
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

Bare-Bones Particle Swarm Optimization-based Quantization for Fast
and Energy Efficient Convolutional neural networks

Jihene Tmamna1 | Emna Ben Ayed1 | Rahma Fourati*1,2 | Amir Hussain3 | Mounir Ben Ayed1,4

1Research Groups in Intelligent
Machines, National Engineering School
of Sfax (ENIS), University of Sfax, BP
1173, 3038, Sfax, Tunisia

2Faculty of Law, Economics and
Management Sciences of Jendouba
(FSJEGJ), University of Jendouba,
Jendouba, Tunisia

3School of Computing, Edinburgh Napier
University, Edinburgh, United Kingdom

4Computer Sciences and Communication
Department, Faculty of Science of Sfax,
University of Sfax, Sfax, Tunisia

Correspondence
*Rahma Fourati
Email: rahma.fourati@ieee.org

Abstract

Neural network quantization is a critical method for reducing memory usage and computa-

tional complexity in deep learning models, making them more suitable for deployment on

resource-constrained devices. In this paper, we propose a method called BBPSO-Quantizer,

which utilizes an enhanced Bare-Bones Particle Swarm Optimization algorithm, to ad-

dress the challenging problem of mixed precision quantization of Convolutional Neural

Networks (CNNs). Our proposed algorithm leverages a new population initialization, a ro-

bust checking process, and a local search strategy to improve the search performance and

guide the population towards a feasible region. Additionally, Deb’s constraint handling

method is incorporated to ensure that the optimized solutions satisfy the functional con-

straints. The effectiveness of our BBPSO-Quantizer is evaluated on various state-of-the-art

CNN architectures, including VGG, DenseNet, ResNet, and MobileNetV2, using CIFAR-

10, CIFAR-100, and Tiny ImageNet datasets. Comparative results demonstrate that our

method delivers an excellent tradeoff between accuracy and computational efficiency.

KEYWORDS:

Barebone PSO; Model compression; mixed precision quantization; Energy efficient model

inference

1 INTRODUCTION

The popularity of solving problems using deep neural networks (DNNs) has rapidly increased in recent years. DNNs have demonstrated remarkable
success across various applications including 1,2,3,4,5,6,7,8,9,10,11,12,13,14. However, it is important to note that this success often comes at the expense
of increased complexity, and higher memory and computational requirements. These factors can make it challenging to deploy DNNs on devices
with limited computational resources, such as IoT devices that often have constrained memory, processing power, and battery life 15,16.

To address these challenges, researchers and engineers have been exploring various methods for DNNs compression, including pruning 17,18,
quantization 19,20, and knowledge distillation 21,22. Pruning involves removing unnecessary connections or parameters in the network, resulting
in a smaller model size. Quantization reduces the precision of the model’s weights/activations, thereby decreasing memory requirements and
computational complexity. On the other hand, knowledge distillation involves training a smaller model to mimic the behavior and performance
of a larger model. These methods aim to reduce computational complexity while maintaining acceptable performance levels. Consequently, they
enable the development of energy-efficient DNN models that can effectively operate in resource-constrained environments, thereby minimizing
overall energy consumption. This not only enhances the performance of DNN applications but also contributes to a greener and more sustainable
environment. In ourwork, we focus onNeural NetworkQuantization (NNQ) as a valuable compressionmethod aimed at reducing the computational
requirements and memory footprint of DNNs. NNQ achieves this by representing the model’s weights and activations using reduced bit precision,
such as 8-bit or even lower bit-widths, as opposed to the standard 32-bit floating-point numbers.



2 J. Tmamna et al

Binary precision quantization is one method employed in NNQ 23,24,25. It involves representing weights and activations with only two values:
-1 and 1. This method provides significant advantages in memory and computational efficiency, as the storage requirements are greatly reduced.
Ternary precision quantization 26,27, on the other hand, aims to represent weights and activations using three possible values: -1, 0, and 1. This
method strikes a balance between the information representation of full-precision floating-point numbers and the efficiency of binary quantization.
Low-bit precision quantization 28,29 refers to the quantization of weights/activations using a small number of bits, typically less than 8 bits. This
method reduces memory requirements and computational complexity, thereby improving the overall computing performance of DNNs.

While binary and ternary precision quantization methods enhance computing performance, they can present some issues, including increased
sensitivity to quantization errors and significant accuracy degradation compared to higher precision representations 30,31. To strike a balance be-
tween computing performance and accuracy, many studies have explored the adoption of low-bit precision quantization. This method effectively
reduces memory requirements and computational complexity while still maintaining reasonable inference accuracy. Methods for low-bit precision
quantization can be divided into two categories: fixed and mixed-precision quantization.

Fixed-precision or homogeneous quantization involves assigning the same bit-width to all or most layers in a neural network. Several works,
such as 30,32,33,28,29, have focused on quantizing the weights and activations using the same bit-width. While fixed-precision quantization simplifies
the implementation, it may not always yield optimal solutions and can result in significant accuracy degradation. This is because fixed precision
quantization assigns a uniform bit-width to all layers, without considering the sensitivity of individual layers to quantization errors. As a result, the
quantization levels may not be tailored to the specific needs of each layer, potentially leading to sub-optimal performance.
Mixed precision or layer-wise quantization methods have been developed to overcome the limitations of fixed precision quantization. These
methods consider the varying sensitivities of layers to quantization errors and allow for different bit widths to be assigned to different layers.
Critical layers, which are more sensitive to quantization errors, may require higher bit precision to maintain accuracy, while less critical layers could
potentially benefit from lower bit precision 34,35,36. By tailoring the quantization levels to the specific needs of each layer, it becomes possible to
optimize the average bit-width and minimize accuracy degradation.

Indeed, the evolution-based search 37 and reinforcement learning 36,38 methods have been explored for mixed precision quantization. However,
these methods can encounter certain complexities and limitations. One challenge is the exponential search space of different quantization bit
widths. As the number of possible bit-width configurations grows exponentially with the number of layers in a neural network, exhaustive explo-
ration becomes computationally expensive. Another limitation is the potential for thesemethods to get trapped in locally optimal solutions.Without
sufficient theoretical guidance, there is a risk of sub-optimal solutions. The development of efficient mixed-precision search algorithms remains an
important task in the field of neural network quantization. By addressing the challenges of exploration and computational cost, we can strive to
find more effective and optimal solutions for mixed precision quantization, leading to improved efficiency and performance of the quantized model.

In this paper, we present a method for mixed precision quantization. The core idea of our method is to formulate mixed precision quantization
as a constrained single-objective optimization problem. To solve this problem, an improved version of the Bare-Bones Particle Swarm Optimization
(BBPSO-Quantizer) is introduced as the optimizer. This algorithm incorporates four mechanisms that aim to enhance the search performance.

• The first mechanism is the improved initialization of the particle positions. We carefully design the initialization process to ensure a good
balance between exploitation and exploration, enabling the particles to effectively explore the solution space from the beginning.

• The second mechanism is the use of Deb’s constraint handling method, which plays a crucial role in directing the population towards the
feasible region. This method helps maintain the feasibility of the solutions and ensures that the optimization process adheres to the given
constraints.

• The third mechanism is the inclusion of a similarity-checking process to avoid redundant evaluations of the same position vectors. By com-
paring the similarity of newly generated positions with those already evaluated, we can avoid redundant evaluations, saving computational
resources and improving efficiency.

• The fourth mechanism is the integration of a local search strategy to enhance the exploitation ability of the optimizer. This strategy is
designed to prevent the algorithm from getting stuck in local optima and promote the exploration of the search space. The local search
strategy is employed to enhance the personal best position (Pb) of each particle in the BBPSO-Quantizer algorithm. By updating the Pb
using a local search process, we aim to escape from potential local solutions and explore new regions that could lead to better solutions.

The paper’s subsequent sections are organized as follows: Section 2 overviews the related work on quantization. Section 3 details the proposed
method. Section 4 outlines the experimental setup and discusses the results. Section 5 presents the conclusions.



J. Tmamna et al 3

2 RELATED WORK ON MIXED PRECISION QUANTIZATION

In general, the weights/activations of layers are commonly represented as 32-bit float values. However, one method to reduce the model’s com-
putational complexity is to decrease the bit-width representation. Mixed precision quantization involves utilizing different bit widths for different
layers. This method takes the varying sensitivities of layers to quantization errors and aims to determine the optimal layer’s bit-width. This process
is depicted in Figure 1.

Figure 1 Illustration of mixed-precision quantization process

In the field of mixed-precision quantization, there have been several methods developed to determine the optimal layer’s bit-width. These
methods can be broadly classified into two categories: non-search and search-based mixed precision quantization methods.

2.1 Non-search-based mixed-precision quantization

Non-search-based mixed-precision quantization refers to methods used to determine the optimal quantization configuration without conducting
an explicit search process. These methods 35,34,39,40,19,41,20 rely on heuristics, rules, or predefined guidelines to assign different precision to various
layers of the network, taking into consideration the quantization sensitivity of each layer. The non-search-based mixed precision quantization
methods can be classified into three main types: Hessian-aware, accuracy-aware, and indicator-based.

Hessian-aware methods, such as HAWQ 35, HAWQ-v2 34, and HAWQ-v3 39, utilize the Hessian matrix to guide the quantization process and
mitigate potential accuracy degradation that can occur with quantization. By considering the Hessian matrix, these methods can make informed
decisions regarding the quantization levels for different network parameters, thus minimizing the negative impact on accuracy.

Accuracy-aware methods typically focus on estimating accuracy gains for individual layers or parts of the network. Liu et al. 40 and Bablani et
al. 19 attempt to estimate the accuracy gain for each layer through a technique known as one-shot imprinting, which involves one epoch of fine-
tuning per layer. Once the accuracy gain is estimated for each layer, the method leverages this information to guide the quantization process.
Layers with a higher estimated accuracy gain are prioritized for higher precision quantization. Layers with lower estimated accuracy gain may be
quantized with lower precision to achieve resource efficiency.

The indicator-based method, as presented in 41, utilizes specific parameters within quantization, specifically the scale factors in the quantizer,
as indicators of importance. These indicators help differentiate whether one layer is more sensitive to quantization than others. However, the
indicator-based method heavily relies on scale factors as indicators of importance, and these scale factors may not always accurately reflect the
importance or significance of a layer. In some cases, certain layers with small-scale factors may still contain crucial information for the network’s
overall performance. Thus, relying solely on scale factors may lead to sub-optimal bit-width allocations.

While non-search-based mixed-precision quantization is less computationally expensive compared to search-based methods, it may not guar-
antee optimal quantization for every network. It relies on heuristics and assumptions, which may not always capture the intricacies of a specific
model. Consequently, there is a possibility of sub-optimal quantization levels being assigned, leading to a potential loss of accuracy or performance.



4 J. Tmamna et al

It’s worth noting that recent advancements in quantization research have focused on search-based methods, such as reinforcement learning or
evolutionary algorithms, which can automatically explore the quantization space and find more optimal configurations.

2.2 Search-based mixed-precision quantization

Search-based quantization is a methodology focused on automating the process of finding the optimal bit-width of the network’s layers. Some
search-based quantization methods, such as HAQ (Hardware-Aware Automated Quantization) 36 and AutoQ 38, incorporate reinforcement learning
(RL) to find the optimal precision configuration. These methods use RL algorithms to explore and learn the best bit-width settings for different
layers or operations in the network. However, these RL-based methods can incur significant computational costs due to the large search space
and the need for extensive training and evaluation. Moreover, some methods search the bit-width precision of individual layers through stochastic
gradient descent (SGD) while employing a modified loss function. For example, Nikolic et al. 42 proposed introducing a regularization term to the
loss function, encouraging the network to select lower bit widths during training. Yang et al. 43 also proposed amethod that optimizes the bit-widths
of each layer using SGD and a carefully designed quantization-aware loss function.

Evolutionary algorithms 44 have also been applied to the quantization with mixed-precision settings. With the growth of the search space,
searching for all possible quantization configurations incurs a significant computational cost. This limitation hinders their application in finding the
optimal bit widths within acceptable time and energy constraints. As a result, these methods are not widely adopted in deep CNN quantization.

In line with these considerations, we propose the BBPSO-Quantizer method for mixed precision quantization. The novelty of our BBPSO-
Quantizer lies in incorporating population initialization, screening, and local search strategies, which simplifies the search for optimal bit widths
with reduced complexity and rapid convergence.

3 PRELIMINARIES

This section provides an introduction to the fundamental concepts of neural network quantization, particle swarm optimization (PSO), and the
constrained handling method.

3.1 Neural network quantization

In quantization, two commonly used operations are clipping and projection. These operations are typically applied to the weights or activation of
a convolutional layer to obtain the quantized values as illustrated in Figure 2. The quantization function is usually defined as 45:

Z =
∏

Q(a,b) clip(Z, a) (1)
where Z is the quantized value, and Z stands for the input value. Q(a, b) denotes the quantization levels. clip(Z, a) is the clipping function that
truncateswhether it’s 32-bit weight or activation, to the range [−a, a] and [0, a], respectively.∏(.) plays the role of a projection function, facilitating
the mapping of each clipped elementX into the space defined by Q(a, b).

3.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) 46 is an optimization algorithm inspired by the social behavior of bird flocking or fish schooling. In PSO, a
collection of particles moves through a search space to find the best solution to a given problem. Each particle represents a potential solution. The
algorithm begins by randomly initializing a population of particles. Each particle’s position and velocity are then iteratively updated based on its
personal best position (Pb) and the global best position (Gb).

In 2005, Kennedy 47 proposed bare-bones PSO (BBPSO). While retaining the fundamental optimization idea of PSO, BBPSO differs from tradi-
tional PSO. On the one hand, it discards the update of particle velocity compared to PSO to overcome the disadvantage that conventional PSO
relies too much on parameters. It replaces it with Gaussian distribution based on Pb and Gb.

For a swarm of size N , each particle’s position X, Pb, and Gb vectors at the tth generation, are denoted as Xt
i = {xi1, xi2, ...xiD}, Pbti =

{Pbti1, P bti2, ..., P btiD}, Gbt = (Gbt1, Gbt2, ..., GbtD), where i=1,2.. N , j=1,2... D, with D representing the problem’s dimension. Each bit xij in the
position vectorXi is updated as follows:

xt+1
ij =

G(0.5(Pbtij +Gbt), |Pbtij −Gbtj |), if R < 0.5

Pbtij , otherwise
(2)

where R is a random value, G(β, γ) represents a Gaussian distribution with mean β and variance γ.



J. Tmamna et al 5

Figure 2 Illustration of convolutional layer quantization

3.3 Constrained handling method

In our proposed method, ensuring that the optimal solution not only optimizes the objective function but also meets the functional constraint is of
utmost importance. To achieve this, we incorporate Deb’s constraint handling method (also known as Deb’s rule) into our optimization algorithm 48.
Deb’s rule is a widely used method in constrained optimization to guide the search toward feasible regions. Its main principles are:

• When comparing two feasible solutions, the algorithm selects the one with the better objective function value, which means selecting the
solution that achieves the highest objective function value.

• When comparing one feasible solution with one infeasible solution, the feasible solution is selected. This principle ensures that if a feasible
solution exists, it is always preferred over an infeasible one, even if the infeasible solution has a better objective function value.

• When comparing two infeasible solutions, the algorithm selects the solutionwith a smaller constraint violation. This means that if no feasible
solutions are available, the algorithm selects the infeasible solution that violates the constraints to a lesser extent.

Algorithm 1 gives the algorithm of Deb’s rule. By incorporating Deb’s rule into our optimization algorithm, we ensure that the search process is
guided from unfeasible regions toward feasible ones. This helps the algorithm explore and focus on regions where both the objective function and
the functional constraint can be simultaneously optimized.

4 CONSTRAINED BBPSO-BASED QUANTIZATION METHOD (BBPSO-QUANTIZER)

In this section, we introduce our BBPSO-Quantizer for the mixed precision quantization problem. Our method addresses significant challenges
when developing a BBPSO-based quantizationmethod, aiming to provide amore robust and effectivemethod for generating high-quality quantized
networks. It involves reducing complexity, maintaining population diversity, and achieving effective local searchability to enhance convergence. In
this section, various mathematical symbols are used to represent different mathematical concepts. Table 1 summarizes these symbols, providing
brief descriptions of their meanings.

4.1 Problem formulation

The optimization of the mixed precision quantization problem revolves around two key factors: minimizing the computational cost of the model
while maximizing accuracy. In our work, the quantization process aims to maximize accuracy under the constraint of the average operation bit,
resulting in a constrained optimization problem. The fitness function is expressed as follows:

max accuracy(Mquantized)

s.t. Cquantized(Mquantized) ≤ Ctarget

(3)



6 J. Tmamna et al

Algorithm 1 Deb’s rule
Input: X1, obj(X1), constraint(X1),X2, obj(X2), constraint(X2), λ: predefined constraint
1: if constraint(X1) ≥ λ and constraint(X2) ≥ λ then ▷ check if the both solutions are feasible
2: if obj(X2) ≥ obj(X1) then ▷ compare the objective function values
3: X1 ← X2

4: obj(X1)← obj(X2)
5: constraint(X1)← constraint(X2)
6: end if
7: else ▷ compare the constraint if any solution is feasible
8: if constraint(X2) ≥ constraint(X1) then
9: X1 ←X2

10: obj(X1)← obj(X2)
11: constraint(X1)← constraint(X2)
12: end if
13: end if
Output: X1, obj(X1), constraint(X1) ▷ Best solution

Table 1Mathematical symbols Description

Symbol Description
M Pre-trained model
biti the ith layer’s bit-width
L Number of layer in the original

model
s bit-width candidate vector

Limportance Layer importance
X particle
Gb Global best solution
Pb Personal best solution

MeM Memory matrix
N Swarm size
γ LSP condition
M′ Optimal quantized model

whereMquantized is the quantized model. The function Cquantized() is responsible for evaluating the computational resources required and
Ctarget is the target constraint adopted as average operation-bit-width used to assess the computational complexity in terms of bit-wise
operations.

4.2 Solution representation

One of the most important components of any population-based method is the representation of solutions. In the context of the quantization
problem, the solution is encoded in integer form, with ’biti’ representing the ith layer’s bit-width. By applying this encoding, the algorithm can
identify the optimal quantization policy.

Given a CNNmodelMwith L layers, we present the structure of the quantized model asMquantized = (bit1, bit2, ..., bitL), where bitj is the
jth layer’s bit-width. Therefore, the position of each particle Pi is defined by a vectorXi with dimension L, encoded as:

Xi = {xi1, xi2, ..., xiL}, xij ∈ s (4)



J. Tmamna et al 7

where i=1,2.. N (with N the swarm size), j=1,2...L. The bit-width candidate vector, denoted as s = 1, 2, 3, 4, 5, 6, 7, 8, 16, 32, corresponds to the
possible values of xij , where xij = bitj signifies the reduction of the jth layer’s bit-width to bitj ."

4.3 BBPSO-Quantizer algorithm

In this section, we introduce BBPSO-Quantizer, an enhanced variant of BBPSO tailored for solving the integer optimization challenges in CNN
quantization. It builds upon the standard BBPSO algorithm and incorporates several key improvements tailored for quantization tasks. The main
proposed improvements in BBPSO-Quantizer will be detailed in the next section.

4.3.1 Layer importance-guided population initialization (LIGPI)

Population initialization plays an important role in an optimization algorithm’s convergence speed and effectiveness. Random initialization (RI), a
widely employed method, involves creating the initial population by randomly assigning values within a certain range. However, RI alone may not
be ideal as it lacks consideration of the intrinsic characteristics of the problem and can lead to sub-optimal solutions.

To overcome the limitations of random initialization, a novel population initialization strategy is proposed to generate a higher-quality population.
This strategy is the use of layer weighting, where the importance of each layer is taken into account during population initialization. This initialization
strategy helps the optimization algorithm to start with a population that is more likely to converge towards better solutions, reducing the risk of
getting trapped in local optima. To estimate the layer importance in a pre-trainedmodelM based on its pre-trained weights, we adopt the following
equation:

Limportance =
β

(1 + (exp(− (2α(W−Wmin)
(Wmax−Wmin)

− α)))
(5)

where α is normalization range, β ∈ [0.5, 1] and W is the L1 norm value of layer weight matrix measured as follows:
W =

1

nl

nl∑
i=1

||wl
i||2 (6)

where nl denotes the number of filters, wl
i denotes the filter’s weight matrix.

Based on the importance measure, layers with higher importance values are considered more critical for preserving accuracy during the
quantization process. As a result, these important layers are more likely to be quantized with higher bit precision.

4.3.2 Pb and Gb updating strategy

To enhance the handling of constraints and optimize the search process, we propose integrating Deb’s constraint-handling method into the BBPSO
algorithm.

In our method, we adopt Deb’s rule for updating Pb and Gb. Based on the dominance relation defined by Deb’s rule, the algorithm determines
whether the current position Xi can replace its corresponding Pb (Pbi) based on the fitness value and resource constraint. If Xi dominates Pbi,
it becomes the new Pb for that particle.

The algorithm employs the same procedure to update theGb position. It compares the feasibility of Pbi andGb and decides whetherGb should
be updated or not. This strategy helps guide the population towards feasible regions, ensuring that the best solutions found are not only of high
fitness but also satisfy the specified constraints. This allows for a more effective exploration of the solution space, leading to improved solutions
for the mixed precision quantization problem.

4.3.3 Updating each particle’s position

In our work, the conventional BBPSO’s continuous updating rules are not directly applicable due to the particle’s position being an integer vector.
To address this requirement, we adopt the updating rule introduced in a reference work 49. Each bit xij in the position vectorXi at tth iteration is
updated as follows:

xt
ij =


⌈Pbtij+Gbtj

2

⌉
+

⌈
G(0, 1)|Pbtij +Gbtj |

⌉
, if rand > 0.5

Pbij , otherwise
(7)

where i =1,2...N with N is the swarm size, j=1,2...L, with L is the problem’s dimension.



8 J. Tmamna et al

4.3.4 Similarity screening process

During the search process, reevaluating the same position vector is possible since it’s challenging to guarantee that new positions will always differ
from those previously evaluated. To prevent redundant evaluations, we introduce a similarity screening process to assess the similarity between
new positions and those already evaluated.

The main concept of the similarity screening process is as follows:
1. Firstly, we maintain a matrix called ’memory matrix’ (MeM) that stores the positions of each evaluated particle.
2. When a new position is generated, we compare it with the positions stored in matrix MeM. If a similarity is detected, it suggests that the

new position has already been evaluated. In this case, we skip evaluating this particle’s position to avoid duplication.
3. On the other hand, if no similarity is found, indicating that the new position is unique and has not been evaluated before, the particle is

considered for evaluation as part of the search process.
By implementing this similarity screening process, we can improve the efficiency of the search algorithmby avoiding redundant evaluations, focusing
on exploring new and distinct positions during the search, and saving computational resources.

4.3.5 Local search process

During the search process, we update the positions of particles by incorporating information from both Gb and their respective Pb. Nevertheless,
if the Pb value significantly diverges from the optimal solution, there’s a risk of the algorithm converging towards a local solution. To mitigate this
problem, we introduce a Local Search Process (LSP) aimed at improving the Pb values and thereby enhancing the overall search performance.

The core idea of the LSP can be summarized as follows:
1. At the beginning, a certain number of bits, denoted as R, are randomly selected formodification to another value. This introduces exploration

into the search process.
2. Following this, Deb’s rule is employed to find the superior solution between Pb and the newly proposed solution, denoted as NewPb.
3. Therefore, if the NewPb is better than the current Pb, indicating an improvement in the solution, Pb will be updated to NewPb. This

update helps in refining the personal best solution and potentially avoiding local optima.
However, to handle additional computational requirements, the LSP is not used at every BBPSO-Quantizer iteration.We introduce the γ parameter,
which controls the frequency of using the LSP. Specifically, the LSP has applied every γ iteration.

4.3.6 Overall approach

The overall framework of our BBPSO-Quantizer is given in Algorithm 2. In the beginning, the position of each particle is initialized. Deb’s rule
algorithm is employed at each iteration to find the Pb and Gb values. The similarity screening process is utilized to assess the similarity of new
particles. If the condition for improving Pb is satisfied, the local search process is adopted to update Pb.

5 EXPERIMENTAL SETTINGS

This section offers a comprehensive overview of datasets, benchmark models, and parameter settings adopted to test the effectiveness of our
BBPSO-Quantizer for mixed precision quantization.

5.1 Datasets

To evaluate our BBPSO-Quantizer, we utilized three representative datasets: CIFAR-10, CIFAR-100 2, and Tiny-ImageNet 50. Both CIFAR datasets
comprise 50,000 training images and 10,000 testing images. The images in CIFAR are all 32×32 color images. These images are classified into 10
classes in CIFAR-10, whereas, they are classified into 100 classes in CIFAR-100. Tiny-ImageNet is a subset of the ImageNet dataset and comprises
100,000 training images and 10,000 validation images. The size of each image is 64×64. These images are classified into 200 classes, with 500
training images and 50 validation/test images per class. Table 2 presents a summary of the used datasets.



J. Tmamna et al 9

Algorithm 2 Overall framework of BBPSO-Quantizer
Input: pre-trained modelM, swarm size:N , T : max iteration, L: number of layers, s:bit-width candidate vector, R: number of bits to be updated;

γ: Local search process condition, λ: predefined resource constraint
1: MeM ←{}
2: for i = 1 to N do ▷ Initialization phase
3: Initialize the particle positionXi using the initialization method (section 4.3.1)
4: Xi,fitness ← fitness(Xi) ▷ Evaluate the particle fitness
5: Xi,resource ← resource(Xi) ▷ Evaluate the particle resource
6: MeM ←MeM +Xi

7: Pbi ← Xi

8: end for
9: Find Gb using algorithm 1
10: for t = 1 to T do ▷ Search phase
11: for i = 1 to N do
12: Update positionXnew using Eq.(7)
13: similar←False ▷ Similarity screening process
14: k←0
15: whileXnew = MeM [i] do
16: similar←True
17: Xnew,fitness ←MeM [i]fitness

18: Xnew,resource ←MeM [i]resource

19: k←k+1
20: end while
21: if similar=False then
22: Xnew,fitness ← fitness(Xnew )
23: Xnew,resource ← resource(Xnew )
24: MeM ←MeM +Xnew

25: end if
26: Update Pbi using Algorithm 1
27: end for
28: if t mod γ =0 then ▷ Local search process
29: NewPb← Pbi

30: for j = 1 to R do
31: idx← Rand(1, 2, ....,L)
32: NewPb[idx]← Rand(s− {Pb[idx]})
33: end for
34: NewPbfitness ← fitness(NewPb)

35: NewPbresource ← resource(NewPb)

36: Update Pbi using Algorithm 1 ▷ Find the best solution between NewPb and the current Pbi

37: end if
38: Update Gb using Algorithm 1
39: end for
40: M′ ← Gb

Output: Optimal quantized modelM′

5.2 CNN architectures for quantization

In our experiments, we employed our proposed BBSO-Quantizer on popular CNNmodels, namely VGG-16, VGG-19 51, ResNet-18/-20/-32/-44/-
56/-110, DenseNet-40 52, and the lightweight model MobileNetv2 53. Table 3 presents details about the considered models.



10 J. Tmamna et al

Table 2 Summary of datasets used in this study

Dataset Image Size Training Images Test Images Classes
CIFAR-10 32×32 50000 10000 10
CIFAR-100 32×32 50000 10000 100

Tiny-ImageNet 64×64 100000 10000 200

Table 3 Overview of the CNN models used as baseline to evaluate the proposed BBPSO-Quantizer

Model FLOPs (M) Parameter (M) Size (MB)
Accuracy %

CIFAR-10 CIFAR-100 Tiny ImageNet
VGG16 314.03 14.73 58,92 93.02 × ×
VGG19 399.09 20.09 80,36 × 73.11 ×
ResNet-20 41.22 0.27 1.08 91.93 62.87 ×
ResNet-32 69.76 0.47 1.88 92.34 64.69 ×
ResNet-44 98.01 0.66 2.64 92.76 67.79 ×
ResNet-56 126.55 0.85 3.40 93.26 67.70 ×
Resnet-110 254.99 1.73 6.92 93.50 × ×
DenseNet-40 287.71 1.06 4.24 94.81 × ×
ResNet-18 562.46 11.27 45,08 × × 63.39
ResNet-50 1310.82 23.91 95,64 × × 65.47
MobileNetv2 102.43 2.48 9,92 × × 60.41

5.3 Evaluation metrics

Evaluation metrics play a critical role in assessing the effectiveness of our BBPSO-Quantizer. In this context, the following evaluation metrics are
commonly adopted:

• Accuracy: It is a fundamental measure that evaluates the quantized model’s performance relative to the original model. A higher accuracy
indicates that the quantized model performs well and retains the original model’s predictive capabilities.

• Compression Ratio: It quantifies the extent to which the model size is reduced through quantization. It is calculated by dividing the original
model size (in bits or bytes) by the size of the quantized model. A higher compression ratio implies more efficient use of memory resources,
leading to improved storage and transmission efficiency.

• Average Operation Bit-Width: It measures the average precision used during computations in the quantized model. It provides insight into
the overall efficiency of the quantization process.

Specifically,∆Accuracy, compression ratio, and Average Operation Bit-Width are defined by Eq. (8), Eq. (9), and Eq. (11), respectively.
∆Accuracy = accuracyquantized − accuracyoriginal (8)

compressionratio =
32

averagebit(Mquantized)
(9)

where averagebit() denotes the weight’s average-bit-width, as defined in Eq. 10:
averagebit(Mquantized) =

∑L
j=1 n

jnbr(j)∑L
j=1 nbr(j)

(10)
where nj denotes the jth layer’s weight bit-width. nbr(j) represents the jth layer’s parameters number.



J. Tmamna et al 11

Average(Mquantized) =

[∑L
j=1 m

jnjOP (j)∑L
j=1 OP (j)

] 1
2 (11)

where for jth layer,mj denotes the activation’s bit-width, nj denotes the weight’s bit-width and OP (j) represents the number of FLOPs.

5.3.1 Algorithm parameters

Table 4 provides the details of the hyperparameters used in the BBPSO-Quantizer algorithm. The swarm size (N ) determines the number of
particles in the swarm. An increased number of particles, coupled with many iterations (T ) enables the algorithm to explore a larger portion of
the objective space to discover optimal solutions. However, it’s important to note that as the number of iterations and/or particles increases, the
computational cost also increases. In our experiments, 20 iterations and 15 particles were sufficient to generate good results given a reasonable
computing complexity. For fine-tuning, we adopt SGD with a batch size of 128, a weight decay 5e-3, and a momentum of 0.9. As for the epoch
and learning schedule, we adopt the following setting:

1. For particle evaluation, each particle is fine-tuned for 2 epochs (epeval) using a learning rate lreval = 0.01 to recover accuracy for further
search before evaluating its accuracy.

2. After the search process, the obtained solution will be fine-tuned for 160 epochs epfine using learning rate lrfine = 0.01 divided by 10 at
epochs 80 and 120.

Table 4 Algorithm parameters used to validate the proposed BBPSO-Quantizer
Parameter Value
Number of iterations T 20
Swarm size N 15
Batch size 128
momentum 0.9
Weight decay 5e-3
epeval 2
lreval 0.01
epeval 160
lrfine 0.01

6 EXPERIMENTS

6.1 Results Discussion

Table 5 summarizes the results for all models before and after the application of BBPSO-Quantizer. For each model, the values of accuracy,
compression ratio, and average operation bit width are shown. The numerical results in Table 5 demonstrate that BBPSO-Quantizer was able
to efficiently quantize original models on the three datasets without greatly affecting the classification accuracy. BBPSO-Quantizer-λ refers to
BBPSO-Quantizer with a predefined resource constraint λ.

6.1.1 Results on CIFAR-10

The evaluation of our BBPSO-Quantizer on the CIFAR-10 shows promising results, as presented in Table 5. Our BBPSO-Quantizer capability in
accuracy improvement for several neural network architectures is demonstrated under different average operation bit constraints.

Specifically, for VGG-16, the method achieves improved accuracy by 0.29% with an 11.74x compression ratio under the 3-average operation
bit constraint and by 0.56% with a 10x compression ratio under the 4-average operation bit constraint. Figure 3, which illustrates the bit width in
VGG-16 under a 4-average operation bit constraint, provides valuable insights into the sensitivity of different layers. This figure demonstrates that



12 J. Tmamna et al

Table 5 Quantization results over CIFAR-10, CIFAR-100 and Tiny-ImageNet

Model Weight-bits Activation-bits Accuracy % ∆ Accuracy compression
ratio

Average

CIFAR-10
VGG16 32 32 93.02 0.00 1 32
BBPSO-Quantizer-4 M M 93.55 +0.53 10.00 4.09
BBPSO-Quantizer-3 M M 93.31 +0.29 11.74 3.03
ResNet-20 original 32 32 91,96 0.00 1 32
BBPSO-Quantizer-4 M M 92.89 +0.93 9.10 4.02
BBPSO-Quantizer-3 M M 92.3 +0.34 10.87 3.01
ResNet-32 original 32 32 92,37 0.00 1 32
BBPSO-Quantizer-4 M M 92.93 +0.56 9.37 3.80
BBPSO-Quantizer-3 M M 92.47 +0.10 11.15 2.95
ResNet-44 original 32 32 92.72 0.00 1 32
BBPSO-Quantizer-4 M M 93.20 +0.48 8.33 3.86
BBPSO-Quantizer-3 M M 93.10 +0.38 10.65 3.09
ResNet-56 original 32 32 93.26 0.00 1 32
BBPSO-Quantizer-4 M M 93.72 +0.46 8.3 4.03
BBPSO-Quantizer-3 M M 93.50 +0.24 10.68 3.08
Resnet-110 original 32 32 93.50 0.00 1 32
BBPSO-Quantizer-4 M M 93.80 +0.40 8.26 4.07
BBPSO-Quantizer-3 M M 93.68 +0.18 10.88 3.07
DenseNet-40 original 32 32 94.84 0.00 1 32
BBPSO-Quantizer-4 M M 94.9 -0.06 8.17 4.02
BBPSO-Quantizer-3 M M 94.6 -0.24 10.95 3.08

CIFAR-100
VGG19 32 32 73.11 0.00 1 32
BBPSO-Quantizer-4 M M 73.10 -0.01 9.12 4.06
BBPSO-Quantizer-3 M M 72.53 -0.42 10.36 2.99
ResNet-44 original 32 32 67.79 0.00 1 32
BBPSO-Quantizer-4 M M 69.50 +1.71 8 3.96
BBPSO-Quantizer-3 M M 68.70 +0.91 10.80 2.95
ResNet-32 original 32 32 64.69 0.00 1 32
BBPSO-Quantizer-4 M M 66.02 +1.33 8.33 3.86
BBPSO-Quantizer-3 M M 65.60 +0.91 11.99 2.80
ResNet-20 original 32 32 62.87 0.00 1 32
BBPSO-Quantizer-4 M M 63.90 +1.03 8.33 3.86
BBPSO-Quantizer-3 M M 63.20 +0.33 11.84 2.97
ResNet-56 original 32 32 67.70 0.00 1 32
BBPSO-Quantizer-4 M M 67.99 +0.29 8.33 3.86

Tiny-ImageNet
ResNet-18 original 32 32 63.39 0.00 1 32
BBPSO-Quantizer-3 M M 63.01 -0.38 10.85 3.08
ResNet50 original 32 32 65.50 0.00 1 32
BBPSO-Quantizer-3 M M 65.72 +0.22 10.85 3.04
MobileNet V2 original 32 32 60.41 0.00 1 32
BBPSO-Quantizer-3 M M 60.01 -0.40 10.43 3.04



J. Tmamna et al 13

various layers in the VGG-16 exhibit different levels of sensitivity to quantization, and this sensitivity is reflected in the chosen bit width for each
layer.

Notably, the earlier layers of the VGG-16, which are closer to the input, tend to have higher bit widths. This is because these layers are more
sensitive to quantization errors, and higher bit-precision is required to preserve accuracy. However, the later layers, which are deeper in the network
and closer to the output, are shown to have lower bit widths. This observation indicates that these later layers are less important and can tolerate
lower bit precision without significantly impacting the overall network’s performance.

Figure 3 Visualization of bit width for each layer for VGG-16 under 4-average bit constraint

Similarly, BBPSO-Quantizer also improves accuracy for other ResNet architectures such as ResNet-20/-32/-44, and ResNet-56 under different
average operation bit constraints. Additionally, DenseNet also benefits from the BBPSO-Quantizer, with accuracy improvement under the specified
constraints.

Overall, the consistent accuracy improvements achieved for these various architectures indicate that our BBPSO-Quantizer is not limited to
specific network structures and can be effectively applied across a wide range of DNN models. This makes it a valuable tool for enhancing the
performance and efficiency of DNN in various applications.

6.1.2 Results on CIFAR-100

The results obtained on CIFAR-100 further demonstrate the performance of our BBPSO-Quantizer in achieving good results for image classification
tasks. The method’s ability to enhance accuracy for certain architectures and exhibit relatively low accuracy degradation for others under varying
bit constraints highlights its flexibility and efficiency in optimizing quantization.

For instance, in the case of VGG-19, BBPSO-Quantizer causes only -0.01% accuracy degradation under the 4-bit constraint and -0.42% accuracy
degradation under the 3-bit constraint. These results indicate that the quantized VGG-19 model still maintains a reasonable level of accuracy even
with significantly reduced bit precision. This is crucial as it showcases the ability of the BBPSO-Quantizer to find a balance between accuracy and
computational efficiency, making it suitable for resource-constrained environments.

Furthermore, the method achieves accuracy improvement for ResNet-20/-32/-44, and ResNet-56 under the specified constraints. This demon-
strates that the BBPSO-Quantizer is effective in enhancing the performance of these ResNet architectures when quantized with reduced bit
precision.



14 J. Tmamna et al

In summary, the positive results on CIFAR-10 and CIFAR-100 reinforce the reliability and versatility of the BBPSO-Quantizer in achieving good
performance for image classification tasks. The ability to preserve accuracy while quantizing models with fewer bits makes the method a valuable
tool for optimizing the efficiency of deep neural networks in various applications.

6.1.3 Results on Tiny-Imagenet

The results of our BBPSO-Quantizer on the Tiny ImageNet demonstrate its effectiveness in achieving a balance between accuracy and compu-
tational efficiency for different neural network architectures. The evaluation was conducted on ResNet-18, ResNet-50, and MobileNetv2 under
varying average operation bit constraints. Here are the key findings:

Under 3-average operation bit constraints, our BBPSO-Quantizer causes only 0.38% accuracy degradation for ResNet-18 compared to the fully
precision model. Meanwhile, it achieves +0.22% improvement for ResNet-50 and causes only a 0.4% accuracy drop for MobileNetv2.

In conclusion, the BBPSO-Quantizer has demonstrated its effectiveness and efficiency in optimizing the quantization process for various neural
network architectures across different datasets, making it a valuable tool in the field of DNNs and model compression.

6.2 Comparison

The results presented in Table 6 and Table 7 showcase the superiority of our BBPSO-Quantizer over previous methods for neural network
quantization on both CIFAR-10 and Tiny-ImageNet, considering both accuracy and compression ratio as evaluation metrics.

The results presented in Table 6 display the consistent superiority of our BBPSO-Quantizer method over existing mixed precision 54,40 and fixed-
precision methods 45,55 on CIFAR-10 for various neural network architectures, including VGG-16, ResNet-20, and ResNet-56. Notably, even under
high compression ratios, our method continues to show significant accuracy improvements, surpassing the performance of existing techniques.

For instance, our method significantly enhances the accuracy of VGG-16 by +0.29% at an 11.74 compression ratio, while the existing mixed
precision method BMPQ 54 causes a -0.34% accuracy drop with a 10.5 compression ratio. This substantial difference in accuracy improvements
highlights the effectiveness of our BBPSO-Quantizer in optimizing quantization for different neural network architectures, especially in scenarios
where high compression ratios are required.

Additionally, our BBPSO-Quantizer consistently outperforms previous methods such as APoT 45 and LLT 55 on ResNet-20, further emphasizing
its superiority in achieving improved accuracy and higher compression ratios on CIFAR-10.

These results demonstrate that our BBPSO-Quantizer provides a more efficient solution for neural network quantization on CIFAR-10,
surpassing the performance of existing methods under various compression ratios and network architectures.

Table 6 Comparison of BBPSO-Quantizer with previous quantization methods on CIFAR-10

Model Method Weight-bit Activation-bit ∆ accuracy % Compression ratio

VGG-16 BMPQ 54 M M -0.34 10.50
BBPSO-Quantizer M M +0.29 11.74

ResNet-20
liu et al. 40 M M -1.31 10.40
APoT 45 4 4 +0.70 8.00
LLT 55 4 4 -0.25 8.00
BBPSO-Quantizer M M +0.93 9.10

ResNet-56 Liu et al. 40 M M -0.72 10.34
BBPSO-Quantizer M M +0.24 10.68

The comparison results on Tiny-ImageNet presented in Table 7 further reinforce the superiority of our proposed BBPSO-Quantizer over previ-
ous methods for ResNet-18 and MobileNetV2. The consistent performance of our method on these architectures showcases its effectiveness in
achieving both higher compression ratios and accuracy enhancements on the Tiny-ImageNet dataset.

For instance, for ResNet-18, our method achieves an impressive compression ratio of 10.85, compared to the 8.8 compression ratio achieved by
the existing mixed precision method BMPQ 54. Additionally, our method causes only a -0.38% accuracy drop, while the existing method 54 causes
a -0.88% accuracy drop. The consistent outperformance of our method for different architectures and datasets showcases its effectiveness in
optimizing quantization for DNNs.



J. Tmamna et al 15

Table 7 Comparison of BBPSO-Quantizer with previous quantization methods on Tiny ImageNet

Model Method Weight-bit Activation-bit ∆ accuracy % Compression ratio

ResNet-18
In-Hindsight-Min-Max 56 8 8 +0.02 4.00
BMPQ 54 M M -0.88 8.80
BBPSO-Quantizer M M -0.38 10.85

MobileNetv2
MPLogQ 57 4.74M 5M -0.88 -
In-Hindsight-Min-Max 56 8 8 -0.33 4.00
BBPSO-Quantizer M M -0.40 10.43

6.3 Ablation study

Comparisons in Section 6.2 have demonstrated that our BBPSO-Quantizer is effective for neural network quantization. In this section, we will
conduct a detailed performance analysis of the three new mechanisms (the initialization method, similarity screening strategy, and local search
strategy). To evaluate the effectiveness of each mechanism, we introduce three variants of BBPSO-Quantizer: BBPSO-Quantizer-IN, BBPSO-
Quantizer-SCP, and BBPSO-Quantizer-LSP. Each variant eliminates one of the mechanisms. Specifically, BBPSO-Quantizer-IN replaces the LIGPI
method with random initialization, BBPSO-Quantizer-SCP excludes the similarity screening process, and BBPSO-Quantizer-LSP does not involve
the local search process.

6.3.1 Performance of similarity screening process

To evaluate the performance of the similarity screening process introduced in Section 4.3.4 is investigated through ablation experiments on Mo-
bileNetv2 on Tiny-ImageNet and ResNet-20 on CIFAR-10. The experiments are conducted on a GPU (Tesla P100-PCIE-16GB), and the summarized
GPU times (in hours) taken by our BBPSO-Quantizer and its variant BBPSO-Quantizer-SSP are presented in Table 8. According to the results,
BBPSO-Quantizer typically demands less computational time than BBPSO-Quantizer-SSP.

The results demonstrate the importance of the similarity screening process in improving the overall runtime of our algorithm. Without the
similarity screening process, searching for mixed precision configurations can be more expensive and time-consuming.

Table 8 Run-time comparison between BBPSO-Quantizer and BBPSO-Quantizer-SCP

Dataset Model Method Search cost (GPU hours)
CIFAR-10 ResNet-20 BBPSO-Quantizer-SCP 7.12

BBPSO-Quantizer 5.13
Tiny-ImageNet MobileNetv2 BBPSO-Quantizer-SCP 12.30

BBPSO-Quantizer 9.40

6.3.2 Performance of initialization method and local search process in BBPSO-Quantizer

Table 9 provides a comparative analysis of the results achieved by our BBPSO-Quantizer and its variants. The table illustrates the consistent
outperformance of our algorithm in terms of accuracy under the same constraint when compared to its variants.

The significantly better accuracies obtained by our algorithm compared to its variants highlight its ability to find better solutions and achieve
higher performance. This showcases the efficacy of the proposed enhancements in guiding the search process toward more accurate solutions,
ultimately leading to improved performance on the tested datasets.

The comparisons between BBPSO-Quantizer and its three variants (BBPSO-Quantizer-IN, BBPSO-Quantizer-LSP, and BBPSO-Quantizer-SSP)
have demonstrated the effectiveness of the initialization method, similarity screening process, and local search strategy in enhancing the search
performance.



16 J. Tmamna et al

Table 9 Comparisons between BBPSO-Quantizer and its variants

Dataset Model Method ∆ accuracy% average-bit

CIFAR-10 ResNet-20 BBPSO-Quantizer +0.34 3.01
BBPSO-Quantizer-IN +0.25 3.07
BBPSO-Quantizer-LSP +0.17 3.03

Tiny-ImageNet MobileNetv2 BBPSO-Quantizer -0.40 3.04
BBPSO-Quantizer-IN -0.80 3.09
BBPSO-Quantizer-LSP -0.60 3.06

6.4 Statistical analysis

In this section, a comparative analysis of the performance of BBPSO-Quantizer with conventional Bare-Bones Particle Swarm Optimization
(BBPSO), and Genetic Algorithm (GA) is conducted.
Each algorithm is run 20 times on three models: MobileNetv2, ResNet-18, and ResNet-50 on the Tiny-ImageNet dataset. Table 10 shows the
results in terms of accuracy and statistical comparison based on the Mann–Whitney U test and Friedman test. In the table, mean and standard
deviation values of the best and second-best performing algorithms (highest mean accuracy) for each model are highlighted with gray and light
gray shading, respectively. Additionally, the symbol ’+’ signifies that BBPSO-Quantizer outperforms the peer algorithm. Considering the accuracy,
BBPSO-Quantizer is better than BBPSO and GA in all models.
Moreover, the average row in the table showcases the mean ranks assigned to each algorithm across diverse models according to the Friedman
test. The algorithms are sorted in ascending order according to their accuracy values, and the algorithm with the highest accuracy is assigned a
higher rank. Hence, a larger rank indicates better performance. Table 10 highlights the rank associated with the best performance. The average
rank results consistently support the statistical superiority of the BBPSO-Quantizer algorithm. All the statistical tests conducted were performed
with a p-value of 0.05.
To visually illustrate the performance and stability of different algorithms, accuracy values are depicted in Fig. 4. The x-axis denotes the number of
independent runs, while the y-axis represents the accuracy value for each run. Notably, among the 20 independent runs, the accuracy values of
BBPSO-Quantizer consistently outperform those of the other algorithms across various models.

Table 10 Comparison results of BBPSO-Quantizer, BBPSO, and GA in terms of accuracy (Mean and standard deviation) and the average Friedman
ranks with scores on Tiny ImageNet dataset

Model GA BBPSO BBPSO-Quantizer
Mobilenetv2 59.31(2.24e− 01) (+) 59.46(1.90e− 01) (+) 59.93(7.58e− 02)

Resnet18 62.28(2.17e− 01) (+) 62.51(1.95e− 01) (+) 62.94(6.47e− 02)

Resnet50 65.08(1.34e− 01) (+) 65.35(1.95e− 01) (+) 65.67(4.95e− 02)

Average Friedman rank 1.0 2.0 3.0
Score 3 2 1

7 CONCLUSION

In this work, we have presented BBPSO-Quantizer, a method for mixed precision quantization of neural networks using the enhanced BBPSO
algorithm. Our method addresses the challenges of reducing model size and computational complexity while maintaining high accuracy, making
DNNs suitable for deployment on resource-constrained devices.

Through extensive experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets, we have demonstrated the efficiency of BBPSO-
Quantizer in optimizing quantization for various CNN architectures, including ResNet, MobileNetv2, VGG, and DenseNet. The results showcase a



J. Tmamna et al 17

2 4 6 8 10 12 14 16 18 20

Independent Run

0.588

0.59

0.592

0.594

0.596

0.598

0.6

0.602

A
c
c
u
ra

c
y

GA BBPSO BBPSO-Quantizer

(a)Mobilenetv2

2 4 6 8 10 12 14 16 18 20

Independent Run

0.618

0.62

0.622

0.624

0.626

0.628

0.63

0.632

A
c
c
u
ra

c
y

GA BBPSO BBPSO-Quantizer

(b) Resnet18

2 4 6 8 10 12 14 16 18 20

Independent Run

0.648

0.649

0.65

0.651

0.652

0.653

0.654

0.655

0.656

0.657

0.658

A
c
c
u
ra

c
y

GA BBPSO BBPSO-Quantizer

(c) Resnet50
Figure 4Mean Accuracy curves for Mobilenetv2, Resnet18 and Resnet50 models evaluated on Tiny ImageNet dataset



18 J. Tmamna et al

compelling balance between accuracy and computational efficiency, with significant accuracy improvements achieved for different neural network
architectures under varying average operation bit constraints.

The incorporation of new population initialization, a robust similarity screening process, and a local search strategy have improved the search
performance, guiding the population towards feasible regions.Moreover, the integration ofDeb’s constraint handlingmethod ensures the optimized
solutions meet functional constraints, leading to more reliable and practical quantized models. Additionally, we have conducted ablation studies
and compared BBPSO-Quantizer against its variants, confirming the superiority of the proposed mechanisms in improving search performance and
overall runtime.

While the study achieved efficient experiments, there are still some limitations. One notable limitation involves deploying quantized models
onto real-world hardware, particularly those optimized for edge computing. These hardware are specifically equipped for the efficient execution
of quantized operations.

In the future, we aim to address the practical implementation of quantized models on real-world hardware. In addition, we aim to apply BBPSO-
Quantizer to tackle other challenging models, such as large language models (LLMs), transformers, and YOLO models. Our plan involves exploring
the integration of BBPSO-Quantizer with other compression techniques to further reduce computational costs while ensuring a satisfactory level
of accuracy.

CONFLICT OF INTEREST

The authors have no conflicts of interest to declare.

ACKNOWLEDGEMENTS

The authors are grateful to the anonymous reviewers for their insightful comments and suggestions which helped improve the quality of this
paper. The research leading to these results has received funding from the Ministry of Higher Education and Scientific Research of Tunisia under
grant agreement number LR11ES48. Professor Hussain acknowledges the support of the UK Engineering and Physical Sciences Research Council
(EPSRC) (Grants No. EP/M026981/1, EP/T021063/1, EP/T024917/1)

References

1. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Communications of the ACM 2017;
60(6): 84–90.

2. Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images. tech. rep., University of Toronto; : 2009.
3. Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual recognition challenge. International journal of computer vision 2015; 115: 211–

252.
4. Sharma V, Gupta SK, Shukla KK, others . Deep learning models for tuberculosis detection and infected region visualization in chest X-ray

images. Intelligent Medicine 2023.
5. Redmon J, Farhadi A. YOLO9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition.

IEEE. ; 2017: 7263–7271.
6. LiuW,AnguelovD, ErhanD, et al. Ssd: Single shotmultibox detector. In: Computer Vision–ECCV2016: 14th EuropeanConference, Amsterdam,

The Netherlands, October 11–14, 2016, Proceedings, Part I 14. Springer. ; 2016: 21–37.
7. Redmon J, Farhadi A. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 2018.
8. Lin TY, Goyal P, Girshick R, He K, Dollár P. Focal loss for dense object detection. In: Proceedings of the IEEE international conference on

computer vision. IEEE. ; 2017: 2980–2988.
9. Yuan HS, Chen SB, Luo B, Huang H, Li Q. Multi-branch Bounding Box Regression for Object Detection. Cognitive Computation 2022: 1–8.



J. Tmamna et al 19

10. Prinzi F, Insalaco M, Orlando A, Gaglio S, Vitabile S. A Yolo-Based Model for Breast Cancer Detection in Mammograms. Cognitive Computation
2023: 1–14.

11. Devlin J, Chang MW, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 2018.

12. Jiao X, Yin Y, Shang L, et al. Tinybert: Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351 2019.
13. Sharma I, Sharma A, Gupta SK. Asynchronous and Synchronous Federated Learning-based UAVs. In: IEEE. ; 2023: 105–109.
14. Jain K, Kaushik K, Gupta SK, Mahajan S, Kadry S. Machine learning-based predictive modelling for the enhancement of wine quality. Scientific

Reports 2023; 13(1): 17042.
15. Liu S, Lin Y, Zhou Z, Nan K, Liu H, Du J. On-demand deep model compression for mobile devices: A usage-driven model selection framework.

In: Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services. ; 2018: 389–400.
16. Tmamna J, Ayed EB, Ayed MB. Deep learning for internet of things in fog computing: survey and open issues. In: 2020 5th International

conference on advanced technologies for signal and image processing (ATSIP). IEEE. ; 2020: 1–6.
17. Tmamna J, Ayed EB, Ayed MB. Neural Network Pruning Based on Improved Constrained Particle Swarm Optimization. In: Neural Information

Processing: 28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings, Part VI 28. Springer. ;
2021: 315–322.

18. Liu Y, Wu D, Zhou W, Fan K, Zhou Z. EACP: An Effective Automatic Channel Pruning for Neural Networks. Neurocomputing 2023.
19. Bablani D,Mckinstry JL, Esser SK, AppuswamyR,ModhaDS. Efficient and EffectiveMethods forMixed PrecisionNeural NetworkQuantization

for Faster, Energy-efficient Inference. arXiv preprint arXiv:2301.13330 2023.
20. Ma Y, Jin T, Zheng X, et al. Ompq: Orthogonal mixed precision quantization. In: Proceedings of the AAAI Conference on Artificial Intelligence.

; 2023: 9029–9037.
21. Yim J, Joo D, Bae J, Kim J. A gift from knowledge distillation: Fast optimization, network minimization and transfer learning. In: Proceedings

of the IEEE conference on computer vision and pattern recognition. IEEE. ; 2017: 4133–4141.
22. Zhao H, Sun X, Dong J, Chen C, Dong Z. Highlight every step: Knowledge distillation via collaborative teaching. IEEE Transactions on Cybernetics

2020; 52(4): 2070–2081.
23. Courbariaux M, Bengio Y, David JP. Binaryconnect: Training deep neural networks with binary weights during propagations. Advances in neural

information processing systems 2015; 28.
24. Hubara I, CourbariauxM, Soudry D, El-Yaniv R, Bengio Y. Binarized neural networks. Advances in neural information processing systems 2016; 29.
25. Rastegari M, Ordonez V, Redmon J, Farhadi A. Xnor-net: Imagenet classification using binary convolutional neural networks. In: Computer

Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV. Springer. ; 2016:
525–542.

26. Truong SN. A Ternary Neural Network with Compressed QuantizedWeight Matrix for Low Power Embedded Systems. Engineering, Technology
& Applied Science Research 2022; 12(2): 8311–8315.

27. Liu D, Liu X. Ternary Quantization: A Survey. arXiv preprint arXiv:2303.01505 2023.
28. Esser SK, McKinstry JL, Bablani D, Appuswamy R, Modha DS. Learned step size quantization. arXiv preprint arXiv:1902.08153 2019.
29. Liu Z, Cheng KT, Huang D, Xing EP, Shen Z. Nonuniform-to-uniform quantization: Towards accurate quantization via generalized straight-

through estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE. ; 2022: 4942–4952.
30. Zhou S, Wu Y, Ni Z, Zhou X, Wen H, Zou Y. Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv

preprint arXiv:1606.06160 2016.
31. Lin Z, Courbariaux M, Memisevic R, Bengio Y. Neural networks with few multiplications. arXiv preprint arXiv:1510.03009 2015.



20 J. Tmamna et al

32. Cai Z, He X, Sun J, Vasconcelos N. Deep learning with low precision by half-wave gaussian quantization. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. IEEE. ; 2017: 5918–5926.

33. Choi J, Wang Z, Venkataramani S, Chuang PJ, Srinivasan V, Gopalakrishnan K. Pact: Parameterized clipping activation for quantized neural
networks. arXiv 2018. arXiv preprint arXiv:1805.06085 2018.

34. Dong Z, Yao Z, Arfeen D, Gholami A, Mahoney MW, Keutzer K. Hawq-v2: Hessian aware trace-weighted quantization of neural networks.
Advances in neural information processing systems 2020; 33: 18518–18529.

35. Dong Z, Yao Z, Gholami A, Mahoney MW, Keutzer K. Hawq: Hessian aware quantization of neural networks with mixed-precision. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. IEEE. ; 2019: 293–302.

36. Wang K, Liu Z, Lin Y, Lin J, Han S. Haq: Hardware-aware automated quantization with mixed precision. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. IEEE. ; 2019: 8612–8620.

37. Yuan Y, Chen C, Hu X, Peng S. Evoq: Mixed precision quantization of dnns via sensitivity guided evolutionary search. In: 2020 International
Joint Conference on Neural Networks (IJCNN). IEEE. ; 2020: 1–8.

38. Lou Q, Liu L, Kim M, Jiang L. Autoqb: Automl for network quantization and binarization on mobile devices. arXiv preprint arXiv:1902.05690
2019; 2(8).

39. Yao Z, Dong Z, Zheng Z, et al. Hawq-v3: Dyadic neural network quantization. In: International Conference onMachine Learning. PMLR. ; 2021:
11875–11886.

40. Liu H, Elkerdawy S, Ray N, Elhoushi M. Layer importance estimation with imprinting for neural network quantization. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE. ; 2021: 2408–2417.

41. Tang C, Ouyang K,Wang Z, et al. Mixed-Precision Neural Network Quantization via Learned Layer-Wise Importance. In: European Conference
on Computer Vision. Springer. ; 2022: 259–275.

42. Nikolić M, Hacene GB, Bannon C, et al. Bitpruning: Learning bitlengths for aggressive and accurate quantization. arXiv preprint
arXiv:2002.03090 2020.

43. Yang L, Jin Q. Fracbits: Mixed precision quantization via fractional bit-widths. In: Proceedings of the AAAI Conference on Artificial Intelligence.
; 2021: 10612–10620.

44. Liu Z, Zhang X, Wang S, Ma S, Gao W. Evolutionary quantization of neural networks with mixed-precision. In: ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. ; 2021: 2785–2789.

45. Li Y, Dong X, Wang W. Additive powers-of-two quantization: An efficient non-uniform discretization for neural networks. arXiv preprint
arXiv:1909.13144 2019.

46. Kennedy J, Eberhart R. Particle swarm optimization. In: . 4 of Proceedings of ICNN’95-international conference on neural networks. IEEE. ; 1995:
1942–1948.

47. Kennedy J. Bare bones particle swarms. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No. 03EX706). IEEE. ;
2003: 80–87.

48. Deb K. An efficient constraint handling method for genetic algorithms. Computer methods in applied mechanics and engineering 2000; 186(2-4):
311–338.

49. Song XF, Zhang Y, Gong DW, Gao XZ. A fast hybrid feature selection based on correlation-guided clustering and particle swarm optimization
for high-dimensional data. IEEE Transactions on Cybernetics 2021; 52(9): 9573–9586.

50. Le Y, Yang X. Tiny imagenet visual recognition challenge. CS 231N 2015; 7(7): 3.
51. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: ICLR. ; 2015: 1-14.
52. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. IEEE. ; 2017: 4700–4708.



J. Tmamna et al 21

53. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. ; 2018: 4510–4520.

54. Kundu S, Wang S, Sun Q, Beerel PA, Pedram M. Bmpq: bit-gradient sensitivity-driven mixed-precision quantization of dnns from scratch. In:
2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE. ; 2022: 588–591.

55. Wang L, Dong X, Wang Y, Liu L, An W, Guo Y. Learnable lookup table for neural network quantization. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. IEEE. ; 2022: 12423–12433.

56. Fournarakis M, Nagel M. In-hindsight quantization range estimation for quantized training. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. IEEE. ; 2021: 3063–3070.

57. Choi D, Kim H. Hardware-Friendly Logarithmic Quantization with Mixed-Precision for MobileNetV2. In: 2022 IEEE 4th International
Conference on Artificial Intelligence Circuits and Systems (AICAS). IEEE. ; 2022: 348–351.


	Bare-Bones Particle Swarm Optimization-based Quantization for Fast and Energy Efficient Convolutional neural networks 
	Abstract
	Introduction
	Related Work on mixed precision quantization
	Non-search-based mixed-precision quantization
	Search-based mixed-precision quantization

	Preliminaries
	Neural network quantization
	Particle Swarm Optimization
	Constrained handling method

	Constrained BBPSO-based quantization method (BBPSO-Quantizer)
	Problem formulation
	Solution representation
	BBPSO-Quantizer algorithm
	Layer importance-guided population initialization (LIGPI)
	Pb and Gb updating strategy
	Updating each particle's position
	Similarity screening process
	Local search process
	Overall approach


	Experimental Settings
	Datasets
	CNN architectures for quantization
	Evaluation metrics
	Algorithm parameters


	Experiments
	Results Discussion
	Results on CIFAR-10
	Results on CIFAR-100
	Results on Tiny-Imagenet

	Comparison
	Ablation study
	Performance of similarity screening process
	Performance of initialization method and local search process in BBPSO-Quantizer

	Statistical analysis

	Conclusion
	conflict of interest
	Acknowledgements
	References


