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Abstract

Background: Skin diseases are reported to contribute 1.79% of the global

burden of disease. The accurate diagnosis of specific skin diseases is known to

be a challenging task due, in part, to variations in skin tone, texture, body

hair, etc. Classification of skin lesions using machine learning is a demanding

task, due to the varying shapes, sizes, colors, and vague boundaries of some

lesions. The use of deep learning for the classification of skin lesion images has

been shown to help diagnose the disease at its early stages. Recent studies have

demonstrated that these models perform well in skin detection tasks, with high

accuracy and efficiency.

Objective: Our paper proposes an end-to-end framework for skin lesion

classification, and our contributions are two-fold. Firstly, two fundamentally

different algorithms are proposed for segmenting and extracting features from

images during image preprocessing. Secondly, we present a deep convolutional

neural network model, S-MobileNet that aims to classify 7 different types of
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skin lesions.

Methods: We used the HAM10000 dataset, which consists of 10000 der-

matoscopic images from different populations and is publicly available through

the International Skin Imaging Collaboration (ISIC) Archive. The image data

was preprocessed to make it suitable for modeling. Exploratory data analysis

(EDA) was performed to understand various attributes and their relationships

within the dataset. A modified version of a Gaussian filtering algorithm and

SFTA was applied for image segmentation and feature extraction. The processed

dataset was then fed into the S-MobileNet model. This model was designed to

be lightweight and was analysed in three dimensions: using the Relu Activation

function, the Mish activation function, and applying compression at intermedi-

ary layers. In addition, an alternative approach for compressing layers in the

S-MobileNet architecture was applied to ensure a lightweight model that does

not compromise on performance.

Results: The model was trained using several experiments and assessed

using various performance measures, including, loss, accuracy, precision, and the

F1-score. Our results demonstrate an improvement in model performance when

applying a preprocessing technique. The Mish activation function was shown

to outperform Relu. Further, the classification accuracy of the compressed S-

MobileNet was shown to outperform S-MobileNet.

Conclusions: To conclude, our findings have shown that our proposed deep

learning-based S-MobileNet model is the optimal approach for classifying skin

lesion images in the HAM10000 dataset. In the future, our approach could be

adapted and applied to other datasets, and validated to develop a skin lesion

framework that can be utilised in real-time.

Keywords: Skin lesion, Image Segmentation, Classification, Deep learning,

Convolution Neural Network, MobileNet
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1. Introduction

The skin is the body’s largest organ and consists of three layers: the epi-

dermis (outermost layer), dermis, and hypodermis (innermost layer). Some

common skin diseases include acne, eczema, psoriasis, lesions, and skin can-

cer (Diepgen & Mahler, 2002). Skin lesions are unusual patches or bumps on

the skin and can be categorized into 3 classes: those formed by fluids, those

which are solid-like masses in the skin, and those which are flat, like rashes.

Manual detection and classification of skin lesions is challenging because of the

varying shapes, sizes, colors, and vague boundaries of lesions. The earlier iden-

tification of skin diseases indirectly reduces the healthcare costs and applying

automated deep CNN techniques may reduce the misdiagnosis of skin diseases

and increases the prediction accuracy. While there are a number of studies dis-

cussed in the literature section of this paper on skin lesion image segmentation

using Deep Learning (DL) algorithms, Artificial Intelligence (AI) approach, and

transfer learning, inorder to detect and classify skin lesions in a timely man-

ner (Sulthana et al., 2020),(Premaladha & Ravichandran, 2016), the proposed

work develops newer methods to improve the segmentation’s and classification

accuracy.

This paper aims to build an end-to-end deep convolutional neural network

(D-CNN) framework to classify skin lesion images. The proposed S-MobileNet

D-CNN model is a modified version of the MobileNet architecture (Srinivasu

et al., 2021). The clinical image dataset used in this work is HAM10000 (Tschandl

et al., 2018). The skin lesion images in the dataset are distributed among 7

classes: Melanocytic nevi, Melanoma, Benign keratosis-like lesions, Basal cell

carcinoma, Actinic keratoses, Vascular lesions, and Dermatofibroma. The skin

lesion images were pre-processed before being fed into the neural network (NN)

model. Image preprocessing techniques viz. image segmentation and feature

extraction were carried out using the proposed algorithms to identify the latent

clean image from the hidden layers. Exploratory data analysis (EDA) and hy-

pothesis formulation was carried out to obtain a better understanding of the
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data. An additional analysis of the relationship between various attributes was

conducted to improve prediction. The dataset is split into train and test sets

for training and validation in the ratio of 80:20. The S-MobileNet model is

built, trained, and evaluated using various performance measures like accuracy,

precision, and F1 score. The main contributions of the paper include

1. Two new algorithms are proposed for image segmentation and feature

extraction respectively. The former segments images by analysing the pixels by

constructing a threshold and is more effective in removing noise from the image.

The latter is a modified version of the Segmentation-based Fractal (SFTA) that

determines the texture pattern from the image.

2. A D-CNN S-MobileNet is built to extract low-level features of the image

and to automatically classify skin lesion images into 7 classes of disease.

3. The proposed S-MobileNet model is fine-tuned and analysed using the

Relu and Mish Activation functions. Hyperparameters are fine-tuned to improve

the model’s performance.

4. A lightweight S-MobileNet model is built by altering the architecture of

the model and by compressing the intermediary layers to enhance the classifi-

cation performance.

The paper begins with a general introduction about the types of skin cancer,

an explanation of the problem statement, and the main contributions. In section

2, a literature survey is presented with a detailed analysis of existing machine

learning approaches and image preprocessing techniques. Section 3 details the

algorithm used for image segmentation and feature extraction, methodology,

and architecture of the proposed S-MobileNet. Section 4 describes the imple-

mentation setup, the experiments, and the corresponding results. Finally, the

paper is concluded in section 5.

2. Background

A number of custom-made models are proposed by researchers in recent years

in relation to skin lesion classification and prediction. Some of them related to

4
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the proposed problem statement are briefed in Table 1. The Table aggregates

the algorithms and performance metrics used in the latest years to classify skin

lesion images.

2.1. Machine Learning approaches

Machine learning algorithms are used for image classification across a num-

ber of applications (Sulthana et al., 2020). A specific focus of this section is on

image-based methods of classifying skin diseases. In (Tushabe et al., 2011), as

an initial preprocessing step, the image data is rescaled, resized, and then classi-

fied using Naive Bayes, k-Nearest Neighbour (KNN), Support Vector Machines

(SVM), Neural Network(NN). In spite of the high classification accuracy of the

model, prediction accuracy is a major concern. Self diagnosis of skin diseases is

introduced in (Ajith et al., 2017) which uses image transformation techniques

like Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT),

and Singular Value Decomposition (SVD). A comparison of all the image anal-

ysis techniques is made and an ensemble transformation technique is proposed

by combining all three. This approach is found to be faster in diagnosing the

skin disease.

A semi-supervised Computer-Aided System (CAD) (George et al., 2018)

for Psoriasis image classification uses both unsupervised and supervised image

classification techniques. It builds a dictionary for sparse image classification

using aggregation methods deployed over local features in an image. Multi-

class machine learning classification techniques like Random Forest (RF), SVM,

and AlexNet are applied for severity score calculation. A detailed analysis of

pre-trained networks is applied in (Patnaik et al., 2018) for recognizing 20 skin

abnormalities. The performance of the different models is compared by gener-

ating the confusion matrix and accuracy. However, the highest accuracy score

is generated by an ensemble model. Inspired by this work, the author in (Mittal

et al., 2017) used the median filtration technique to remove the noise from the

image. Following this sobel edge detection is applied to detect the edges of the

images. The result shows an increase in entropy value. Yet, ways to extract the
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discriminative features from the image still remain fuzzy.

A mass of varying architectures of Convolution Neural Network (CNN) (Al-

Masni et al., 2018; Roy et al., 2019; Bhadula et al., 2019; ALEnezi, 2019; Alba-

har, 2019) is applied in many research articles for skin image segmentation and

classification. The segmentation techniques, in general, help to minimize the dis-

tortions from the images and improves the accuracy of classification. Although

the impact of segmentation in the classification of images has been explored

partially in the literature work cited above, there is still a lot of room for fur-

ther research. D-CNN networks are also applied for building learning models

in (Hekler et al., 2019; Kadampur & Al Riyaee, 2020; Shanthi et al., 2020) to

classify skin lesion images. Gradient boosting is applied to classify around 300

heterogeneous skin lesions into 5 categories in (Hekler et al., 2019) and the re-

sults of the machine learning algorithm are intervened by human interest and

are cross analysed to produce an accuracy of 82.95%. Five custom-designed

deep learning CNN models are proposed in (Kadampur & Al Riyaee, 2020) by

varying the convolution blocks, pooling blocks, and dropout blocks. In addition,

the model is tuned to bring the optimal results by modifying the activation

functions, and tuning the hyperparameters and so there is limited evidence for

considering this model as the de-facto standard.

Melanoma-affected skin lesion images are classified in multi-stage by analyz-

ing their pixels at the fine level using enhanced encoder-decoder feature map

(Shanthi et al., 2020). This approach compares and classifies images in real-

time using three segmentation techniques with a minimal number of training

parameters and resources. A real-time algorithm using Generative Adversarial

Network (GAN) to detect melanin and sebum from skin images is proposed in

(Hu et al., 2022). In the first step, grayscale images are converted into black and

white and enhanced before being passed on to the UNet architecture. Failing to

clearly identify melanin and sebum in the same image is one drawback of this

approach.

The Lyme skin infection is identified using the skin images taken from the

EM image dataset (Lin et al., 2022) and applied to the HAM10000 dataset using

6



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

the transfer learning approach in (Hossain et al., 2022b). This study applies

twenty-three well-known CNN architectures and confirms a lightweight CNN

model to be very effective and useful in classifying the images. Additionally,

the extended study in (Hossain et al., 2022a) by the same author proposes a

customised ResNet for classifying the skin images. In a way similar to this, the

proposed method creates a lightweight, customised S-MobileNet to classify the

skin lesion images in HAM10000.

Another article, (Yu et al., 2021) introduces a customised CNN with com-

pression complexity pooling as compared to the conventional pooling technique.

The pooling technique extracts the spatial features from the image by generat-

ing relatively complex feature maps. The experimental results show the results

of object detection with a number of cropped and resized CNNs. Hence, in

order to create a model that is appropriate for the given dataset in the domain

or across domains, the convolution, pooling, and flattening layers of CNN and

the operations carried out in them can be modified in correspondence with the

application. Similarly, the layers of the proposed S-MobileNet are pruned, cus-

tomised and the activation functions are modified in accordance to attain the

proposed objective.

2.2. Image Segmentation and Feature Extraction algorithms

The classification of skin images is been automated in recent years and a

number of researchers have proposed Automated Classification Methods (ACM)

(Okuboyejo et al., 2013). In general, a study of skin image analysis includes pre-

processing of images; image segmentation; image feature extraction, and image

classification. Image preprocessing (Lu & Weng, 2007) comprises a variety of

procedures: Downsampling, space transformations, contrast adjustments, nor-

malization, and artifact removal (Goyal et al., 2019b). The accuracy of image

classification totally depends upon the algorithms used in these stages.

In the process of segmentation, the infected area is extracted from the der-

moscopy image (Zafar et al., 2020) and the segmentation process is carried out

in three ways: Pixel-based segmentation, Region-based segmentation, Edge-

7
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ofRef Objective Algorithms used

(Ajith et al., 2017) Classification of Skin diseases DCT, DWT, SVD
(George et al.,
2018)

Comparative study of the proposed system with
AlexNet and other CNN models

RF, SVM, Boosting

(Patnaik et al.,
2018)

Propose a computer vision approach to differentiate
and recognize 20 skin abnormalities with increased
accuracy

Inception v3, Mo-
bileNet, Resnet,
xception, RF, and LR

(Mittal et al., 2017) Apply segmentation and filtering techniques to clas-
sify skin diseases. Provides a visualization of the
skin images for improved identification and classifi-
cation of skin lesions

Sobel Edge Detection,
Median Filtering

(Al-Masni et al.,
2018)

Proposes a deep learning model called FrCN for skin
lesion segmentation analysis

Full Resolution Convo-
lutional Networks

(Roy et al., 2019) Classification of skin images k-means Clustering,
Morphology-based
image segmentation

(Bhadula et al.,
2019)

Classification of skin images RF, Naive Bayes, LR,
Kernel SVM, and CNN

(ALEnezi, 2019) Classification of skin images CNN and SVM
(Albahar, 2019) Classification of skin images CNN, Lasso regulariza-

tion
(Hekler et al.,
2019)

Combines human intelligence with Artificial Intelli-
gence to classify skin images

Deep learning, CNN

(Kadampur &
Al Riyaee, 2020)

Classification of Skin diseases Deep learning model

(Shanthi et al.,
2020)

Classification of skin images and build an automatic
grouping system of the skin diseases

CNN

(Adegun & Viriri,
2019)

Builds a system based on D-CNN with a super-
vised encoder-decoder network to differentiate be-
tween melanoma and non-melanoma lesions.

D-CNN

(Waweru et al.,
2020)

Creates a web application for diagnosis of skin lesion D-CNN

(Goyal et al.,
2019a)

Build a Deep Learning model for classification of
skin images

Mask R-CNN and
DeeplabV3+

(Zafar et al., 2020) Build a deep learning ensemble model with U-Net
and ResNet

CNN and Transfer
Learning

(Abbas et al., 2021) Investigates many deep learning and transfer learn-
ing models in classification of skin diseases

7 layered deep CNN

(Ali et al., 2021) Classification of skin diseases and comparative
study of the proposed D-CNN with existing models

D-CNN

(Alsaade et al.,
2021)

Uses Deep Learning and Artificial Intelligence to
build an automated system for skin disease

AI and CNN

Table 1: Literature related to the proposed problem statement
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based segmentation (Ronneberger et al., 2015; Cai et al., 2020). In addition

to the aforementioned methods, clustering-based segmentation and threshold-

based segmentation are also proposed in literature (Adegun & Viriri, 2021).

The study of inter-relation between pixels in the Region Of Interest (ROI) of an

image, facilitates proper segmentation. The authors in (Barcelos & Pires, 2009)

apply edge-based segmentation to find the rapid change in the intensity of the

pixels in an image. The color, texture, and contours of the image are figured

during the segmentation process. While another segmentation approach that

analyses every pixel and classifies each of them to a specific class label named

semantic segmentation is applied in (Wang et al., 2022). Performance is mea-

sured in ResNet with the VGG model. The model appears to be too complex

with large parameters that consume more time and memory.

Feature extraction is the process of converting the image into numerical

values. It analyzes the color, texture, shape, and other qualities of the image.

Numerous feature extraction methods is been explored in literature like Gray

Level Co-occurrence Matrix (GLCM), Local Binary Patterns, Bag of features,

etc (Xu & Li, 2020). The extracted features are subjected to correlation analysis,

homogeneity, and entropy analysis and further transformed in (Chatterjee et al.,

2019) for increasing the predicting accuracy. In another relevant article (Iqbal

et al., 2022) an UNet CNN architecture is proposed over the ISIC 2018 skin lesion

dataset that fuses image segmentation with feature maps for segmentation. A

five cross-validation is applied and the performance is measured. Alternatively,

the model is characterized as computationally complex because of the large

number of parameters.

According to one of the related works, (Lin et al., 2022) which investigates

the effect of frequency bias in CNN image classification, a number of chal-

lenges prevent CNN from accurately extracting the features when used alone.

So it employs the use of the Gaussian kernel function and suggests using fea-

ture discrimination in addition to CNN. Following this direction, the suggested

work applies a segmentation method (modified Gaussian filtering) and feature

extraction method (modified version of Segmentation-based Fractal (SFTA))

9
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before moving on to the CNN model, which significantly increases accuracy

as shown in 4. Image histogram, filtration and k-NN classifier is applied in

(Glowacz & Glowacz, 2016) on images of human finger that is injured. Images

of injured finger captured by mobile camera is processed after 60h, 160hr and

450 hrs of injury. This research work consumes minimal cost in capturing the

image and processing it in real time.

An AI system is built with two standard types of eXplainable AI (XAI))

approaches namely: gradients and model agnostic approach applied on the re-

sults of Deep CNN to classify the skin lesion images in HAM10000 datasets

(Saarela & Geogieva, 2022). The former XAI approach builds a stable and ro-

bust model, and the latter handles intuitive predictions producing an accuracy

of 80% on HAM10000 dataset. Nonetheless, the suggested method focuses on

using XAI approaches, allowing scope for improving the model’s accuracy.

The challenges in segmenting lesion in skin images is detailed in (Zhang et al., 2023)

which notifies that the color, texture, shape, hairs, veins and light reflections

might add noise or decrease the segmentation accuracy. The author applies the

superpixel segmentation, L2 normalization and captures the variations in the

superpixels using autoencoders. Given that L1 norm is quite robust than L2

norm pruning (Brownlee, 2018), we apply L1 norm pruning while designing the

CNN model in our proposed system.

A MobileNet model is customised in DeepLabV3+ architecture, 186 deep lay-

ers and is trained in HAM10000 and few other skin lesion datasets (Zafar et al., 2023).

Slime mould algorithm is applied for feature selection and so optimises the fea-

ture selection results. It produces an accuracy of 92.01% on HAM10000 datasets.

An end to end CNN is built using image segmentation techniques for edge

prediction in (He et al., 2023) to classify the skin lesion images. The deep CNN is

customised and integrated with modules to identify and highlight lesion bound-

aries for effective segmentation. Edge detection being a pivotal element, in the

proposed system, we use homogeneity predicates that distinguishes the change

in the pixel color and gradients across the edges and effectively segments the

lesion. Section 3 discusses in detail the proposed system.

10
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2.3. Dataset

Human Against Medicine with 10000 training images (HAM10000) (Tschandl,

2018) is an archive of dermoscopic images from varying populations across the

world (Fig. 1). The HAM10000 Dataset is cleaned to remove the ambiguous

images as some of the images are similar but shown in different magnifications

and angles. Around 50% of the image, lesions are taken from histopathology

reports and from expert’s microscopical examination. The images in the dataset

are tracked using the metadata file. The HAM10000 dataset is used for skin

lesion classification in (Sae-Lim et al., 2019; Nasiri et al., 2018; Heller et al.,

2018; Khan et al., 2019; Hoang et al., 2022) and the performance of the pro-

posed Deep CNN framework is compared with the aforementioned state of the

art approaches.

Figure 1: Images from Dataset

The dataset includes images from 7 different categories of skin disease. In

order to avoid bias, an equal number of images are taken from each of the 7

classes using a random image generator.

11
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3. Materials and Methods

Machine vision is generally categorized into low-level and high-level vision.

In the low-level vision, image processing operations are performed to produce

another new image with minimal noise and edges being enhanced. On the

other hand, high-level vision tries to perform object recognition and scene in-

terpretation. Both of these are connected using the segmentation process. The

block architecture of the end-to-end Deep CNN is shown in Fig. 2. The first

block, displays the input, an image of the skin, is followed by two blocks for

image segmentation and feature extraction. These are followed by the blocks of

the customised S-MobileNet. Each block of customised S-MobileNet indicates a

layer in the CNN architecture and the two coloured (yellow and green) block

signifies the depthwise and pointwise convolution operations in the CNN layer.

Also mentioned are the layer’s filters and pruning percentages.

3.1. Proposed Image Segmentation Technique

As the first step in the proposed system, a modified version of the Gaussian

Filtering (D’Haeyer, 1989) algorithm is used for pixel-level segmentation of im-

ages. An ideal segmentor segments regions that are more uniform in texture,

and homogeneous in gray tone, the boundaries of the segmented image would

be smooth and there would be a significant difference in values between pixels

of adjacent regions. Contemporary Gaussian filtering is effective at eliminating

noise from images, and it outperforms median filtering in terms of effectiveness.

In (Kumar & Sodhi, 2020), the author compares Gaussian filtering, median fil-

tering, and denoise autoencoding to three performance measures, such as Nor-

malization Mean Square Error, Structure Similarity, and Peak Signal to Noise

Ratio, demonstrating that a Gaussian filter produces better results in a shorter

period of time than two other filtering methods.

A sample of the result of the gaussian filtered images is shown in Fig.3.

Let A be some sample collection of pixels and N() be the homogeneity pred-

icate on the connected pixels. The homogeneity predicate specifies the property

12



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 2: Block architecture of the proposed end-to-end Deep CNN framework

Figure 3: Original image and Gaussian filtered image
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that the pixels are homogenous or uniform. This property is set to true for

regions that are similar in color or edge gradient. Mathematically the initial

setup of pixel arrangements within regions can be represented below:

1. The segmentation of A is simply the partitioning of the image into regions

{Re1, Re2, . . . ., Rex} s.t
x⋃

i=1

Rei = A wherein Rei
⋂

Reb = ∅ ∀ i ̸= b.

2. The homogenity predicate satisfies the condition Prob(Rei) = TRUE ∀ i.

3. In addition, it is essential that the homogenity predicate satisfies

Prob(Rei ∪Reb) = FALSE, ∀ Rei being near to Rb

4. And (Rei ⊃ Reb)∧ (Reb ̸= ∅)∧ (Prob(Rei) = TRUE) =⇒ Prob(Reb) =

TRUE

Image segmentation is an ad hoc property and is applied based on certain

requirements like the nature of the image, size of the region, etc. Often, the

segmenter is applied at the cost of other properties of the image. Disturbances

like noise shatter the uniformity in the image and fragment the segmentation

results. Especially in large regions, noise considerably disturbs the segmenta-

tion result. The fourth indices mentioned above states that a large region is

considered to be uniform or noise-free if its subsets are uniform.

The proposed segmentation technique applies a modified version of the Gaus-

sian filtering algorithm for pixel-level segmentation. In this approach, the pixels

are classified based on the gray levels and uniformity of the pixels. Owing to the

fact that gray-level images are very supportive (Fitriyah & Wihandika, 2018) in

image classification and hence segmentation, the skin images are converted to

gray tones to improve the accuracy of the model. The properties of grayscale

images: hue, saturation, and brightness enhance the correctness of classification

as compared to RGB.

A specified threshold value captures the line of separation between the two

14



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 4: Gaussian filtering threshold level

modes: the gray level of the objects and the gray level of the background pixels

(Fig. 4). The modified Gaussian filtering algorithms roots in the Bayes algo-

rithm. It analyzes the pixel density of the object pixels in the foreground as

well as the background pixels. Let there be an image with object level and

background level classified into dominant modes.

The threshold u (a, b) of the image v (a, b) is given as

u (a, b) =




1 if (a, b) > Threshold,

0 if (a, b) ≤ Threshold

This resultant would be a binary image and a sample of it is shown in Fig.5.

Algorithm 1 details the proposed segmentation approach. It constructs the

histogram to classify the pixels between the object and the background of the

image. More importantly, an important feature of this proposed algorithm is

that the histogram is smoothened using the moving average as the smoothing

function to minimize the error while interpreting the results. The resultant

of the algorithm would be a smoothened histogram suitable for finding the

threshold value. The central theme of classification is to apply the threshold
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value in classifying the pixels (explained in Algorithm 2). Algorithm 2 identifies

the deep valley in the histogram and picks every pixel p and marks it to either

of the two classes. The segmented skin lesion image is passed on to the next

level for feature extraction.

3.2. Proposed Feature Extraction technique

The critical aspect of image preprocessing is feature extraction. Analyzing

the texture of the skin lesion images gives a better understanding of whether

the infected region is swollen/bulged or is built with dead cells or has been

rugged. Many researchers have been predominantly using feature extraction in

medical images for understanding the patterns in an image. Nevertheless, the

same feature extraction techniques cannot be applied to all kinds of images,

such as character recognition or object detection, since each of them is unique.

In the proposed work, a modified version of Segmentation-based Fractal (SFTA)

(Al-Areqi & Konyar, 2022) is applied to break the components of the image into

smaller fractions and to determine the texture and other patterns in them.

As stated earlier, the texture underpins the semantic nature of the image

and hence classifying images considering the surrounding texture would yield

greater accuracy. Especially when it comes to skin images, the hair over the

skin is always an obstacle in detecting its texture. Regardless of it, the proposed

approach is efficient in capturing the granularity structure of the image.

The binary version of the grayscale image is represented as Ibinary which is

obtained by applying the threshold u(a, b) on the image (from Section 3.1). As

the first step, a binary threshold image filter is applied to the image with two

threshold values as input. Let thresholdlower and thresholdupper be the lower

and upper threshold values. The threshold values are chosen between [0.0,1.0]

and are very influential in extracting patterns from the image. There is lim-

ited evidence from the existing work that a randomly chosen threshold would

increase the efficiency of feature extraction. Nevertheless, in this work, the

threshold values are chosen from the histogram that is designed in Algorithm

1 which improves the accuracy of the model. In addition, two intensity values
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Part 1
Assumption: The density function of object level pixels and background level
pixels are gaussian in nature.

1. Construction of the histogram (H) to differentiate the density of the pixels
in the object vs the pixels in the background of the image
2. Let mean of the histogram be Hµ, standard deviation of the histogram be
Hσ and number of chosen gray levels or gray level resolution be G L, given
that G L = 2bpp where bpp is the number of bits

pixel

Hµ = 1
X

∑
H(i) ∗ i and Hσ =

√
1
X

∑
H(i) ∗ (i−Hµ)

2

Here, H(i) → Histogram for gray level i, X → Number of pixels in window
Alternatively X can take up values either 0 or 1 representing number of pixels.
If X takes up a value 0 in the window, it leads to undefined situation and hence
a non negative constant c is added to Hσ

Hσ =
√

1
X

∑
H(i) ∗ (i−Hµ)

2
+ c

3. Minimize the sum of the square of the offset of the below equation in against
to the H(i) by altering the parameters included in it.

h(i) = N1

Hσ1
e
− (i−Hµ1)2

2Hσ1
2 + N2

Hσ2
e
− (i−Hµ2)2

2Hσ2
2

4. The next step is to alter the bins of the histogram and smoothen it using the
below equation. The smoothened histogram is analysed to find the deep valley
(d v) and that is considered to be the threshold to partition the histogram.
Whilst the smoothening can be done in two steps:
(i)By using an moving average function WF = 1

(2M+1)2

H ′(i) = 1
2M+1

∑2M+1
k=1 H (i)

(ii)By using local weighted average

Hi(i) = H(i−2)+2H(i−1)+3H(i)+2H(i+1)+H(i+2)
constant

5. The d v in the histogram is taken up for dividing the H(i) into two
histograms. The initial values of the parameters are given below:
X1 =

∑d v
i=1 H(i)

X2 =
∑G L

i=d v+1 H(i)

Hµ1 = 1
X1

∑d v
i=1 H(i) ∗ i

Hµ2 = 1
X2

∑G L
i=d v+1 H(i) ∗ i

Hσ1 =
√

1
X1

∑d v
i=1 H(i)(i−Hµ1)

2

Hσ2 =
√

1
X2

∑G L
i=d v+1 H(i)(i−Hµ2)

2
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Algorithm 2 Proposed Segmentation Algorithm - Classifying the Pixels - Part
2
1. Deepest valley calculation in histogram
min

∑G L
i=1 [h (i)−H (i)]

2

2. For i being the deepest valley
value = |h (i)−H (i)|
LABEL: Value Calculation:
left value = |h (i− 1)−H (i− 1)|
right value = |h (i+ 1)−H (i+ 1)|

if left value ≤ value then
deepest value at i− 1

else if right value ≤ val then
deepest value at i+ 1

else
deepest value is at i

end if

For any change in value repeat to calculate new values for N1, N2, Hµ1, Hµ2,
Hσ1, Hσ2 using Algorithm 1 and reestimate Value Calculation.
3. Let p be a random gray pixel taken from the image. The pixel is allotted to
the object if

N1

Hσ1
e
− (p−Hµ1)2

2Hσ1
2 > N2

Hσ2
e
− (p−Hµ2)2

2Hσ2
2

4. The threshold value is defined when

N1

Hσ1
e
− (thresholdvalue−Hµ1)2

2Hσ1
2 = N2

Hσ2
e
− (thresholdvalue−Hµ2)2

2Hσ2
2

where both the error equation are equal.
5. And threshold value is supposed to satisfy

V =
(

1
H2

σ1
− 1

H2
σ2

)

W =
(

Hµ2

H2
σ2

− Hµ1

H2
σ1

)

Y =
(

H2
µ1

H2
σ1

− H2
µ2

H2
σ2

)

Z = 2lnX2Hσ1

X1Hσ2

V ∗ thresholdvalue2 + 2 ∗W ∗ thresholdvalue+ Y + Z = 0
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are chosen for classifying the pixels in the image. The intensity values range

between [0,255]. Let the intensity value of the pixel be v1 and v2. Let the range

of chosen intensity values be 1, 2, 3, 4, 5, ..., gl. Let p be the pixel taken randomly

from the binary image Ibinary. The pixel is allotted to the values based on the

following condition:

pv =





v1 pthreshold < thresholdlower

v2 thresholdlower ≤ pthreshold ≤ thresholdupper

v1 pthreshold > thresholdupper

The Ibinary is partitioned into smaller portions (ibinary) and the thresh-

old filter is applied to individual ones. The contiguous pairs of threshold

Thresholdpairs are chosen randomly during this thresholding process and

{thresholdlower, thresholdupper} ∈ Thresholdpairs. Say the thresholding pro-

cess is done t times over ibinary images, the number of resultant binary images

would be 2 ∗ t ∗ gl. The
⋃

ibinary will be the final image. Another impor-

tant aspect of the proposed work is that if thresholds are chosen from a his-

togram built from Section 3.1 and lying in the midrange of gray level intensity

1, 2, 3, 4, 5, ..., gl, the feature extraction is further enhanced. It is undoubtedly

possible to choose threshold values in pairs to extract features from certain re-

gions of an image such as the middle portion or left corner which is difficult to

extract using a single threshold.

The Fig. 5 illustrates the feature extraction process. The image is divided

into smaller portions, with each portion being thresholded separately using mul-

tiple threshold pairs. Once the decomposition and thresholding process is over,

the extracted feature vectors are structured to generate the fractal dimensions

of the image. The final bordered output image ∆binary(a, b) is computed after

combining the individual threshold images (
⋃
ibinary).

∆binary(a, b) =




1 ∃(a′, b′) ∈ t(a, b) : Ibinary(a

′, b′) = 0Λ Ibinary(a, b) = 1

0 otherwise

In the above equation t(a, b) is the number of times the thresholding process
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Figure 5: Feature Extraction - Thresholding

is executed using the pairs of threshold and the set of pixels that are intercon-

nected in t times of execution is mentioned as t[(a, b)]. Using this approach, a

resultant image is generated that shows mean gray level, highlighted features,

and boundaries that correlate with each other to help identify patterns with

minimal error.

3.3. Proposed CNN Architecture

Computer Vision has become increasingly popular with the use of CNN.

Nevertheless, modern CNN is becoming more complex and deeper as they strive

to improve accuracy. CNNs are a class of neural networks that uses grid-like

topology to process data and contains three layers, namely convolution, pooling,

and fully connected layer. As part of CNN, the convolution layer is responsible

for computation. The input to the CNN is an image (feature vector) and the

parameters of this layer are a set of filters (kernels). The kernels convolve

over the feature vectors to produce feature maps (activation maps). This layer

keeps intact the spatial relation between the pixels in feature vectors. The

feature maps are then passed to the pooling layer. The pooling layer reduces

the representation size of the feature map and hence minimizes computation
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cost. Pooling techniques in CNN include max pooling, min pooling, and average

pooling. A number of convolution and pooling layers are stacked one above the

other to achieve accuracy. The reduced feature maps from the pooling layer are

flattened and passed to the fully connected layer which is one-dimensional in

nature. A number of such fully connected layers may be stacked and following

which Softmax or another classifier is applied for classification.

There are CNNmodels raised in literature like VGG Net (Simonyan & Zisser-

man, 2014), Alex Net (Krizhevsky et al., 2017), and Google Net (Szegedy et al.,

2015). These models are trained with ImageNet Large-Scale Visual Recognition

(ILSVRC) (Russakovsky et al., 2015) and are available as pre-trained models.

Often a number of custom-made models are developed in literature (Kareem

et al., 2021). A few of the ways of modifying/building a pre-trained network

would be by compressing or shrinking the layers, factorizing the operations,

adding dropouts in them in accordance with the requirements of the developer,

the nature of the input images, and the tradeoff between latency and accuracy.

The proposed approach builds a modified MobileNet model, S-MobileNet for

image classification. The MobileNet is a deep learning model with the unique

characteristics of being small, showing low latency, and consuming little power.

It produces higher accuracy than other deep CNN models when it comes to cat-

egorizing images, identifying objects in images, and segmenting images. Despite

its low parameters, MobileNet has no latency excuse compared with other CNN

models. Unlike CNN, MobileNet uses Depthwise Separable Convolution which

makes it faster with fewer parameters than CNN.

3.3.1. S-MobileNet Model

This section discusses the S-MobileNet CNN architecture for image classi-

fication. The proposed S-MobileNet architecture is very efficient in classifying

images since the hyperparameters of the model are fine-tuned for producing re-

sults in low latency. The hyperparameters of a CNN model include modifying

the kernel dimension, varying the number of kernels, changing the stride length,
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etc. In addition, the classic MobileNet architecture is shrunk to increase the

accuracy of the proposed model (S-MobileNet CNN). S-MobileNet is applied

over the processed images ∆binary(a, b) generated after image segmentation and

feature extraction. The processed dataset contains 10000 images which are split

into a training dataset and a test dataset. One of the main features of Mo-

bileNet is that they apply DepthWise Separable Convolution in lieu of normal

convolution operation.

Depthwise Separable Convolution: The Depthwise Separable Convolution

operates in two phases: Depthwise Convolution (DC) and Pointwise Convolu-

tion (PC). They perform the filtration operation and combination operation

respectively. The standard convolution applies convolution operation across all

channels whereas the depthwise convolution applies across one channel at a

time. Channels are one of the parameters of input image (feature vector), say

for example, if an RGB image is passed as input, the number of channels would

be 3. The Fig. 6 shows the regular convolution operation that takes place be-

tween input images of dimension (I1*I2*A) where I1 and I2 are its dimensions,

A is the number of input channels with kernels, each of dimension (K1*K2*A)

where K1 and K2 are kernels dimensions, A is the width of kernel and there

are B such kernels. This operation consumes a large number of multiplication

operations as the kernels convolve over the input image, resulting in a huge cost.

A single convolving operation of kernel over an image takes (K1*K2*A)

operations and the complete convolving operation of a kernel over the image to

produce a M1*M1 feature map would take (M1*M2*K1*K2*A). And for each

of the B kernels it takes (B*M1*M2*K1*K2*A).

However, when it comes to Depthwise Separable Convolution, it’s going to

be a different case. The Fig. 7 shows the operation taking place in two stages.

In the first stage, a depthwise convolution operation takes place between input

images of dimension (I1*I2*A) with kernels of dimension (K1*K2*1) and there

are A such kernels. The convolution operation takes place between the input

image channels and kernels in a 1:1 ratio, unlike the conventional convolution

where the kernel convolves over all the channels. In this case, depthwise con-
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Figure 6: A Regular Convolution Operation

volution requires the same number of kernels as the number of input channels.

The number of multiplication operation that takes place in one convolution op-

eration would be (K1*K2*1) since it’s one dimensional. When this convolves

over the one channel of input image it takes (M1*M2*K1*K2*1). When A such

filters are applied to A channels it takes (A*M1*M2*K1*K2*1).

Moving on to the second stage which is pointwise convolution. Each of

the B filters of dimension (1*1*A) convolves the input channels (M1*M2*A)

(A is the depth of the input volume) to produce an output tensor of dimen-

sion (M1*M2*B). The filters are called KPC (Kernel Point Convolution) filters

as their dimension is 1*1 and suitable for pointwise convolution. For one in-

stance of convolution operation between one KPC filter with the input channel

of depth A, it would take (A) multiplications. The entire convolution of the

KPC filter over input volume would take (M1*M2*A). And for B such chan-

nels it would be (B*M1*M2*A). The total number of multiplications in depth-

wise separable convolution would be (A*M1*M2*K1*K2*1)+ (B*M1*M2*A)

→ (A*M1*M2)(K1*K2+B). On analysis, it’s seen that the number of multi-

plication in conventional convolution is 9 times more than depthwise separable
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Figure 7: Depthwise Separable Convolution

convolution.

S-MobileNet Architecture: It can be seen from (Howard et al., 2017) that

MobileNet models are trained with RGB images and hence requires 3 channels

as input. However, the dataset that we obtained after image segmentation

and feature extraction include grayscale images of size (450*650). While it

is possible to convert the grayscale images to RGB and feed them to the S-

MobileNet model, but does so at the expense of losing a tremendous amount of

information in the first layer of the convolution process. Hence, the grayscale

image is reduced to (224*224) and is repeated 3 times to produce an input tensor

of dimension (224*224*3). The Fig. 8 represents the standard convolution layer,

the MobileNet convolution layer, and the S-MobileNet Convolution Layer.

The proposed S-MobileNet model applies Mish as the activation which is

very efficient compared to the regular activation function (Relu) applied in the

other convolution layer as shown in Fig. 8. The activation function (Trans-

fer function) defines the output that has to be generated at the end of every

node/layer based on the input values provided to the node/layer. Very impor-

tantly they introduce non-linearity in the output which is an important factor
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Figure 8: Layers in Conventional Convolution Layer, Depthwise Separable Convolution Layer
and proposed S-MobileNet model

to learn complex patterns in the input image.

f(x) =




1 x >= 0

0 x < 0

Figure 9: Activation function: Relu and Mish

The Relu activation function being non-linear in nature activates specific

neurons at the output leading to convergence of gradient to global minima.

Though being an efficient function, during training the model fails to activate

certain neurons as their weight gets diminished during backpropagation, and at

one point it causes the neurons to die. This is called the dying-Relu problem.

On the other hand, the Mish activation function outperforms Relu (Fig. 9),

Leaky Relu, and other activation functions on several benchmark applications

25



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

like ResNet, DarkNet, etc (Misra, 2019). The Mish activation function is a non-

monotonic activation function which produces a smooth and continuous output.

f(x) = x ∗ tanh(softplus(x))
f(x) = x ∗ tanh(ln(1 + ex))

One of the remarkable characteristics of Mish is that it reduces overfitting and

overcomes the dying Relu problem by preserving a very small amount of negative

weights and permits information flow during backpropagation. Table 2 describes

the S-MobileNet architecture in levels, mentioning the operation, strides, filter

dimension, and tensor output dimension.

1. The S-MobileNet CNN architecture starts with the initial convolution

layer {level 1} which takes up the input volume of dimension (width-224*height-

224*depth-3) and 32 kernels with each filter of dimension (3*3*3). The con-

volving operation with a stride of 2 produces an output tensor of dimension

(112*112*32). The dimension of the output tensor is calculated based on the fol-

lowing formula, ((widthofimage−filter dimension+2∗padded pixel)/stride)+

1. In our case, there are no padded pixels and hence it’s 0. Thus ((224− 3+2 ∗
0)/2)+1 → 112. The input to the next convolution layer will be (112*112*num-

ber of filters i.e. 32).

2. This is followed by a sequence of depthwise convolution and pointwise

convolution operation in four iterations {level 2-level 5} with depthwise filters

of dimension (3*3) and pointwise filters of dimension (1*1) with (32-64, 64-128,

128-128, 128-256) number of kernels respectively.

3. Layer 6 in the regular MobileNet architecture operates with the depth-

wise filter (3*3) and pointwise filter (1*1) but with a kernel count of (256-256)

respectively. On the contrary, in the proposed S-MobileNet model, the convo-

lution layer in level 6 is compressed to produce an output tensor of reduced

dimension. In this layer 10% of the filters are reduced during the depthwise

convolution operation i.e.
⌊
10∗256
100

⌋
= 25 i.e. we discard 25 filters in this layer.

This reduces the depth of the output tensor from 256 to 231. The output tensor
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of dimension 28*28*231 is subjected to pointwise convolution with 256 filters to

produce an output of dimension 28*28*256.

4. In level 7, depthwise convolution applies 256 kernel filters of dimen-

sion (3*3) with a stride of 2 and generates a downsampled image of dimension

14*14*256. This is followed by 512 pointwise filters to produce an output tensor

14*14*512.

5. In Level 8, both depthwise and pointwise convolutions are applied with a

stride of 1 and kernel count of 512 and 512 in each respectively, generating an

output tensor of depth 512 with dimension 14*14*512. As the dimension of the

tensor is high, compression is applied in the next layer to reduce the number of

parameters.

6. The depthwise convolution layer in level 9 is compressed by 8% and a

total of 40 filters are reduced (
⌊
8∗512
100

⌋
= 40). The depth of the output tensor is

reduced from 512 to 472. The output tensor (14*14*472) is passed to a pointwise

convolution operation with 512 filters to produce a resultant tensor of dimension

(14*14*512).

7. Level 10 shows no change. But again in level 11, there is a compression

of 8% reducing approximately 40 filters. This is followed by level 12 with no

change. And again in level 13, there is compression of 10% and 51 (
⌊
10∗512
100

⌋
=

51) filters are removed. A stride length of 2 is applied and produces an output

tensor of dimension (7*7*461). This is followed by pointwise convolution with a

1024 filter and thus raising the depth of the output tensor to 1024 (7*7*1024).

8. Padding is introduced in level 14 which applies a stride of 2 over the input

tensor of dimension (7*7*1024) and produces an output of the same dimension.

9. Nearing the end of the convolution layer, the average pooling opera-

tion is carried out with a 7*7 sliding window and downsamples the tensor to a

dimension of (1*1*1024)

10. The fully connected layer flattens into a layer of 1000 pixels and a

softmax classifier is applied for classifying them into 7 classes.

As mentioned before, Mish is the activation function that is applied in all

the layers of depthwise and pointwise convolution. On top, of all the layers
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mension
No:of
filters

Compression Input dimension

1 Convolution 2 3*3*3 32 - 224 × 224 × 3
2 DC 1 3*3 32 - (Downsampled

age) 112*112*32
PC 1 1*1*32 64 - 112*112*32

3 DC 2 3*3 64 - 112*112*64
PC 1 1*1*64 128 - (Downsampled

age) 56*56*64
4 DC 1 3*3 128 - 56*56*128

PC 1 1*1*128 128 - 56*56*128
5 DC 2 3*3 128 - 56*56*128

PC 1 1*1*128 256 - (Downsampled
age) 28*28*128

6 DC 1 3*3 256 10% reduction i.e. Approx 25
filters (256-25=231)

28*28*256-

PC 1 1*1*231 256 - 28*28*231
7 DC 2 3*3 256 - 28*28*256

PC 1 1*1*256 512 - (Downsampled
age) 14*14*256

8 DC 1 3*3 512 - 14*14*512
PC 1 1*1*512 512 - 14*14*512

9 DC 1 3*3 512 8% reduction i.e. Approx 40
filters.(512-40=472)

14*14*512

PC 1 1*1*472 512 - 14*14*472
10 DC 1 3*3 512 - 14*14*512

PC 1 1*1*512 512 - 14*14*512
11 DC 1 3*3 512 8% reduction i.e. Approx 40

filters. (512-40=472)
14*14*512

PC 1 1*1*472 512 - 14*14*472
12 DC 1 3*3 512 - 14*14*512

PC 1 1*1*512 512 - 14*14*512
13 DC 2 3*3 512 10% reduction i.e. Approx 51

filters. (512-51=461)
14*14*512

PC 1 1*1*461 1024 - 7*7*461
14 DC 2 3*3 1024 With stride value of 2 and to

produce an output dimension
equal to input, padding is in-
troduced

7*7*1024

PC 1 1*1*1024 1024 - 7*7*1024
15 Average

Pooling
1 7*7 - - 1*1*1024

16 Fully con-
nected

1 1024*1000 - - 1*1*1024

17 Softmax 1 Classifies
into 7
classes

- - 1*1*1000

Table 2: S-MobileNet Architecture - Layers
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of execution, dropout is enabled to be True. During training, dropout ensures

to prevent overfitting by dropping certain neurons. And hence the model acts

as an ensemble model and the prediction value is by default averaged in each

layer. In the network architecture the information from the previous layers (Ij)

is multiplied with the link weights (Wij) and the output neuron (Oi) aggregates

them as shown below (Cai et al., 2019):

Oi =
∑N

j=1 Wij Ij

while the standard dropout applies bernoulli function

Oi = 1
u

∑N
j=1 Wij (αj ∗ Ij) , αj Bernoulli(u)

to minimize the number of neurons in intermediary layers.

Compressing the S-MobileNet : Compressing the CNN network is an efficient

approach since it reduces the number of parameters in compressed layers and

thereby the total parameter count of the model. Although this approach pro-

duces a low latency and high-speed network, applying compression in the initial

layers leads to the loss of a huge amount of pixel information. Hence, in the

S-MobileNet model, they are applied in intermediary layers. One of the key as-

pects of S-MobileNet is that the compression is applied four times with enough

spacing between layers and not between successive layers. Compression when

applied in successive layers will decrease the patterns of lost information in the

first layer over the further layers. In S-MobileNet, compression is applied in

levels 6, 9, 11, and 13 and there is enough spacing between compressed layers

to restore the patterns between the lost features.

Compression is often referred to as the pruning of filters with sparse infor-

mation that is not significant in changing the final decision at the output. In

the S-MobileNet CNN, L1 norm pruning is applied to cut down the insignificant

filters in levels 6, 9, 11, and 13 of the model. A CNN network
{
N i ∈ RIi ∗Oi ∗ CW ∗ CH

}
, 1 ≤ i ≤ L

is defined with parameters Ni, weight matrix of connections in layer i; L, num-

ber of layers; Ii and Oi, Number of input channels and output channels in

layer i respectively; CW and CH , represents the height and width of the in-

put channel respectively. In our case CW = CH , as the input channel is a
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square of dimension 224*224 and varies in each layer retaining the square prop-

erty. The number of computational operations in a convolution layer is given

by Ii ∗ Oi ∗ W ∗ H ∗ wi+1 ∗ hi+1. After applying the L1 norm, the number of

computational operations is Ii ∗W ∗H ∗wi+1 ∗hi+1. Here wi ∗hi and wi+1 ∗hi+1

are the input feature size and output feature size respectively. The number of

computations will considerably reduce as the pruning is applied in the succes-

sive layers. During network training, emphasis is provided on minimizing the

loss function. The minimization objective of the loss function is represented as

θ̂ = min
W

∑
(Ii,Oi)

θ
(
WT Ii −Oi

)2
+ λ |W |

The function θ() is the squared loss function that sums the square of the

difference between the predicted and actual values. The λ controls the degree

of sparsity of the weight matrix W . The L1 norm is penalizing the filters that

have a small magnitude and in parallel keeps track of the optimization function

θ̂. In addition, it regulates the tradeoff between the loss function, regularization

parameters, and the weight matrix.

S-MobileNet hyperparameters: The two specific hyperparameters of Mo-

bileNet: width multiplier, α, and resolution multiplier, ρ. The parameter α

takes any value from [0:1] and for every layer with Ii number of input channels

and Oi number of output channels, it becomes α ∗ Ii and α ∗ Oi. The tradeoff

between latency and speed of small networks is decided by the width multiplier

and reduces the complexity by α2. The resolution multiplier ρ takes values

between [0:1] and each layer’s internal representation parameter is reduced by

ρ. Similar as α, ρ reduces the computational complexity by ρ2. The Tensor-

Flow version used in the proposed model is a stable release 2.10.0 using Python

language. The S-MobileNet model is executed using three optimizers individ-

ually: Adam, RMSProp, and SGD with stochastic gradient descent and with

Nesterov Momentum. With this proposed model, data overfitting is minimized

to a greater extent. The model is trained varying the epochs and learning rate.

In the next section, we will look in detail at the experiments and results. In a

similar way, the authors in (Zhou et al., 2022) compare and analyze a number of
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optimizers, among which are SGD, Adam, and FastAdaBelief, and demonstrate

that one outperforms the rest.

4. Experiments and Results

The HAM10000 archive (Tschandl, 2018) of dermoscopic images is subjected

to a segmentation experiment. The Dice and Jaccard coefficients are used to

measure the performance of modified Gaussian filtering and the standard Gaus-

sian filtering approach. The Dice coefficient measured between the segmented

image (S) and the ground truth Image (G) is Dice(S,G) = 2∗(S∩G)
|S|+|G| . The Dice

scores images on a scale of 0 to 1, with higher scores indicating more accurate

segmentation. Table 3 shows the Dice score obtained by executing the proposed

segmentation algorithm discussed in Section 3.1 and standard Gaussian filter

on random 25 samples.

The HAM10000 dataset is shuffled and 20 blocks of random 500 images are

subjected to the proposed segmentation method and standard Gaussian filter

approach. The average dice score of each block is recorded in Table 4 and is

shown in Fig 10.

Figure 10: Dice score plot with reference to Table 4

Following the image segmentation, feature extraction is applied over the im-

ages using the modified version of Segmentation-based Fractal (SFTA). Several

iterations of this modified version are executed using pairs of thresholds selected

from the histogram (detailed in 3.1) that is generated during the segmentation
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cussed (in Algorithm 1 and 2)
Gaussian Filter

ISIC 25773 0.951 0.922
ISIC 26757 0.741 0.644
ISIC 27086 0.764 0.799
ISIC 24748 0.658 0.534
ISIC 28064 0.786 0.781
ISIC 26461 0.859 0.754
ISIC 27179 0.986 0.785
ISIC 27408 0.939 0.855
ISIC 27766 0.842 0.743
ISIC 27139 0.828 0.876
ISIC 27936 0.816 0.821
ISIC 24815 0.958 0.789
ISIC 27421 0.607 0.654
ISIC 24408 0.793 0.655
ISIC 25207 0.749 0.549
ISIC 28886 0.824 0.801
ISIC 26944 0.802 0.987
ISIC 27872 0.970 0.921
ISIC 28649 0.706 0.692
ISIC 27022 0.972 0.901
ISIC 27581 0.784 0.692
ISIC 25439 0.961 0.894
ISIC 26900 0.745 0.769
ISIC 26060 0.853 0.847
ISIC 25281 0.862 0.987
ISIC 27339 0.949 0.901
ISIC 26515 0.772 0.701
ISIC 27616 0.969 0.899
ISIC 26741 0.754 0.799
ISIC 25902 0.967 0.934
Average 0.839 0.796

Table 3: Dice Score of Proposed Segmentation method and standard Gaussian filter approach
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Block of 500 ran-
dom images from
shuffled HAM
dataset

Proposed segmen-
tation discussed (in
Algorithm 1 and 2)

Gaussian Filter

Block 1 0.989 0.876
Block 2 0.976 0.705
Block 3 0.806 0.721
Block 4 0.989 0.789
Block 5 0.873 0.994
Block 6 0.790 0.598
Block 7 0.976 0.980
Block 8 0.885 0.899
Block 9 0.787 0.843
Block 10 0.989 0.768
Block 11 0.985 0.874
Block 12 0.878 0.872
Block 13 0.791 0.874
Block 14 0.979 0.923
Block 15 0.874 0.685
Block 16 0.840 0.743
Block 17 0.975 0.839
Block 18 0.777 0.854
Block 19 0.850 0.765
Block 20 0.974 0.896
Average 0.899 0.825

Table 4: Dice Score of HAM 10000 images in 20 blocks, each of 500 images with Proposed
Segmentation method against standard Gaussian filter approach
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phase. Fig 11 shows the results of traditional feature selection and the proposed

SFTA model. The proposed model extracts the infected region and the nearby

segments that are risk at of infection. Many recent works on feature extraction

apply to label the image and to locate the region by dividing them into smaller

portions and analysing them individually. However, in SFTA the feature vector

is applied in 8 thresholds and its classification accuracy is recorded (Costa et al.,

2012).

The feature extraction process using labeling has a couple of drawbacks. It

consumes more time and fails to extract new features when added to the image.

And in most the cases, this approach prioritizes features with more unique values

than those with redundant values. As can be seen that the feature extraction

approach that is obtained by modifying the SFTA algorithm produces better

results in classifying the images using S-MobileNet architecture.

4.1. Performance metrics - S-MobileNet model

The segmented images are subjected to S-MobileNet CNN architecture. This

section details the model parameters and tabulates the performance of the model

by fine-tuning its hyperparameters. As an initial step, the dataset is split in an

80:20 train-test split ratio and the model is trained with 8000 images each of size

(224*224) from the HAM dataset in many epochs. The model is designed with

layers as mentioned in Table 2 and the learning rate is set to be 0.01 initially.

The model is executed in 5 folds with 20% of images in each fold. During the

execution of the model in multiple iterations, the number of epochs was varied

and the performance was studied. It was found in the initial epochs that the

model learned the parameters and after 15 epochs the results were found to be

stable and minute changes were recorded. The performance metrics for eval-

uating the model are the training loss, testing loss, training accuracy, testing

accuracy, precision, and F1-score. The model is executed using three optimizers

Adam, RMSProp, and SGD.

Categorical Cross Entropy loss: Being a multiclass classification, the loss func-
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tion used is Categorical Cross Entropy loss (Softmax loss).

Loss = −∑C
i Gilog (func (SC)i)

func(SC)i =
eSCi∑C
k eSCk

Here C is the number of classes and in the proposed model its 7, Gi is the

ground truth value of each class i, func(SC)i is the S-MobileNet score for each

class i. The aforementioned loss function is used in both training and testing of

the S-MobileNet model.

Accuracy : The accuracy of the S-MobileNet is calculated using

Accuracy = TP+TN

TP+TN+FP+FN

Here TP refers to true positive, i.e. the number of positive images correctly

predicted; TN refers to true negative, i.e. the number of negative images cor-

rectly predicted; FP refers to false positive, i.e. the number of positive images

incorrectly predicted; FN refers to false negative, i.e. the number of negative

images incorrectly predicted. The higher the value of TP , TN , the higher the

accuracy. The metric accuracy defines the performance of any network.

Precision: The precision is calculated using

Precision = TP

TP+FP

and this metric defines the accuracy of the model in identifying a sample as

positive. The precision of a model increases in two cases: either when TP is

high or when FP is low.

F1 Score: This score decides the overall performance of the model. There

is a fine line difference between accuracy and F1-score. Accuracy is primarily

concerned with predicting the positive samples, while F1-score addresses the

behavior of the model toward negative samples as well.
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4.2. S-MobileNet model result analysis

In the initial go, the model is designed and tested by applying Mish and

Relu activation functions and by executing it with and without compression

when the Mish activation function is applied. The effectiveness of applying

the Mish Activation function and compression is shown in the experimental

results. Firstly, the experiments are performed with a batch size of 32 and

the images are passed to the S-MobileNet model without applying the modified

segmentation and feature extraction procedure. In contrast, the performance of

the model is also recorded after applying segmentation and feature extraction.

Secondly, the model is executed with three different optimizers. Thirdly, each

of the optimizer’s results is recorded with the Relu activation function and Mish

Activation function. In the fourth and final step, the model is evaluated both

with and without layer compression. The words compression and pruning are

used interchangeably in the coming sections. All of their results are shown in

Table 5 and Table 6.

Optimizers The state-of-the-art of deep learning libraries the gradient de-

scent algorithms (Optimizers). They are coded as a black box with their

strength and weakness. The performance of the gradient descent algorithm

varies for different applications and can be fine-tuned. Gradient descent algo-

rithms are used to train the CNN model. Being an optimization algorithm the

objective of gradient descent is to minimize the cost function and reach the

global minima. This is achieved by adjusting the learning rate. The author

in (Ruder, 2016) has detailed different optimization algorithms on gradient de-

scent. Adaptive Moment Estimation (Adam) is a gradient descent algorithm

that keeps track of the exponentially decaying average of past gradients. Adam

is a slight variation of another gradient descent algorithm named momentum.

Adam faces the problem of diminishing learning which is overcome by Root

Mean Square Propagation (RMSProp) and concludes that the learning rate of

0.001 will produce optimal results. Stochastic Gradient Descent (SGD) pro-

duces better results with large datasets. Following many trials of other gradient

descent algorithms, the above three algorithms were chosen.
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Method Batch
Size

Optimizer Training
loss

Test
loss

Training
Accu-
racy

Test
Accu-
racy

Precision F1
sc

S-MobileNet using Relu 32 Adam 0.19905 0.19714 0.93042 0.88386 0.96958 0.
S-MobileNet using Mish
without pruning

32 Adam 0.19190 0.19103 0.94182 0.86156 0.96973 0.

S-MobileNet using Mish
with pruning of layers

32 Adam 0.17845 0.17281 0.94188 0.91272 0.97469 0.

S-MobileNet using Relu 32 RMSProp 0.17630 0.20839 0.80410 0.89891 0.89364 0.
S-MobileNet using Mish
without pruning

32 RMSProp 0.16598 0.20116 0.86561 0.90188 0.89382 0.

S-MobileNet using Mish
with pruning of layers

32 RMSProp 0.16169 0.19905 0.91159 0.91109 0.92594 0.

S-MobileNet using Relu 32 SGD 0.15895 0.23190 0.95078 0.86411 0.91791 0.
S-MobileNet using Mish
without pruning

32 SGD 0.15600 0.17845 0.95079 0.93265 0.92477 0.

S-MobileNet using Mish
with pruning of layers

32 SGD 0.14910 0.17630 0.97757 0.93222 0.95588 0.

Table 5: Performance evaluation of the proposed S-MobileNet model without applying Seg-
mentation and Feature extraction mehods, with different optimizers, Relu and Mish activation
function, with and without pruning intermediary layers

Table 5 shows the results of the model without segmentation and feature

extraction applied to the dataset. Trial analysis is made with Relu and Mish

activation function.

Across all three optimizers,

1. Mish activation function shows lower training and testing loss than relu.

2. Mish activation function shows an increased training and testing accuracy

than relu.

3. Mish activation function shows an increased precision and F1 score than

relu.

4. Mish activation function along with pruning layers shows lower training

and testing loss than just applying Mish.

5. Mish activation function along with pruning layers shows higher training

and test accuracy than just applying Mish except for SGD optimizer.

6. Mish activation function along with pruning layers shows higher Precision

than just applying Mish.

7. Mish activation function along with pruning layers shows higher Accuracy

than just applying Mish.
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Method Batch
Size

Optimizer Training
loss

Test
loss

Training
Accu-
racy

Test
Accu-
racy

Precision F1
sc

S-MobileNet using Relu 32 Adam 0.16177 0.19061 0.96650 0.95991 0.96809 0.
S-MobileNet using Mish
without pruning

32 Adam 0.15722 0.18617 0.96542 0.94289 0.97896 0.

S-MobileNet using Mish
with pruning of layers

32 Adam 0.15763 0.17607 0.96604 0.95032 0.97392 0.

S-MobileNet using Relu 32 RMSProp 0.13723 0.17346 0.87666 0.86086 0.89902 0.
S-MobileNet using Mish
without pruning

32 RMSProp 0.13498 0.17175 0.87639 0.89797 0.91053 0.

S-MobileNet using Mish
with pruning of layers

32 RMSProp 0.12739 0.16891 0.91619 0.93680 0.94757 0.

S-MobileNet using Relu 32 SGD 0.15603 0.16823 0.96340 0.91702 0.92162 0.
S-MobileNet using Mish
without pruning

32 SGD 0.15473 0.17177 0.98158 0.94489 0.94751 0.

S-MobileNet using Mish
with pruning of layers

32 SGD 0.14154 0.16093 0.98345 0.98154 0.96233 0.

Table 6: Performance evaluation of the proposed S-MobileNet model after applying Segmen-
tation and Feature extraction mehods, with different optimizers, Relu and Mish activation
function, with and without pruning intermediary layers

8. Adam optimizer produces a high precision and F1 score for image classifi-

cation when compared to other two, whereas the Accuracy score of SGD

is slightly higher than other two optimizers.

Following the passing of the processed dataset after segmentation and feature

extraction to the S-MobileNet model the results are recorded in Table 6. A

couple of differences are found in the behavior of the optimizers as compared to

Table 5.

The comparative results/inferences obtained by applying segmentation and

feature extraction on S-MobileNet are listed below:

1. All the optimizers produce lower training and testing loss for applying

Mish activation function than compared to Relu except the test loss of

SGD which shows a slighly higher value for Mish than for Relu.

2. The training and test accuracy of Adam optimizer shows a slightly lower

value for Mish than for Relu. A slighly exceptional case.

3. The training accuracy of RMSProp shows lower accuracy for Mish than

Relu. But the test accuracy is ideal with higher value for Mish than for

Relu.
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Figure 12: Result Analysis (a) Training loss of S-MobileNet model (b) Test loss of S-MobileNet
model (c) Training Accuracy of S-MobileNet model (d) Testing Accuracy of S-MobileNet
model (e) Precision of S-MobileNet model (f) F1 score of S-MobileNet model
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4. For the SGD optimizer, the accuracy for training and testing is higher

with Mish activation function than with Relu.

5. The precision and F1 score of all the three optimizers shows a higher value

for Mish than for Relu.

6. A notable drop in training and testing loss values is found after pruning

layers for all the three optimizers except the training loss of Adam which

is slightly higher.

7. For all the optimizers, a notable analysis is the accuracy, precision and F1-

score of the model after undergoing pruning is higher than that without

pruning.

8. Thus it can be concluded that pruning layers produces higher accuracy

irrespective of optimizer. Having many layers in the model does not always

guarantee higher accuracy.

On comparison of Tables 5 and 6, the processed dataset, regardless of the op-

timizer used, produced higher accuracy, precision, and f1 score than the original

dataset. Fig 12 illustrates the performance of the S-MobileNet model.

4.3. Pruning layers in S-MobileNet

The layers of S-MobileNet at Level 6, 9, 11, 13 are pruned using L1-Norm

values.

Level 6 of the S-MobileNet mentioned in Table 2 has 256 filters. The L1

norm values of each filter are generated and are plotted in Fig 13-Diagram(A).

The L1-norm value of 0.1 is chosen as the threshold and this contributes to 10%

of the filters at this layer, around 25 in count, being pruned. Secondly, it is

applied at Level 9 with 512 filters. The L1-norm cutoff value is 0.09 (Fig (13)-

Diagram(B)) and around 40 filters are pruned. Thirdly at Level 11, the L1 norm

threshold is fixed at 0.1, and around 40 filters are pruned (Fig (13)-Diagram(C)).

And finally, at Level 13, the L1 norm threshold is 0.11, and around 51 filters

out of 512 are pruned (Fig (13)-Diagram(D)).

After many trials, the threshold values are selected in a way that effectively

increases the classification accuracy of the model. Also, the levels for pruning
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Figure 13: L1 norm compression value (A) Level 6 in S-MobileNet architecture-25 filters
pruned with L1Norm cutoff-0.07 (B) Level 9 in S-MobileNet architecture-40 filters pruned
with L1Norm cutoff-0.09 (C) Level 11 in S-MobileNet architecture-40 filters pruned with
L1Norm cutoff-0.1 (D) Level 13 in S-MobileNet architecture-51 filters pruned with L1Norm
cutoff-0.11.

Figure 14: L1 norm values
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are chosen with enough gaps between them to avoid loss of data. The L1 norm

values of all the 13 depthwise convolution layers are shown in Fig 14.

Pruning is only applied at only 4 levels in the proposed model since more

pruning will have a significant negative influence on accuracy. A detailed result

analysis of the drop in filter percentage and the associated increase in other

performance metrics is discussed below:

1. In levels 6, 9, 11, and 13, there are a total of 1792 filters. Of these, 156 filters

are pruned. Approximately 8% of the filters are pruned in these four levels. The

complete S-MobileNet architecture is made of 10944 filters and 156 filters are

pruned, which is approximately 1.4%.

2. The training accuracy of Adam, RMSProp, and SGD is raised by 0.06%,

4.5%, and 0.19% respectively. The testing accuracy of Adam, RMSProp, and

SGD is raised by 0.78%, 4.32%, and 3.87% respectively. Precision has decreased

by 0.51% for the Adam optimizer while rising by 4.06% and 1.56% for the RM-

SProp and SGD optimizer respectively. The F1 score shows a raise in 0.53%,

4.67%, and 0.0009% increase for Adam, RMSProp, and SGD respectively. Fig

14 shows the percentage of variation in all these performance metrics with and

without applying the pruning process.

Figure 15: Percentage change in performance metrics after applying pruning

From Fig 15, it’s seen that there is a significant drop in the training and
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Ref Model Accuracy
(Nasiri et al., 2018) Custom built model 88.57%

(Heller
et al.,
2018)

Inception 87.70%
Xception 86.20%
Inception ResNet 87.80%
ResNet 85.20%
DenseNet 88.20%
Ensemble 85.20%

(Sae-Lim
et al.,
2019)

MobileNet 80.14%
Modified MobileNet without data up sampling and data
augmentation method

83.93%

Modified MobileNet with data up sampling and data aug-
mentation method

83.23%

(Khan et al., 2019) SVM 89.80%
(Saarela & Geogieva, 2022) XAI and DCNN 80%

(Hoang
et al.,
2022)

ShuffleNet 76.83%
Wide- ShuffleNet 77.88%
Entropy-based Weighting and First-order Cumulative Mo-
ment (EW-FCM) + ShuffleNet

83.66%

Entropy-based Weighting and First-order Cumulative Mo-
ment (EW-FCM) + wide -ShuffleNet

84.80%

Entropy-based Weighting and First-order Cumulative Mo-
ment (EW-FCM) + EfficientNet-B0

85.50%

(Zafar et al., 2023) Customised MobileNet model and DeepLabV3+ 92.01%
S-Mobile
Net

Without segmentation and feature extraction 97.757%
With segmentation and feature extraction 98.345%

Table 7: Performance comparison of S-MobileNet to MobileNet and other existing algorithms
executed over HAM10000
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testing loss percentage and an overall raise in other performance metrics. The

proposed S-MobileNet model works efficiently in classifying the images into 7

classes with high accuracy and minimal loss.

The performance of the S-MobileNet framework is compared to the Mo-

bileNet benchmark algorithm and other existing algorithms executed over the

HAM10000 dataset in Table 7. Compared to other models/algorithms/CNN

frameworks, S-MobileNet performs better. The enhanced Gaussian filtering im-

age segmentation algorithm performs a noteworthy job of accurately extracting

features from images, preserves the edges, smoothens the image and reduces

noise in images. Another notable feature in the proposed model is the pruning

which is carried out at the appropriate layers which makes it lightweight and

further improves the performance. The literature papers that carried out its

work on HAM10000 datasets from 2018 to 2023 is shown in 7 and accuracy of

the proposed S-MobilNet outperforms all of these. Due to the uncertainty about

the GPU, processor, hardware power, or other external factors under which lit-

erature algorithms are executed, it would not be possible to compare or analyze

the latency of the algorithms or the time is taken to execute them with the

proposed ones.

Although the S-MobileNet CNN framework has achieved promising perfor-

mance on the HAM10000 dataset, future enhancements may be applying S-Mo-

bileNet on other datasets like ISBI 2016 challenge dataset for skin lesion analysis

towards melanoma detection (Gutman et al., 2016), PAD-UFES-20 skin lesion

dataset (Pacheco et al., 2020), PH2 database (Mendonça et al., 2013) or other

real-time datasets to make it acceptable as a global framework on skin lesion

analysis. Another interesting challenge would be to identify and validate over-

segmented images, as well as to control thresholds based on brightness or con-

trast.

The societal benefits of automated processing of skin images can help in

early detection of skin diseases like cancer/melanoma etc, reduces misdiagnosis

of skin diseases, earlier the prediction reduces the healthcare cost, early predicts

the change in the size of the skin lesion (Fig. 16) and the color change (Fig. 17),
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Figure 16: Skin lesion size progression

Figure 17: Change in skin lesion color with time

and promotion of human well being.

5. Conclusion

In this paper, we proposed an end-to-end deep CNN based skin lesion clas-

sification framework. Images from the HAM10000 dataset were preprocessed

using the proposed image segmentation and feature extraction algorithm, and

fed into our customised S-MobileNet CNN model for classification. The S-Mo-

bileNet CNN model was fed the raw dataset in the first phase, and the processed

dataset in the second, and a comparative study is performed. S-MobileNet CNN

model was trained in either case and hyperparameters were fine-tuned to ensure

higher accuracy in classification. The layers of the S-MobileNet are custom-

made and analysed by applying the Mish activation function. The performance

of the S-MobileNet model with the Mish activation function was compared with

the contemporary Relu activation function. Further, we compressed/pruned S-

MobileNet to develop a lightweight model. The filters in the four intermediary

layers of the S-MobileNet model were compressed using the L1-norm CNN com-

pression technique. Overall, 156 filters were pruned out of a total of 10944, in

S-MobileNet. The performance of the model is evaluated in four dimensions:
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with and without passing preprocessed data; Relu activation function vs Mish

activation function; mish activation function with and without applying com-

pression and across three CNN optimizers, namely Adam, RMSProp, and SGD.

Our results demonstrated that using processed data in the model results in im-

proved performance. The Mish activation function was shown to outperform the

Relu activation function, and pruning specific layers was also shown to improve

model performance. To conclude, our proposed model demonstrated a higher

classification accuracy compared to benchmark approaches, whilst still being

lightweight.
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