
K. Hughes and T. D. Wooley (2022) “Discrete Restriction for (x, x3) and Related Topics,”
International Mathematics Research Notices, Vol. 2022, No. 20, pp. 15612–15631
Advance Access Publication July 2, 2021
https://doi.org/10.1093/imrn/rnab113

Discrete Restriction for (x, x3) and Related Topics

Kevin Hughes1 and Trevor D. Wooley2

1School of Mathematics, University of Bristol, Fry Building, Woodland
Road, Clifton, Bristol BS8 1UG, UK and the Heilbronn Institute for
Mathematical Research, Bristol, UK and 2Department of Mathematics,
Purdue University, 150 N. University Street, West Lafayette, IN
47907-2067, USA

Defining the truncated extension operator E for a sequence a(n) with n ∈ Z by putting

Ea(α, β) :=
∑

|n|≤N

a(n)e(αn3 + βn),

we obtain the conjectured tenth moment estimate

‖Ea‖L10(T2) �ε N
1

10 +ε‖a‖�2(Z).

We obtain related conclusions when the curve (x, x3) is replaced by (φ1(x), φ2(x)) for

suitably independent polynomials φ1(x), φ2(x) having integer coefficients.

1 Introduction

We begin by recalling the discrete restriction conjecture for the curve (x, x3). Define the

truncated extension operator E for a sequence a(n) with n ∈ Z by putting

Ea(α, β) :=
∑

|n|≤N

a(n)e(αn3 + βn)
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Discrete restriction for (x, x3) 15613

for α, β ∈ R. Here and elsewhere, we write e (t) in place of e2π it. Since e (·) is Z-periodic,

we may regard α and β as elements of T := R/Z or of any interval I in R of length 1

without any confusion. Based on the usual heuristics in the circle method, it is natural

to make the following conjecture.

Conjecture 1.1. For each p ∈ [1, ∞] there exists a constant Cp > 0 such that, for all

N ∈ N and all sequences a ∈ �2(Z), one has the discrete restriction bounds

‖Ea‖Lp(T2) ≤ Cp

(
1 + N

1
2 − 4

p
)‖a‖�2(Z). (1.1)

Bourgain initiated the study of this restriction estimate in [3], wherein he proved

the bound ‖Ea‖L6(T2) �ε Nε‖a‖�2(Z) (see [3, equation (8.37) on page 227]). To facilitate

further discussion we introduce a cruder version of the conjecture (1.1), to the effect

that for each ε > 0, there exists a constant Cp,ε having the property that, for all N ∈ N

and all sequences a ∈ �2(Z), one has

‖Ea‖Lp(T2) ≤ Cp,εNε
(
1 + N

1
2 − 4

p

)
‖a‖�2(Z). (1.2)

In colloquial terms the estimate (1.2) is the estimate (1.1) with an “ε-loss.” Bourgain’s

work establishes this weaker conjecture for 1 ≤ p ≤ 6. The problem of proving

Conjecture 1.1 lay dormant for some time until Hu and Li [10] established (1.2) for

p = 14. We remark that Hu and Li conjectured (1.1) for 2 ≤ p ≤ 8 and (1.2) for all

8 ≤ p ≤ ∞. Our conjecture here is a more optimistic version of [10, equation (1.2)]

motivated by the observation that the underlying singular series does not diverge as

it does in the quadratic case. Recently, Lai and Ding [12] proved (1.2) for p = 12 using

the recent resolution of the main conjecture in the discrete restriction analogue of the

cubic case of Vinogradov’s mean value theorem. The latter was noted first in [19] as

a consequence of the methods of [18], and was subsequently obtained by decoupling

technology in [5] and via efficient congruencing in [20].

It is important to note that we are discussing discrete restriction estimates.

Though the discrete restriction estimates (1.1) or (1.2) are referred to as a “discrete �2

decoupling inequality for Lp” in [8], one should not mistake these discrete restriction

estimates for a decoupling or efficient congruencing inequality. Decoupling estimates

and efficient congruencing estimates are stronger than discrete restriction estimates

and therefore more difficult to obtain. Indeed, the analogous, putative decoupling

estimate for the curve (x, x3) fails in the range of exponents 6 < p < 12 (see [7],
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15614 K. Hughes and T. D. Wooley

Proposition 12.22 on page 283). Despite this, we improve the range of exponents p in

which the conjectured estimate (1.2) is known to p ≥ 10 in Section 2.

Theorem 1.2. The estimate (1.2) is true for p = 10, and (1.1) is true for all p > 10.

Our method of proof is motivated by corresponding techniques applied in the

analogous number theoretic problem where a(n) is identically 1. In this situation (where

a(n) = 1 for all n ∈ Z), the sixth moment estimate satisfies

‖a‖�2(Z) � ‖Ea‖L6(T2) � ‖a‖�2(Z)

and the ninth moment estimate satisfies

‖Ea‖L9(T2) �ε N
1

18 +ε‖a‖�2(Z)

for all ε > 0; see [6, 15] and [17] respectively. In this case where a(n) = 1 for all n ∈ Z,

earlier work of Hua [11, Lemma 5.2 and Theorem 8] delivers the bounds

‖Ea‖L6(T2) � Nε‖a‖�2(Z) and ‖Ea‖L10(T2) �ε N
1

10 +ε‖a‖�2(Z).

The first of these bounds matches in strength that obtained by Bourgain, though in

the special case a(n) = 1. Here the methods applied by Hua (in work whose origins

lie at least as far back as 1947) would already have sufficed to establish the estimate of

Bourgain. The interested reader will find the necessary ideas in the discussion following

(2.6) below. The second of these bounds, meanwhile, matches in strength that obtained

in Theorem 1.2, though again only in the special case a(n) = 1.

Hua’s idea is to interpret the 10-th moment of the exponential sum Ea(α, β) in

terms of an underlying pair of Diophantine equations. A second order Weyl-differencing

argument replaces four generating functions by an expression amenable to divisor sum

estimates, and thereby one is left to count solutions of a pair of simultaneous equations

of the shape

y1y2w = x3
1 + x3

2 + x3
3 − x3

4 − x3
5 − x3

6

0 = x1 + x2 + x3 − x4 − x5 − x6.

What has obstructed the use of Hua’s ideas in previous work on Conjecture 1.1 in the

case p = 10 is the observation that, a priori, the difference variables y1 and y2 lose any
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Discrete restriction for (x, x3) 15615

information concerning the density of the set in which the variables xi are constrained

to lie. Thus, for all we are able to say, the variables y1 and y2 might well inhabit a

complete interval of integers, and in the situation wherein w = 0 we are forced into

an unacceptable loss in the ensuing estimates. We surmount this barrier in the proof

of Theorem 2.1 by avoiding the second order Weyl-differencing operation in favour of

a purely Diophantine operation. Little information is lost concerning the density of the

sets underlying the variables that substitute for the difference variables, and thereby

the situation corresponding to the difficult case w = 0 becomes a diagonal problem that

is simple to control. In Sections 3 and 4 we extend our methods to give new restriction

estimates for related extension operators. Many of these estimates are not expected to

be sharp.

In this paper we write f (n) � g(n) to mean that there exists a constant C > 0 with

the property that |f (n)| ≤ Cg(n) for all n. This is equivalent to Vinogradov’s notation �.

Also, when k ≥ 2, we write τk(n) for the k-fold divisor function defined via the relation

τk(n) =
∑

d1,...,dk∈N
d1...dk=n

1.

2 The proof of Theorem 1.2

It transpires that the full restriction estimate reported in Theorem 1.2 is a consequence

of the special case in which the sequence a(n) is the characteristic function 1A of a

subset A of the truncated integers Z∩[−N, N]. We write A for the cardinality of the set A.

Furthermore, in this context our extension operator is

E1A(α, β) :=
∑
n∈A

e
(
αn3 + βn

)

for α, β ∈ T. Our goal is the upper bound contained in the following theorem.

Theorem 2.1. There is a positive constant κ such that, for each subset A ⊂ Z ∩ [−N, N]

of cardinality A, one has

∫
T2

∣∣E1A(α, β)
∣∣10 dα dβ � N exp

(
κ

log N

log log N

)
· A5.
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15616 K. Hughes and T. D. Wooley

Proof. Fix the interval [−N, N] and subset A ⊂ Z ∩ [−N, N], and let a = 1A. The tenth

moment ‖Ea‖10
10 counts the number of solutions to the system of equations

3∑
i=1

(x3
i − y3

i ) =
5∑

i=4

(x3
i − y3

i )

3∑
i=1

(xi − yi) =
5∑

i=4

(xi − yi),

with each x, y ∈ A5. We will foliate over the possible common values

x1 − y1 + x2 − y2 + x3 − y3 = h = x4 − y4 + x5 − y5, (2.1)

as h varies over Z. Since the set A is contained in [−N, N], we find that solutions are

possible only when h ∈ [−4N, 4N]. Fourier analytically, we may then write ‖Ea‖10
10 as

∑
|h|≤4N

∫
T

∫
T

|Ea(α1, α2)|4e(−α2h) dα2

∫
T

|Ea(α1, α3)|6e(−α3h) dα3 dα1.

Taking absolute values and applying the triangle inequality we deduce that

‖Ea‖10
10 ≤ (8N + 1)

∫
T

∫
T

∫
T

|Ea(α1, α2)|4 |Ea(α1, α3)|6 dα1 dα2 dα3. (2.2)

Note here that we have thrown away potential oscillation in order to impose the

restriction that h = 0 in (2.1).

We next foliate over common values in the cubic equation. When t ∈ N and l ∈ Z,

write ct(l) for the number of solutions of the simultaneous equations

t∑
i=1

(x3
i − y3

i ) = l and
t∑

i=1

(xi − yi) = 0,

with x, y ∈ At. Then, in a manner similar to that underlying our earlier discussion

regarding the linear equation, it follows via orthogonality that

‖Ea‖10
10 ≤ (8N + 1)

∑
|l|≤4N3

c2(l)c3(l). (2.3)

Our argument now divides into two parts according to whether the summand l is zero

or non-zero.
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Discrete restriction for (x, x3) 15617

In order to treat the contribution in (2.3) from the summand with l = 0, we begin

by observing that c2(0) counts the number of solutions of the simultaneous equations

x3
1 + x3

2 = y3
1 + y3

2 and x1 + x2 = y1 + y2,

with x, y ∈ A2. The contribution arising from those solutions with x1+x2 = 0 = y1+y2 is

plainly at most A2. When x1 + x2 
= 0, meanwhile, one may divide the respective left and

right hand sides of these equations to deduce that x2
1 −x1x2 +x2

2 = y2
1 −y1y2 +y2

2, whence

x1x2 = y1y2. Thus {x1, x2} = {y1, y2}, and there are at most 2A2 solutions of this type.

We thus have c2(0) ≤ 3A2. Moreover, it is a consequence of the discussion surrounding

[3, equation (8.37)] that for a suitable positive number κ, one has

c3(0) � exp (κ log N/ log log N) · A3. (2.4)

Since the argument of the latter source is more complicated than would be available via

earlier methods (see [11, Lemma 5.2 of Chapter V]), and further fails to address the case

b = a3 of [3, equation (8.44)], we presently make a detour to justify the estimate (2.4). For

now, it suffices to combine our estimates for c2(0) and c3(0) to obtain the bound

c2(0)c3(0) � exp(κ log N/ log log N) · A5. (2.5)

We now give an alternate argument to give the claimed bound on c3(0). Observe

that c3(0) counts the number of solutions of the simultaneous equations

x3
1 + x3

2 + x3
3 = y3

1 + y3
2 + y3

3 and x1 + x2 + x3 = y1 + y2 + y3, (2.6)

with x, y ∈ A3. Since

(x1 + x2 + x3)3 − (x3
1 + x3

2 + x3
3) = 3(x1 + x2)(x2 + x3)(x3 + x1),

we see that

(x1 + x2)(x2 + x3)(x3 + x1) = (y1 + y2)(y2 + y3)(y3 + y1). (2.7)

Thus, in particular, if xi + xj = 0 for some distinct indices i and j in {1, 2, 3}, then

yi′ + yj′ = 0 for some distinct indices i′ and j′ in {1, 2, 3}, and one has also xk = yk′

for some indices k and k′ in {1, 2, 3}. In this way we see that there are O(A3) choices for
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15618 K. Hughes and T. D. Wooley

x and y satisfying (2.6) for which the left hand side of (2.7) is 0. Given any fixed one of

the O(A3) choices for x ∈ A3 in which the left hand side of (2.7) is equal to a nonzero

integer L, meanwhile, each factor on the right hand side of (2.7) is equal to a divisor of L.

It consequently follows that there are at most 8 max1≤n≤8N3 τ3(n) choices for (positive or

negative) integers d1, d2, d3 with d1d2d3 = L having the property that

y1 + y2 = d1, y2 + y3 = d2, y3 + y1 = d3.

Writing M for the fixed integer x1 + x2 + x3, we see that for a fixed choice of d , one has

y1 = M − d2, y2 = M − d3, y3 = M − d1,

so that y is also fixed. Making use of standard estimates for τ3(n), we may thus conclude

that there is a positive number κ for which

c3(0) � A3 + A3 max
1≤n≤8N3

τ3(n) � exp(κ log N/ log log N) · A3,

justifying our earlier assertion.

We next turn to consider the contribution in (2.3) of the non-zero summands l.

When l is a fixed integer with 1 ≤ |l| ≤ 4N3, we see that c2(l) is equal to the number of

solutions of the simultaneous equations

x3
1 + x3

2 − y3
1 − y3

2 = l and y2 = x1 + x2 − y1.

Substituting from the latter of these equations into the former, we obtain the equation

(x1 + x2 − y1)3 − (x3
1 + x3

2 − y3
1) = −l,

whence

(x1 + x2)(x1 − y1)(x2 − y1) = −l/3.

We therefore deduce that 3|l and, as in the previous paragraph, there are at most

8τ3(|l/3|) possible choices for integers e1, e2, e3 with e1e2e3 = −l/3 and

x1 + x2 = e1, x1 − y1 = e2, x2 − y1 = e3.
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Discrete restriction for (x, x3) 15619

For any fixed such choice of e , one sees that

e1 − e2 − e3 = 2y1, e2 − e3 − e1 = −2x2, e3 − e1 − e2 = −2x1,

so that x1, x2, y1 are fixed. Since y2 = x1 + x2 − y1, it follows that y2 is also fixed. Thus

we have

max
1≤|l|≤4N3

c2(l) � max
1≤|n|≤2N3

τ3(n) � exp (κ log N/ log log N) .

Making use of our estimate for c2(l), we find that

∑
1≤|l|≤4N3

c2(l)c3(l) � exp (κ log N/ log log N)
∑

|l|≤6N3

c3(l).

The last sum counts the number of solutions of the equation

x1 + x2 + x3 = y1 + y2 + y3,

with x, y ∈ A3, which is plainly O(A5). Thus we infer that

∑
1≤|l|≤4N3

c2(l)c3(l) � exp (κ log N/ log log N) · A5.

The conclusion of the theorem follows by substituting this estimate and (2.5) into the

relation (2.3). �

Proof of Theorem 1.2. We now deduce Theorem 1.2 from Theorem 2.1. The argument to

do so is a standard “vertical layer cake decomposition” argument in the theory of Lorentz

spaces. Although an elementary dyadic decomposition argument suffices for our

purposes, for the sake of concision it is expedient to make reference to [8, Lemma 3.1].

Thus, we recall the special case p = 2 of the latter for the reader’s convenience.

Lemma 2.2. Let T : CN → [0, ∞) be a sublinear function such that T(1A) ≤ C‖1A‖�2(Z)

for all subsets A ⊂ {1, . . . , N}. Then for all a ∈ CN , one has

T(a) ≤ 21/2C(2 + (log N)1/2)‖a‖�2(Z).
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15620 K. Hughes and T. D. Wooley

We apply this lemma by taking T(·) to be ‖E(·)‖10 with

C = N1/10 exp (κ log N/ log log N) .

Theorem 2.1 now implies that

‖Ea‖10 � N1/10 exp
(

κ
log N

log log N

)
(1 + (log N)1/2)‖a‖�2(Z).

The conclusion of Theorem 1.2 follows on noting that for all ε > 0, there exists a

constant Cε such that for all sufficiently large N, we have

exp
(

κ
log N

log log N

)(
1 + (log N)1/2

)
≤ CεNε .

Our final task in the proof of Theorem 1.2 is to prove (1.1) for p > 10. For this we

use the “ε-removal lemmas” [9, Theorem 1.4 and Lemma 3.1], which were adapted from

[2]. To be precise, one fixes d = 1 and k = 3, and in the statement of [9, Lemma 3.1], one

takes C = 0, p = 10, q > 10 and ζ = 1/16. �

3 Generalizations

We consider now the extension operator associated with two polynomials φ1 and φ2 with

integral coefficients defined by

Ea(α1, α2) :=
∑

|n|≤N

a(n)e(α1φ1(n) + α2φ2(n))

for α1, α2 ∈ R. Since e(·) is Z-periodic and the polynomials φ1, φ2 have integral

coefficients, we may regard α1 and α2 as elements of T without any confusion. By making

use of recent progress on decoupling and efficient congruencing, one may obtain the

estimates contained in the following theorem.

Theorem 3.1. Let φ1, φ2 be polynomials with integer coefficients and respective

degrees k1 and k2 with 1 ≤ k1 ≤ k2. If φ′
1 and φ′

2 are linearly independent over Q, then

we have

‖Ea‖L6(T2) �ε Nε‖a‖�2(Z) (3.1)
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Discrete restriction for (x, x3) 15621

and

‖Ea‖Lk2(k2+1)(T2) �ε N
1
2 − k1+k2

k2(k2+1)
+ε‖a‖�2(Z) (3.2)

for each ε > 0 as N → ∞.

Regarding estimate (3.1), see [4, Corollary 1.3] or the case k = 2 and s = 3 of

[20, Theorem 1.1]. Meanwhile, when φ1 and φ2 are two distinct monomials, the estimate

(3.2) is a special case of [12, Theorem 1.1]. The reader will have no difficulty in verifying

that one may adapt the arguments of [12] in a straightforward manner to handle the

situation in which φ′
1 and φ′

2 are linearly independent over Q.

A further consequence of the efficient congruencing/decoupling machinery is

the following theorem.

Theorem 3.2. Let φ1, φ2 be polynomials with integer coefficients and respective

degrees k1 and k2 with min{k1, k2} > 1. If φ′′
1 and φ′′

2 are linearly independent over Q,

then we have the estimate

‖Ea‖L12(T2) �ε N
1
12 +ε‖a‖�2(Z) (3.3)

for each ε > 0 as N → ∞.

To derive this conclusion, one considers the auxiliary extension operator

Fa(α1, α2, α3) :=
∑

|n|≤N

a(n)e(α1φ1(n) + α2φ2(n) + α3n),

for α1, α2, α3 ∈ R. It is a consequence of the triangle inequality that

‖Ea‖L12(T2) ≤ (24N + 1)
1
12 ‖Fa‖L12(T3).

Thus, the conclusion of Theorem 3.2 follows from the estimate

‖Fa‖L12(T3) �ε Nε‖a‖�2(Z).

This bound is immediate from the case k = 3 and s = 6 of [20, Theorem 1.1], on checking

that the Wronskian of first derivatives of the polynomials φ1(t), φ2(t) and t is nonzero.

We expect the following sharp bound to hold in general.
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15622 K. Hughes and T. D. Wooley

Conjecture 3.3. Let φ1, φ2 be polynomials with integer coefficients having respective

degrees k1 and k2 satisfying max{k1, k2} ≥ 3. If φ′
1 and φ′

2 are linearly independent over

Q, then for each p ∈ [1, ∞], we have

‖Ea‖Lp(T2) �
(

1 + N
1
2 − k1+k2

p

)
‖a‖�2(Z)

as N → ∞.

Note that the analogue of Conjecture 3.3 corresponding to the case (k1, k2) =
(1, 2) cannot hold in the sharp form stated here, for an additional factor at least as

large as (log N)1/6 is required when p = 6 (see the discussion around [2, equation (2.51)],

wherein Bourgain obtained nearly optimal bounds for all p ∈ [1, ∞]). We will prove the

following new bound towards this conjecture.

Theorem 3.4. Let φ1, φ2 be polynomials with integer coefficients and respective

degrees k1 and k2 with 1 ≤ k1 < k2 and k2 ≥ 3. Then one has the estimate

‖Ea‖L10(T2) �ε N
1

10 +ε‖a‖�2(Z) (3.4)

for each ε > 0 as N → ∞.

In situations in which φ1 is not linear, it follows by interpolating between the

6-th moment estimate (3.1) and the 12th moment estimate (3.3) that one has the bound

‖Ea‖L10(T2) �ε N
1

15 +ε‖a‖�2(Z)

for all ε > 0. Consequently, in the proof below we may assume that φ1 is linear. Indeed

it suffices to take φ1(x) = x.

We will need a simple variant of [16, Lemma 2] in the proof of Theorem 3.4. We

include a proof for the sake of completeness.

Lemma 3.5. Let ψ(x1, . . . , xs) be a non-zero multivariate polynomial with integer

coefficients of total degree k. If A ⊂ Z is a finite set of cardinality A, then the number

of integer solutions to the equation ψ(x) = 0 with xi ∈ A for i = 1, . . . , s is at most kAs−1.

Proof. We proceed by induction on s. The desired conclusion plainly holds when s = 1.

Suppose that the conclusion of the lemma holds for each s with 1 ≤ s < t, and let
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Discrete restriction for (x, x3) 15623

� ∈ Z[x1, . . . , xt] be a nonzero polynomial of total degree k. By rearranging variables,

if necessary, we may suppose that �(x1, . . . , xt) is a polynomial in xt with at least one

non-zero coefficient. Let the degree of � with respect to xt be r, and suppose that the

coefficient of xr
t is the polynomial (x1, . . . , xt−1). Then  is a nonzero polynomial in t−1

variables of degree at most k − r. By the inductive hypothesis, the number of solutions

of the equation (x1, . . . , xt−1) = 0 with xi ∈ A (1 ≤ i ≤ t − 1) is at most (k − r)At−2. Then

the number of solutions (x1, . . . , xt) of �(x1, . . . , xt) = 0 satisfying (x1, . . . , xt−1) = 0 and

with xi ∈ A (1 ≤ i ≤ t) is at most (k−r)At−1. Meanwhile, if (x1, . . . , xt−1) is nonzero then

xt satisfies a nontrivial polynomial of degree r. So there are at most rAt−1 solutions with

(x1, . . . , xt−1) non-zero. We therefore conclude that there are at most kAt−1 solutions

altogether, and the inductive hypothesis holds with t + 1 replacing t. This completes the

proof of the lemma. �

Proof of Theorem 3.4. By the remark above we may assume that φ1(x) = x. As such,

we write φ in place of φ2 and k in place of k2 in the proof. By Lemma 2.2 we only need

to prove (3.4) for sequences a which are the characteristic function of some subset

A ⊂ Z ∩ [−N, N]. Therefore, we want to bound the number of solutions to the system

of equations

3∑
i=1

(φ(xi) − φ(yi)) =
5∑

i=4

(φ(xi) − φ(yi)),

3∑
i=1

(xi − yi) =
5∑

i=4

(xi − yi),

with x, y ∈ A5. As in the argument employed above to deliver the relation (2.2), we find

that at the expense of a factor of 8N + 1 we only need to bound the number of solutions

to the system of equations

3∑
i=1

(φ(xi) − φ(yi)) =
5∑

i=4

(φ(xi) − φ(yi)),

3∑
i=1

(xi − yi) = 0 =
5∑

i=4

(xi − yi),

(3.5)

with x, y ∈ A5.
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15624 K. Hughes and T. D. Wooley

When t ∈ N and l ∈ Z, we now write ct(l) for the number of solutions of the

simultaneous equations

t∑
i=1

(φ(xi) − φ(yi)) = l and
t∑

i=1

(xi − yi) = 0,

with x, y ∈ At. Then, by foliating over common values in the equation (3.5) involving φ,

just as in our proof of Theorem 2.1, we find that a bound analogous to (2.3) holds in

our present situation. That is, it follows via orthogonality that there exists a positive

constant C depending on the coefficients of φ such that

‖Ea‖10
10 ≤ (8N + 1)

∑
|l|≤CNk

c2(l)c3(l). (3.6)

Our argument again divides into two parts according to whether the summand l is zero

or non-zero.

In the present circumstances, one sees that c2(0) counts the number of solutions

of the simultaneous equations

φ(x1) − φ(y1) + φ(x2) = φ(y2) and x1 − y1 + x2 = y2.

Upon substitution of the latter equation into the former, one finds that

φ(x1) − φ(y1) + φ(x2) − φ(x1 − y1 + x2) = 0.

The polynomial on the left hand side has factors x1 − y1 and y1 − x2, whence there is a

quotient polynomial ψ(x1, y1, x2) having integer coefficients with the property that

(x1 − y1)(x2 − y1)ψ(x1, y1, x2) = 0.

The solutions with x1 = y1 or x2 = y1 contribute at most 2A2 solutions to the count

c2(0). If, on the other hand, neither x1 = y1 nor y1 = x2, then ψ(x1, y1, x2) = 0.

By Lemma 3.5, the number of solutions of ψ(x1, y1, x2) = 0 with x1, y1, x2 ∈ A is O(A2).

Since y2 is fixed by a choice for x1, y1, x2, one infers that

c2(0) = O(A2). (3.7)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/20/15612/6291058 by guest on 12 January 2024



Discrete restriction for (x, x3) 15625

The estimate c3(0) � NεA3 is immediate from (3.1), and thus we conclude that

c2(0)c3(0) � NεA5. (3.8)

We turn next to the contribution in (3.6) from the nonzero summands l. We begin

by observing that c2(l) counts the number of solutions of the simultaneous equations

φ(x1) − φ(y1) + φ(x2) − φ(y2) = l and x1 − y1 + x2 = y2,

with x1, y1, x2, y2 ∈ A. As above, these equations imply that

(x1 − y1)(x2 − y1)ψ(x1, y1, x2) = l.

There are at most 8τ3(|l|) possible choices for nonzero integers e1, e2, e3 with e1e2e3 = l,

x1 − y1 = e1, x2 − y1 = e2 and ψ(x1, y1, x2) = e3. (3.9)

For any fixed such choice of e , one has ψ(y1 + e1, y1, y1 + e2) = e3. One has

− e1e2ψ(y1 + e1, y1, y1 + e2) = φ(y1 + e1 + e2) − φ(y1 + e2) − φ(y1 + e1) + φ(y1).

The right hand side here is the second order difference polynomial associated with φ,

which is nonconstant as a polynomial in y1 because deg(φ) = k ≥ 3. Thus the number of

solutions for y1 ∈ A to the equation ψ(y1 + e1, y1, y1 + e2) = e3 is O(1). Any fixed choice

of y1 determines x1 and x2 via (3.9), and then y2 = x1 −y1 +x2 is also determined. In this

way we deduce that

max
1≤|l|≤CNk

c2(l) � max
1≤n≤CNk

τ3(n) �ε Nε . (3.10)

Applying our newly obtained bound for c2(l) we find that

∑
1≤|l|≤CNk

c2(l)c3(l) �ε Nε
∑

1≤|l|≤CNk

c3(l).

The last sum is bounded above by the number of solutions of the equation

x1 + x2 + x3 = y1 + y2 + y3
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with x, y ∈ A3, which is O(A5). Thus,

∑
1≤|l|≤CNk

c2(l)c3(l) �ε NεA5,

and we infer from (3.8) and (3.6) that

‖Ea‖10
10 �ε N1+εA5.

The conclusion of the theorem now follows by invoking Lemma 2.2. �

4 Discrete restriction for univariate polynomials

For φ, a polynomial with integer coefficients of degree at least 3, we (re-)define our

extension operator as

Ea(α) :=
∑

|n|≤N

a(n)e(αφ(n)),

and we also make use of the auxiliary extension operator

Fa(α, β) :=
∑

|n|≤N

a(n)e(αφ(n) + βn).

These operators for a quadratic polynomial φ were studied by Bourgain in [1]. The main

goal of this section is the proof of the following theorem.

Theorem 4.1. Suppose that φ is a polynomial with integer coefficients of degree k ≥ 3.

For all ε > 0, there exists a constant Cε > 0 such that

‖Ea‖4
L4(T)

≤ CεNε‖a‖4
�2(Z)

(4.1)

and

‖Ea‖8
L8(T)

≤ CεN1+ε‖a‖8
�2(Z)

. (4.2)

When k = 3 and p > 8, we have the sharp bound

‖Ea‖Lp(T) �p N
1
2 − 3

p ‖a‖�2(Z). (4.3)
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When φ(n) has degree 3, the bound (4.2) is essentially sharp, up to the factor of

Nε . Furthermore, when a(n) is identically 1, it follows from [14, Theorem 2] that there

exists a positive constant C such that

‖Ea‖8
L8(T)

≤ CN‖a‖8
�2(Z)

.

Estimate (4.2) is not sharp in general. When k ≥ 27, standard arguments lead from [13,

Theorem 1.1] to the conclusion that in the special case φ(n) = nk, there exists a positive

constant δ depending on k such that

‖Ea‖8
L8(T)

�ε N1−δ+ε‖a‖8
�2(Z)

for all ε > 0. Indeed, one may take

1 − δ = 16

3
√

3k
+ max

{
2√
k

,
1√
k

+ 6

k + 3

}
.

Note that 1 − δ → 0 as k → ∞. We expect the following sharp bound to hold in general.

Conjecture 4.2. Let φ be a polynomial with integer coefficients of degree k ≥ 3. Then

for each p ∈ [1, ∞], we have

‖Ea‖Lp(T2) �
(

1 + N
1
2 − k

p

)
‖a‖�2(Z),

as N → ∞.

Proof of Theorem 4.1. We begin with a proof of the fourth moment estimate (4.1).

Applying Lemma 2.2, we reduce to proving (4.1) for sequences given by the characteristic

function of some subset of the integers. As such, fix [−N, N] and our subset A ⊂ Z ∩
[−N, N]. Let a = 1A. The fourth moment counts the number of solutions to the equation

φ(x1) − φ(y1) = φ(x2) − φ(y2),

with x, y ∈ A2. There exists a polynomial ψ(x, y) with integer coefficients such that

φ(x) − φ(y) = (x − y)ψ(x, y).
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15628 K. Hughes and T. D. Wooley

On writing x = y + e, one sees that

φ(x) − φ(y) = φ(y + e) − φ(y)

is the first order difference polynomial associated with φ. Since the degree of φ is at

least 2, one has that ψ(y + e, y) is not constant as a polynomial in y.

We distinguish between two cases. The first case is when φ(x1) − φ(y1) = 0.

In this case we have two further cases to consider: either x1 = y1 or ψ(x1, y1) = 0. By

Lemma 3.5, there are at most O(A) putative solutions of ψ(x1, y1) = 0 with x1, y1 ∈ A,

and the same is self-evidently the case when x1 = y1. It follows that there are at most

O(A) solutions to the equation φ(x1) − φ(y1) = 0. By symmetry, there are also at most

O(A) solutions to the equation φ(x2) − φ(y2) = 0. Hence these solutions contribute at

most O(A2) solutions to the fourth moment.

The second case is when φ(x1)−φ(y1) 
= 0. There are at most A2 choices for x1, y1

in the set A with this property. Fixing any one such choice of x1, y1, we may assume that

φ(x1) − φ(y1) = l where 1 ≤ |l| ≤ CNk for an appropriate constant C depending on the

coefficients of φ. There are at most 4τ2(|l|) possible choices for non-zero integers e1, e2

with e1e2 = l,

x2 − y2 = e1 and ψ(x2, y2) = e2.

For any fixed choice of e1 and e2, one has ψ(y2 + e1, y2) = e2. Since this polynomial

equation is non-constant in y2, there are at most O(1) possible solutions for y2.

Consequently, there are at most O(1) possible solutions for x2. Thus, the contribution of

the solutions of this second type to the fourth moment is

O

(
A2 max

1≤|l|≤CNk
τ2(|l|)

)
�ε NεA2.

This completes the proof of the fourth moment estimate.

We proceed now to examine the 8th moment. By applying Lemma 2.2, it suffices

to prove (4.2) for sequences given by characteristic functions of subsets of the integers.

With this observation in mind, we again fix [−N, N] and our subset A ⊂ Z ∩ [−N, N].

Also, let a = 1A. The eighth moment ‖Ea‖8
8 counts the number of solutions to the
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Discrete restriction for (x, x3) 15629

equation

2∑
i=1

(φ(xi) − φ(yi)) =
4∑

i=3

(φ(xi) − φ(yi)),

with each x, y ∈ A4. We foliate our set of solutions over the solutions to the equation

h = x1 − y2 + x2 − y2 as h ranges in [−4N, 4N]. Writing this Fourier analytically, we thus

deduce that

∫
T

|Ea(α)|8 dα =
∑

|h|≤4N

∫
T

∫
T

|Fa(α, β)|4|Ea(α)|4e(−βh) dβ dα.

Taking absolute values, we may impose the restriction that h = 0 and obtain the bound

‖Ea‖8
8 ≤ (8N + 1)

∫
T

∫
T

|Fa(α, β)|4|Ea(α)|4 dβ dα.

The mean value on the right hand side here counts the number of solutions to the system

of equations

2∑
i=1

(φ(xi) − φ(yi)) =
4∑

i=3

(φ(xi) − φ(yi))

x1 − y1 + x2 − y2 = 0,

(4.4)

with x, y ∈ A4.

Recall from Section 3 that when l ∈ Z, we write c2(l) for the number of solutions

of the simultaneous equations

φ(x1) + φ(x2) − φ(y1) − φ(y2) = l and x1 − y1 + x2 = y2,

with x, y ∈ A2. Also, when l ∈ Z, write c′
2(l) for the number of solutions of the equation

φ(x1) + φ(x2) − φ(y1) − φ(y2) = l,

with x, y ∈ A2. By foliating over common values in the equation involving φ in (4.4), we

find that a bound analogous to (2.3) holds in our present situation. That is,

‖Ea‖8
8 ≤ (8N + 1)

∑
|l|≤CNk

c2(l)c′
2(l).
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We have the trivial bound
∑

l∈Z c′
2(l) ≤ A4 so that

‖Ea‖8
8 ≤ (8N + 1)

(
c2(0)c′

2(0) + A4 max
1≤|l|≤CNk

c2(l)
)
.

Observe that, in view of the fourth moment estimate already derived, one has

c′
2(0) = ‖Ea‖4

4 �ε NεA2.

Thus, on recalling also (3.7) and (3.10), we deduce that

‖Ea‖8
8 �ε N

(
NεA2 · A2 + A4Nε

)
�ε N1+εA4.

From here, as we have already explained, the proof of the eighth moment estimate

follows by appealing to Lemma 2.2.

Finally, by applying [9, Theorem 4.1 and Lemma 3.1], the estimate (4.3) follows

from (4.2) when φ(n) = n3. The keen reader may verify that one may adapt the

arguments of [9, Section 4] to deduce (4.3) for an arbitrary cubic polynomial having

integer coefficients. To be precise, in the statement of [9, Lemma 3.1], one takes C = 0,

p = 8, q > 8 and ζ = 2−3, and in the statement of [9, Theorem 4.1], one takes

τ = 1/4. �
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