
Evolving Staff Training Schedules using an
Extensible Fitness Function and a Domain

Specific Language

Neil Urquhart,Kelly Hunter

School of Computing, Edinburgh Napier University, UK
{n.urquhart,k.hunter}@napier.ac.uk

Abstract. When using a meta-heuristic based optimiser in some indus-
trial scenarios, there may be a need to amend the objective function
as time progresses to encompass constraints that did not exist during
the development phase of the software. We propose a means by which
a Domain Specific Language (DSL) can be used to allow constraints
to be expressed in language familiar to a domain expert, allowing ad-
ditional constraints to be added to the objective function without the
need to recompile the solver. To illustrate the approach, we consider
the construction of staff training schedules within an organisation where
staff are already managed within highly constrained schedules. A set of
constraints are hard-coded into the objective function in a conventional
manner as part of a Java application. A custom built domain specific
language (named Basil) was developed by the authors which is used to
specify additional constraints affecting individual members of staff or
groups. We demonstrate the use of Basil and show how it allows the
specification of additional constraints that enable the software to meet
the requirements of the user without any technical knowledge.

1 Introduction and Motivation

Evolutionary Algorithms and related meta-heuristics have been developed to
solve a range of real-world problems. However, it is inevitable that an organi-
sation’s needs change over time: as a result, the constraints within the original
system may no longer meet their needs. While the users of a system may have
problem domain knowledge, they may not have any software engineering expe-
rience. Updating constraints within the system may pose difficulties, requiring a
software-engineering specialist to alter the system. This paper proposes a mech-
anism by which a user with knowledge of the problem domain can add additional
constraints to the objective function, in a manner that does not require specialist
software engineering skills, using a custom built domain-specific language (DSL)
designed and implemented by the authors.

We consider the specific case of an industrial partner within the public trans-
portation sector, who has limited software development expertise. The partner
has a requirement to provide staff training schedules within a heavily constrained



2 Urquhart,N. and Hunter,K.

environment. Staff must be to be allocated to training slots in a manner that
causes least disruption to the existing schedules. As with many problems that
involve the scheduling of people, many constraints exist based around the spe-
cific requirements of individuals that are not necessarily known in the original
design phase.

The contribution of this paper is to address the following research questions:

1. To what extent can constraints be expressed in a custom built DSL a manner
that is achievable by a domain expert?

2. What mechanisms could be used to evaluate constraints specified using a
DSL against candidate solutions at run time?

3. How does the evaluation time scale as more constraints are added at run-
time?

The principle contribution of this paper is the development of the DSL and
the use of pattern matching to evaluate constraints.

This paper is organised as follows, Section 2 describes related work in the
field of optimisation. The problem domain is described in Section 3 and the
evolutionary algorithm used to produce solutions is described in Section 4. The
development of a domain specific language (DSL) specifically for this application
is described in Section 5 along with the mechanism by which Basil statements are
compiled into regular expressions which are then matched against the solution
being evaluated. Finally, conclusions and future work are described in Section
6.1.

2 Related Work

Evolutionary Algorithms and other meta-heuristics have been applied to prob-
lems related to a number of industrial sectors including timetabling [11, 1], staff
scheduling, [3, 2, 10], vehicle routing and logistics [4, 6] and job shop/factory
scheduling [5]. The domain of staff scheduling, and in particular nurse schedul-
ing has received a great deal of attention, for a recent survey of this domain the
reader is directed to [7]. Whilst some industrial scheduling problems map closely
to traditional benchmark problem types (e.g., the Travelling Salesman Problem,
Vehicle Routing Problem or Flow Shop Problems) many incorporate constraints
that are specific to the organisation who own the problem.

There exists the issue of how to specify these organisation specific constraints
in a manner that is suitable for organisations who do not have the capability
to modify the underlying software. One option is the use of a domain specific
language (DSL) to specify constraints. Regenell and Kuchcinski [8] describe the
use of an embedded DSL for combinatorial optimisation. The approach taken is
based on the Scala platform, the resultant DSL making use of the Scala syntax.
Whilst this approach has much to recommend it, not least the ability to integrate
the DSL compilation with that of the main Scala application. Constraints can
also be specified in a constraint modelling language such as MiniZinc [12].



Evolving Staff Training Schedules. 3

The DSL-based approaches outlined above have the disadvantages that the
DSLs are difficult to use by domain experts who are not software engineers.
In this work, the DSL presented (Basil) is designed specifically around entities
within the problem domain in order to make it usable by problem domain experts
within an organisation that does not have software development expertise.

3 Problem Domain

3.1 Problem Definition

A major Scottish public transport provider employs over 2,000 drivers. It is
a requirement under current UK/EU legislation that professional drivers must
undertake mandatory Certificate of Professional Competence (CPC) training
[9]. Within a five-year period each driver must undertake 35 hours of training:
failure to complete the required amount of training results in the drivers’ license
expiring, losing their right to drive on a commercial basis.

An existing proprietary software package is used to schedule drivers to their
routine duties, but this system does not schedule the time required for CPC
training. The policy of the organisation is that each driver is allocated one CPC
training day per year - this ensures that they will have undertaken the required
35 hours within the five-year period. Each driver has a specific license expiry date
based on when they completed their initial training which specifies the deadline
by which their CPC training must have been completed within the fifth year.

A total of 2014 drivers employed are split into groups, representing the area
of the organisation that they work for (see Table 1), each driver must have one
CPC training day per year. Each training day can accommodate 12 trainees,
training takes place for 40 weeks per year for 5 days per week, creating 2400
training places. Assuming that each member of staff attends on the day that
they are scheduled then there is a 16 % spare capacity. In practice this capacity
is required to cover situations such as non-attendance due to illness or where the
staff member cannot be released for training due operational requirements.

Group Size 50 24 750 400 450 140 140 60

Max. Trainees
per Day

1 1 5 3 3 1 1 1

Table 1. The employee group sizes with the problem being considered. The maximum
number of employees which may be allocated to training from each group on the same
day is shown.

There are a number of constraints that govern the CPC training schedule:

1. Any driver whose license expires in the current year must have their training
day, for that year, prior to their license expiring.

2. Each driver may only attend one CPC training day each year.



4 Urquhart,N. and Hunter,K.

3. Each training day can only accommodate 12 trainees.

4. The number of trainees on each day from a specific group must not exceed
the limit set for that group (see Table 1).

5. In their normal duties, each week drivers are allocated to duties that are
classified as either ‘early’ or ‘late’, if possible, CPC training days should be
scheduled for drivers when they are already allocated to early duties, this
makes it easier to release them for the training.

3.2 Problem Instances

The problem instances used in this paper are generated randomly, based on
statistics supplied by the partner. This avoids having to share commercially
sensitive data during the development stage.

Parameter Value

Class Size 12
Early Shift Probability 0.5
Probability license expires 0.2
Training Weeks 40
Training Days Week 5

Table 2. The parameters used when generating the test instances.

4 Solving Using an Evolutionary Algorithm

4.1 Algorithm Description

The algorithm used within this paper is named CPC-EA and is described in
Algorithm 1, the parameters used are given in Table 3. A steady state population
is employed: within the generational loop (Lines 4-23) one new child solution is
created by either recombination of two parents (Lines 6-8) or by cloning a single
parent (Line 10). The child then replaces the loser of a tournament (Line 15)
providing the child fitness is an improvement on the loser (Lines 16-18).

Most academic use of EAs described in studies execute the EA for a fixed
number of evaluations (referred to as an evaluation budget). In this application
our aim is to produce a usable schedule for the business, so there is no require-
ment to limit the evaluations to a specific time frame, but instead the algorithm
can execute until it cannot find any more improvements to the solution. A pa-
rameter MAX EVALS is used to specify the maximum number of evaluations
that will be carried out in order to prevent excessively long execution times.



Evolving Staff Training Schedules. 5

Algorithm 1 CPC-EA

1: pop = initialise(POP SIZE)
2: bestSol = findBest(pop)
3: evalLeft = TIMEOUT
4: while evalsLeft > 0 do
5: if random() < XOV ERRATE then
6: p1 = tournament(pop, TOURSIZE)
7: p2 = tournament(pop, TOURSIZE)
8: child = recombine(p1, p2)
9: else if random() >= XOV ERRATE then
10: child = tournament(pop, TOURSIZE)

11: mutate(child)
12: evalute(child)
13: evals++
14: evalsLeft−−
15: rip = tournamentLoose(pop, TOURSIZE)
16: if child.fitness < rip.fitness then
17: pop.remove(rip)
18: pop.add(child)
19: if child.fitness < bestSol.fitness then
20: bestSol = child
21: evalLefts = TIMEOUT

22: if evals > MAX EV ALS then
23: return

Parameter Value

POP SIZE 100
TIME OUT 25,000

XOVER RATE 0.5
TOUR SIZE 2
MAX EVALS 250,000

Table 3. Parameters used within CPC-EA in this paper.



6 Urquhart,N. and Hunter,K.

Representation Each solution comprises a list of training slots, the total
number of slots being calculated as Class Size × Training Days Week ×
Training Weeks (see Table 2), for the instances under consideration this equates
to 2400 training slots. Each slot may be empty or have a driver allocated to it.
All the drivers in the problem must be allocated to a slot for a valid solution to
exist (in our definition a valid solution is one in which all drivers are allocated
a training day regardless of any other constraints). Table 4 gives an example of
the representation used.

Driver
Training

Slot
00001 2.1.1
00002 40.4.4 Unused Slots
00003 34.3.5 17.1.1
00004 21.2.1 40.4.12
00005 16.1.12 8.5.11
00006 14.5.5 16.2.8
00007 21.2.3 21.5.4
00008 22.3.4 24.5.12
00009 35.2.2 33.1.11
00010 35.4.7 35.3.1
00011 2.1.2 26.2.12
00012 9.3.12

... ...

Table 4. A truncated example of a solution, one entry exists for each driver which
has a training slot associated with it (labelled as <week>.<day>.<no>). As there are
more slots than drivers, a list of unused slots is also maintained.

Initialisation When initialising the population, each solution has a random
unused training slot allocated to each driver. Algorithm 2 illustrates the means
by which each individual is initialised. TheMAX TRIES variable was set to 150
in order to ensure that a reasonable proportion of training slots were potentially
tried for each driver. For drivers whose license is due to expire (Line 6), the
algorithm is biased towards finding a slot that allows training before their expiry
date (Line 7). For the remaining drivers (Line 11) the selection is biased towards
finding a training slot that coincides with an early shift pattern.

Operators When a new child solution is created, initially no training slots
are allocated. Each driver d is then considered in turn, a parent is selected at
random, and an attempt is made to allocate the slot associated with d in that
parent. If the slot cannot be used (as it has already been allocated within the
child) then the slot associated with d on the other parent is tried. If a slot from
neither parent can be used, the d is allocated a slot chosen at random from the
list of unused slots.

Two mutation operators are used:

– Select two drivers d1 and d2 at random from within the chromosome, swap
the training slots allocated to d1 and d2.

– Select a driver d at random, move the training slot allocated to d to unused
list. Select a slot from the unused list at random and allocate that slot to d.



Evolving Staff Training Schedules. 7

Algorithm 2 Initialise Individual

1: d = 0
2: while d < drivers.length do
3: tries = 0
4: while tries < MAX TRIES do
5: slot = getRandFreeSlot()
6: if driver.expiresCurrentY ear then
7: if slot.week < driver.expiry() then
8: driver.trainingSlot = s
9: freeSlots.remove(s)
10: tries = MAX TRIES
11: else
12: if driver.getShift(slot.week) == early) then
13: driver.trainingSlot = s
14: freeSlots.remove(s)
15: tries = MAX TRIES

Objective Function A penalty-based fitness function is used. The penalty
weights used can be found in Table 5 (these values were determined by empir-
ical investigation). The fitness function may be divided into two sub functions:
fitness-base and fitness-dsl (see Section 5).

Fitness-base is hard-coded at design time and incorporates those constraints
identified during the analysis and development stage undertaken with the part-
ner. The base fitness function examines the solution for violations of constraints
1-3 (see Table 5). Fitness-dsl is used to allow the end-user to specify additional
constraints using a custom DSL (see Section 5).

Constraint Penalty

1
Final training day after
license has expired

15

2
Unbalanced training group
(see Table 1)

5

3
Training scheduled during
late shift.

5

4
Custom Constraint
(low priority)

1

5
Custom Constraint
(medium priority)

5

6
Custom Constraint
(high priority)

10

Table 5. The penalties used within the fitness function. Note that constraints 1-3 are
evaluated by the base fitness function and 4-6 are evaluated by the extended fitness
function using. Each Basil statement is compiled into a custom constraint.



8 Urquhart,N. and Hunter,K.

4.2 Initial Results

Table 6 shows the results obtained with CPC-EA on the five test instances.
In each case the CPC-EA was run 10 times and the best result shown (best
being defined as lowest fitness). Note that in these instances no extended fitness
function was specified.

A small number of training slots violated the late shift constraint (Table 5
Item 3). Examination of the solutions suggested that in most cases this occurred
as the driver affected had a license that expired early in the year and so the
training had to take place within the first few weeks, even if that meant violating
the late shift constraint. Figure 2 shows the total number of late shift violations
by week. Note that the violations all occur before week 12 and that 60% of the
violations occur in the first two weeks. It should also be noted that every one
of the drivers whose training week clashed with a late shift had a license due to
expire in the current year.

As we are carrying out EA runs that do not have a fixed number of evalua-
tions, we should examine the relationship between performance (fitness) and the
number of evaluations used. Figure 1 plots the fitness and total evaluations for
all 40 initial runs of CPC-EA. The results of the Pearson coefficient suggest that
there is a significant small relationship, examination of the plot shows that there
are a number of runs where a smaller number of evaluations has been accompa-
nied by a low fitness, thus justifying the practice of executing the algorithm 10
times and selecting the best result achieved.

Data Set Fitness
Constraint Violations

Expired
License

Imbalanced
Groups

Late
Shifts

801 60 (83.5) 0 0 6 (8.1)
480 50(71.5) 0 0 10(14.3)
665 40 (58.5) 0 0 8 (11.7)
135 30 (40.5) 0 0 6 (8.1)

Table 6. The initial results obtained when using fitness-base only on the test instances.
Results shown are based on the best of 10 runs - the average being shown in parenthesis.

5 Extending the Fitness Function

5.1 Introduction

When using an Evolutionary Algorithm within an industrial environment, a
hard-coded fitness function can present a major disadvantage. As business and
operational needs change, the constraints on the problem under consideration
may change, requiring the fitness function to be modified. Modifying the fitness
function is difficult and potentially expensive, to address this, as discussed in
Section 4.1 we divide the fitness function into two sub functions:



Evolving Staff Training Schedules. 9

Fig. 1. A line fit plot for the fitness (x axis) versus evaluations y axis. The Pearson
correlation coefficient returns a result of r = −0.6058, p = 0.00003447, which suggests
a significant very small relationship between x and y.

Fig. 2. The total number of late shift constraint violations found within the 400 solu-
tions summarised in Table 6. In every case the driver with the constraint violation also
had a license due to expire in the current year.



10 Urquhart,N. and Hunter,K.

– fitness-base : This function evaluates a set of constraints that are hard-coded
in Java, it is not intended to be modified by the end-user.

– fitness-dsl : This function evaluates a set of constraints specified using the
DSL by the end-user. The constraints are compiled and evaluated at run-
time.

The fitness value assigned to a candidate solution is the sum of the penalty
values assigned by fitness-base and fitness-dsl. As the end users do not have
software engineering experience it is not desirable to use an existing scripting
language, we investigate the development of a domain specific language (DSL)
named Basil that allows constraints to be specified. The DSL is based around
entities within the problem domain that will be familiar to the end user, making
it easier for them to use, it is only intended for the specification of constraints for
this problem domain. Each constraint within Basil specifies whether a particular
characteristic should not appear in the solution, in this manner the constraints
specified using Basil are binary.

5.2 The Basil Language Syntax, Compilation and Evaluation

The Basil language is a DSL used to specify constraints which the user wishes
to apply to the solution, as it is only used to specify constraints based around
entities in the problem domain, it is not Turing complete (it has no branch or
jump constructs).

A Basil script comprises a list of constraints and the priorities associated
with these constraints. A constraint specified in Basil takes the basic form:

<entity> <condition> <time> <priority>

Each constraint specifies that a particular entity (driver or group of drivers)
should be placed (or not placed) before, after or in a specific time (training
week). Optionally, a priority may be assigned to the constraint, each priority
level has a penalty value assigned to it (see Table 5 Items 4-6).

– entity The entities upon which constraints may be imposed are Drivers or
Groups. These are denoted by use of the keywords driver or group, followed
by the appropriate driver or group identifier.

– condition Each condition begins with the phrase must be (which can be
negated with the phrase must not be followed by one of the keywords
before, after or in

– time Times are specified using the keyword week followed by the week num-
ber.

– priority The optional priority may be set using the priority keyword fol-
lowed by high, medium or low. Where a priority is not specified, the con-
straint is allocated a medium priority.

An example Basil script may be seen Algorithm 3.



Evolving Staff Training Schedules. 11

Algorithm 3 An example of a Basil script. Line 1 is a comment, lines 2-5
describe constraints to be applied to the problem being solved.

1: #A set of test constraints
2: driver 123 must not be before week 23 with high priority
3: driver 226 must not be after week 23 with low priority
4: driver 1500 must not be in week 12 with medium priority
5: group depot1 must not be in week 35

5.3 Basil Execution

Basil is based around the concept of regular expression-based pattern matching,
each Basil constraint being compiled into a regular expression. In order to eval-
uate a solution against a regular expression each solution is converted into what
is termed an intermediate format (Figure 3) describing the allocation of training
slots to drivers. Table 7 shows examples of Basil statements (constraints) and
their resulting Regex expressions.

...

:ID: 1987:GR:DP1:WK:31:DY:2:DT:2:XW:33:FY:0

:ID: 1988:GR:DP1:WK:28:DY:2:DT:2:XW:06:FY:0

:ID: 1989:GR:DP1:WK:21:DY:1:DT:2:XW:37:FY:0

...

Fig. 3. An extract from the intermediate format. This format presents the solution in
a manner that supports pattern matching via regular expressions. Each line describes
the assignment of one driver to a training slot.

Basil Statement Regex Appears Flag Priority Weight

driver 123 must not be before
week 23 with low priority

:ID:123:GR:...:WK:23:DY:.:DT:.:XW:..:FY:. false low

group DP1 must not be
in week 35

:ID:...:GR:DP1:WK:35:DY:..:DT:.:XW:..:FY:. false
medium
(default)

driver 456 must be before
week 23 with high priority

:ID:456:GR:...:WK:23:DY:..:DT:.:XW:..:FY:. true high

driver 567 must be after
week 33 with high priority

:ID:567:GR:...:WK:33:DY:..:DT:.:XW:..:FY:. true high

Table 7. Statements written in Basil are parsed and compiled into regular expressions
which are then evaluated against a solution presented in the intermediate format (Fig-
ure 3. The appears flag specifies if the regex expression must appear in the solution
or not. The priority weight field specifies the penalty weight to be associated with a
violation.

5.4 Results with Basil

Basil scripts containing 10, 25, 50 and 100 constraints were generated at ran-
dom. The generation of constraints at random simulates the arbitrary constraints



12 Urquhart,N. and Hunter,K.

which might stem from individual staff requests and organisational constraints.
Some of these random constraints will conflict with each other or with base con-
straints (Table 5 Items 1-3). Our interest is not in avoiding this conflict but in
managing it.

The results obtained may be seen in Table 8. The reader should note that
the best solutions never break the license expiry constraint: this is very desirable
given the importance to the business of ensuring that drivers’ licenses are not
allowed to expire. If we explore the relationship between the fitness of the best
solution found (over 10 runs) and the number of custom constraints, we find that
there exists a significant large positive relationship (calculated using a Pearson
Correlation Coefficient where r=0.5651 and p = 0009). This is as we might
expect, adding more constraints results in a reduction in solution quality.

As we are examining an industrial application, we should examine the effects
of adding the additional constraints and the overhead of evaluating them. We
are not concerned with the overall run-time required, the user can adjust the
TIME OUT property to find an appropriate balance between the time they are
willing to wait and the quality of the resulting solution. In this section we are
concerned with the general effect of adding numbers of additional constraints
into the fitness function via Basil and the increased time taken to evaluate these
constraints. Figure 4 shows the average time ev (milliseconds) to evaluate 2,000
individuals we are concerned with the trend in ev, as the number constraints is
increased. Figure 4 suggests that the increase in evaluation time is super linear.
The initial system was implemented in Java and executed on a MacBook based
round the Apple M1 CPU.

6 Discussion and Future Work

6.1 Conclusions

The principle contribution presented in this paper is the development of the Basil
DSL and the mechanism by which constraints are evaluated at run time. The
basic problem is not novel, nor is the algorithm used to solve it. The contribution
of this paper lies the development and the use of the Basil DSL and the use of
the intermediate representation and pattern matching (see section 5) to allow
evaluation of constraints at run-time.

In addressing the first research question stated in the introduction, the re-
sults presented in Table 8 suggest that can be implemented within a DSL and
evaluated at run time. Assessing whether the DSL is usable by a domain expert is
more difficult proposition, informal discussions suggest that domain experts can
utilise the BASIL language, future work will include a more formal evaluation
of BASIL with regards to usability through a user study.

The mechanism described in Section 5 highlights the use of the intermediate
representation and pattern matching as the means of addressing the second re-
search question. The use of regular expressions allows and existing well-proven
mechanism to be used, one which is implemented in most commonly used pro-
gramming environments. This avoids the use of more complex solutions such as



Evolving Staff Training Schedules. 13

DataSet
Custom

Constraints
Fitness Constraints Custom Constraints

Shift Violation
(late shift)

Expired
License

Unbalanced
Groups

Low Medium High

135

0
Best 55 8 0 0
Avg 88.5 14.1 0 0

5
Best 2934 13 0 109 4 0 234
Avg 2663.4 15.9 0.1 109.4 4.3 0 230.7

10
Best 943 11 0 0 878 0 0
Avg 962.3 10.9 0 0 880.8 0 0

25
Best 449 9 0 0 3 70 0
Avg 485.2 14.5 0 1 3.4 77.7 0

50
Best 3815 6 0 113 566 60 218
Avg 3844.7 10.7 0 126.2 575.7 61.9 225.9

100
Best 7311 19 0 145 445 775 204
Avg 7353.4 23.1 0.2 138.3 448.4 778.2 210.9

801

0
Best 105 17 0 0
Avg 127.5 20.7 0 0

5
Best 125 16 0 0 35 0 0
Avg 145.5 16.4 0 0 36.5 0 0

10
Best 976 16 0 0 610 50 1
Avg 973.5 18.6 0 0 611.2 53.2 1

25
Best 880 17 0 17 25 16 50
Avg 913.7 21.9 1.3 21.1 26.2 17.8 53.8

50
Best 5896 20 0 177 5 144 412
Avg 5914.7 22.8 0.4 179.4 6.2 145 414

100
Best 1918 19 0 22 448 28 105
Avg 1956.9 21.4 0.1 27.7 451.4 29.5 108.7

665

0
Best 65 10 0 0
Avg 84.5 13.6 0 0

5
Best 80 13 0 0 0 0 3
Avg 100.6 14.3 0 0 0.1 3.1 0

10
Best 131 12 0 0 1 12 0
Avg 156.3 15.7 0 0 1.8 12.1 0

25
Best 954 11 0 61 22 2 54
Avg 977 16 0 61.4 23.5 2 54.1

50
Best 239 11 0 0 39 19 2
Avg 261.6 13.4 0.1 0 44.6 20.1 2.8

100
Best 8234 13 0 0 506 23 752
Avg 8250.9 15.8 0 0 507.4 23.9 753.2

480

0
Best 75 11 0 0
Avg 98.5 15.3 0 0

5
Best 644 10 0 3 19 107 1
Avg 670.6 10 0 1.7 20.1 108.3 1

10
Best 535 11 0 0 455 1 1
Avg 564.8 14.7 0 0 0 1.1 1.2

25
Best 565 15 0 8 35 1 33
Avg 581.1 18.9 0 10.5 38.1 1 37.1

50
Best 1332 15 0 0 966 7 21
Avg 1355.3 19.8 0.5 0 966.8 7.6 21.5

100
Best 3807 15 0 38 10 392 147
Avg 3838.2 18.9 0 44.7 10.7 392.4 152.7

Table 8. Results obtained using up to 100 randomly specified Basil constraints.



14 Urquhart,N. and Hunter,K.

Fig. 4. Milliseconds per evaluation on the results obtained in Table 8 the box plots
show evaluation times for 0, 10, 25, 50 and 100 custom constraints respectively. Note
the lack of overlap between the box plots, also note that the trend in the evaluation
time versus quantities of custom constraint is super-linear.

full compilation of the custom constraints into the main code base, a procedure
which also has potential security and integrity issues.

If we consider the last question, figure 4 shows the increase in evaluation
time as the number of custom constraints increases. We note that further work
may be required on the execution mechanism for Basil as scripts of more than
100 constraints are not viable in terms of execution. This could be partially
negated by executing the software on more powerful hardware and examining
the implementation of the regex pattern matcher.

6.2 Future Work

This paper has laid a solid foundation for future work on the problem of incor-
porating, custom constraints into a solver in a manner that is appropriate for
non-technical users. As well as more technical work in he implementation, fu-
ture work will also include the integration of Natural Language Processing into
Basil to allow constraints to be expressed in natural language. In a problem such
as this where there are many stakeholders (e.g., over 2,000 drivers) the ability
for them to articulate their constraints directly to the system would be a very
powerful feature.

Acknowledgements The authors are indebted to management of the industrial
partner for their time in explaining the problem and the feedback given on the
work undertaken.



Evolving Staff Training Schedules. 15

References

1. A tabu search algorithm with controlled randomization for constructing feasible
university course timetables. Computers and Operations Research 123, 105007
(2020). https://doi.org/https://doi.org/10.1016/j.cor.2020.105007

2. Abdelghany, M., Yahia, Z., Eltawil, A.B.: A new two-stage variable neighborhood
search algorithm for the nurse rostering problem. RAIRO - Operations Research
55(2), 673–687 (2021). https://doi.org/10.1051/ro/2021027

3. Burke, E.K., Curtois, T., Qu, R., Vanden Berghe, G.: A time prede-
fined variable depth search for nurse rostering. INFORMS J. on Com-
puting 25(3), 411–419 (jul 2013). https://doi.org/10.1287/ijoc.1120.0510,
https://doi.org/10.1287/ijoc.1120.0510

4. Kent, E., Atkin, J.A.D., Qu, R.: Vehicle routing in a forestry commissioning op-
eration using ant colony optimisation. In: Dediu, A.H., Lozano, M., Mart́ın-Vide,
C. (eds.) Theory and Practice of Natural Computing. pp. 95–106. Springer Inter-
national Publishing, Cham (2014)

5. Kittel, F., Enenkel, J., Guckert, M., Holznigenkemper, J., Urquhart, N.: Op-
timisation algorithms for parallel machine scheduling problems with setup
times. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion. p. 131–132. GECCO ’21, Association for Computing Ma-
chinery, New York, NY, USA (2021). https://doi.org/10.1145/3449726.3459487,
https://doi.org/10.1145/3449726.3459487

6. Kondratenko, Y., Kondratenko, G., Sidenko, I., Taranov, M.: Fuzzy and evolu-
tionary algorithms for transport logistics under uncertainty. In: Kahraman, C.,
Cevik Onar, S., Oztaysi, B., Sari, I.U., Cebi, S., Tolga, A.C. (eds.) Intelligent and
Fuzzy Techniques: Smart and Innovative Solutions. pp. 1456–1463. Springer Inter-
national Publishing, Cham (2021)

7. Ngoo, C.M., Goh, S.L., Sze, S.N., Sabar, N.R., Abdullah, S., Kendall,
G.: A survey of the nurse rostering solution methodologies: The state-
of-the-art and emerging trends. IEEE Access 10, 56504–56524 (2022).
https://doi.org/10.1109/access.2022.3177280

8. Regnell, B., Kuchcinski, K.: A scala embedded dsl for combinatorial optimization in
software requirements engineering. First Workshop on Domain Specific Languages
in Combinatorial Optimization p. 19–34 (Sep 2013)

9. Service, G.D.: Driver cpc training for qualified drivers (Mar 2021),
https://www.gov.uk/driver-cpc-training

10. Si Ying, P., Mohd Yusoh, Z.I.: Staff scheduling for a courier distribution centre us-
ing evolutionary algorithm. Indonesian Journal of Electrical Engineering and Com-
puter Science 27(2), 1043 (2022). https://doi.org/10.11591/ijeecs.v27.i2.pp1043-
1050

11. Siddiqui, A.W., Arshad Raza, S.: A general ontological timetabling-model driven
metaheuristics approach based on elite solutions. Expert Systems with Applications
170, 114268 (2021). https://doi.org/https://doi.org/10.1016/j.eswa.2020.114268,
https://www.sciencedirect.com/science/article/pii/S0957417420309799

12. University, M.: Minizinc constraint modelling language (2020),
https://www.minizinc.org/


