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A B S T R A C T   

The strength of construction material is a crucial consideration in the process of structural design 
and construction. Conventional materials such as concrete or steel have been widely utilized due 
to their predictable material performance. However, a significant obstacle to the widespread use 
of bamboo in structural elements lies in the challenge of its standardization. Many previous 
research studies have explored bamboo’s load bearing capacity, but the information remains 
limited due to variations in species, size, age, physical properties, moisture content, and other 
factors, making it difficult to predict their load-bearing capacity. This study aims to propose 
Artificial Neural Network (ANN) models to predict ultimate compressive load and compressive 
strength of Dendrocalamus Sericeus bamboo culm. Additionally, for structural design purposes, the 
proposed ANN models were employed to determine the characteristic and allowable compressive 
strengths. As a first step, experimental data from compressive tests in the literature were used for 
training and developing the ANN model. To investigate the effect of the node on compressive 
loading capacities, the test data were separated into two datasets, “Node” samples and “Inter-
node” samples. Through the training process, ANN models were finally proposed, and the R- 
square values for the prediction of ultimate compressive load and compressive strength from the 
proposed ANN models were significantly higher than those obtained from the linear regression 
analyses used in the literature. Subsequently, the characteristic and allowable compressive 
strengths were calculated and compared to the strengths obtained from the experiment data, 
revealing a difference of approximately only 8.0%. Overall, the ANN models presented in this 
study offer promising predictive ability for both ultimate compressive load and compressive 
strength of Dendrocalamus Sericeus bamboo culm, as well as for determining characteristic and 
allowable strengths. Hence, ANN models are suggested to be adopted as a tool for the design and 
construction of bamboo buildings.  
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1. Introduction 

Climate change has grown to be a serious topic in recent years resulting in its associated negative effects on the environment. 
Currently, the use of modern construction materials has been identified as a major cause of pollution, including air and water pollution. 
As such, the building industry has been identified as having significant potential to reduce global warming [1]. Raising awareness 
about the use of natural substitute materials is crucial in order to reduce these pollutants moving forward. To illustrate, cement 
production consumes 10.5 EJ of world energy and contributes to about 5% of global CO2 emissions [2]. Hence, the search for sus-
tainable building materials, particularly in the realm of bio-based materials [3], has become essential and of great interest in the field 
of Engineering. 

Bamboo offers environmental advantages over traditional building materials such as steel and concrete due to its reduced Global 
Warming Potential (GWP) [4,5]. Among various natural substitutes, bamboo grows rapidly and can be harvested and replanted with 
minimal environmental impact [6]. Bamboo, a monocotyledon grass, is known for having the longest stems found in tropical areas. 
Currently, there are 1662 bamboo species, divided into 121 genera. Many developing countries, especially in Asia, heavily rely on 
bamboo for economic support. In Thailand, a Southeast Asian country, there are 15 genera and 80 species of bamboo [7]. Bamboo has 
been used as a building material for thousands of years due to its mechanical characteristics that are suitable for structural applica-
tions. These include a high strength-to-weight ratio, flexibility of the fibrous microstructure. Bamboo stands out as a material with 
excellent mechanical properties that can serve as a substitute for traditional construction materials [8]. Considering both its me-
chanical properties and its availability for plantation, bamboo-based houses can be used as multi-hazard disaster-resistant residences 
[9–12]. 

Based on the various potentials of bamboo, there has been extensive research conducted on the mechanical properties of bamboo 
within the research community. For instance, Shao et al. [13] conducted a study on Moso bamboo’s tensile characteristics, specifically 
quantifying the fluctuation of fiber area across the radial thickness of the internodes. They determined the tensile strength and elastic 
modulus of the fiber bundles to be approximately 480 MPa and 34 GPa, respectively. Regarding the moisture absorbability of the 
bamboo, Amiruddin et al. [14] investigated the influence of water content on bamboo’s tensile strength. Their findings revealed that 
the tensile strength of bamboo increases as the water content decreases. Richard [15] conducted flexure experiments to evaluate the 
longitudinal shear capacity of bamboo culms for structural applications, while Nugroho and Bahtiar [16] altered the culm shape to 
examine the fundamental characteristics of tapered bamboo. Each bamboo species possesses distinct properties. In their study, 
Chaowana et al. [7] examined how bamboo species and culm size—specifically, the outer culm diameter and culm wall thick-
ness—impact the characteristics and properties of various species: Dendrocalamus asper, Dendrocalamus sericeus, Dendrocalamus 
membranaceus, Thyrsostachys oliveri, and Phyllostachys makinoi. Kenneth and Uzodimma [17] investigated the influence of nodes and 
other physical parameters on the compressive strength of Guadua angustifolia (Colombian Timber Bamboo) culms. They found that the 
mechanical properties of bamboo are significantly influenced by its physical properties. 

The studies listed above show that bamboo has remarkable mechanical qualities that can be used in a variety of engineering ap-
plications. However, building with bamboo is not straightforward. Hailemariam et al. [18] conducted a study on the barriers, benefits, 
and opportunities of employing bamboo materials for structural purposes. A significant obstacle to the widespread use of bamboo in 
structural elements lies in the challenge of standardization. Given bamboo’s natural origins, it’s engineering properties, shapes, sizes, 
and so forth, remain uncertain. Considering these factors and their impact on strength, determining the load-bearing capacity in the 
design stage and upholding quality control during construction become pivotal. 

The material testing standard ISO 22157–1:2019 [19] outlines test procedures for physical properties such as density, moisture 
content, shrinkage, as well as load-bearing capacities including compression, bending, shear, and tension. Since all the physical 
properties mentioned above are uncontrollable and can impact load-bearing capacities, conducting experiment to determine these 
capacities can be time-consuming and costly. Therefore, ISO 19624:2018 [20] defines indicative properties, which are non-destructive 
measurements used to estimate the mechanical properties of bamboo. This approach facilitates easier measurement, potentially 
streamlining the testing process and saving time. Common indicative bamboo properties encompass moisture content, node and 
internode inclusion, density, culm wall thickness, diameter, and linear mass, all of which can influence strength [21,22]. In the work of 
Tangphadungrat et al. [23], compressive load tests were conducted on Dendrocalamus sericeus Munro bamboo culms, employing both 
simple linear and multiple linear regression to establish relationships between significant indicative properties and the responses. 

An artificial neural network (ANN) model is a computational model inspired by the structure and functioning of the human brain. It 
is a type of machine learning algorithm that is used for pattern recognition, data analysis, and decision-making tasks. It is particularly 
well-suited for tasks that involve large amounts of data and complex patterns. This approach has been adopted in various engineering 
fields, especially when the application of theoretical-based formulas is overly complicated. For instance, when evaluating a range of 
machine learning models for predicting the compressive strength of concrete and mortar, it is evident that artificial neural networks 
(ANNs) can effectively and reliably predict compressive strength in both concrete and mortar, as seen in references [24–29]. However, 
its application in the modeling of mechanical responses of bamboo has been very limited [30], which is the focus of this study. 

Dendrocalamus sericeus Munro bamboo is a bamboo species widely used as a building material [31]. Furthermore, the Royal Project 
Foundation in Thailand has actively promoted its cultivation for culm production, creating market opportunities and production 
potential in the region [7]. This work utilized an experimental dataset of Dendrocalamus sericeus Munro bamboo from the previous 
research [23] aimed at developing Artificial Neural Network (ANN) models for predicting compressive strengths based on indicative 
nondestructive properties. The improvement in the accuracy of the ANN models for predicting compressive strengths was compared 
with the regressed formulas [23]. The ultimate goal of this research is to provide a tool to assist in structural design. Therefore, the 
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Fig. 1. Development of ANN models for predicting the characteristic and allowable compressive strengths of Dendrocalamus sericeus Munro bamboo.  
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proposed ANN models were further employed to determine the characteristic and allowable compressive strengths. Consequently, with 
the ability to predict strength more reliably, the findings of this study offer a valuable framework for designing bamboo structures and 
implementing quality control within the bamboo construction industry. 

2. Theory and method 

The compression tests dataset used for developing the ANN models was obtained from the authors’ previous research [23]. 
Tangphadungrat et al. [23] conducted the compression tests on Dendrocalamus sericeus Munro bamboo culms to determine their 
compression load capacity and strength, following ISO 22157–1:2019 [19] guidelines. In this current study, the distribution of the 
tested data was re-examined, and the experimental results were used to train ANN models to predict the ultimate compressive load 
capacity (Fu) and strength (σu) based on most correlated indicating properties (IP). Next, the proposed ANN models were used to 
generate a new set of ultimate compressive strength data and compared with the tested results to examine the accuracy of the proposed 
models. Allowable strength is a crucial design parameter, rather than the ultimate strength, for determining structural member di-
mensions and acceptable safety margins. Hence, the dataset generated by selective ANN models (ANN-All model) was further 
employed to determine the characteristic and allowable compressive strengths, following ISO 22156:2021 [32] guidelines. Finally, a 
comparison was made between the results of characteristic compressive strength and allowable compressive strength obtained from 
the tests and those predicted by the selected ANN models. The methodology for developing the ANN models is outlined in Fig. 1. This 
analysis aimed to assess the suitability of using ANN models for predicting the allowable compressive strength of Dendrocalamus 
sericeus Munro bamboo. 

2.1. Non-destructive tests, compressive tests and their correlation 

2.1.1. Non-destructive tests 
One hundred and sixteen pieces of Dendrocalamus sericeus bamboo taken from 39 culms, each from different parts; top, middle, and 

bottom portions, and were used as test specimens. For each specimen, dimensions and weight were measured and the following non- 
destructive properties were recorded [23]:  

1. Moisture content (Mc)  
2. The measured properties that reflect “fiber densities” as the volumetric density (ρ) and linear mass (q) in different conditions  

21. air-dried (ρa and qa),  
22. oven-dried (ρo and qo),  
23. 12% moisture content (ρ12 and q12) 

2.1.2. Compressive test 
The compressive testing to failure was conducted to determine the maximum compression load (Fu). Subsequently, the compressive 

strength (σu) was calculated by dividing the maximum compressive load with its cross-sectional area (Aw) using Eq. (1), 

σu =
Fu

Aw
=

4Fu

π
(
D2 − (D − 2t)2) (1) 

The maximum compressive load (Fu) and compressive strength (σu) are mathematically related through the sectional area. In the 
case of a homogeneous material, the two values are identical in terms of the compressive capacity. However, different parts of bamboo 
culms, even with the same cross-sectional area, may exhibit different physical properties. Therefore, both loading capacities are 
typically considered in structural design. 

2.2. Correlation analysis 

The non-destructive properties were statistically analyzed to determine their correlation coefficient with the strength. The coef-
ficient derived from this analysis helps in identifying the non-destructive properties that can serve as “indicative properties” for 
strength prediction. In this study, the Pearson correlation coefficient (r) served as a statistical indicator to assess the mutual connection 
between the non-destructive indicating properties and the compressive capacities (Fu and σu). The correlation coefficient takes on 
values between − 1 and + 1, where values near − 1 or + 1 indicate a perfect correlation, and 0 indicates no correlation. A positive 
correlation implies that both values move in the same direction, whereas a negative correlation indicates opposite directions of 
movement [33]. 

2.3. Artificial neural network models 

Artificial neural networks (ANNs) are sophisticated data processing systems based on the human brain system. ANNs are composed 
of nodes or neurons, all interconnected with connection links, and each having its weight. Each neuron captures a weighted sum of 
inputs, and passes it through an activation function to compute the provisional value of an output. This process is called feed-forward. 
Subsequently, gradient descent and backpropagation are employed to adjust the values of the weights in each link until the errors 
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between the output obtained from feed-forward process and output from dataset are minimized. 
The experimental results conducted on Dendrocalamus Sericeus bamboo culms [23] in Section 2.1 were utilized to develop Artificial 

Neural Network (ANN) models for predicting the compressive load capacity (Fu, kN) and compressive strength (σu, MPa). These ANN 
models were designed with three layers: an input layer, a hidden layer, and an output layer, as illustrated in Fig. 2. The total number of 
experimental samples in this work is more than ten times the quantity of input variables, ensuring the feasibility of building a pre-
diction model [28]. 

In the feed-forward process, as stated previously, each neuron receives inputs from the previous layer, and the weighted sum of 
those inputs is computed. An activation function is then used to create outputs for the next layer. To compute the weighted sum of 
inputs for the current j-th neuron, the set of n-inputs, denoted as X = (x1,x2,…,xn), is multiplied by the weight vector Wj = (wj1,wj2,…,

wjn), and the biases (bj) are added, as shown in the following equation: 

Yj =
∑n

i=1
wjixi + bj (2)  

where Yj is the weighted sum of outputs before being sent to the activation function. 
Through Pearson correlation analysis, as explained in Sections 2.2 and 3.1, it was determined that five indicating properties 

exhibited significant correlations with the compressive strengths [23]. These indicative properties include outside diameter (D, mm), 
wall thickness (t, mm), density at 12% moisture content (ρ12, kg/m3), percent of moisture content (Mc), and linear mass at 12% 
moisture content (q12, kg/m). Hence, the input layer contained 5 neurons, each representing the indicating properties (IP) properties 
that were correlated with the strengths, and one bias neuron (b1). 

The hidden1 layer comprised a total of 4 neurons (N1 to N4) and one bias neuron (b2). The compressive load capacity (Fu) or 
compressive strength (σu) values were represented in a single output layer. Neurons in consecutive layers were interconnected through 
weights. The output layer encompassed one neuron responsible for generating the network’s prediction of Fu and σu. The models were 
trained through iterations with specified momentum rate and learning rate until the error, calculated from the ANN predicted values 
and experimental results, was minimized. 

Three frequently used performance indicators, such as the square correlation coefficient (R2), root mean squared error (RMSE), and 
mean absolute error (MAE), are employed to analyze the performance of selected ANN models. The higher R2 value, closer to 1, in-
dicates a strong correlation between predicted values and actual values. Conversely, lower values (closer to zero) of RMSE and MAE 
suggest the better the performance of the selected models. Eqs. (3)–(5) [24–29] provide the relevant expressions for R2, RMSE, and 
MAE, respectively: 

R2 =

[∑n
i=1(Ei − E)(Pi − P)

]2

∑n
i=1(Ei − E)2∑n

i=1(Pi − P)2 (3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Ei − Pi)
2

n

√

(4)  

MAE =
1
n
∑n

i=1
|Ei − Pi| (5) 

Here n is the number of samples in the datasets, Ei is the ith experimental value, E is the mean value of experimental data, and Pi is 
the ith predicted value corresponding to Ei, and P is the mean of predicted values. 

Fig. 2. Proposed ANN models to predict bearing capacities of bamboo culm.  
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2.4. Allowable compressive strength 

Classical approaches encompass Allowable Stress Design (ASD) and Ultimate Strength Design (USD). However, with the devel-
opment of predictive models, Performance-Based Design (PBD) has emerged as an alternative for structural design. To prevent brittle 
failure modes under extreme loads, like accidental loads, car crash, impact loads or earthquakes [34–36], the capacity design phi-
losophy [37] has found application. Yet, due to limitations in information about the material nonlinearity of bamboo, the ASD design 
method has been widely adopted. 

For the ASD design method, an allowable strength is employed in engineering design to represent the maximum stress or load that a 
structural component can withstand while still meeting safety requirements and design criteria. This strength value is calculated by 
dividing the ultimate strength of a material by a safety factor, which considers uncertainties in material properties, manufacturing 
processes, and loading conditions. Various factors, including species, age, and harvesting methods, influence bamboo’s allowable 
strength. Therefore, it is crucial to utilize reliable and relevant data concerning the strength properties of the specific bamboo species in 
use. According to ISO 22156:2021 [32], the expression for the allowable design strength is as follows: 

σall =
CRCDFσk

FS
≈ 0.248σk (6)  

where σall represents the allowable design strength, σk denotes the 5th percentile characteristic strength with 75% confidence, CR is the 
member redundancy factor; for load-bearing members CR= 0.90, CDF is the modification factor for service class and load duration; for 
permanent and long term applied load with service class 2 CDF= 0.55, FS is the material factor of safety; for compressive load FS= 2.0. 
The 5th percentile characteristic strength with 75% confidence in Eq. (6) is computed as follows, 

σk = σ0.05

(

1 −
2.7s
m

̅̅̅
n

√

)

(7)  

where σ0.05 is the 5th percentile from the test data, m is the mean value from the test data, s is the standard deviation from the test data, 
and n is the number of tests. The 5th percentile from the test data in Eq. (7) is calculated from one tail student’s t-distribution with the 
number of degrees of freedom equal to n minus one, i.e. 

σ0.05 = m − s
⃒
⃒t0.05,n− 1

⃒
⃒ (8) 

Note that the t-distribution values in Eq. (8) was approximated to 1.645 assuming the number of samples were very large, as 
proposed in Kaminski et al. [38]. Alternatively, the 5th percentile value of bamboo strength can be directly obtained from tested data. 

3. Results 

3.1. Experimental data: non-destructive indicating properties and compressive tests 

The correlation between the non-destructive qualities and capacities of Dendrocalamus sericeus Munro bamboo was investigated by 
Tangphadungrat et al. [23]. The linear mass, with a Pearson correlation coefficient ranging from 0.884 to 0.894, showed the strongest 
positive association with the maximum compressive load (Fu). Following this, culm wall thickness (t), outer diameter (D), and moisture 
content (Mc) were listed in decreasing order. Other variables had moderate, weak, or negligible correlations with the capacity. The 
maximum compressive load was expected to increase as these aforementioned qualities improved. Density (ρ12), with a Pearson 
correlation coefficient of 0.556–0.616, exhibited the strongest association with the maximum compressive strength (σu) among all 
indicative metrics. Also of high relevance, though with a negative correlation (− 0.602), was the culm wall thickness. 

Table 1 presents the outcomes of five non-destructive indicating properties from the 116 tests. Fig. 3 displays the data frequency 
distribution of the indicative properties and compressive test capacities. Skewness and Excess Kurtosis (referred to as “Kurtosis”) are 
metric measuring the distribution’s asymmetry and tailedness concerning a normally distributed population. Skewness and kurtosis 
values of zero indicate perfectly normal distribution of observed data. As shown in Table 1, all variables’ skewness ranges from − 0.462 
to 0.976, and kurtosis ranges from − 0.821 to 0.330. Thus, the recorded data distributions exhibit an acceptable level of normality 

Table 1 
Five non-destructive indicating properties and compressive capacities.  

Properties Min Max Mean SD Skewness Kurtosis 

Part 1. Five non-destructive indicating properties 
Culm wall thickness (t, mm.) 6.779 27.028 12.886 4.528 0.941 0.311 
External diameter (D, mm.) 74.603 109.290 89.821 8.013 0.739 0.330 
Moisture content (Mc, %) 11.071 19.702 13.720 2.089 0.976 -0.077 
Density at 12%Mc (ρ12, kg/m3) 544.158 1121.518 834.469 123.926 0.214 -0.212 
Linear mass at 12%Mc (q12, kg/m) 1.053 4.251 2.514 0.712 0.443 -0.458 
Part 2. Compressive capacities       
Maximum compressive load (Fu, kN) 71.982 256.934 167.342 41.755 0.132 -0.821 
Maximum compressive strength (σu, MPa) 36.233 71.923 55.979 8.094 -0.358 -0.579  
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(values between ±1 are considered perfect, < ± 2 are deemed acceptable [39]). 

3.2. Development of neural network models 

In Fig. 2, all the hidden and output neurons have their biases. The biases and weights of each link are adjusted via the back- 

Fig. 3. Histogram of the indicating properties and compressive capacities.  
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Table 2 
The values of weight and bias of ANN models to predict the ultimate compressive load.  

Input, IP/Output, Fu Hidden node: N1 Hidden node: N2 Hidden node: N3 Hidden node: N4 Bias, b2 

All Node iNode All Node iNode All Node iNode All Node iNode All Node iNode 

Input 1, D  0.043  -0.075  0.119  -0.187  0.321  -0.122  0.065  0.235  0.167  0.263  0.201  -0.000 - - - 
Input 2, t  0.565  0.592  0.150  0.556  0.289  -0.572  0.970  1.000  0.474  0.455  0.228  0.155 - - - 
Input 3, ρ12  -0.343  -0.072  0.204  -0.682  -0.795  -0.091  -0.817  -0.519  0.008  -0.011  -0.011  -0.212 - - - 
Input 4, Mc  -0.355  -0.460  -0.236  0.673  0.438  -0.044  -0.520  -0.623  -0.045  0.150  0.045  0.242 - - - 
Input 5, q12  1.548  1.599  0.700  -1.345  -1.091  -1.383  2.155  2.253  1.206  0.153  0.333  -0.112 - - - 
Bias, b1  0.536  0.859  0.191  -0.994  -0.852  -1.244  0.818  1.033  0.742  -0.384  -0.202  -0.184 - - - 
Output, Fu  0.700  0.912  0.601  -1.220  -1.305  -1.458  1.356  1.534  1.021  -0.438  -0.263  -0.380 -0.690 -0.895 -0.241  
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Table 3 
The values of weight and bias of ANN models to predict the compressive strength.  

Input, IP/ 
Output, σu 

Hidden node: N1 Hidden node: N2 Hidden node: N3 Hidden node: N4 Bias, b2 

All Node iNode All Node iNode All Node iNode All Node iNode All Node iNode 

Input 1, D  0.111  -0.036  -0.510  -0.142  -0.057  -0.199  0.145  0.230  0.608  0.536  0.765  -0.507 - - - 
Input 2, t  0.112  -0.104  0.029  0.151  0.029  0.050  0.137  0.277  0.336  0.583  0.293  0.440 - - - 
Input 3, ρ12  0.459  0.966  0.919  0.359  0.247  0.352  0.039  -0.120  -0.446  -2.672  -1.474  -1.958 - - - 
Input 4, Mc  -1.790  -0.942  0.252  -0.582  -0.124  0.211  0.332  0.265  0.265  0.489  0.341  0.740 - - - 
Input 5, q12  -0.044  0.524  -0.114  0.077  0.227  -0.001  -0.075  0.207  0.308  -0.367  -0.861  -0.386 - - - 
Bias, b1  -1.749  -0.665  -0.456  -1.190  -0.422  -0.515  -0.943  -0.410  -0.544  -1.618  -0.782  -1.154 - - - 
Output, σu  1.233  1.194  0.856  0.475  0.293  0.337  -0.029  -0.246  -0.677  -1.548  -1.514  -1.797 -0.156 0.001 0.131  
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propagation process until the sum-square error reaches an extremely small value. The sigmoid activation function is used in all neurons 
in the hidden layer, while a linear activation function is employed in the output layer. The optimal values of weights and biases used in 
the ANN models to predict compressive load capacity and compressive strength are shown in Tables 2 and 3. The number of nodes in 
the hidden layer and the number of hidden layers are chosen through trial-and-error to obtain the minimum value of the sum-square 
error. It is noted that all 116 bamboo culm samples are separated into two groups: 57 “node” samples and 59 “internode” (without 
node) samples. Therefore, three cases of the training process are defined based on the data used: (1) all samples, (2) only node samples, 
and (3) only internode samples (iNode). Hereinafter, for the sake of clear explanation, the models are represented as the All-ANN 
model, Node-ANN model, and iNode-ANN model, respectively. 

3.3. Compressive strength comparisons: test and ANN models 

3.3.1. All-ANN models 
To demonstrate the accuracy of the All-ANN model (trained with all data, including node and internode samples) in predicting the 

compressive capacity of bamboo culms, the squared correlation (R2) between the predicted and tested values of ultimate compressive 
load and compressive strength, as well as the Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE), were determined. The 
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Fig. 4. Experimental results versus predicted results (All-ANN) of ultimate compressive load.  
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scatter plots of tested versus predicted values for ultimate compressive load capacity and strength are presented in Figs. 4(a) and 5(a), 
with the corresponding R2, RMSE and MAE, shown in each plot. The values of R2, RMSE, and MAE for ultimate compressive load 
capacity are 0.901, 13.329 and 10.469, respectively. They are 0.667, 4.750, and 3.737 for compressive strength. 
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Fig. 5. Experimental results versus predicted results (All- ANN) of compressive strength.  

Table 4 
Prediction performance indices for predicting ultimate compressive load of bamboo culm (Fu).  

Model R2 RMSE (kN) MAE (kN) 

All sample Node sample iNode sample All sample Node sample iNode sample All sample Node sample iNode sample 

All-ANN 0.901 0.909 0.923 13.329 14.678 11.881 10.469 11.623 9.355 
Node-ANN 0.859 0.927 0.922 19.511 11.564 24.886 16.074 9.378 22.544 
iNode-ANN 0.827 0.900 0.929 19.025 24.314 11.883 14.583 20.761 8.614 
*SLR[23] 0.800 0.868 0.910 NA NA NA NA NA NA 
**MLR[23] 0.861 NA NA NA NA NA NA NA NA  

* SLR: Fu = 52.433q12 + 35.522 (Allsample)Fu = 58.444q12 + 6.363 (Node)Fu = 60.917q12 + 27.206 (Internode)
** MLR: Fu = 3.413t + 0.383D − 5.834Mc + 44.301q12 + 57.593  
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To examine the effect of node inclusion on the compressive capacity, all test results were divided into two groups: one with node 
samples and another with internode (without node) samples. Figs. 4(b) and 5(b) illustrate the R2, RMSE and MAE for the prediction of 
ultimate compressive load and compressive strength of these separated groups of specimens. As shown in Figs. 4(b) and 5(b), the R2of 
predictions for internode samples is higher than that of node samples, but the RMSE and MAE are smaller. In other words, the presence 
of nodes in bamboo culms does not significantly affect their compressive capacities, but it may lead to variations in the capacity 
determination. 

To demonstrate the improvement of the proposed All-ANN models, the squared correlations are compared with the regressed 
relationships presented in the previous work by Tangphadungrat et al. [23], as shown in Tables 4 and 5. The R2 correlations of the ANN 
predictions are notably higher than the predictions of the bearing capacity of bamboo culm obtained from simple linear regression 
(SLR) and multi-linear regression (MLR) analyses. It is important to note that the R2 values for SLR and MLR are taken from the most 
accurate model in the work of Tangphadungrat et al. [23]. The R2 values presented in Tables 4 and 5 clearly indicate that the proposed 
ANN model is more accurate in predicting the ultimate compressive load and compressive strength of bamboo culm compared to the 
SLR and MLR models. The improved accuracy of the ANN models makes it a more reliable and effective approach for these predictions. 

NA: in Ref.[23], RMSE and MAE were not determined, and MLR used all samples for modelling. 
The underlined values are the prediction performance indicators with a consistent training dataset. 
NA: in Ref.[23], RMSE and MAE were not determined, and MLR used all samples for modelling. 
The underlined values are the prediction performance indicators with a consistent training dataset. 

3.3.2. Separated training of Node-ANN and iNode-ANN models 
The values of R2, RMSE and MAE for the separated Node-ANN model and iNode-ANN model, predicting ultimate compressive load 

and compressive strength, are shown in Tables 4 and 5, respectively. Using the separately trained ANN models to predict the strength of 
the consistent data results in an improvement of all performance indicators: R2, RMSE and MAE. For example, the R2 values obtained 
from the Node-ANN model to predict the ultimate compressive load and compressive strength of the consistent “node” samples are 
0.927 and 0.732, respectively. These values are enhanced from 0.909 and 0.655 predicted by the All-ANN model. Similarly, using the 
iNode-ANN model to predict ultimate compressive load and compressive strength of the consistent “internode” samples yields values of 
0.929 and 0.808, respectively. As expected, the performance of the separately trained models, such as the Node-ANN model or iNode- 
ANN model, is lower in predicting the ultimate compressive load and compressive strength of all samples or inconsistent samples than 
those of the predicted values using the All-ANN or a consistent ANN model. 

4. Allowable compressive strength using ANN models 

As the cross-sectional area of a bamboo culm is not uniform, using compressive strength (σu) is more versatile in designing a 
bamboo structure than ultimate compressive load (Fu). To be useful for the structural design purpose, the values of allowable 
compressive strength was determined based on the ultimate compressive strength (σu). To illustrate the applicability of the proposed 
ANN models, All-ANN models were adopted to determine the characteristic and allowable strengths. The All-ANN model was selected 
due to it’s covering all types of culms ignoring the presence of nodes, which reflects the real practice of using bamboo as a structural 
element. Using the All-ANN models, the compressive strength (σu) can be computed either from the predicted ultimate compressive 
load (Fu), divided by the specimen section area according to Eq. (1), or directly from the predicted compressive strength (σu). Then 
predicted ultimate strengths, as well as the ultimate strength from the experiment [23], were calculated for the characteristic 
compressive strength (σk) and allowable compressive strength (σall) using Eqs. (6)–(8). Table 6 shows the characteristic compressive 
strength and allowable compressive strength of the experiment in Column 1. Columns 2 and 3 indicate the allowable strengths from the 
predicted models. From Table 6, the characteristic and allowable compressive strengths obtained from the All-ANN models have an 
error compared to the experimental data of approximately only 8%. 

Table 5 
Prediction performance indices for predicting compressive strength of bamboo culm (σu).  

Model R2 RMSE (MPa) MAE (MPa) 

All sample Node sample iNode sample All sample Node sample iNode sample All sample Node sample iNode sample 

All-ANN 0.667 0.655 0.748 4.750 5.413 4.007 3.737 4.292 3.202 
Node-ANN 0.437 0.732 0.656 7.654 4.610 9.729 6.280 3.721 8.752 
iNode-ANN 0.564 0.611 0.808 6.066 7.907 3.456 4.532 6.319 2.806 
*SLR[23] 0.380 0.651 0.692 NA NA NA NA NA NA 
**MLR[23] 0.597 NA NA NA NA NA NA NA NA  

* SLR: σu = 0.040ρ12 + 22.389 (Allsample)σu = 0.063ρ12 − 1.778 (Node)σu = 0.076ρ12 − 1.531 (Internode)
** MLR: σu = − 0.089t − 1.683Mc + 0.036ρ12 + 50.435  
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5. Conclusions 

In this study, experimental data from one of the author’s previous works [23], which included ultimate compressive tests of 
Dendrocalamus Sericeus bamboo culms, were utilized. These data served here as the foundation for developing ANN models aimed at 
predicting ultimate compressive load (Fu) and compressive strength (σu). All test data was categorized into two groups: “node” samples 
and “internode” sample. Consequently, the training data were split into “All dataset”, “node dataset” and “internode dataset”. This 
process resulted in the development of a total of six ANN models, each designed to cover the three dataset types and two strength types. 
These models are named All-ANN, Node-ANN, and iNode-ANN, respectively, and are used for predicting Fu and σu. The accuracy of the 
proposed ANN models was assessed using three performance indices: the squared correlation (R2), Root Mean Squared Error (RMSE) 
and Mean Absolute Error (MAE). 

Based on the prediction performance indices (R2, RMSE and MAE), using the separately trained ANN models to predict the strength 
of the consistent data led to an improvement in all performance indicators. In contrast, the performance of the separately trained 
models, such as the Node-ANN model or iNode-ANN model, was lower in predicting the ultimate compressive load and compressive 
strength of all samples or inconsistent samples compared to the predicted values using the All-ANN or a consistent ANN model. 

When comparing the predictions with the previous work using the simple and multiple linear regression analyses [23], the pro-
posed ANN models exhibited higher R2 values. Consequently, the developed ANN models offer significant improvement in predicting 
the ultimate compressive load and ultimate compressive strength. 

Many past research studies have focused on predicting the ultimate strength. However, rather than using ultimate strength, 
allowable strength is a crucial design parameter for structural engineers to determine the structural dimensions and building safety. 
Therefore, the proposed All-ANN models, for example, were adopted to determine the ultimate compressive strengths and further 
calculate the characteristic and allowable compressive strengths. The values were compared to the strengths obtained from the 
experiment data, with a difference of approximately 8.0%. 

In sum, the ANN models presented in this study offer promising and improved predictions for both ultimate compressive load and 
compressive strength of Dendrocalamus Sericeus bamboo culm, outperforming traditional linear regression methods. Furthermore, they 
are applicable for determining allowable strength. As a result, the models are suggested to be adopted as a tool for the design and 
construction of bamboo buildings. 
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Table 6 
Characteristic and allowable compressive strengths from experiment versus ANN models.  

Compressive 
Strength 

1. Experiment 
(MPa) 

2. All-ANN1 
(MPa) 

3. All-ANN2 
(MPa) 

(1/2) Error (%) (1/3) Error (%) 

Mean value  55.6  56.4  56.2 1.4 1.1 
Standard deviation  8.22  6.80  6.64 - - 
σkEq. (7)  40.5  43.8  43.8 8.2 8.2 
σallEq. (6)  10.0  10.8  10.8 8.0 8.0 

*Col.#1. Experiment: test data, Col.#2. All-ANN1: ALL-ANN predicted ultimate compressive load divided by specimen cross-section area, Col.#3. All- 
ANN2: ALL-ANN directly predicted ultimate compressive load 
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