being thresholded
7

separately using multiple threshold pairs. Once the decomposition a
and thresholding process is over, the extracted feature vectors are
structured to generate the fractal dimensions of the image. The final
bordered output image 𝛥𝑏𝑖𝑛𝑎𝑟𝑦(𝑎, 𝑏) is computed after combining the
individual threshold images (⋃ 𝑖𝑏𝑖𝑛𝑎𝑟𝑦).

𝛥𝑏𝑖𝑛𝑎𝑟𝑦(𝑎, 𝑏) =

{

1 ∃(𝑎′, 𝑏′) ∈ 𝑡(𝑎, 𝑏) ∶ 𝐼𝑏𝑖𝑛𝑎𝑟𝑦(𝑎′, 𝑏′) = 0𝛬 𝐼𝑏𝑖𝑛𝑎𝑟𝑦(𝑎, 𝑏) = 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

In the above equation 𝑡(𝑎, 𝑏) is the number of times the thresholding
rocess is executed using the pairs of threshold and the set of pixels that
re interconnected in t times of execution is mentioned as 𝑡[(𝑎, 𝑏)]. Using
his approach, a resultant image is generated that shows mean gray
evel, highlighted features, and boundaries that correlate with each
ther to help identify patterns with minimal error.

.3. Proposed CNN architecture

Computer Vision has become increasingly popular with the use of
NN. Nevertheless, modern CNN is becoming more complex and deeper
s they strive to improve accuracy. CNNs are a class of neural networks
hat uses grid-like topology to process data and contains three layers,
amely convolution, pooling, and fully connected layer. As part of CNN,
he convolution layer is responsible for computation. The input to the
NN is an image (feature vector) and the parameters of this layer
re a set of filters (kernels). The kernels convolve over the feature
ectors to produce feature maps (activation maps). This layer keeps
ntact the spatial relation between the pixels in feature vectors. The
eature maps are then passed to the pooling layer. The pooling layer
educes the representation size of the feature map and hence minimizes
omputation cost. Pooling techniques in CNN include max pooling, min
ooling, and average pooling. A number of convolution and pooling
ayers are stacked one above the other to achieve accuracy. The reduced
eature maps from the pooling layer are flattened and passed to the fully
onnected layer which is one-dimensional in nature. A number of such
ully connected layers may be stacked and following which Softmax or
nother classifier is applied for classification.

There are CNN models raised in literature like VGG Net (Simonyan
Zisserman, 2014), Alex Net (Krizhevsky, Sutskever, & Hinton, 2017),

nd Google Net (Szegedy et al., 2015). These models are trained with
mageNet Large-Scale Visual Recognition (ILSVRC) (Russakovsky et al.,
015) and are available as pre-trained models. Often a number of
ustom-made models are developed in literature (Kareem et al., 2021).
few of the ways of modifying/building a pre-trained network would

e by compressing or shrinking the layers, factorizing the operations,
dding dropouts in them in accordance with the requirements of the
eveloper, the nature of the input images, and the tradeoff between
atency and accuracy. The proposed approach builds a modified Mo-
ileNet model, S-MobileNet for image classification. The MobileNet is
deep learning model with the unique characteristics of being small,

howing low latency, and consuming little power. It produces higher
ccuracy than other deep CNN models when it comes to categorizing
mages, identifying objects in images, and segmenting images. Despite
ts low parameters, MobileNet has no latency excuse compared with
ther CNN models. Unlike CNN, MobileNet uses Depthwise Separable
onvolution which makes it faster with fewer parameters than CNN.

.3.1. S-MobileNet model
This section discusses the S-MobileNet CNN architecture for image

lassification. The proposed S-MobileNet architecture is very efficient
n classifying images since the hyperparameters of the model are fine-
uned for producing results in low latency. The hyperparameters of

CNN model include modifying the kernel dimension, varying the
umber of kernels, changing the stride length, etc. In addition, the
lassic MobileNet architecture is shrunk to increase the accuracy of
he proposed model (S-MobileNet CNN). S-MobileNet is applied over
he processed images 𝛥𝑏𝑖𝑛𝑎𝑟𝑦(𝑎, 𝑏) generated after image segmentation

nd feature extraction. The processed dataset contains 10 000 images
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Fig. 5. Feature Extraction - Thresholding.
Fig. 6. A regular convolution operation.
which are split into a training dataset and a test dataset. One of the
main features of MobileNet is that they apply DepthWise Separable
Convolution in lieu of normal convolution operation.

Depthwise Separable Convolution: The Depthwise Separable Convolu-
tion operates in two phases: Depthwise Convolution (DC) and Pointwise
Convolution (PC). They perform the filtration operation and combina-
tion operation respectively. The standard convolution applies convolu-
tion operation across all channels whereas the depthwise convolution
applies across one channel at a time. Channels are one of the parame-
ters of input image (feature vector), say for example, if an RGB image
is passed as input, the number of channels would be 3. The Fig. 6
shows the regular convolution operation that takes place between input
images of dimension (I1 ∗ I2 ∗ A) where I1 and I2 are its dimensions,
A is the number of input channels with kernels, each of dimension (K1
∗ K2 ∗ A) where K1 and K2 are kernels dimensions, A is the width of
kernel and there are B such kernels. This operation consumes a large
number of multiplication operations as the kernels convolve over the
input image, resulting in a huge cost.

A single convolving operation of kernel over an image takes (K1 ∗
K2 ∗ A) operations and the complete convolving operation of a kernel
8

over the image to produce a M1 ∗ M1 feature map would take (M1 ∗
M2 ∗ K1 ∗ K2 ∗ A). And for each of the B kernels it takes (B ∗ M1 ∗
M2 ∗ K1 ∗ K2 ∗ A).

However, when it comes to Depthwise Separable Convolution, it is
going to be a different case. The Fig. 7 shows the operation taking place
in two stages. In the first stage, a depthwise convolution operation
takes place between input images of dimension (I1 ∗ I2 ∗ A) with
kernels of dimension (K1 ∗ K2 ∗ 1) and there are A such kernels. The
convolution operation takes place between the input image channels
and kernels in a 1:1 ratio, unlike the conventional convolution where
the kernel convolves over all the channels. In this case, depthwise
convolution requires the same number of kernels as the number of
input channels. The number of multiplication operation that takes place
in one convolution operation would be (K1 ∗ K2 ∗ 1) since it is one
dimensional. When this convolves over the one channel of input image
it takes (M1 ∗ M2 ∗ K1 ∗ K2 ∗ 1). When A such filters are applied to A
channels it takes (A ∗ M1 ∗ M2 ∗ K1 ∗ K2 ∗ 1).

Moving on to the second stage which is pointwise convolution. Each
of the B filters of dimension (1 ∗ 1 ∗ A) convolves the input channels
(M1 ∗ M2 ∗ A) (A is the depth of the input volume) to produce an output
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Fig. 7. Depthwise Separable Convolution.
Fig. 8. Layers in Conventional Convolution Layer, Depthwise Separable Convolution Layer and proposed S-MobileNet model.
tensor of dimension (M1 ∗ M2 ∗ B). The filters are called KPC (Kernel
Point Convolution) filters as their dimension is 1 ∗ 1 and suitable
for pointwise convolution. For one instance of convolution operation
between one KPC filter with the input channel of depth A, it would
take (A) multiplications. The entire convolution of the KPC filter over
input volume would take (M1 ∗ M2 ∗ A). And for B such channels it
would be (B ∗ M1 ∗ M2 ∗ A). The total number of multiplications in
depthwise separable convolution would be (A ∗ M1 ∗ M2 ∗ K1 ∗ K2 ∗
1) + (B ∗ M1 ∗ M2 ∗ A) → (A ∗ M1 ∗ M2)(K1 ∗ K2+B). On analysis, it
is seen that the number of multiplication in conventional convolution
is 9 times more than depthwise separable convolution.

S-MobileNet Architecture: It can be seen from Howard et al. (2017)
that MobileNet models are trained with RGB images and hence requires
3 channels as input. However, the dataset that we obtained after image
segmentation and feature extraction include grayscale images of size
(450 ∗ 650). While it is possible to convert the grayscale images to RGB
and feed them to the S-MobileNet model, but does so at the expense
of losing a tremendous amount of information in the first layer of the
convolution process. Hence, the grayscale image is reduced to (224 ∗
224) and is repeated 3 times to produce an input tensor of dimension
(224 ∗ 224 ∗ 3). The Fig. 8 represents the standard convolution layer,
the MobileNet convolution layer, and the S-MobileNet Convolution
Layer.

The proposed S-MobileNet model applies Mish as the activation
which is very efficient compared to the regular activation function
9

(Relu) applied in the other convolution layer as shown in Fig. 8. The
activation function (Transfer function) defines the output that has to
be generated at the end of every node/layer based on the input values
provided to the node/layer. Very importantly they introduce non-
linearity in the output which is an important factor to learn complex
patterns in the input image.

𝑓 (𝑥) =

{

1 𝑥 ≥ 0
0 𝑥 < 0

The Relu activation function being non-linear in nature activates
specific neurons at the output leading to convergence of gradient to
global minima. Though being an efficient function, during training the
model fails to activate certain neurons as their weight gets diminished
during backpropagation, and at one point it causes the neurons to die.
This is called the dying-Relu problem.

On the other hand, the Mish activation function outperforms Relu
(Fig. 9), Leaky Relu, and other activation functions on several bench-
mark applications like ResNet, DarkNet, etc (Misra, 2019). The Mish
activation function is a non-monotonic activation function which pro-
duces a smooth and continuous output.

𝑓 (𝑥) = 𝑥 ∗ 𝑡𝑎𝑛ℎ(𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥))

𝑓 (𝑥) = 𝑥 ∗ 𝑡𝑎𝑛ℎ(𝑙𝑛(1 + 𝑒𝑥))
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Fig. 9. Activation function: Relu and Mish.

One of the remarkable characteristics of Mish is that it reduces over-
fitting and overcomes the dying Relu problem by preserving a very
small amount of negative weights and permits information flow during
backpropagation. Table 2 describes the S-MobileNet architecture in
levels, mentioning the operation, strides, filter dimension, and tensor
output dimension.

1. The S-MobileNet CNN architecture starts with the initial convo-
lution layer {level 1} which takes up the input volume of dimension
(width-224 ∗ height-224 ∗ depth-3) and 32 kernels with each filter
of dimension (3 ∗ 3 ∗ 3). The convolving operation with a stride
of 2 produces an output tensor of dimension (112 ∗ 112 ∗ 32). The
dimension of the output tensor is calculated based on the following
formula, ((𝑤𝑖𝑑𝑡ℎ𝑜𝑓𝑖𝑚𝑎𝑔𝑒−𝑓𝑖𝑙𝑡𝑒𝑟_𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛+2 ∗ 𝑝𝑎𝑑𝑑𝑒𝑑_𝑝𝑖𝑥𝑒𝑙)∕𝑠𝑡𝑟𝑖𝑑𝑒)+
1. In our case, there are no padded pixels and hence it is 0. Thus
((2024 − 3 + 2 ∗ 0)∕2) + 1 → 112. The input to the next convolution
layer will be (112 ∗ 112 ∗ number of filters i.e. 32).

2. This is followed by a sequence of depthwise convolution and
pointwise convolution operation in four iterations {level 2-level 5} with
depthwise filters of dimension (3 ∗ 3) and pointwise filters of dimension
(1 ∗ 1) with (32–64, 64–128, 128–128, 128–256) number of kernels
respectively.

3. Layer 6 in the regular MobileNet architecture operates with the
depthwise filter (3 ∗ 3) and pointwise filter (1 ∗ 1) but with a kernel
count of (256–256) respectively. On the contrary, in the proposed S-
MobileNet model, the convolution layer in level 6 is compressed to
produce an output tensor of reduced dimension. In this layer 10%
of the filters are reduced during the depthwise convolution operation
i.e.

⌊

10∗256
100

⌋

= 25 i.e. we discard 25 filters in this layer. This reduces

the depth of the output tensor from 256 to 231. The output tensor of
dimension 28 ∗ 28 ∗ 231 is subjected to pointwise convolution with
256 filters to produce an output of dimension 28 ∗ 28 ∗ 256.

4. In level 7, depthwise convolution applies 256 kernel filters of
dimension (3 ∗ 3) with a stride of 2 and generates a downsampled
image of dimension 14 ∗ 14 ∗ 256. This is followed by 512 pointwise
filters to produce an output tensor 14 ∗ 14 ∗ 512.

5. In Level 8, both depthwise and pointwise convolutions are ap-
plied with a stride of 1 and kernel count of 512 and 512 in each
respectively, generating an output tensor of depth 512 with dimension
14 ∗ 14 ∗ 512. As the dimension of the tensor is high, compression is
applied in the next layer to reduce the number of parameters.

6. The depthwise convolution layer in level 9 is compressed by 8%
and a total of 40 filters are reduced (

⌊

8∗512
100

⌋

= 40). The depth of the

output tensor is reduced from 512 to 472. The output tensor (14 ∗ 14
∗ 472) is passed to a pointwise convolution operation with 512 filters
to produce a resultant tensor of dimension (14 ∗ 14 ∗ 512).

7. Level 10 shows no change. But again in level 11, there is a
compression of 8% reducing approximately 40 filters. This is followed
by level 12 with no change. And again in level 13, there is compression
10
of 10% and 51 (
⌊

10∗512
100

⌋

= 51) filters are removed. A stride length of 2
is applied and produces an output tensor of dimension (7 ∗ 7 ∗ 461).
This is followed by pointwise convolution with a 1024 filter and thus
raising the depth of the output tensor to 1024 (7 ∗ 7 ∗ 1024).

8. Padding is introduced in level 14 which applies a stride of 2 over
the input tensor of dimension (7 ∗ 7 ∗ 1024) and produces an output
of the same dimension.

9. Nearing the end of the convolution layer, the average pooling
operation is carried out with a 7 ∗ 7 sliding window and downsamples
the tensor to a dimension of (1 ∗ 1 ∗ 1024)

10. The fully connected layer flattens into a layer of 1000 pixels and
a softmax classifier is applied for classifying them into 7 classes.

As mentioned before, Mish is the activation function that is applied
in all the layers of depthwise and pointwise convolution. On top, of all
the layers of execution, dropout is enabled to be True. During training,
dropout ensures to prevent overfitting by dropping certain neurons.
And hence the model acts as an ensemble model and the prediction
value is by default averaged in each layer. In the network architecture
the information from the previous layers (𝐼𝑗) is multiplied with the link
weights (𝑊𝑖𝑗) and the output neuron (𝑂𝑖) aggregates them as shown
below (Cai et al., 2019):

𝑂𝑖 =
𝑁
∑

𝑗=1
𝑊𝑖𝑗 𝐼𝑗

while the standard dropout applies Bernoulli function

𝑂𝑖 = 1
𝑢

𝑁
∑

𝑗=1
𝑊𝑖𝑗 (𝛼𝑗 ∗ 𝐼𝑗 ) , 𝛼𝑗 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑢)

to minimize the number of neurons in intermediary layers.
Compressing the S-MobileNet : Compressing the CNN network is an

efficient approach since it reduces the number of parameters in com-
pressed layers and thereby the total parameter count of the model.
Although this approach produces a low latency and high-speed net-
work, applying compression in the initial layers leads to the loss of a
huge amount of pixel information. Hence, in the S-MobileNet model,
they are applied in intermediary layers. One of the key aspects of S-
MobileNet is that the compression is applied four times with enough
spacing between layers and not between successive layers. Compression
when applied in successive layers will decrease the patterns of lost
information in the first layer over the further layers. In S-MobileNet,
compression is applied in levels 6, 9, 11, and 13 and there is enough
spacing between compressed layers to restore the patterns between the
lost features.

Compression is often referred to as the pruning of filters with sparse
information that is not significant in changing the final decision at the
output. In the S-MobileNet CNN, L1 norm pruning is applied to cut
down the insignificant filters in levels 6, 9, 11, and 13 of the model. A
CNN network
{

𝑁 𝑖 ∈ R𝐼𝑖 ∗𝑂𝑖 ∗ 𝐶𝑊 ∗ 𝐶𝐻
}

, 1 ≤ 𝑖 ≤ 𝐿

is defined with parameters 𝑁𝑖, weight matrix of connections in layer i;
L, number of layers; 𝐼𝑖 and 𝑂𝑖, Number of input channels and output
channels in layer i respectively; 𝐶𝑊 and 𝐶𝐻 , represents the height and
width of the input channel respectively. In our case 𝐶𝑊 = 𝐶𝐻 , as
the input channel is a square of dimension 224 ∗ 224 and varies in
each layer retaining the square property. The number of computational
operations in a convolution layer is given by 𝐼𝑖 ∗ 𝑂𝑖 ∗ 𝑊 ∗ 𝐻 ∗
𝑤𝑖+1 ∗ ℎ𝑖+1. After applying the L1 norm, the number of computational
operations is 𝐼𝑖 ∗ 𝑊 ∗ 𝐻 ∗ 𝑤𝑖+1 ∗ ℎ𝑖+1. Here 𝑤𝑖 ∗ ℎ𝑖 and 𝑤𝑖+1 ∗ ℎ𝑖+1 are
the input feature size and output feature size respectively. The number
of computations will considerably reduce as the pruning is applied in
the successive layers. During network training, emphasis is provided
on minimizing the loss function. The minimization objective of the loss
function is represented as
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Table 2
S-MobileNet architecture - Layers.

Level Operation Stride Filter dimension No:of filters Compression Input dimension

1 Convolution 2 3 ∗ 3 ∗ 3 32 – 224 × 224 × 3

2 DC 1 3 ∗ 3 32 – (Downsampled image)
112 ∗ 112 ∗ 32

PC 1 1 ∗ 1 ∗ 32 64 – 112 ∗ 112 ∗ 32

3 DC 2 3 ∗ 3 64 – 112 ∗ 112 ∗ 64

PC 1 1 ∗ 1 ∗ 64 128 – (Downsampled image)
56 ∗ 56 ∗ 64

4 DC 1 3 ∗ 3 128 – 56 ∗ 56 ∗ 128

PC 1 1 ∗ 1 ∗ 128 128 – 56 ∗ 56 ∗ 128

5 DC 2 3 ∗ 3 128 – 56 ∗ 56 ∗ 128

PC 1 1 ∗ 1 ∗ 128 256 – (Downsampled image)
28 ∗ 28 ∗ 128

6 DC 1 3 ∗ 3 256 10% reduction i.e. Approx 25
filters (256 − 25 = 231)

28 ∗ 28 ∗ 256-

PC 1 1 ∗ 1 ∗ 231 256 – 28 ∗ 28 ∗ 231

7 DC 2 3 ∗ 3 256 – 28 ∗ 28 ∗ 256

PC 1 1 ∗ 1 ∗ 256 512 – (Downsampled image)
14 ∗ 14 ∗ 256

8 DC 1 3 ∗ 3 512 – 14 ∗ 14 ∗ 512

PC 1 1 ∗ 1 ∗ 512 512 – 14 ∗ 14 ∗ 512

9 DC 1 3 ∗ 3 512 8% reduction i.e. Approx 40
filters.(512 − 40 = 472)

14 ∗ 14 ∗ 512

PC 1 1 ∗ 1 ∗ 472 512 – 14 ∗ 14 ∗ 472

10 DC 1 3 ∗ 3 512 – 14 ∗ 14 ∗ 512

PC 1 1 ∗ 1 ∗ 512 512 – 14 ∗ 14 ∗ 512

11 DC 1 3 ∗ 3 512 8% reduction i.e. Approx 40
filters. (512 − 40 = 472)

14 ∗ 14 ∗ 512

PC 1 1 ∗ 1 ∗ 472 512 – 14 ∗ 14 ∗ 472

12 DC 1 3 ∗ 3 512 – 14 ∗ 14 ∗ 512

PC 1 1 ∗ 1 ∗ 512 512 – 14 ∗ 14 ∗ 512

13 DC 2 3 ∗ 3 512 10% reduction i.e. Approx 51
filters. (512-51 = 461)

14 ∗ 14 ∗ 512

PC 1 1 ∗ 1 ∗ 461 1024 – 7 ∗ 7 ∗ 461

14 DC 2 3 ∗ 3 1024 With stride value of 2 and to
produce an output dimension
equal to input, padding is
introduced

7 ∗ 7 ∗ 1024

PC 1 1 ∗ 1 ∗ 1024 1024 – 7 ∗ 7 ∗ 1024

15 Average pooling 1 7 ∗ 7 – – 1 ∗ 1 ∗ 1024

16 Fully connected 1 1024 ∗ 1000 – – 1 ∗ 1 ∗ 1024

17 Softmax 1 Classifies into 7 classes – – 1 ∗ 1 ∗ 1000
t
t
T
A
N
m
a
e
(
S
t
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i
e
f
c

�̂� = min
𝑊

∑

(𝐼𝑖 ,𝑂𝑖)
𝜃
(

𝑊 𝑇 𝐼𝑖 − 𝑂𝑖
)2 + 𝜆 |𝑊 |

The function 𝜃() is the squared loss function that sums the square
f the difference between the predicted and actual values. The 𝜆
ontrols the degree of sparsity of the weight matrix 𝑊 . The L1 norm
s penalizing the filters that have a small magnitude and in parallel
eeps track of the optimization function �̂�. In addition, it regulates the
radeoff between the loss function, regularization parameters, and the
eight matrix.
S-MobileNet hyperparameters: The two specific hyperparameters of

obileNet: width multiplier, 𝛼, and resolution multiplier, 𝜌. The param-
ter 𝛼 takes any value from [0:1] and for every layer with 𝐼𝑖 number
f input channels and 𝑂𝑖 number of output channels, it becomes 𝛼 ∗ 𝐼𝑖
nd 𝛼 ∗ 𝑂𝑖. The tradeoff between latency and speed of small networks is
ecided by the width multiplier and reduces the complexity by 𝛼2. The
esolution multiplier 𝜌 takes values between [0:1] and each layer’s in-
ernal representation parameter is reduced by 𝜌. Similar as 𝛼, 𝜌 reduces
11
he computational complexity by 𝜌2. The TensorFlow version used in
he proposed model is a stable release 2.10.0 using Python language.
he S-MobileNet model is executed using three optimizers individually:
dam, RMSProp, and SGD with stochastic gradient descent and with
esterov Momentum. With this proposed model, data overfitting is
inimized to a greater extent. The model is trained varying the epochs

nd learning rate. In the next section, we will look in detail at the
xperiments and results. In a similar way, the authors in Zhou et al.
2022) compare and analyze a number of optimizers, among which are
GD, Adam, and FastAdaBelief, and demonstrate that one outperforms
he rest.

. Experiments and results

The HAM10000 archive (Tschandl, 2018) of dermoscopic images
s subjected to a segmentation experiment. The Dice and Jaccard co-
fficients are used to measure the performance of modified Gaussian
iltering and the standard Gaussian filtering approach. The Dice coeffi-
ient measured between the segmented image (S) and the ground truth
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Table 3
Dice score of proposed segmentation method and standard Gaussian filter approach.

Image Proposed segmentation discussed (in
Algorithm 1 and 2)

Gaussian filter

ISIC_25773 0.951 0.922
ISIC_26757 0.741 0.644
ISIC_27086 0.764 0.799
ISIC_24748 0.658 0.534
ISIC_28064 0.786 0.781
ISIC_26461 0.859 0.754
ISIC_27179 0.986 0.785
ISIC_27408 0.939 0.855
ISIC_27766 0.842 0.743
ISIC_27139 0.828 0.876
ISIC_27936 0.816 0.821
ISIC_24815 0.958 0.789
ISIC_27421 0.607 0.654
ISIC_24408 0.793 0.655
ISIC_25207 0.749 0.549
ISIC_28886 0.824 0.801
ISIC_26944 0.802 0.987
ISIC_27872 0.970 0.921
ISIC_28649 0.706 0.692
ISIC_27022 0.972 0.901
ISIC_27581 0.784 0.692
ISIC_25439 0.961 0.894
ISIC_26900 0.745 0.769
ISIC_26060 0.853 0.847
ISIC_25281 0.862 0.987
ISIC_27339 0.949 0.901
ISIC_26515 0.772 0.701
ISIC_27616 0.969 0.899
ISIC_26741 0.754 0.799
ISIC_25902 0.967 0.934
Average 0.839 0.796

Table 4
Dice score of HAM 10000 images in 20 blocks, each of 500 images with proposed
segmentation method against standard Gaussian filter approach.

Block of 500 random
images from shuffled HAM
dataset

Proposed segmentation
discussed (in Algorithm 1
and 2)

Gaussian filter

Block 1 0.989 0.876
Block 2 0.976 0.705
Block 3 0.806 0.721
Block 4 0.989 0.789
Block 5 0.873 0.994
Block 6 0.790 0.598
Block 7 0.976 0.980
Block 8 0.885 0.899
Block 9 0.787 0.843
Block 10 0.989 0.768
Block 11 0.985 0.874
Block 12 0.878 0.872
Block 13 0.791 0.874
Block 14 0.979 0.923
Block 15 0.874 0.685
Block 16 0.840 0.743
Block 17 0.975 0.839
Block 18 0.777 0.854
Block 19 0.850 0.765
Block 20 0.974 0.896
Average 0.899 0.825

Image (G) is 𝐷𝑖𝑐𝑒(𝑆,𝐺) = 2∗(𝑆∩𝐺)
|𝑆|+|𝐺| . The Dice scores images on a scale of 0

to 1, with higher scores indicating more accurate segmentation. Table 3
shows the Dice score obtained by executing the proposed segmentation
algorithm discussed in Section 3.1 and standard Gaussian filter on
random 25 samples.

The HAM10000 dataset is shuffled and 20 blocks of random 500
images are subjected to the proposed segmentation method and stan-
dard Gaussian filter approach. The average dice score of each block is
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recorded in Table 4 and is shown in Fig. 10.
Following the image segmentation, feature extraction is applied
over the images using the modified version of Segmentation-based
Fractal (SFTA). Several iterations of this modified version are executed
using pairs of thresholds selected from the histogram (detailed in 3.1)
that is generated during the segmentation phase. Fig. 11 shows the re-
sults of traditional feature selection and the proposed SFTA model. The
proposed model extracts the infected region and the nearby segments
that are risk at of infection. Many recent works on feature extraction
apply to label the image and to locate the region by dividing them
into smaller portions and analyzing them individually. However, in
SFTA the feature vector is applied in 8 thresholds and its classification
accuracy is recorded (Costa, Humpire-Mamani, & Traina, 2012).

The feature extraction process using labeling has a couple of draw-
backs. It consumes more time and fails to extract new features when
added to the image. And in most the cases, this approach prioritizes
features with more unique values than those with redundant values. As
can be seen that the feature extraction approach that is obtained by
modifying the SFTA algorithm produces better results in classifying the
images using S-MobileNet architecture.

4.1. Performance metrics - S-MobileNet model

The segmented images are subjected to S-MobileNet CNN archi-
tecture. This section details the model parameters and tabulates the
performance of the model by fine-tuning its hyperparameters. As an
initial step, the dataset is split in an 80:20 train-test split ratio and the
model is trained with 8000 images each of size (224 ∗ 224) from the
HAM dataset in many epochs. The model is designed with layers as
mentioned in Table 2 and the learning rate is set to be 0.01 initially.
The model is executed in 5 folds with 20% of images in each fold.
During the execution of the model in multiple iterations, the number
of epochs was varied and the performance was studied. It was found in
the initial epochs that the model learned the parameters and after 15
epochs the results were found to be stable and minute changes were
recorded. The performance metrics for evaluating the model are the
training loss, testing loss, training accuracy, testing accuracy, precision,
and F1-score. The model is executed using three optimizers Adam,
RMSProp, and SGD.

Categorical Cross Entropy loss: Being a multiclass classification, the loss
function used is Categorical Cross Entropy loss (Softmax loss).

𝐿𝑜𝑠𝑠 = −
𝐶
∑

𝑖
𝐺𝑖𝑙𝑜𝑔

(

𝑓𝑢𝑛𝑐 (𝑆𝐶)𝑖
)

𝑓𝑢𝑛𝑐(𝑆𝐶)𝑖 =
𝑒SC𝑖

∑𝐶
𝑘 𝑒SC𝑘

Here C is the number of classes and in the proposed model its 7, 𝐺𝑖
is the ground truth value of each class i, 𝑓𝑢𝑛𝑐(𝑆𝐶)𝑖 is the S-MobileNet
score for each class i. The aforementioned loss function is used in both
training and testing of the S-MobileNet model.

Accuracy : The accuracy of the S-MobileNet is calculated using

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Here 𝑇𝑃 refers to true positive, i.e. the number of positive images
correctly predicted; 𝑇𝑁 refers to true negative, i.e. the number of
negative images correctly predicted; 𝐹𝑃 refers to false positive, i.e. the
number of positive images incorrectly predicted; 𝐹𝑁 refers to false
egative, i.e. the number of negative images incorrectly predicted.
he higher the value of 𝑇𝑃 , 𝑇𝑁 , the higher the accuracy. The metric
ccuracy defines the performance of any network.

recision: The precision is calculated using

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃
𝑇𝑃 + 𝐹𝑃
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Fig. 10. Dice score plot with reference to Table 4.
and this metric defines the accuracy of the model in identifying a
sample as positive. The precision of a model increases in two cases:
either when 𝑇𝑃 is high or when 𝐹𝑃 is low.

F1 Score: This score decides the overall performance of the model.
There is a fine line difference between accuracy and F1-score. Accuracy
is primarily concerned with predicting the positive samples, while F1-
score addresses the behavior of the model towards negative samples as
well.

4.2. S-MobileNet model result analysis

In the initial go, the model is designed and tested by applying
Mish and Relu activation functions and by executing it with and
without compression when the Mish activation function is applied.
The effectiveness of applying the Mish Activation function and com-
pression is shown in the experimental results. Firstly, the experiments
are performed with a batch size of 32 and the images are passed to
the S-MobileNet model without applying the modified segmentation
and feature extraction procedure. In contrast, the performance of the
model is also recorded after applying segmentation and feature extrac-
tion. Secondly, the model is executed with three different optimizers.
Thirdly, each of the optimizer’s results is recorded with the Relu
activation function and Mish Activation function. In the fourth and final
step, the model is evaluated both with and without layer compression.
The words compression and pruning are used interchangeably in the
coming sections. All of their results are shown in Tables 5 and 6.

Optimizers The state-of-the-art of deep learning libraries the gradi-
ent descent algorithms (Optimizers). They are coded as a black box
with their strength and weakness. The performance of the gradient
descent algorithm varies for different applications and can be fine-
tuned. Gradient descent algorithms are used to train the CNN model.
Being an optimization algorithm the objective of gradient descent is
to minimize the cost function and reach the global minima. This is
achieved by adjusting the learning rate. The author in Ruder (2016) has
detailed different optimization algorithms on gradient descent. Adap-
tive Moment Estimation (Adam) is a gradient descent algorithm that
keeps track of the exponentially decaying average of past gradients.
Adam is a slight variation of another gradient descent algorithm named
momentum. Adam faces the problem of diminishing learning which is
overcome by Root Mean Square Propagation (RMSProp) and concludes
that the learning rate of 0.001 will produce optimal results. Stochastic
Gradient Descent (SGD) produces better results with large datasets.
Following many trials of other gradient descent algorithms, the above
three algorithms were chosen.

Table 5 shows the results of the model without segmentation and
feature extraction applied to the dataset. Trial analysis is made with
Relu and Mish activation function.

Across all three optimizers,
13
1. Mish activation function shows lower training and testing loss
than relu.

2. Mish activation function shows an increased training and testing
accuracy than relu.

3. Mish activation function shows an increased precision and F1
score than relu.

4. Mish activation function along with pruning layers shows lower
training and testing loss than just applying Mish.

5. Mish activation function along with pruning layers shows higher
training and test accuracy than just applying Mish except for
SGD optimizer.

6. Mish activation function along with pruning layers shows higher
Precision than just applying Mish.

7. Mish activation function along with pruning layers shows higher
Accuracy than just applying Mish.

8. Adam optimizer produces a high precision and F1 score for
image classification when compared to other two, whereas the
Accuracy score of SGD is slightly higher than other two optimiz-
ers.

Following the passing of the processed dataset after segmenta-
tion and feature extraction to the S-MobileNet model the results are
recorded in Table 6. A couple of differences are found in the behavior
of the optimizers as compared to Table 5.

The comparative results/inferences obtained by applying segmenta-
tion and feature extraction on S-MobileNet are listed below:

1. All the optimizers produce lower training and testing loss for
applying Mish activation function than compared to Relu except
the test loss of SGD which shows a slightly higher value for Mish
than for Relu.

2. The training and test accuracy of Adam optimizer shows a
slightly lower value for Mish than for Relu. A slightly exceptional
case.

3. The training accuracy of RMSProp shows lower accuracy for
Mish than Relu. But the test accuracy is ideal with higher value
for Mish than for Relu.

4. For the SGD optimizer, the accuracy for training and testing is
higher with Mish activation function than with Relu.

5. The precision and F1 score of all the three optimizers shows a
higher value for Mish than for Relu.

6. A notable drop in training and testing loss values is found after
pruning layers for all the three optimizers except the training
loss of Adam which is slightly higher.

7. For all the optimizers, a notable analysis is the accuracy, pre-
cision and F1-score of the model after undergoing pruning is
higher than that without pruning.

8. Thus it can be concluded that pruning layers produces higher
accuracy irrespective of optimizer. Having many layers in the
model does not always guarantee higher accuracy.
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Fig. 11. Feature extraction results of modified SFTA algorithm.
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Fig. 12. L1 norm compression value (A) Level 6 in S-MobileNet architecture-25 filters pruned with L1Norm cutoff-0.07 (B) Level 9 in S-MobileNet architecture-40 filters pruned
with L1Norm cutoff-0.09 (C) Level 11 in S-MobileNet architecture-40 filters pruned with L1Norm cutoff-0.1 (D) Level 13 in S-MobileNet architecture-51 filters pruned with L1Norm
cutoff-0.11.
Table 5
Performance evaluation of the proposed S-MobileNet model without applying segmentation and feature extraction methods, with different optimizers, Relu and Mish activation
function, with and without pruning intermediary layers.

Method Batch size Optimizer Training loss Test loss Training accuracy Test accuracy Precision F1 score

S-MobileNet using Relu 32 Adam 0.19905 0.19714 0.93042 0.88386 0.96958 0.93358
S-MobileNet using Mish without pruning 32 Adam 0.19190 0.19103 0.94182 0.86156 0.96973 0.94341
S-MobileNet using Mish with pruning of layers 32 Adam 0.17845 0.17281 0.94188 0.91272 0.97469 0.95828
S-MobileNet using Relu 32 RMSProp 0.17630 0.20839 0.80410 0.89891 0.89364 0.87904
S-MobileNet using Mish without pruning 32 RMSProp 0.16598 0.20116 0.86561 0.90188 0.89382 0.88662
S-MobileNet using Mish with pruning of layers 32 RMSProp 0.16169 0.19905 0.91159 0.91109 0.92594 0.92333
S-MobileNet using Relu 32 SGD 0.15895 0.23190 0.95078 0.86411 0.91791 0.92120
S-MobileNet using Mish without pruning 32 SGD 0.15600 0.17845 0.95079 0.93265 0.92477 0.90309
S-MobileNet using Mish with pruning of layers 32 SGD 0.14910 0.17630 0.97757 0.93222 0.95588 0.93567
On comparison of Tables 5 and 6, the processed dataset, regardless
of the optimizer used, produced higher accuracy, precision, and f1 score
than the original dataset. Fig. 13 illustrates the performance of the
S-MobileNet model.
15
4.3. Pruning layers in S-MobileNet

The layers of S-MobileNet at Level 6, 9, 11, 13 are pruned using
L1-Norm values.
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Table 6
Performance evaluation of the proposed S-MobileNet model after applying segmentation and feature extraction methods, with different optimizers, Relu and Mish activation function,
with and without pruning intermediary layers.

Method Batch size Optimizer Training loss Test loss Training accuracy Test accuracy Precision F1 score

S-MobileNet using Relu 32 Adam 0.16177 0.19061 0.96650 0.95991 0.96809 0.93367
S-MobileNet using Mish without pruning 32 Adam 0.15722 0.18617 0.96542 0.94289 0.97896 0.95330
S-MobileNet using Mish with pruning of layers 32 Adam 0.15763 0.17607 0.96604 0.95032 0.97392 0.95838
S-MobileNet using Relu 32 RMSProp 0.13723 0.17346 0.87666 0.86086 0.89902 0.89653
S-MobileNet using Mish without pruning 32 RMSProp 0.13498 0.17175 0.87639 0.89797 0.91053 0.91029
S-MobileNet using Mish with pruning of layers 32 RMSProp 0.12739 0.16891 0.91619 0.93680 0.94757 0.95288
S-MobileNet using Relu 32 SGD 0.15603 0.16823 0.96340 0.91702 0.92162 0.92859
S-MobileNet using Mish without pruning 32 SGD 0.15473 0.17177 0.98158 0.94489 0.94751 0.94592
S-MobileNet using Mish with pruning of layers 32 SGD 0.14154 0.16093 0.98345 0.98154 0.96233 0.94593
Fig. 13. Result analysis (a) Training loss of S-MobileNet model (b) Test loss of S-MobileNet model (c) Training Accuracy of S-MobileNet model (d) Testing Accuracy of S-MobileNet
model (e) Precision of S-MobileNet model (f) F1 score of S-MobileNet model.
Fig. 14. L1 norm values.

Level 6 of the S-MobileNet mentioned in Table 2 has 256 filters. The
L1 norm values of each filter are generated and are plotted in Fig. 12-
Diagram(A). The L1-norm value of 0.1 is chosen as the threshold and
this contributes to 10% of the filters at this layer, around 25 in count,
being pruned. Secondly, it is applied at Level 9 with 512 filters. The
L1-norm cutoff value is 0.09 (Fig. 12-Diagram(B)) and around 40 filters
are pruned. Thirdly at Level 11, the L1 norm threshold is fixed at 0.1,
and around 40 filters are pruned (Fig. 12-Diagram(C)). And finally, at
Level 13, the L1 norm threshold is 0.11, and around 51 filters out of
512 are pruned (Fig. 12-Diagram(D)).

After many trials, the threshold values are selected in a way that
effectively increases the classification accuracy of the model. Also, the
levels for pruning are chosen with enough gaps between them to avoid
16
loss of data. The L1 norm values of all the 13 depthwise convolution
layers are shown in Fig. 14.

Pruning is only applied at only 4 levels in the proposed model since
more pruning will have a significant negative influence on accuracy.
A detailed result analysis of the drop in filter percentage and the
associated increase in other performance metrics is discussed below:

1. In levels 6, 9, 11, and 13, there are a total of 1792 filters. Of these,
156 filters are pruned. Approximately 8% of the filters are pruned in
these four levels. The complete S-MobileNet architecture is made of
10 944 filters and 156 filters are pruned, which is approximately 1.4%.

2. The training accuracy of Adam, RMSProp, and SGD is raised by
0.06%, 4.5%, and 0.19% respectively. The testing accuracy of Adam,
RMSProp, and SGD is raised by 0.78%, 4.32%, and 3.87% respectively.
Precision has decreased by 0.51% for the Adam optimizer while rising
by 4.06% and 1.56% for the RMSProp and SGD optimizer respectively.
The F1 score shows a raise in 0.53%, 4.67%, and 0.0009% increase for
Adam, RMSProp, and SGD respectively. Fig. 14 shows the percentage
of variation in all these performance metrics with and without applying
the pruning process.

From Fig. 15, it is seen that there is a significant drop in the
training and testing loss percentage and an overall raise in other per-
formance metrics. The proposed S-MobileNet model works efficiently in
classifying the images into 7 classes with high accuracy and minimal
loss.

The performance of the S-MobileNet framework is compared to the
MobileNet benchmark algorithm and other existing algorithms exe-
cuted over the HAM10000 dataset in Table 7. Compared to other mod-
els/algorithms/CNN frameworks, S-MobileNet performs better. The en-
hanced Gaussian filtering image segmentation algorithm performs a
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Table 7
Performance comparison of S-MobileNet to MobileNet and other existing algorithms executed over HAM10000.

Ref Model Accuracy

Nasiri et al. (2018) Custom built model 88.57%

Heller et al. (2018)

Inception 87.70%
Xception 86.20%
Inception ResNet 87.80%
ResNet 85.20%
DenseNet 88.20%
Ensemble 85.20%

Sae-Lim et al. (2019)
MobileNet 80.14%
Modified MobileNet without data up sampling and data augmentation method 83.93%
Modified MobileNet with data up sampling and data augmentation method 83.23%

Khan et al. (2019) SVM 89.80%
Saarela and Geogieva (2022) XAI and DCNN 80%

Hoang et al. (2022)

ShuffleNet 76.83%
Wide- ShuffleNet 77.88%
Entropy-based Weighting and First-order Cumulative Moment (EW-FCM) + ShuffleNet 83.66%
Entropy-based Weighting and First-order Cumulative Moment (EW-FCM) + wide -ShuffleNet 84.80%
Entropy-based Weighting and First-order Cumulative Moment (EW-FCM) + EfficientNet-B0 85.50%

Zafar et al. (2023) Customized MobileNet model and DeepLabV3+ 92.01%

S-Mobile Net Without segmentation and feature extraction 97.757%
With segmentation and feature extraction 98.345%
Fig. 15. Percentage change in performance metrics after applying pruning.

noteworthy job of accurately extracting features from images, preserves
the edges, smoothens the image and reduces noise in images. Another
notable feature in the proposed model is the pruning which is carried
out at the appropriate layers which makes it lightweight and further
improves the performance. The literature papers that carried out its
work on HAM10000 datasets from 2018 to 2023 is shown in 7 and
accuracy of the proposed S-MobileNet outperforms all of these. Due to
the uncertainty about the GPU, processor, hardware power, or other ex-
ternal factors under which literature algorithms are executed, it would
not be possible to compare or analyze the latency of the algorithms or
the time is taken to execute them with the proposed ones.

Although the S-MobileNet CNN framework has achieved promising
performance on the HAM10000 dataset, future enhancements may be
applying S-MobileNet on other datasets like ISBI 2016 challenge dataset
for skin lesion analysis towards melanoma detection (Gutman et al.,
2016), PAD-UFES-20 skin lesion dataset (Pacheco et al., 2020), PH2
database (Mendonça, Ferreira, Marques, Marcal, & Rozeira, 2013) or
other real-time datasets to make it acceptable as a global framework on
skin lesion analysis. Another interesting challenge would be to identify
and validate over-segmented images, as well as to control thresholds
based on brightness or contrast.

The societal benefits of automated processing of skin images can
help in early detection of skin diseases like cancer/melanoma etc,
17
Fig. 16. Skin lesion size progression.

Fig. 17. Change in skin lesion color with time.

reduces misdiagnosis of skin diseases, earlier the prediction reduces the
healthcare cost, early predicts the change in the size of the skin lesion
(Fig. 16) and the color change (Fig. 17), and promotion of human well
being.

5. Conclusion

In this paper, we proposed an end-to-end deep CNN based skin
lesion classification framework. Images from the HAM10000 dataset
were preprocessed using the proposed image segmentation and feature
extraction algorithm, and fed into our customized S-MobileNet CNN
model for classification. The S-MobileNet CNN model was fed the raw
dataset in the first phase, and the processed dataset in the second, and a
comparative study is performed. S-MobileNet CNN model was trained
in either case and hyperparameters were fine-tuned to ensure higher
accuracy in classification. The layers of the S-MobileNet are custom-
made and analyzed by applying the Mish activation function. The
performance of the S-MobileNet model with the Mish activation func-
tion was compared with the contemporary Relu activation function.
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Further, we compressed/pruned S-MobileNet to develop a lightweight
model. The filters in the four intermediary layers of the S-MobileNet
model were compressed using the L1-norm CNN compression tech-
nique. Overall, 156 filters were pruned out of a total of 10 944, in
S-MobileNet. The performance of the model is evaluated in four di-
mensions: with and without passing preprocessed data; Relu activation
function vs Mish activation function; Mish activation function with
and without applying compression and across three CNN optimizers,
namely Adam, RMSProp, and SGD. Our results demonstrated that using
processed data in the model results in improved performance. The
Mish activation function was shown to outperform the Relu activation
function, and pruning specific layers was also shown to improve model
performance. To conclude, our proposed model demonstrated a higher
classification accuracy compared to benchmark approaches, whilst still
being lightweight.
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