
 

Improved Double Deep Q Network-Based Task Scheduling
Algorithm in Edge Computing for Makespan Optimization

Lei Zeng†, Qi Liu†, Shigen Shen*, and Xiaodong Liu

Abstract: Edge  computing  nodes  undertake  an  increasing  number  of  tasks  with  the  rise  of  business  density.

Therefore,  how  to  efficiently  allocate  large-scale  and  dynamic  workloads  to  edge  computing  resources  has

become  a  critical  challenge.  This  study  proposes  an  edge  task  scheduling  approach  based  on  an  improved

Double  Deep  Q  Network  (DQN),  which  is  adopted  to  separate  the  calculations  of  target  Q  values  and  the

selection of the action in two networks. A new reward function is designed, and a control unit is added to the

experience replay  unit  of  the agent.  The management  of  experience data  are  also modified to  fully  utilize  its

value  and  improve  learning  efficiency.  Reinforcement  learning  agents  usually  learn  from  an  ignorant  state,

which  is  inefficient.  As  such,  this  study  proposes  a  novel  particle  swarm  optimization  algorithm  with  an

improved fitness function, which can generate optimal solutions for task scheduling. These optimized solutions

are  provided  for  the  agent  to  pre-train  network  parameters  to  obtain  a  better  cognition  level.  The  proposed

algorithm  is  compared  with  six  other  methods  in  simulation  experiments.  Results  show  that  the  proposed

algorithm outperforms other benchmark methods regarding makespan.

Key words:  edge computing; task scheduling; reinforcement learning; makespan; Double Deep Q Network (DQN)

1　Introduction

With the development and application of the Internet of
Things  (IoT)  technology,  traditional  cloud-based  data
center  service capabilities  have become limited due to

distance.  Thus,  edge  computing  now  plays  an
increasingly  important  role[1].  In  various  industries,
data  are  growing  exponentially.  For  example,  a  smart
city  has  a  large  amount  of  data  and  massive  service
scheduling  requirements  per  day[2].  In  meteorological
and electric power fields, the service data generated by
IoT  devices  in  remote  places  especially  rely  on  edge
computing  processing[3].  Similar  to  Moore’s  law,  the
number of  users  and the amount of  data they generate
are  expected  to  increase  exponentially  in  certain
periods[4].  The  rapid  growth  of  data  has  put  forward
new requirements for edge computing.  However,  edge
nodes  are  usually  limited  in  computing  resources,  and
the  demand  for  task  processing  is  increasing  day  by
day.  As such,  efficient  and reasonable task scheduling
is  an  important  part  of  improving  edge  resource
utilization and service quality.

Task  scheduling  in  the  edge  environment  is  an  NP-
hard  problem  because  of  its  complexity[5].  In  such  an
environment,  task  scheduling  optimization  strategies

 
   Lei  Zeng is  with School  of  Computer  Science,  Nanjing

University  of  Information  Science  and  Technology,  Nanjing
210044, China. E-mail: 20201220002@nuist.edu.cn.

   Qi  Liu is  with School  of  Software,  Nanjing  University  of
Information  Science  and  Technology,  Nanjing  210044,  China.
E-mail: qi.liu@nuist.edu.cn.

   Shigen  Shen is  with  the School  of  Information  Engineering,
Huzhou  University,  Huzhou  313000,  China. E-mail:
shigens@zjhu.edu.cn.

   Xiaodong Liu is with School of Computing, Edinburgh Napier
University,  Edinburgh,  EH10  5DT,  UK. E-mail:
x.liu@napier.ac.uk.

† Lei Zeng and Qi Liu contribute equally to this paper.
* To whom correspondence should be addressed.
    Manuscript  received: 2023-02-10;  revised: 2023-04-25;

accepted: 2023-06-03 

TSINGHUA  SCIENCE  AND  TECHNOLOGY
ISSN  1007-0214    13/20   pp806−817
DOI:  10 .26599 /TST.2023 .9010058
Volume 29 ,  Number 3 ,  June   2024

 
©  The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).



are  usually  divided  into  static  and  dynamic.  Based  on
heuristic  ideas,  the  static  scheduling  strategy  has
certain apparent defects. For example, static algorithms
only  consider  the  feasible  schemes  of  resource
allocation  without  considering  the  cluster  state.
Therefore, in resource allocation, fragmented resources
are  easily  generated,  and  the  scheduling  efficiency  is
low[6].

As the complexity of the edge environment and task
requirements  increases,  the  need  for  dynamic
scheduling  strategies  for  edge  computing  becomes
apparent.  In  recent  years,  researchers  have  therefore
paid  extensive  attention  to  artificial  intelligence,  such
as  reinforcement  and  deep  learning  methods.  The
generalization learning ability of these methods and the
self-learning  of  interacting  with  the  environment
provide new research ideas for task scheduling in edge
environments.  Reinforcement  learning  shows  good
performance on decision-making problems by learning
and  adjusting  actions  based  on  rewards  from  the
environment[7].  At  each  state,  the  agent  chooses  an
action  to  execute  and  gains  a  corresponding  reward
value[8].  The  agent’s  goal  is  to  maximize  the
cumulative  reward by choosing a  sequence of  actions.
The  corresponding  relationship  between  all  these
behaviors  and  states  is  the  strategy  learned  by  the
agent[9].  This  strategy  is  formed  by  constantly  trying
new  actions  and  making  adjustments.  This  idea  of
learning  allows  reinforcement  learning  to  be  a  very
effective edge task scheduling approach[10, 11].

In  general,  no  predefined  model  describes  the
dynamic  and  complex  task  scheduling  in  edge
environments.  The  task  scheduling  based  on  the
reinforcement learning model does not need to consider
the environment model in advance. The agent explores
the  environment  through  different  actions  and
gradually adapts to the dynamic changes of the external
environment.  The state of the virtual machine changes
with the execution of actions,  as shown in Fig.  1.  The
states of the virtual machines refer to the indicators that
require optimization, such as the maximum completion
time  (makespan)  and  task  response  time.  The  agent
adjusts  actions  to  optimize  scheduling  goals  by
observing changes in the state of the virtual machines.
Therefore,  reinforcement  learning  is  more  suitable  for
task  scheduling  problems  compared  with  other
machine learning algorithms[12−14].

Yang  et  al.[15] proposed  a  multi-objective  task
scheduling  strategy  based  on  Q-learning,  which  sorts

the tasks first and then assigns these to the appropriate
virtual  machines.  Ding  et  al.[16] used  M/M/S  queuing
model to assign users to each server in the cloud, sorted
tasks based on weighted attributes, and finally used the
Q-learning algorithm to assign tasks to different virtual
machines.  However,  the  Q-learning  method  based  on
table storage also faces a fatal  problem, which is  state
explosion.  When  the  dimensional  space  of  the
state–action  is  high,  the  storage  for  states  not  only
occupies  a  large  space  but  also  causes  a  time-
consuming  search.  Therefore,  the  traditional  Q-table
approaches  of  storage  and  search  have  become  the
bottleneck  restricting  the  scheduling  efficiency.  A
Deep  Q  Network  (DQN)  is  combined  with  the  value
function  approximation  and  neural  network,  and  the
target  network and experience replay method are  used
to  train  the  network[17].  Che  et  al.[18] proposed  a  task
scheduling  algorithm  based  on  a  deep  reinforcement
learning  model,  which  minimizes  task  execution  time
through  dynamic  scheduling  using  a  priority
relationship with edge servers.

Reinforcement  learning  methods  can  serve  as  a
general  framework  for  problems  in  decision  making
and  control;  however,  its  cognition  of  new  things
requires  cultivation,  which  requires  learning  under  a
large  range  of  data.  The  agent’s  learning  process  is
usually  slow  because  of  the  lack  of  valid  data  in  the
initial  state  and  a  large  number  of  inefficient  or  even
invalid  behavior  attempts.  As  such,  the  major
contributions of this study are concluded as follows:

•A  Double  DQN-based  task  scheduling  approach  is
proposed  to  avoid  the  problem  of  overestimation  in
DQN.  The  calculation  of  target  Q  values  and  the
selection  of  corresponding  actions  are  placed  in  two
networks.  Furthermore,  a  new  reward  function  is
designed for the agent.

•  A  control  unit  is  added  to  the  agent’s  experience

 

V
M

1

V
M

2

V
M

3

… V
M

n

V
M

1

V
M

2

V
M

3

… V
M

n

V
M

1

V
M

2

V
M

3

… V
M

n

State Action kActi
on

 1

State' mState' 1 
Fig. 1    State changes of the virtual machines.

  Lei Zeng et al.:  Improved Double Deep Q Network-Based Task Scheduling Algorithm in Edge Computing for... 807

 



replay  unit,  where  the  way  of  managing  and  deleting
experience data is modified to fully utilize its value and
improve learning efficiency.

•  An  improved  Particle  Swarm  Optimization  (PSO)
algorithm  with  a  new  fitness  function  is  proposed  to
generate  optimal  solutions  for  task  scheduling.  These
optimized  solutions  are  provided  as  empirical
knowledge  learning,  which  can  improve  the  cognition
ability of the agent regarding the environment.

The rest of this paper is organized as follows. Section
2  reviews  related  work  on  task  scheduling.  Section  3
describes the system model. The proposed approach is
designed  in  Section  4.  The  performance  evaluation  of
the  proposed  approach  is  presented  in  Section  5.
Section  6  presents  the  conclusion  and  possible  future
works.

2　Related Work

Task  scheduling  plays  a  crucial  role  in  improving  the
resource  utilization  efficiency  and  service  quality  of
edge  computing,  and  thus  has  received  much research
attention[19−22].  The  edge  environment  is  dynamic,
heterogeneous,  and  has  a  large  number  of  tasks.
Traditional  heuristic  algorithms  such  as  First  Come,
First Service (FCFS) and Round-Robin cannot adapt to
the  dynamic  context  in  edge  and  cloud  environments.
The  meta-heuristic  approach  combines  stochastic
algorithms and local search and thus obtains the ability
to  dynamically  explore  the  optimal  solution.  For
example, Qi[23] proposed a resource scheduling method
based  on  an  improved  PSO  to  optimize  the  service
quality  and  execution  time  of  tasks.  Huang  et  al.[24]

proposed a task allocation algorithm for mobile ad-hoc
networks  based  on  simulated  annealing  and  PSO.
However,  meta-heuristic  methods  also  lack  good
performance  in  dealing  with  dynamic  and  complex
edge and cloud environments.

With  its  emergence  and  superiority  over  humans  in
handling  decision-making  problems,  reinforcement
learning  has  been  used  to  solve  dynamic  task
scheduling  problems  in  edge  and  cloud  environments.
For  example,  the  Google  research  team  successfully
reduced  the  cooling  power  consumption  of  their  data
center  by  40% by  using  reinforcement  learning
technology  and  historical  data[25].  Dab  et  al.[26]

proposed  a  task  allocation  algorithm  named  QLJoint
based  on  Q-learning  to  minimize  task  delay.  Zhao  et
al.[27] proposed  a  low-load  Distributed  Intrusion
Detection  System  (DIDS)  task  scheduling  method

based on Q-learning. The load of DIDS can be reduced
by adjusting the scheduling when the network changes
in  the  edge  environment.  Guevara  et  al.[28] considered
the  QoS  requirements  of  applications  and  proposed  a
task  scheduler  based  on  reinforcement  learning  to
optimize  the  makespan  and  processing  cost  of
workflows.  These  are  value-based  methods  that  stores
the  Q  value  in  a  table  and  then  searches  for  the  most
appropriate  one  when  making  a  decision.  However,
when the  state–action  dimension  increases  in  size,  the
Q  table  undergoes  difficulties  in  terms  of  storage  and
search problems.

The  deep  reinforcement  learning  approach  has  just
made  up  for  the  shortcomings  of  Q-learning  and  has
achieved  certain  progress.  Wei  et  al.[29] proposed  a
QoS-aware job scheduling approach, which realizes the
online  scheduling  of  single  tasks  by  using  a  deep  Q-
learning  algorithm.  Dong  et  al.[30] proposed  a  task
scheduling method that combines deep learning and Q-
learning.  Li  et  al.[31] proposed  a  generative
confrontation  reinforcement  learning  task  scheduling
algorithm  based  on  expert  experience,  which  can  use
the  optimal  policy  in  the  expert  experience  pool  to
guide  the  agent  to  learn  dynamic  task  scheduling.
Gazori  et  al.[32] proposed  a  double  deep  Q-learning
scheduling  algorithm  to  schedule  tasks  submitted  by
users  and  minimize  the  average  service  delay  through
the  analysis  of  hyperparameters.  Zhang  et  al.[33]

proposed an edge scheduling approach based on DVFS
and double deep Q-learning, wherein the Double DQN
is used to generate the Q value for the DVFS. Swarup
et  al.[34] proposed  a  scheduling  algorithm  based  on
deep reinforcement learning, which aims to reduce the
cost  and  service  delay  of  scheduling  IoT tasks  in  fog-
based environments.

The  combination  of  the  decision-making  ability  of
reinforcement  learning  and  the  perceived  ability  of
deep  learning  considerably  enhances  the  cognitive
ability  of  the  agent.  However,  the  deep  reinforcement
learning approach also faces new problems.

•  Deep  learning  methods  require  large  amounts  of
labeled data for training. However, deep reinforcement
learning methods do not have enough data in the initial
state.  Therefore,  in  the  early  stage  of  task  scheduling,
its cognition of the environment is poor.

• Reinforcement learning is based on scalar rewards,
which are  often sparse,  noisy,  and delayed.  Therefore,
the experience data cannot be fully utilized to improve
learning efficiency.

    808 Tsinghua Science and Technology, June 2024, 29(3): 806−817

 



3　System Model

Reinforcement  learning  in  task  scheduling  can  be
explained  in  two  parts,  namely,  the  edge  environment
and the agent. Their relationship is shown in Fig. 2.

The edge environment contains machine clusters and
tasks  submitted  by  users,  as  well  as  task  and  machine
feature descriptions. These features contain task length,
task  arrival  time,  and  remaining  machine  resources,
which  are  the  conditions  used  as  the  basis  for
scheduling  operations.  Based  on  reinforcement
learning,  the  agent  is  a  scheduler  that  selects  actions
and  schedules  tasks  to  corresponding  machines  based
on  the  current  states  and  then  receives  rewards  from
environmental feedback. The agent can thus obtain the
optimal  scheduling sequence by maximizing the value
of reward accumulation.

S t t At

p(S t+1,Rt+1|S t,At)
S t S t+1

Rt+1

The main part of reinforcement learning is the agent,
which  interacts  with  the  environment.  Observing  a
certain state  at time , the agent chooses an action 
according  to  a  certain  preset  strategy  then  a  certain
state  transition  probability  from  the
current  state  to  the next  state .  Meanwhile,  the
environment  also  gives  the  agent  a  reward .  This
process produces the following sequence:
 

S 0, A0, R1, S 1, A1, R2, S 2, . . . , S T−1, AT−1, RT , S T .

Markov  Decision  Processes  (MDPs)  are  adopted  to
model  reinforcement  learning  problems.  Through
continuous  learning,  the  agent  can  make  better
decisions when interacting with the environment. MDP
is a kind of stochastic process, and its original model is
the  Markov chain.  The  environment  can  be  simplified
by Markov characteristics as in Eq. (1):
 

p (S t+1|S t) = p (S t+1|S 1,S 2, . . . ,S t) (1)
The  edge  task  scheduling  is  in  line  with  this

characteristic. The next state after each scheduling only
depends on the current state; that is, as shown in Fig. 3,
State T1 is  only  related  to  State T0,  while  State T2 is
only related to State T1 but not to State T0.

Systems  can  be  modeled  based  on  this  property.
Edge  computing  resources  can  be  normalized  to  be
composed  of N physical  servers.  Each  of  the  physical
servers  can  create  multiple  virtual  machines  through
virtualization technology to perform tasks.

n
T = {t1, t2, t3, . . . , tn} ti (i ∈ [1,n])

i n
T ti

ti = (li,mi, pi,di) li
ti

mi pi di

ti
m

R = {r1,r2,r3, . . . ,rm}

r j =
(
mips j,core j, ram j,hyper j

)
r j j ∈ [1,n]

ET

mips j

r j

The following steps show the modeling of resources,
tasks,  and  goals  in  task  scheduling.  The  scheduler
receives  independent task requests.  The task list  can
be  defined  as ,  where 
denotes the -th task, and  is the total number of tasks
in  the  task  list .  The  task  can  be  represented  by  a
vector , where  denotes the duration of
task  expressed  in  Million  Instructions  Per  Second
(MIPS)  while , ,  and  represent  the  memory
space required by task , number of processors, and the
deadline,  respectively.  The  cluster  contains 
heterogeneous virtual machine resources, which can be
defined  as .  The  configurations  of
these  resources,  such  as  CPU frequency  and  memory,
vary. Meanwhile,  can be
used to denote the virtual resource ,  where .
The scheduler is responsible for assigning the received
tasks  to  the  appropriate  machines.  Execution  Time
( ) is  defined as the time from start  to finish of task
execution  of  a  specific  virtual  machine,  which  can  be
calculated by using Eq. (2).  represents the MIPS
value of the virtual machine .
 

ETi =
li

mips j
(2)

In  edge  task  scheduling,  the  max  value  of  the
completion  time  among  all  the  virtual  machines  is
defined  as  makespan,  which  is  used  to  evaluate  the
efficiency  and  quality  of  task  scheduling  algorithms.
Under limited resources, a lower makespan means less
time for  completing tasks and higher  utilization of  the
machine. In task scheduling, makespan is calculated by
using Eq. (3):

 

Edge environment

Tasks

Virtual machines

…

Agent
(RL-based scheduler)

Reward (feedback 
from action)

Action (current 
scheduling policy)

Observation
(edge environment 

status)  

Tasks and machines features

Task length

Task resource demand

Task arrive time

Virtual machine resource remained

…

…

 
Fig. 2    Task  scheduling  framework  for  edge  environment
based on reinforcement learning.

 

State
T0

State State State

Relevant

Irrelevant

R1

R2

...
T1 T2

Tn

 
Fig. 3    Markov process in edge task scheduling.

  Lei Zeng et al.:  Improved Double Deep Q Network-Based Task Scheduling Algorithm in Edge Computing for... 809

 



 

MS =max({CT0,CT1, ..,CTm}) (3)

CT j = γ j− start
(
r j
)
, j = 0, 1, . . . , m

j r j γ j

j
start

(
r j
)

CTave

CTvar

where ,  is  the
completion time of  the -th  virtual  machine  and 
indicates  the  time  when  the -th  virtual  machine
completes all of its assigned tasks.  is the time
when  tasks  are  begun.  MS  is  the  maximum  of  all
machine  completion  time,  that  is,  makespan.  The
average completion time  and standard deviation
of completion time of all machines  are shown in
Eqs. (4) and (5), respectively.
 

CTave =

m∑
j=1

CT j

m
(4)

 

CTvar =

m∑
j=1

(
CT j−CTave

)2

m
(5)

An agent for reinforcement learning consists of three
important  components:  action  space,  state  space,  and
reward  function.  These  three  parts  depend  on  and
promote  each  other,  ensuring  continuous  and  stable
agent  learning.  On  the  basis  of  the  state  of  the
environment, the agent chooses and executes an action.
The  reward  function  is  used  to  motivate  the  agent  to
adjust actions to obtain the maximum reward value.

CT j

Vcurrent = {v1, v2, v3, . . . , vm, MS}

Twait = {t1, t2, t3, . . . }
S = {S 1, S 2, . . . } S i = (Vcurrent, Twait)

The  state  space  reflects  the  allocation  and  usage  of
tasks and virtual machines. For the state of resources of
each  virtual  machine,  the  completion  time  of  the
currently  assigned  task  can  be  calculated.  The  global
maximum  completion  time  is  also  recorded,

 can  be  used  to
represent  the  machine  status.  For  the  task  state,  the
agent  only  needs  to  observe  the  task  queue  to  be
scheduled,  which  can  be  represented  by

.  The  state  space  is  described  by
, where .

A = {1,2,3, . . . ,m}

ri

The  action  space  reflects  the  behavior  of  the
scheduler  in  assigning  tasks  to  virtual  machines.  With
m virtual  machines,  the  action  space  for  each  task
scheduling  is  the  set  of  serial  numbers  of m virtual
machines.  Thus,  can  be  used  to
represent the set of action spaces. The criterion for the
agent  to  choose  the  needed  actions  is  to  minimize  the
makespan.  Therefore,  when  the  scheduling  is  not
finished,  the  agent  can  consider  scheduling  tasks  to
machine  with  the  smallest  completion  time.  Then  a
reward value and update of the state of the environment

can  be  obtained.  A  deep  learning  neural  network
generates  actions  that  lead  to  obtaining  the  greatest
cumulative rewards.

The  reward  function  is  the  feedback  given  by  the
environment  corresponding  to  the  actions  chosen  by
the agent, which is crucial to improve the performance
of  the  reinforcement  learning  algorithm.  The  agent
adjusts  its  actions  according  to  the  reward  feedback
obtained  to  better  adapt  to  the  environment.  The  goal
of  this  study is  to  obtain  the  optimal  makespan,  and a
new reward function is designed, as shown in Eq. (6).
 

R = − (
MS

(
S ′

)−MS(S )
)
ρ (6)

MS(S ′) S ′

S
ρ

where  is the makespan that enters the state 
after  executing  an  action  in  state  during  task
scheduling,  and  is  a  constant  used  to  adjust  the
reward  to  a  suitable  range.  The  reward  is  given  by
slowing the makespan growth. To maximize the reward
value,  the  slowest  growth  of  the  makespan  is
necessary.  Therefore,  the  scheduler  becomes  more
inclined to schedule tasks to virtual machines with light
loads and low completion time.

4　Proposed Approach

4.1　Design  of  Double  DQN  model  for  task
scheduling

maxa′Q(st+1,a′, θ−)

Despite its contributions to the Q value to approach the
optimization  goal  quickly,  the  greedy  method  is  also
prone  to  overfitting.  In  the  DQN  model,  the  target
network  adopts  the  action  selection  strategy  of
maximizing  the  Q  value  by .
Therefore,  the  algorithm  model  obtained  by  DQN
probably  has  a  large  deviation,  which  results  in
overestimation.  To  tackle  the  overestimation  problem,
we need to change the training method of the network
self-fitting.  Therefore,  this  study  proposes  a  learning
model  based  on  Double  DQN  to  modify  the  learning
method for task scheduling. By placing the calculation
and  action  selection  of  the  target  Q  value  in  two
networks, the transfer of the maximum deviation is cut
off.

Q(s,a, θ)
Q(s,a, θ−)

θ− , θ

θ

A  target  network  with  the  same  structure  as  the
original  network  but  with  different  parameters  is
constructed.  The  is  called  an  evaluation
network,  and  the  target  network  is ,  where

.  The  roles  of  the  two  networks  differ.  The
evaluation  network  is  responsible  for  controlling  the
agent  and  collecting  experience,  and  its  parameters 

    810 Tsinghua Science and Technology, June 2024, 29(3): 806−817

 



Q(s,a, θ−)are up-to-date. The target network  is used to
compute the target value.

r

Figure  4 shows  the  algorithm  learning  procedure  of
scheduling in an edge environment. The agent receives
the  state  of  virtual  machines  and  tasks  from  the  edge
scheduling environment.  Then appropriate  actions,  the
task-to-virtual machine mappings, are generated by the
evaluation  network.  Then  the  agent  assesses  whether
all  the  tasks  have  been  scheduled.  If  scheduling  is
complete,  then  the  target  value  is .  If  not,  the  target
network  is  used  to  calculate  the  target  value.  The
gradient descent algorithm is then performed to update
the evaluation network.

st+1

a∗

Action selection: based on state ,  the evaluation
Q-network is adopted to seek an action that maximizes
the  output  of  Double  DQN.  In  this  network,  is  the
action  that  can  produce  the  largest  Q  value  and  is
defined as in Eq. (7):
 

a∗ = arg max
a∈A

Q (st+1,a, θ) (7)

(st+1,a∗)
a∗ yt

Target  value  calculation: Target  Q-network  is
adopted  to  calculate ,  that  is,  the  Q  value  of
action  in  the  target  network.  is  calculated  by
using Eq. (8).
 

yt = rt +γQ
(
st+1,a∗, θ−

)
(8)

a∗

arg max Q θ−

Given that  the  target  and the  evaluation Q-networks
are independent of each other,  is not necessarily the

 under  the  target  Q-network  parameter,
which  can  be  described  as  the  following  inequality  in
Formula (9). Thus, the error can be effectively reduced,
and  the  problem  of  network  overestimation  can  be
avoided.

 

Q
(
st+1,a∗, θ−

)
⩽max

a∈A
Q

(
st+1,a, θ−

)
(9)

Then,  the  target  Q  value  can  be  calculated  by  Eq.
(10) in Double DQN.
 

yt = rt +γQ
(
st+1,arg max

a∈A
Q (st+1,a, θ) , θ−

)
(10)

The evaluate Q-network is trained by minimizing the
mean squared  error  (MSE)  between  the  target  and  the
estimated values. The minimized MSE loss function is
shown in Eq. (11).
 

L (θ) = Es,a
[
(yt −Q (s,a, θ))2

]
(11)

θ

Gradient  descent  is  then  performed  to  update  the
network.  The gradient  of  parameter  is  shown in  Eq.
(12).
 

∇θ = E[yt −Q (s,a, θ)∇Q (s,a, θ)] (12)
θ = θ+∇θ
C

θ− = θ

Evaluation Q-network parameters  are then
updated.  After  a  certain  step  size ,  we  update  the
Temporal  Difference  (TD)  target  network  parameters
to  set .  In  the  training  of  Double  DQN,  the
reinforcement  learning  and  the  deep  learning  gradient
descent  algorithms  are  carried  out  together.  The
empirical  sample data  obtained by the agent  is  sent  to
the  network  for  training.  Thus,  the  network
continuously approaches the action value function, and
the agent learns the optimal strategy.

∇θ

The parameter update intervals of the target network
are  improved.  Given  that  the  gradient  descent  method
is  used  in  the  network  training,  the  gradient  value 
can  be  used  to  evaluate  the  network  and  assist  in
judging whether to update the target network or not. In
the initial stage, the value of the target network update

 

Update

Evaluation Q-network

.

.

.

Target Q-network

.

.

.

Experience replay unit

Edge 
scheduling 

environment

State 

Double DQN loss

Gradient of the loss function

Control 
unit

arg max

arg max

 
Fig. 4    Learning process of the Double DQN algorithm.

  Lei Zeng et al.:  Improved Double Deep Q Network-Based Task Scheduling Algorithm in Edge Computing for... 811

 



C

C

interval  is  defined.  Then,  the  gradient  value  during
network  training  is  observed.  If  the  gradient  value  is
lower  than  the  threshold,  then  the  network  tends  to
converge,  and  the  number  of  steps  in  the  update
interval  can  be  reduced.  If  the  update  interval  is
reached but the gradient remains large, then the former
can  increase  appropriately.  Thus,  the  dynamic
adjustment of the update interval of the target network
can be realized.

4.2　Control unit for experience replay

The agent learns based on the reward, which is a scalar
value. However, given that the reward is usually sparse
and delayed in the learning process, this study proposes
a novel experience replay. This learning method is used
in  deep  reinforcement  learning.  Double  DQN  has  a
storage  unit  for  storing  previous  learning  experiences,
given  that  Q-learning  can  learn  not  only  from  current
and  past  experiences  but  also  from  others.  Therefore,
the trained data are stored in the replay buffer, and the
previous  experience  can  be  randomly  extracted  for
learning, thereby breaking the correlation among data.

(s,a,r, s′)

The  original  Double  DQN  experience  replay
mechanism  is  simple,  saving  queue  structures  and
deleting  old  data  when  the  queue  is  full.  For  the
selection of empirical data, uniform distribution is used
to  randomly  select  from  the  memory  unit.  However,
among  the  experiences  data ,  a  few  samples
can  be  used  to  help  the  network  improve  the  learning
quality  and  speed  up  the  convergence;  the  others  are
not  important.  This  simplistic  approach  to  data
management  does  not  fully  leverage  the  value  of
experience  data.  Therefore,  the  experience  replay  unit
in  Double  DQN  is  redesigned  to  better  serve  the
network  training.  Before  the  experience  replay  unit,  a
control unit is added to label the experience data and a
new data management method is designed.

(s,a,r, s′)

δ = yt −Q(st,a, θ)

δ2

δ

δ

The  data  input  into  the  experience  replay
unit carry two pieces of information that can be used to
mark  their  values.  One  is  the  TD  error

.  In  the  Double  DQN model,  The  TD
error  is  the  difference  between  the  two  values  of  real
and  estimated  Qs,  which  are  calculated  by  the  two
networks,  respectively.  The  goal  of  training  is  to
achieve  the  smallest  possible  expectation  of .
Therefore,  can mark the importance of the sample to
a certain extent. However,  is not completely accurate
because  of  the  random  environment  and  thus  cannot
fully  reflect  the  state.  The  other  information  is  the

S t S t+1

At r
r

reward.  The  principle  of  reinforcement  learning  to
choose  an  action  is  to  obtain  the  maximum  reward.
When  the  state  enters  into  the  next  state  by
taking  an  action ,  a  reward  is  obtained.  A  high
reward  indicates a high value of the action.

(s,a,r, s′)

τage

(s,a,r, s′, τage) τage

Based  on  these  two  pieces  of  information,  an
experience replay unit  with a control  gate is  designed.
Before  the  data  are  stored  in  the  memory
unit, a flag bit is added by the control unit. This flag bit
limits  the  lifespan  of  the  sample  data  stored  in  the
memory unit  to adjust  the probability of different data
being sampled and learned. Instead of being simply and
passively managed and deleted in the memory by using
time and space criteria,  the data are replaced by novel
management  in  an  active  way.  Thus,  the  flag  bit 
turns the data into . The value of  can
be calculated by Eq. (13):
 

τage = Lini+ rα1− |δ|α2 (13)

Lini

r δ

τage α1 α2 r δ

where  is  the  initial  lifetime  set  for  each  datum.
Reward  and TD error  are used to adjust the value of

.  and  are constants used to adjust  and  to a
suitable  range.  The  larger  the  reward,  the  slower  the
growth  of  the  makespan,  indicating  that  the  actions
performed  in  this  state  increase  the  balance  of  the
cluster  load.  According  to  the  reward  calculation
formula,  the  reward  is  a  value  less  than  zero.  The
smaller  the  absolute  value  of  the  TD  error,  the  more
accurate the neural network prediction.

τage

τage

τage

τage τage

The management of experience data is modified. The
 indicates the length of life of the sample data in the

memory  unit,  and  the  management  of  life  is  realized
through . Every time data are sampled and learned,
the  value  of  is  reduced  by  one,  and  the
corresponding sample is deleted from the memory unit
until  is  zero.  Experience  data  with  a  smaller 
value  are  deleted  first  when  the  memory  unit  space  is
full.  Thus,  a  kind  of  priority  management  can  be
achieved  indirectly.  The  more  valuable  the  data,  the
longer life  they will  have in the memory unit,  and the
greater their probability of being sampled and learned.
By contrast, the probability of sampling and learning is
lower for data without much value.

4.3　Pretraining for evaluation network

Deep learning  requires  a  large  amount  of  labeled  data
for  training  to  achieve  better  performance.  However,
reinforcement  learning,  which  acquires  experience  by
interacting with the environment, lacks data in the early

    812 Tsinghua Science and Technology, June 2024, 29(3): 806−817

 



stages of the method. Therefore,  this paper proposes a
pretraining-based  reinforcement  learning  task
scheduling  method  to  improve  the  scheduling
performance  of  the  algorithm.  An  improved  PSO
algorithm is proposed to obtain the optimal scheduling
sequence. Then a neural network of deep reinforcement
learning  is  used  to  fit  these  optimized  solutions  to
enable the agent to obtain prior knowledge. Given that
the  task  data  are  independent  and  identically
distributed,  the  pretraining  can  provide  effective
experiences.

Calculations of the completion time of each machine
in  the  cluster  show great  variations  in  edge  resources.
For  example,  the  percentage  difference  between
maximum and minimum completion time is as high as
584% in  FCFS,  192% in  Shortest  Job First  (SJF),  and
379% in PSO. These results indicate a load imbalance
in the task scheduling process. Therefore, based on the
load  balancing  mechanism,  a  new  fitness  function  is
designed  for  PSO,  which  enables  particles  to  obtain
better  solutions  in  task  scheduling.  The  new  fitness
function is formulated as Eq. (14):
 

f = σMS+ (1−σ)CTvar (14)
MS CTvar

σ
MS

CTvar f

where  is the optimization target makespan;  is
the  variance  of  the  completion  time  of  all  virtual
machines;  is  a  constant  between  0  and  1,  which  is
used  to  adjust  the  optimization  ratio  between  and

;  and  is  the  fitness  function,  which  is  used  to
evaluate  the  optimization  goal.  The  objective  is
optimized  by  minimizing  the  value  of  the  fitness
function.  The  optimization  constraints  for  cluster  load
balancing  are  added  to  the  new  fitness  function.  The
makespan  can  further  decrease  by  reducing  the  load
difference across the cluster machines. This action can
also reduce the load on several machines.

θ

The  improved  PSO  algorithm  is  used  to  generate
multiple  sets  of  optimized  solutions,  which  are  the
mapping sequence from tasks  to  edge resources.  Then
these  optimized  solutions  can  be  used  to  pre-train  the
evaluation  Q-network  of  Double  DQN  to  obtain  a
better  cognition  of  the  environment.  Thus,  the  agent
can  obtain  a  lower  makespan  in  task  scheduling
through the learning of prior knowledge.

5　Performance Evaluation

5.1　Experiment setup

In  this  study,  the  proposed  approach  is  tested  and

compared  with  other  methods  in  a  simulation
environment. The experimental setup is as follows. An
edge  node  containing  14  physical  machines  is
constructed,  with  the  physical  machines  having  3000
MIPS  values,  four  cores,  and  16  GB  memory.  Then
three  types  of  virtual  machines  are  created  with
different resource configurations, as shown in Table 1.

The task dataset from the Alibaba data center is used
as  task  input.  Experiments  are  carried  out  under
different workload scales and machine numbers to test
the  scheduling  performance  of  the  proposed  approach
in  different  environments.  The  algorithms  used  for
comparison  include  FCFS,  SJF,  PSO,  Simulated
Annealing  PSO  (SA-PSO),  DQN,  and  Double  DQN
task scheduling. For the convenience of drawing icons,
the  Double  DQN  is  abbreviated  as  DDQN,  and  the
method  proposed  in  this  paper  is  referred  to  as  G-
DDQN.

5.2　Experimental result

The dataset  cloud_trace_2017 released  by  the  Alibaba
data center contains a large number of task datasets in
real  production  application  environments. Figure  5
shows the length distribution of tasks.

The  task  duration  in  this  dataset  is  almost  within
1000 s, most of which are within 200 s, accounting for
88.7%.  The  tasks  within  200  s  are  relatively  evenly
distributed in different time periods, as follows: 1–20 s
account for 30.9%, 20–50 s account for 20.9%, 50–100 s
account  for  22.5%,  and 100–200 s  account  for  25.6%.
The  proportion  of  longer  tasks  of  more  than  200  s
continuously decreases.
 

Table 1    Virtual machine configuration.
VM type MIPS Number of cores Memory (GB)
Type-1 1000 1 1
Type-2 1500 1 2
Type-3 2000 1 3

 

0

200

400

600

800

1000

1200

1400

1600

Task duration (s)

N
um

be
r o

f t
as

ks

1−20 20−50 50−100 100−200 200−300

300−400 400−500 500−600 600−1000

 
Fig. 5    Task duration distribution.

  Lei Zeng et al.:  Improved Double Deep Q Network-Based Task Scheduling Algorithm in Edge Computing for... 813

 



A  heterogeneous  cluster  of  three  types  of  virtual
machines  is  created,  as  follows:  12  Type-1,  8  Type-2,
and  6  Type-3.  The  influence  of  different  numbers  of
hidden layers and the number of neurons on the Double
DQN  task  scheduling  algorithm  model  is  tested.
Multiple  sets  of  Double  DQN  models  are  constructed
with  different  hidden  layers,  and  the  average  value  of
multiple training sessions is taken for each model. The
results  are  shown  in Fig.  6.  The  experimental  results
show that the effect of two hidden layers is better than
that  of  one.  However,  the  number  of  hidden  layers  is
not  always  better.  Specifically,  with  three  hidden
layers, the performance of the algorithm will no longer
be  significantly  improved.  The  result  shows  that  the
two  hidden  layers  can  already  achieve  a  better  fitting
effect.  Moreover,  the  more  hidden  layers,  the  longer
the training time of the algorithm.

Under  the  two  hidden  layers,  the  effect  of  different
numbers  of  neurons  is  tested. Figure  7 shows  that
better  scheduling  results  can  be  obtained  after
increasing the number of neurons. However, similar to
the  number  of  hidden  layers,  the  makespan  does  not
always  decrease  linearly  as  the  number  of  neurons
continues  to  increase.  When  the  number  of  neurons
reaches  12  or  more,  the  scheduling  results  gradually
stabilize.  However,  the  optimal  number  of  neurons  is
not an absolute value and also needs to be modified as
the  task  schedule  scales  to  accommodate  changes  in
fitting complexity.

The  number  of  virtual  machines  is  fixed  to  test  the
performance  of  the  scheduling  algorithm  under
different  workloads.  Multiple  sets  of  experiments  are
carried  out  by  varying  the  number  of  tasks  loads  with
increases  of  50.  The  proposed  method  is  compared
with  six  other  methods.  Five  sets  of  experiments  are

carried  out  under  different  numbers  of  tasks.  The
results  of  makespan  and  the  variances  of  completion
time are shown in Figs. 8 and 9.

As  shown  in Fig.  8,  the  following  results  can  be
obtained. First, the value of the makespan of the FCFS
algorithm is always the largest and increases the fastest
as  the  number  of  tasks  increases.  G-DDQN  improves
the  scheduling  performance  by  an  average  of  46.7%
under  different  loads  compared  with  FCFS.  Second,
compared  with  the  SJF  algorithm,  the  percentage
improvement  of  G-DDQN  increases  from
approximately  12% to  21% as  the  number  of  tasks

 

0

100

200

300

400

500

600

700

800

900

100 150 200

M
ak

es
pa

n 
(s

)

Number of tasks

1 hidden layer 2 hidden laysers 3 hidden layers

 
Fig. 6    Experimental  results  with  different  number  of
hidden layers.

 

0

100

200

300

400

500

600

700

800

900

100 200

M
ak

es
pa

n 
(s

)

Number of tasks

6 neurons 8 neurons 10 neurons 12 neurons
14 neurons 16 neurons 18 neurons

 
Fig. 7    Experimental  results  under  different  number  of
neurons.

 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

100 150 200 250 300

M
ak

es
pa

n 
(s

)

Number of tasks

G-DDQN FCFS SJF PSO SA-PSO DQN DDQN

 
Fig. 8    Makespan under different number of tasks.

 

0

50 000

100 000

150 000

200 000

250 000

100 150 200 250 300

V
ar

ia
nc

e 
of

 c
om

pl
et

iti
on

 ti
m

e

Number of tasks

FCFS SJF PSO SA-PSO
DQN DDQN G-DDQN

 
Fig. 9    Variance of completion time under different number
of tasks.

    814 Tsinghua Science and Technology, June 2024, 29(3): 806−817

 



increases.  This  result  indicates  that  the  scheduling
performance of  SJF tends to degrade when faced with
an  increase  in  the  number  of  tasks.  As  the  number  of
tasks increases,  more long tasks need to be scheduled,
and  the  scheduling  performance  of  SJF  decreases.  G-
DDQN  increases  prior  knowledge  training  and
improves  the  management  and  utilization  of  empirical
data, and therefore can achieve the optimal scheduling
effect.  Compared  with  PSO,  SA-PSO,  DQN,  and
DDQN  under  different  loads,  the  G-DDQN  method
improves performance by 9.9%, 6.1%, 5.8%, and 2.6%
on average in terms of makespan, respectively.

Figure  9 reflects  the  load  balancing  of  the  cluster.
The  larger  of  the  variance  of  completion  time,  the
larger of the load difference for the cluster.  Therefore,
the  makespan  value  of  the  FCFS  method  is  poor
because  of  its  large  cluster  load  difference  during  the
scheduling. For SJF, the decrease in performance when
the  number  of  tasks  increases  is  also  due  to  the
deterioration  of  the  system  load  balance.  When  the
number of tasks exceeds 200, the value of the variance
of  the  machine  completion  time  in  SJF  scheduling
rapidly  begins  to  increase.  Compared  with  these
heuristic  methods,  the  PSO,  SA-PSO,  DQN,  DDQN,
and G-DDQN methods have smaller variance increases
in  machine  completion  time.  Among  them,  G-DDQN
can  be  kept  at  the  lowest  level,  and  thus  the  system
load  balance  in  the  scheduling  process  is  the  best.  As
the number  of  tasks  increases,  G-DDQN can maintain
better system load balance than other algorithms.

When the cluster has a heavy workload, the number
of  virtual  machine  resources  must  be  increased  to
relieve system pressure. Therefore, the experiment also
tests  the  scheduling  performance  of  the  proposed
method under elastic  changes in the number of  virtual
machines.  In  this  study,  a  new  cluster  is  created  with
multiple Type-2 virtual machines. The workload is set
to  300,  and  then  the  number  of  virtual  machine
resources is dynamically changed for experimentation.
Five  sets  of  experiments  with  different  numbers  of
virtual  machines  are  carried  out,  and  the  following
results are obtained.

Figure  10 shows  the  result  of  the  makespan.  The
performance  of  the  FCFS  scheduling  algorithm  is
unstable  because  its  makespan  sometimes  even
increases as the number of  virtual  machines increases.
Under  different  numbers  of  virtual  machines,  the
makespan  of  G-DDQN  is  28.7% lower  than  that  of
FCFS  on  average.  As  the  number  of  virtual  machines

decreases,  G-DDQN  can  obtain  the  lowest  makespan
among  the  algorithms  in  task  scheduling.  Compared
with  SJF,  PSO,  SA-PSO,  DQN,  and  DDQN,  the
scheduling  performance  of  G-DDQN  is  improved  by
9.2%, 5.3%, 4.1%, 4%, and 1.8%, respectively.

The  data  in Fig.  11 reflect  the  load  balance  of  the
system.  As  can  be  seen  from  the  variance  values  of
machine  completion  time,  the  results  of  makespan  in
FCFS are  consistent  with  the  system load  differences.
Under  a  steady  workload,  the  variance  of  completion
time  for  the  other  algorithms  decreases  slightly  as  the
number  of  machines  increases  but  remains  stable
overall.  Among  them,  the  G-DDQN  method  can
maintain  the  lowest  system  load  difference.  Thus,  the
proposed  scheduling  method  can  also  maintain  stable
performance  when  dealing  with  elastic  changes  in  the
number of cluster virtual machines.

6　Conclusion

This study proposes a task scheduling algorithm based
on improved Double DQN to optimize makespan in the
edge environment. First, the selection of action and the
calculation  of  the  Q  value  are  decoupled,  and  a  new
reward  function  is  designed.  Second,  the  design  of
experience  replay  method  and  the  management  of

 

0

200

400

600

800

1000

1200

1400

1600

1800

16 20 24 28 32
Number of virtual machines

G-DDQN FCFS SJF PSO SA-PSO DQN DDQN

M
ak

es
pa

n 
(s

)

 
Fig. 10    Makespan  under  different  number  of  virtual
machines.

 

0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

80 000

90 000

100 000

16 20 24 28 32

V
ar

ia
nc

e 
of

 c
om

pl
et

io
n 

tim
e

Number of virtual machines

FCFS SJF PSO SA-PSO
DQN DDQN G-DDQN

 
Fig. 11    Variance  of  completion  time  under  different
number of virtual machines.

  Lei Zeng et al.:  Improved Double Deep Q Network-Based Task Scheduling Algorithm in Edge Computing for... 815

 



experience  data  are  modified  to  fully  tap  its  different
values.  Then,  prior  knowledge  is  provided  for  the
reinforcement  learning  agent  to  pre-train  the  network
parameters  to  improve  the  agent’s  cognition  level  of
the  environment.  Finally,  the  proposed  approach  is
tested  and  compared  in  different  environments.
Comparisons  with  other  methods  show  that  the
proposed  scheduling  can  improve  cluster  load
balancing  and  reduce  makespan.  In  future  works,  we
will further study workflow scheduling.

Acknowledgment

This  work  was  supported  by  the  National  Key
Research  and  Development  Program  of  China  (No.
2021YFE0116900),  National  Natural  Science
Foundation  of  China  (Nos.  42275157,  62002276,  and
41975142),  and Major Program of the National  Social
Science Fund of China (No. 17ZDA092).

References 

 X. Xu, H. Li, W. Xu, Z. Liu, L. Yao, and F. Dai, Artificial
intelligence  for  edge  service  optimization  in  Internet  of
vehicles: A  survey, Tsinghua  Science  and  Technology,
vol. 27, no. 2, pp. 270–287, 2021.

[1]

 M. Laroui,  B.  Nour,  H.  Moungla,  M. A.  Cherif,  H.  Afifi,
and  M.  Guizani, Edge  and  fog  computing  for  IoT: A
survey  on  current  research  activities  &  future  directions,
Comput. Commun., vol. 180, pp. 210–231, 2021.

[2]

 X.  Xu,  H.  Tian,  X.  Zhang,  L.  Qi,  Q.  He,  and  W.  Dou,
DisCOV: Distributed  COVID-19  detection  on  X-ray
images  with  edge-cloud  collaboration, IEEE  Trans.  Serv.
Comput., vol. 15, no. 3, pp. 1206–1219, 2022.

[3]

 S. B. Slama, Prosumer in smart grids based on intelligent
edge  computing: A  review  on  artificial  intelligence
scheduling  techniques, Ain Shams Eng.  J.,  vol. 13,  no. 1,
p. 101504, 2022.

[4]

 H. Wang,  L.  Cai,  X.  Hao,  J.  Ren,  and  Y.  Ma,  ETS-TEE:
An  energy-efficient  task  scheduling  strategy  in  a  mobile
trusted  computing  environment, Tsinghua  Science  and
Technology, vol. 28, no. 1, pp. 105–116, 2022.

[5]

 M. S.  U.  Islam,  A.  Kumar,  and  Y.  C.  Hu, Context-aware
scheduling  in  fog  computing: A  survey,  taxonomy,
challenges  and  future  directions, J.  Netw.  Comput.  Appl.,
vol. 180, p. 103008, 2021.

[6]

 X. Xu, Q. Jiang, P. Zhang, X. Cao, M. R. Khosravi, L. T.
Alex, L. Qi, and W. Dou, Game theory for distributed IoV
task  offloading  with  fuzzy  neural  network  in  edge
computing, IEEE  Trans.  Fuzzy  Syst.,  vol. 30,  no. 11,  pp.
4593–4604, 2022.

[7]

 X.  Gao,  D.  Peng,  G.  Kui,  J.  Pan,  X.  Zuo,  and  F.  Li.
Reinforcement  learning  based  optimization  algorithm  for
maintenance  tasks  scheduling  in  coalbed  methane  gas
field, Comput. Chem. Eng., vol. 170, p. 108131, 2023.

[8]

 H. Tian, X. Xu, T. Lin, Y. Cheng, C. Qian, L. Ren, and M.[9]

Bilal,  DIMA: Distributed  cooperative  microservice
caching for Internet of Things in edge computing by deep
reinforcement  learning, World  Wide  Web,  vol.  25,  no.  5,
pp. 1769–1792, 2022.
 A.  Jayanetti,  S.  Halgamuge,  and  R.  Buyya, Deep
reinforcement  learning  for  energy  and  time  optimized
scheduling  of  precedence-constrained  tasks  in  edge-cloud
computing  environments, Future  Gener.  Comput.  Syst.,
vol. 137, pp. 14–30, 2022.

[10]

 Z. Li, X. Xu, X. Cao, W. Liu, Y. Zhang, D. Chen, and H.
Dai,  Integrated  CNN  and  federated  learning  for  COVID-
19  detection  on  chest  X-ray  images, IEEE/ACM  Trans.
Comput.  Biol.  Bioinform.,  doi: 10.1109/TCBB.2022.
3184319.

[11]

 S.  Vemireddy  and  R.  R.  Rout, Fuzzy  reinforcement
learning  for  energy  efficient  task  offloading  in  vehicular
fog computing, Comput. Netw., vol. 199, p. 108463, 2021.

[12]

 Z.  Tang,  W.  Jia,  X.  Zhou,  W.  Yang,  and  Y.  You,
Representation  and  reinforcement  learning  for  task
scheduling in edge computing, IEEE Trans. Big Data, vol.
8, no. 3, pp. 795–808, 2022.

[13]

 M.  N.  Tran  and  Y.  Kim,  A  cloud  QoS-driven  scheduler
based  on  deep  reinforcement  learning,  in Proc.  2021  Int.
Conf.  Information  and  Communication  Technology
Convergence (ICTC),  Jeju  Island,  Republic  of  Korea,
2021, pp. 1823–1825.

[14]

 Z.  Yang,  M.  Xiao,  and  Y.  Ge,  Dynamic  resource
scheduling  of  cloud-based  automatic  test  system  using
reinforcement learning, in Proc. 2017 13th IEEE Int. Conf.
Electronic  Measurement  &  Instruments (ICEMI),
Yangzhou, China, 2017, pp. 159–165.

[15]

 D. Ding, X. Fan, Y. Zhao, K. Kang, Q. Yin, and J. Zeng,
Q-learning  based  dynamic  task  scheduling  for  energy-
efficient  cloud  computing, Future  Gener.  Comput.  Syst.,
vol. 108, pp. 361–371, 2020.

[16]

 H. Tian, X. Xu, L. Qi,  X. Zhang, W. Dou, S.  Yu, and Q.
Ni, CoPace: Edge computation offloading and caching for
self-driving  with  deep  reinforcement  learning, IEEE
Trans.  Veh.  Technol.,  vol. 70,  no. 12,  pp. 13281–13293,
2021.

[17]

 H. Che,  Z.  Bai,  R.  Zuo, and H. Li, A deep reinforcement
learning  approach  to  the  optimization  of  data  center  task
scheduling, Complexity, vol. 2020, p. 3046769, 2020.

[18]

 Q.  Liu,  R.  Mo,  X.  Xu,  and  X.  Ma,  Multi-objective
resource allocation in mobile edge computing using PAES
for  Internet  of  Things, Wirel.  Netw.,  doi: https://doi.
org/10.1007/s11276-020-02409-w.

[19]

 H.  Xu,  J.  Zhou,  W.  Wei,  and  B.  Cheng, Multiuser
computation  offloading  for  long-term  sequential  tasks  in
mobile  edge  computing  environments, Tsinghua  Science
and Technology, vol. 28, no. 1, pp. 93–104, 2022.

[20]

 T.  Choudhari,  M.  Moh,  and  T.  S.  Moh,  Prioritized  task
scheduling  in  fog  computing,  in Proc.  ACMSE  2018
Conference, Richmond, Kentucky, 2018, pp. 1–8.

[21]

 Q.  Liu,  X.  Wu,  X.  Liu,  Y.  Zhang,  and  Y.  Hu, Near-data
prediction based speculative optimization in a distribution
environment, Mob.  Netw.  Appl.,  vol. 27,  no. 6,  pp.
2339–2347, 2022.

[22]

 W.  Qi, Optimization  of  cloud  computing  task  execution[23]

    816 Tsinghua Science and Technology, June 2024, 29(3): 806−817

 



time  and  user  QoS  utility  by  improved  particle  swarm
optimization, Microprocess.  Microsyst.,  vol. 80,  p.
103529, 2021.
 B.  Huang,  W.  Xia,  Y.  Zhang,  J.  Zhang,  Q.  Zou,  F.  Yan,
and  L.  Shen,  A  task  assignment  algorithm  based  on
particle  swarm  optimization  and  simulated  annealing  in
ad-hoc mobile cloud, in Proc. 2017 9th Int. Conf. Wireless
Communications and Signal Processing (WCSP), Nanjing,
China, 2017, pp. 1–6.

[24]

 J.  Gao,  Machine  learning  applications  for  data  center
optimization,  Google  White  Paper,  https://research.
google/pubs/pub42542/, 2014.

[25]

 B. Dab, N. Aitsaadi, and R. Langar, Q-learning algorithm
for joint computation offloading and resource allocation in
edge cloud, in Proc. 2019 IFIP/IEEE Symp. on Integrated
Network  and  Service  Management (IM),  Arlington,  VA,
USA, 2019, pp. 45–52.

[26]

 X. Zhao, G. Huang, L. Gao, M. Li, and Q. Gao, Low load
DIDS  task  scheduling  based  on  Q-learning  in  edge
computing environment, J. Netw. Comput. Appl., vol. 188,
p. 103095, 2021.

[27]

 J. C. Guevara, R. da S Torres, L. F. Bittencourt, and N. L.
S.  da  Fonseca,  QoS-aware  task  scheduling  based  on
reinforcement  learning  for  the  cloud-fog  continuum,  in
Proc.  GLOBECOM  2022-2022  IEEE  Global
Communications Conference, Rio de Janeiro, Brazil, 2022,

[28]

pp. 2328–2333.
 Y.  Wei,  L.  Pan,  S.  Liu,  L.  Wu,  and  X.  Meng,  DRL-
scheduling: An  intelligent  QoS-aware  job  scheduling
framework for applications in clouds, IEEE Access, vol. 6,
pp. 55112–55125, 2018.

[29]

 T.  Dong,  F.  Xue,  C.  Xiao,  and  J.  Li, Task  scheduling
based  on  deep  reinforcement  learning  in  a  cloud
manufacturing  environment, Concurr.  Comput.  Pract.
Exp., vol. 32, no. 11, p. e5654, 2020.

[30]

 J.  Li,  X.  Zhang,  J.  Wei,  Z.  Ji,  and  Z.  Wei,  GARLSched:
Generative  adversarial  deep  reinforcement  learning  task
scheduling  optimization  for  large-scale  high  performance
computing  systems, Future  Gener.  Comput.  Syst.,  vol.
135, pp. 259–269, 2022.

[31]

 P.  Gazori,  D.  Rahbari,  and  M.  Nickray, Saving  time  and
cost on the scheduling of fog-based IoT applications using
deep  reinforcement  learning  approach, Future  Gener.
Comput. Syst., vol. 110, pp. 1098–1115, 2020.

[32]

 Q. Zhang, M. Lin, L. T. Yang, Z. Chen, S. U. Khan, and P.
Li, A  double  deep  Q-learning  model  for  energy-efficient
edge scheduling, IEEE Trans.  Serv.  Comput.,  vol. 12, no.
5, pp. 739–749, 2019.

[33]

 S.  Swarup,  E.  M.  Shakshuki,  and  A.  Yasar, Energy
efficient  task  scheduling  in  fog  environment  using  deep
reinforcement  learning  approach, Procedia  Comput.  Sci.,
vol. 191, pp. 65–75, 2021.

[34]

Lei  Zeng received  the  BS  degree  in  IoT
engineering  from  Nanjing  University  of
Information  Science  and  Technology,
China in 2018. He is currently pursuing the
MS degree at School of Computer Science,
Nanjing University of Information Science
and  Technology,  China.  His  research
interests  include  edge  and  cloud

computing, task scheduling, and big data.

Qi Liu received the BS degree in computer
science  and  technology  from  Zhuzhou
Institute  of  Technology,  China  in  2003,
and  the  MS  and  PhD  degrees  in  data
telecommunications  and  networks  from
University  of  Salford,  UK  in  2006  and
2010,  respectively.  He  is  a  professor  at
School of Software, Nanjing University of

Information  Science  and  Technology,  Nanjing,  China.  His
research  interests  include  context  awareness,  data
communication  in  MANET  and  WSN,  and  smart  grid.  His
recent  research  work  focuses  on  intelligent  agriculture  and
meteorological observation systems based on WSN.

Shigen  Shen received  the  BS  degree  in
fundamental  mathematics  from  Zhejiang
Normal University, Jinhua, China in 1995,
the  MS  degree  in  computer  science  and
technology  from  Zhejiang  University,
Hangzhou,  China  in  2005,  and  the  PhD
degree  in  pattern  recognition  and
intelligent  systems  from  Donghua

University, Shanghai, China in 2013. He is a professor at School
of Information Engineering, Huzhou University, Huzhou, China.
His  current  research  interests  include  the  Internet  of  Things,
cyber  security,  edge  computing,  and  game  theory.  He  has
published  more  than  100  technical  papers  in  many  respected
journals.  He  is  currently  serving  as  a  member  of  the  editorial
boards  of CMC-Computers, Materials  &  Continua and
Intelligent Automation & Soft Computing, as well as the editorial
review  board  of  the Journal  of  Organizational  and  End  User
Computing. He is a senior member of IEEE.

Xiaodong Liu received the PhD degree in
computer  science  from  De  Montfort
University, UK, and joined Napier in 1999.
He is a professor at School of Computing,
Edinburgh  Napier  University,  UK.  He  is
the  director  of  the  Centre  for  Information
&  Software  Systems.  He  is  an  active
researcher in software engineering with an

internationally  excellent  reputation  and  leading  expertise  in
context-aware  adaptive  services,  service  evolution,  mobile
clouds, pervasive computing, software reuse, and green software
engineering.

  Lei Zeng et al.:  Improved Double Deep Q Network-Based Task Scheduling Algorithm in Edge Computing for... 817

 


