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Abstract—Artificial intelligence (AI) is enabling the automated
design of contemporary antennas for numerous applications.
Specifically, the use of machine learning (ML)-assisted global op-
timization techniques for the efficient design of modern antennas
is now fast becoming a popular method. In this work, we demon-
strate for the first time, the ML-assisted global optimization
of a high-dimensional non-uniform overlapping quasi-digitally
coded microstrip patch antenna array using a new AI-driven
antenna design technique, called TR-SADEA (the training cost-
reduced surrogate model-assisted hybrid differential evolution
for complex antenna optimization). The TR-SADEA-generated
array showed very promising simulated frequency responses
for potential wideband applications with a -10 dB impedance
bandwidth of 5.75 GHz to 10 GHz, a minimum in-band realized
gain of 5.82 dBi, and a minimum in-band total radiation efficiency
of 87.84%.

Index Terms—AI, Antenna Optimization, and TR-SADEA.

I. INTRODUCTION

The automatic design of antennas via artificial intelligence
(AI) techniques in the form of machine learning (ML)-assisted
optimization is attracting much attention. This growing in-
terest can attributed to the reduced design time and higher
design solution quality that ML-based optimization methods
for antenna design offer [1]. This is as opposed to traditional
experience-driven methodologies that often rely on parameter
sweeping and/or the use of rules of thumb [2]. Even though
parameter sweeping and some rules of thumb allow designers
to gain insights into the characteristics of antennas, they
are often not suitable for the efficient tuning of present-day
antenna structures that have interrelated design parameters. As
a result, finding the best set of parametric values for modern
antennas to meet stringent specifications in terms of bandwidth
(e.g., wideband and multiband), radiation and other frequency
responses often requires an optimization procedure [3], [4].

AI-based methods available for antenna optimization today
often work by incorporating ML techniques into the opti-
mization kernel of traditional numerical optimization methods
[1], [5], [6]. This is mostly to address the drawbacks of
conventional numerical optimization methods [4]. For example
in [7], trust region gradient-based search co-working with
the sequential quadratic approximation algorithm has been
used to optimize an antenna for gain enhancement using an
initial design provided by the designer as the anchor point for

the optimization process. However, for antenna design cases
where good initial designs are unavailable, other approaches
such as the harmonious working of supervised learning and
evolutionary computation techniques can be employed as
carried out in [8] for the design of a frequency re-configurable
antenna array. These examples and several others (such as [9]–
[11]) realistically demonstrate how AI, specifically, ML, is
automating the antenna design process.

Some ML-based methods for antenna optimization also have
their limitations, e.g., not being able to handle more than a few
design parameters, and reliance on good initial designs [4].
Due to the increasing complexity of antenna structures to meet
stringent design specifications and functional requirements
for present-day and future applications, contemporary antenna
design problems may have over 40 critical design parameters
without a good initial design [12]. For such cases, designers
are typically compelled to use design experience to reduce the
number of the design parameters to be tuned prior to the ML-
driven optimization process to reduce computational cost [12].
However, it will be more efficient to employ a method (such
as the training cost-reduced surrogate model-assisted hybrid
differential evolution for complex antenna optimization (TR-
SADEA) [13]) that can naturally optimize high-dimensional
antenna structures without relying on a good initial design.

The TR-SADEA method belongs to the SADEA family of
algorithms [14]. It mainly comprises a self-adaptive Gaussian
process (GP)-based surrogate modeling method that cuts the
training time and speeds up convergence, while mostly main-
taining the accuracy of the antenna performance prediction,
and a new hybrid surrogate model-assisted antenna optimiza-
tion framework [13]. In this work, the TR-SADEA method is
employed to provide a methodology for the global optimiza-
tion of a high-dimensional quasi-digitally coded microstrip
patch antenna array for wideband applications. It is the first
time that the automated design of such a high-dimensional
array using TR-SADEA is being presented. Hence, the pri-
mary contribution of this work is the TR-SADEA-driven de-
sign methodology for such a high-dimensional quasi-digitally
coded antenna. Even though there are several approaches
available for the digital coding of antennas for both design
and performance enhancements [15]–[17], the quasi-digital
coding scheme via geometric manipulations presented in [17]



has been adopted in this work due to its straightforwardness.
Hence, a design that stems from the work in [17] is the
reference design in this paper.

II. ANTENNA GEOMETRY

A primitive layout of the array is shown in Figs. 1 and
2, and its original frequency responses in terms of reflection
coefficient and radiation properties for different configurations
are discussed in [17]. From Figs. 1 and 2, it can be seen that
the antenna geometry is made up of four layers: the full ground
plane, the air gap, the dielectric substrate, and the microstrip
patch array. The ground plane and array are made of copper
having a thickness of 0.03 mm, the dielectric substrate has an
initial thickness (h1) of 0.8 mm, an initial relative permittivity
(εr) of 3.2 and a loss tangent (tan(δ)) of 0.0033. The air gap
between the ground plane and dielectric layer has a thickness
(h2) of 8 mm. The antenna structure is fed using a non-
planar coaxial probe connector, and it has been modeled and
discretized in CST Studio Suite (CST) using a mesh density
of 12 cells per wavelength to have about 303,000 mesh cells
in total.

To quasi-digitally code the antenna structure for a non-
uniform overlapping topological evolution of its microstrip
patch array, the relative positions of the individual cells or
patches are coded in CST to allow for their free movement
or shifting along the Y -axis as shown in Fig. 1. This quasi-
digital coding of the relative positioning of the patches via
parametrization in CST allows for an efficient way to deter-
mine the best non-uniform overlapping arrangement of the
cells as exemplified in [17]. In [17], a genetic algorithm
(GA) has been used for the optimization of the array to
have different topologies, and the largest -10 dB impedance
bandwidth reported is 760 MHz. In this work, we aim to
provide a more efficient methodology for finding the best
non-uniform overlapping arrangement for the array cells to
have the largest possible -10 dB impedance bandwidth in
the ultrawideband (UWB) frequency spectrum of 3.1 GHz to
10.6 GHz) with good in-band radiation properties. To achieve
this, TR-SADEA is employed to optimize a reference design
inspired by the work in [17].

III. TR-SADEA-BASED OPTIMIZATION

The adopted design methodology is shown in Fig. 3. The
first step involves the parametrization and quasi-digital coding
of the array in CST. This is implemented by defining a Y -
axis translation vector for each of the 56 cells of the array
to have a total of 56 parameters (i.e., m1 to m77 in Fig. 1).
Aside from the 56 design parameters associated with the rel-
ative positioning of the cells, other critical design parameters
identified include the position of the feed probe connector (i.e.,
the ordered pair, (FX ,FY ), h1 and εr. The dimensions of each
cell, i.e., the length (PL) and the width (PW ) are fixed at 7 mm
as recommended in [17]. By including the relative position
of the feed probe connector in the optimization process,
the possibility of obtaining the desired -10 dB wideband

TABLE I: Search Space for the Antenna Design Parameters
and their Optimal Values Obtained by TR-SADEA. All Pa-
rameters are Continuous Variables with Dimensions in mm,
except h1 and εr which take values in {0.2, 0.3, 0.4, 0.5, 0.8,
1.5, 2.3, 3, 3.8} and {2.33, 2.5, 3.0, 3.38, 3.5, 4.5, 6.15, 10.2},
respectively.

Design Parameters and their Search Ranges TR-SADEA
Optimum

m1 [0 to 56] 40.51
m12 [0 to 56] 28.05
m13 [0 to 56] 30.92
m14 [0 to 56] 36.83
m15 [0 to 56] 43.86
m16 [0 to 56] 3.96
m17 [0 to 56] 10.89
m2 [0 to 56] 18.18
m21 [0 to 56] 17.86
m22 [0 to 56] 34.17
m23 [0 to 56] 27.64
m24 [0 to 56] 15.43
m25 [0 to 56] 27.87
m26 [0 to 56] 12.72
m27 [0 to 56] 23.69
m3 [0 to 56] 29.98
m31 [0 to 56] 44.67
m32 [0 to 56] 9.81
m33 [0 to 56] 4.96
m34 [0 to 56] 16.18
m35 [0 to 56] 39.72
m36 [0 to 56] 4.34
m37 [0 to 56] 37.35
m4 [0 to 56] 8.63
m41 [0 to 56] 12.16
m42 [0 to 56] 26.04
m43 [0 to 56] 7.30
m44 [0 to 56] 18.76
m45 [0 to 56] 0.34
m46 [0 to 56] 25.21
m47 [0 to 56] 32.96
m5 [0 to 56] 44.00
m51 [0 to 56] 28.62
m52 [0 to 56] 23.69
m53 [0 to 56] 4.91
m54 [0 to 56] 29.72
m55 [0 to 56] 25.53
m56 [0 to 56] 20.69
m57 [0 to 56] 1.53
m6 [0 to 56] 26.88
m61 [0 to 56] 12.63
m62 [0 to 56] 24.96
m63 [0 to 56] 16.77
m64 [0 to 56] 23.29
m65 [0 to 56] 11.52
m66 [0 to 56] 29.22
m67 [0 to 56] 1.56
m7 [0 to 56] 7.06
m71 [0 to 56] 49.97
m72 [0 to 56] 49.09
m73 [0 to 56] 48.25
m74 [0 to 56] 4.79
m75 [0 to 56] 35.78
m76 [0 to 56] 46.19
m77 [0 to 56] 44.47
FX [4 to 10] 6.48
FY [-16 to -10] -11.63
PW [Fixed] 7.00
PL [Fixed] 7.00
h1 {0.2, 0.3, 0.4, 0.5, 0.8, 1.5, 2.3, 3, 3.8} 0.20
εr {2.33, 2.5, 3.0, 3.38, 3.5, 4.5, 6.15, 10.2} 3.50



Fig. 1: Top view of the antenna layout.

Fig. 2: Side view of the antenna layout.

Fig. 3: Proposed methodology and TR-SADEA flow diagram.

impedance matching either via contacting feeding or non-
contacting (proximity-coupled) feeding is enabled.

The design parameters identified for the design exploration
are shown in Table I and described in Figs. 1 and 2. Using
a population size of 250 (all other algorithmic parameters
have the default settings in [13]), the TR-SADEA-driven

optimization is initialized by sampling the design space of the
array. The initial database comprising the candidate designs
and their simulation results is then created. The best candidate
design solution is outputted from the database if the preset
stopping criterion (maximum number of electromagnetic (EM)
simulations) is satisfied; otherwise, TR-SADEA executes the
following sequential steps iteratively: (1) Determination of
whether local optimization should be used. If yes, implementa-
tion of radial basis function (RBF)-assisted local optimization
using the current best design as the starting point. Then update
of the current best design if a better design solution is found
or when necessary. (2) Application of differential evolution
(DE) operations to the formulated population to have new child
solutions. (3) Self-adaptive GP-based surrogate modeling. (4)
Estimation of the DE-generated child solutions using the GP-
based surrogate models and the lower confidence bound-
based prescreening. (5) Simulation of the estimated best child
solution and updating the database with the best child solution
and its simulation results. The efficiency improvement of TR-
SADEA stems from the use of RBF-assisted local optimization
and self-adaptive GP surrogate modeling methods [13]. More
details about the TR-SADEA method can be found in [13].

The goal of the TR-SADEA-driven optimization is finding
the largest possible -10 dB impedance bandwidth percent-
age (BW ) in the UWB frequency spectrum of 3.1 GHz to
10.6 GHz subject to a minimum in-band realized gain (Gmin)
better than 3 dBi and a minimum in-band total radiation
efficiency (ηT ) better than 60%. To achieve this goal, the
penalized cost function (F ) is minimized by TR-SADEA:

F = −BW + w × {max([3 dBi−Gmin, 0]) + . . .

max([60%− ηT , 0])}
(1)

with w=50 to make TR-SADEA preferentially focus on meet-
ing the Gmin and ηT requirements first, before maximizing
BW .

After 1,222 EM simulations (costing about 10 days), TR-
SADEA obtained a design with F = −56.6% using a
computing budget of 1,500 EM simulations. This design is
reported in Table I and its layout is shown in Fig. 4a where it
can be seen that its impedance matching is via proximity EM-
coupling (such non-contact feeding via proximity coupling is a
known concept [18]). The frequency responses for this design
solution are shown and compared to the reference design in
Figs. 4b, 4c, and 4d. From Figs. 4b, 4c, and 4d, it can
be seen that the TR-SADEA-generated design shows better
frequency responses in the band of interest in comparison to
the reference design. Specifically, the TR-SADEA-generated
design has a wide -10 dB impedance bandwidth (5.75 GHz to
10 GHz), a minimum in-band realized gain of 5.82 dBi, and
a minimum in-band total radiation efficiency of 87.84%.

IV. CONCLUSION

In this work, a high-dimensional non-uniform overlapping
microstrip patch antenna array for wideband applications is



(a) Topological arrangement of the cells of the array.

(b) Reflection coefficient.

(c) Realized gain.

(d) Total radiation efficiency.

Fig. 4: Topological arrangement and simulated results for the
reference design and the TR-SADEA-optimized design.

proposed. Thanks to the TR-SADEA-driven optimization ap-
proach employed to optimize the reference design for the array,
the proposed array offers a wide -10 dB impedance matching
over the frequency bandwidth of 5.75 GHz to 10 GHz, a
minimum in-band realized gain of 5.82 dBi and a minimum
in-band total radiation efficiency of 87.84%. The simulated
frequency responses of the TR-SADEA-generated array val-
idate the TR-SADEA method’s ability to efficiently handle
the optimization of high-dimensional antenna array design
problems. In the future, the proposed array will be further

investigated for prototyping or physical implementation.
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