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Abstract: Epilepsy is a prevalent neurological disorder with considerable risks, including physical
impairment and irreversible brain damage from seizures. Given these challenges, the urgency for
prompt and accurate seizure detection cannot be overstated. Traditionally, experts have relied on
manual EEG signal analyses for seizure detection, which is labor-intensive and prone to human error.
Recognizing this limitation, the rise in deep learning methods has been heralded as a promising
avenue, offering more refined diagnostic precision. On the other hand, the prevailing challenge
in many models is their constrained emphasis on specific domains, potentially diminishing their
robustness and precision in complex real-world environments. This paper presents a novel model
that seamlessly integrates the salient features from the time–frequency domain along with pivotal
statistical attributes derived from EEG signals. This fusion process involves the integration of
essential statistics, including the mean, median, and variance, combined with the rich data from
compressed time–frequency (CWT) images processed using autoencoders. This multidimensional
feature set provides a robust foundation for subsequent analytic steps. A long short-term memory
(LSTM) network, meticulously optimized for the renowned Bonn Epilepsy dataset, was used to
enhance the capability of the proposed model. Preliminary evaluations underscore the prowess of
the proposed model: a remarkable 100% accuracy in most of the binary classifications, exceeding 95%
accuracy in three-class and four-class challenges, and a commendable rate, exceeding 93.5% for the
five-class classification.

Keywords: artificial intelligence; EEG; seizure detection; continues wavelet transform; hybrid features

1. Introduction

Approximately 1% of the global population is affected by epilepsy [1]. This con-
dition poses significant challenges that can even be life-threatening for those affected.
Among these patients, one-third do not respond to medications and need physical interven-
tions [2,3]. Epileptic seizures are characterized by swift and abnormal fluctuations in the
electrical patterns of the brain [4]. In severe cases, they can cause the entire body to become
unresponsive [5]. Electroencephalogram (EEG) signals have been the fundamental reference
for detecting epileptic seizures, helping to identify the seizure origin, and facilitating the
treatment of the affected brain tissues through medication and surgical procedures [6]. EEG
signals contain significant features that detail both regular and irregular brain activities,
particularly epileptic seizures. In addition, high-temporal-resolution EEG data from the
scalp, spanning multiple input channels, can be acquired through distributed continuous
sensing techniques [7]. Traditionally, diagnosing epilepsy through visual analysis of EEG
recordings, both clinically and conventionally, is labor-intensive and prone to error, with
varying consistency among experts, because of its heavy reliance on human expertise and
skill [8,9].
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Many EEG automatic seizure detection systems struggle with real-time specificity
and sensitivity, making them less suitable for clinical applications. There is a pressing
need for an advanced computer-aided system that can efficiently assist neurologists in
detecting epileptic seizures, ultimately reducing the time spent analyzing extensive EEG
recordings [10]. In areas with a scarcity of neurologists, the excessive dependence on
human expertise can increase the costs and cause delays in treating epilepsy. Tackling
these issues is essential to guarantee affordable epilepsy care in low-to-middle-income
regions, particularly in isolated locations with restricted access to skilled professionals and
advanced facilities. Improving access to automated seizure detection using EEG signals
has been studied extensively to mitigate this issue [11].

Machine learning is used widely to detect diseases automatically from biomedical
signals, such as ECG and EEG. For example, a previous study [12] used two distinct features
to detect epileptic seizures: fractal-based nonlinear features and entropy-based features.
These features were inputted into two machine learning classifiers: Support Vector Machine
(SVM) and K-Nearest Neighbor (KNN). The classifiers were trained and tested on the Bonn
Epilepsy database. This database comprises five distinct classes: Set S, Set F, Set N, Set O,
and Set Z. Set S represents seizure activity typically observed in epileptic patients. Both
Set F and Set N denote seizure-free states in the epileptic class, Set O is associated with a
normal, non-epileptic state where the subject’s eyes are closed, while Set Z corresponds
to the normal state with the subject’s eyes open. In their evaluation, they considered
binary (e.g., Z–S, O–S, and N–S) and the three-class detection problem (ZO–NF–S). In
addition, another study [13] introduced a framework that integrates fuzzy-based methods
and conventional machine-learning techniques to identify epileptic EEG samples in binary
classification problems. A limited set of features and linear (using the Naïve Bayes classifier)
and nonlinear (using the K-Nearest Neighbor classifier) approaches were applied to classify
the EEG samples [14]. Binary classification tasks were involved in classifying various
classes, i.e., Z–S, O–S, N–S, F–S, ZO–S, and ZN–E. Similarly, another study [15] used the
statistical features and classified with SVM (AdaBoost Least-Square SVM). The resulting
accuracy for the binary FNOZ-S classification problem in the Bonn dataset was 99%. In
particular, none of these authors extended the evaluation of their proposed methods to
include multi-class classifications.

Beyond traditional machine learning techniques, various deep learning architectures
have been introduced to detect epileptic seizures in the EEG data. A previous study [16]
utilized deep learning approaches to extract the important features from EEG data. In
particular, a Convolutional Neural Network (CNN) was implemented for the differentia-
tion tasks among normal, preictal, and seizure classes. The author of [17] introduced an
experimental and methodological approach that mapped microscale local network dynam-
ics with high spatiotemporal resolution and employed a quantitative analysis framework
to elucidate the dynamics of seizure initiation and progression in vivo. In addition, the
discrete wavelet transform (DWT) was used for feature extraction from the EEG data [18].
A combination of genetic algorithm and artificial neural network (ANN) and the Support
Vector Machine (SVM) classifiers were used to address binary and three-class classification
challenges in the Bonn Epilepsy database.

Many seizure detection methods concentrate on specific domains, such as utilizing
time–frequency domain methods, i.e., continuous wavelet transform (CWT), time domain,
frequency domain, and statistical attributes [19–22]. Unlike the other methods, the pro-
posed epileptic detection model innovatively combines the best of these attributes. A
comprehensive set of important features is obtained by leveraging the complex insights
from the statistical domain that is characterized by rich features, such as the mean, median,
variance, skewness, and kurtosis, with the compressed time–frequency domain images
(CWT Images) processed through an autoencoder. This hybrid integration of Convolutional
Autoencoder (CAE) latent space and statistical features ensures model robustness, making
it adept at capturing the most vital information for classification. A long short-term mem-
ory network was used to optimize the approach, allowing precise classifications ranging
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from binary to five-class classification challenges, particularly fine-tuned for the Bonn
Epilepsy dataset.

Contribution

The main contributions of this work are as follows:

• This study introduces a significant advancement in epileptic seizure detection. The
proposed novel deep learning method seamlessly merges the compressed latent space
features from the time–frequency domain with statistical attributes of the EEG sig-
nal. This integrated feature pool captures time–frequency and statistical information,
making this approach different in robustness and accuracy.

• The proposed hybrid model uses an optimal window size for EEG segmentation,
ensuring minimal data loss and a set overlap ratio. After rigorous evaluation, this
method selects the best window size for maximal data coverage, which is crucial
for precise EEG classification. This strategy upholds data integrity, boosting the
classification reliability of the model.

• A CAE was used for feature extraction from CWT images. CAEs excel at handling
image data like EEG-based CWT by preserving spatial structures. The CAE retained
the most important features and eliminated noise by compressing and reconstructing
the image. This method reduced data dimensionality and identified the most vital
EEG patterns, enhancing precision and accuracy in subsequent analysis.

• The CAE latent space features still contain some less important features. Principal
Component Analysis (PCA) was applied to extract the most relevant features from the
latent space, enhancing the classification accuracy.

• LSTM networks were used for classification, capitalizing on their proficiency with
time-series data. Given the sequential nature of the EEG signals, LSTMs, with their
ability to capture long-term dependencies, provided enhanced accuracy in detecting
intricate seizure patterns.

• While many studies evaluate the Bonn dataset for binary classification, some extend
to three or four classes, with few tackling a five-class problem. This study encom-
passed classifications from binary to five class, achieving unprecedented accuracy,
i.e., 100% for binary, >95% for three and four classes, and above 93% for the five-class
categorization, marking the highest recorded performance in terms of accuracy.

The remainder of this article is organized as follows. Section 2 provides an in-depth
explanation of the model design and components. Section 3 reports the dataset description
and the model performance on the benchmark dataset. Finally, Section 4 provides the
concluding remarks on the article.

2. Proposed Method

This section provides an overview of the proposed methodology for epilepsy detection,
leveraging a hybrid model that combines an autoencoder and a Recurrent Neural Network
(RNN), specifically the long short-term memory (LSTM) variant. The procedure starts
with a windowing technique, segmenting the continuous signal into smaller, manageable
packets. This approach ensures that every datum is captured accurately. Once segmented,
critical statistical features for each windowed segment are calculated, capturing the primary
characteristics of the data. Subsequently, the continuous wavelet transform is applied to
the segmented data. This transformation extracts time–frequency information from each
segment, providing a more detailed representation of the signal dynamics. The resulting
time–frequency images serve as input to the Convolutional Autoencoder, which distills the
data into a latent feature space. Owing to the potential high dimensionality of this latent
space, PCA was implemented to streamline the feature set, retaining only those components
that contribute significantly to the variance and, by extension, the classifiability of the data.
These condensed features are merged with the previously computed statistical features,
producing a hybrid feature pool. This comprehensive feature set captures both the inherent
characteristics of the signal and its nuanced, transformed representations. Finally, this paper
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introduces the LSTM model, which takes this hybrid feature set as input and determines the
epilepsy state of the signal. The inherent capacity of the LSTM to process sequential data
makes it particularly suited for this task, ensuring accurate classifications across various
detection scenarios. Figure 1 presents a visual representation of the entire process.
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Figure 1. Overview of the proposed epileptic seizure detection model.

2.1. Windowing

The Bonn University Epilepsy dataset comprises five distinct subsets, Set Z, Set O, Set
N, Set F, and Set S, and the details of which are described earlier in the introduction section.
Each subset contains 100 samples, resulting in 500 samples across the entire dataset. In the
present study, all 100 samples were chained, and a windowing technique was applied to
create small segments of the EEG signal. In signal processing analysis, windowing plays a
pivotal role, primarily in combating the challenges of spectral leakage. Spectral leakage is
a key concern in signal processing, particularly relevant when analyzing EEG signals. It
occurs when energy from the signal’s true frequency leaks into other frequencies, often due
to the finite length of the signal window. This can distort the true frequency content of EEG
data, potentially affecting the accuracy of seizure detection. Moreover, windowing enhances
temporal localization, ensuring that specific spectral events are precisely mapped within
distinct time frames. The technique also fine-tunes the frequency resolution, delineating
closely packed frequency components with clarity [23]. Given the advantage, the sliding
window technique was employed to partition each sample into multiple smaller signal
segments. An overlapping sliding window method, implementing a 1458 data-point
window with a 486 data-point overlap, was used to ensure no data-points were omitted.
This window, shown in Figure 2, successively slides across the data, producing smaller
signal segments, the combination of which represents the complete signal of the subject.
The mathematical formulation of the sliding window technique with overlap, for a given
signal S of length L, the starting and ending points of the ith windowed segment Si, is
expressed below. Equation (1) indicates the starting point of each window, and Equation (2)
expresses the ending point of the window.
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For the ith window,

Start : Si = 1 + (i− 1)× (ω− ϑ) (1)

End : Si = ω + (i− 1)× (ω− ϑ) (2)

where;

• ω is the window length, and in this case, ω = 1458.
• ϑ is the overlap length, and here, ϑ = 486.
• i is the window number (e.g., i = 1 for the first window, i = 2 for the second, so on).
• It should be always ensured that ω > 0 for the above formulation to be valid.

2.2. Continuous Wavelet Transformation (CWT)

Electroencephalography (EEG) records the electrical activity of the brain, producing
inherently non-stationary signals. Traditional Fourier methods, which analyze the signals
in terms of sinusoids with infinite duration, may not effectively capture the transient or
time-varying phenomena of the EEG data [24]. On the other hand, wavelet transform
is a computational method designed to analyze non-stationary signals by decomposing
them into various frequency components while maintaining temporal resolution. The
wavelet transform employs basic functions called “wavelets”, allowing simultaneous
frequency and time domain analysis [25,26]. Equation (3) is a mathematical expression for
the wavelet transform.

WT(s, t) =
1√
|s|

∫ ∞

−∞
f (τ)ψ∗

(
τ − t

s

)
dτ (3)

where f (τ) is the input signal; ψ∗(·) represents the complex conjugate of the wavelet
function; s is the scale factor (which is inversely related to frequency); and t is the translation
factor (related to time).

Extending this concept, the CWT is a specialized form of wavelet transform wherein
the wavelet undergoes continuous scaling and translation, allowing temporal and spec-
tral analysis [27]. CWT’s multi-resolution characteristic is particularly advantageous for
interpreting EEG signals, given that different physiological phenomena might present them-
selves at diverse scales. The expression for CWT of a function f (t) relative to a wavelet
ψ(t) is as follows:

CWTf (s, t) =
∫ ∞

−∞
f (τ)ψ*

s,t(τ)dτ (4)

with the modified wavelet given by the following:

ψs,t(τ) =
1√
|s|

ψ

(
τ − t

s

)
(5)

• ψ is called the mother wavelet, which is a short wave-like oscillation.
• s is the scaling factor. The function is stretched if s > 1 or compressed if 0 < s < 1.
• t is the translation factor, which shifts the function in time.
• τ is the variable of integration, typically representing time.
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• The factor 1√
|s|

is a normalization term that ensures that the wavelet has the same

energy at every scale.

Equations (3) and (4) describe how the original mother wavelet, ψ, is scaled and
translated to analyze a signal at various frequencies and time positions.

The CWT was used to convert EEG signal segments into images, employing the Morlet
wavelet. The Morlet wavelet, a complex sinusoid modulated by a Gaussian envelope, is
crucial in signal processing for its ability to highlight oscillatory patterns, particularly
in EEG/ECG data [28]. The CWT, with Morlet as a mother wavelet, extracted both the
spectral and temporal resolutions of the signal, which were subsequently represented as
images. Figure 3 shows the graphical representation of CWT images of each class of the
Bonn Epilepsy dataset.
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2.3. Convolutional Autoencoder

After being proposed by Theis et al. [29] and Balle et al. [30], the Convolutional Au-
toencoder (CAE) has attracted the interest of many researchers in recent years, particularly
for leaned image compression. Convolutional Autoencoder is a specialized neural network
that encodes and decodes data with spatial hierarchies, such as images. Unlike traditional
autoencoders, CAEs utilize convolutional layers to exploit spatial localities in data, making
them particularly adept at handling images. A CAE aims to approximate an identity
function while adhering to specific constraints, such as limited neurons in hidden layers. A
CAE is structured into two main components:

2.3.1. Encoder

The encoder portion of a CAE serves as a funnel, which is responsible for mapping
the input x ∈ Rn to a latent (or compressed) space. This is achieved using a series of
convolution operations designed to capture the spatial hierarchies in the data. Considering
a feedforward neural network as the architecture, the output h(l+1)

e of the lth layer in the
encoder is defined as follows:

h(l+1)
e = σ

(
W(l)

e ∗ h(l)e

)
(6)

where W(l)
e denotes the convolutional filters (or kernels), which can be considered tiny fea-

ture detectors. The nonlinear activation function, σ, introduces non-linearity into the system,
allowing the network to learn complex patterns. As the EEG image progresses through the
Le convolutional layers of the encoder, the final encoded representation, h(Le)

e = h, serves
as a compressed, but rich, encapsulation of the most salient features of the images.

2.3.2. Decoder

The decoder acts as the inverse of the encoder. The decoder takes the compressed
representation h and attempts to reconstruct it back to the original space. This involves
transposed convolutional operations, which can be visualized as deconvolutions or reverse
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convolutions. If a feedforward neural network is considered, the output h(l+1)
d of the lth

layer in the decoder is as follows:

h(l+1)
d = σ

(
W(l)

d � h(l)d

)
(7)

where W(l)
d are the transposed convolutional filters, which operate in a manner opposite

to the encoder filters. The final output from the decoder, h(Ld)
d = x′, aims to be a faithful

reconstruction of the original image x, bringing full circle the encoding–decoding process
of the CAE.

The primary objective of a CAE is to minimize the reconstruction error between the
original input and its reconstruction. This error, typically termed as the loss function, can
be defined as follows:

L
(

x′, x
)
=‖ x′ − x ‖ (8)

Optimization algorithms, such as backpropagation, minimize this loss when training a
CAE. In the architecture presented in Table 1, a CAE was used with a five-layer encoder and
decoder. The CAE’s effectiveness is demonstrated by a high PSNR value of 66 dB, indicating
precise image reconstruction. Figure 4 shows the graphical layer-wise architecture of
the CAE.

Table 1. Summary of the autoencoder architecture.

Encoder

Layer (type) Output Shape Param#
Conv2D (None, 128, 128, 16) 160
Conv2D (None, 64, 64, 32) 4640
Conv2D (None, 32, 32, 64) 18,496
Conv2D (None, 16, 16, 128) 73,856
Conv2D (None, 8, 8, 255) 294,015

Total parameters 391,167
Trainable parameters 391,167

Non-trainable parameters 0

Decoder

Layer (type) Output Shape Param#
Conv2D Transpose (None, 16, 16, 128) 293,888
Conv2D Transpose (None, 32, 32, 64) 73,792
Conv2D Transpose (None, 64, 64, 32) 18,464
Conv2D Transpose (None, 128, 128, 16) 4624
Conv2D Transpose (None, 256, 256, 1) 145

Total parameters 390,913
Trainable parameters 390,913

Non- trainable parameters 0
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Table 1. Summary of the autoencoder architecture. 

Encoder   
Layer (type) Output Shape Param# 

Conv2D  (None, 128, 128, 16)  160 
Conv2D  (None, 64, 64, 32) 4640  
Conv2D (None, 32, 32, 64) 18,496 
Conv2D (None, 16, 16, 128) 73,856 
Conv2D (None, 8, 8, 255) 294,015 

Total parameters 391,167  
Trainable parameters 391,167  

Non-trainable parameters  0  
Decoder   

Layer (type) Output Shape Param# 
Conv2D Transpose (None, 16, 16, 128)  293,888 
Conv2D Transpose (None, 32, 32, 64) 73,792 
Conv2D Transpose  (None, 64, 64, 32) 18,464 
Conv2D Transpose (None, 128, 128, 16) 4624 
Conv2D Transpose (None, 256, 256, 1) 145 
Total parameters 390,913  

Trainable parameters 390,913  
Non- trainable parameters 0  

  

Figure 4. Autoencoder model architecture.

2.4. Principal Component Analysis

PCA is a well-established dimensionality reduction technique that projects data into a
lower-dimensional space while preserving as much of the original variance as possible [31].
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This method is particularly useful for reducing the dimensionality of datasets with many
correlated variables, transforming them into a new set of orthogonal variables known as
the principal components [32,33].

In the context of this study, PCA was used to reduce the dimensionality of the latent
space extracted from the autoencoder. A compact representation of the data that retained
most of the original variance was ensured by reducing the features to 128 dimensions using
PCA. This processed latent space was combined with statistical features in a hybrid feature
pool, paving the way for enhanced EEG signal classification.

2.5. Statistical Features

Electroencephalogram (EEG) signals, which represent the electrical activities of the
brain, are inherently dynamic and complex. Therefore, it is imperative to extract the
representative features that capture the underlying characteristics of the EEG data to discern
information from these signals, particularly for applications, such as epilepsy detection.
In addition, statistical features offer a compact representation of EEG signals, distilling
them into metrics that reflect the distribution and behavior of the signal over time [34].
These include the mean, standard deviation, kurtosis, skewness, and various factors, such
as crest, shape, and impulse. Although each of these metrics carries its significance in
capturing different signal characteristics when they provide a comprehensive overview of
the signal when combined. For example, the mean offers a central tendency, suggesting the
average amplitude of the signal. Standard deviation and variance capture the dispersion
and variability within the signal. Metrics, such as kurtosis and skewness, provide insights
into the shape of the distribution of the signal, indicating the presence of any irregular
peaks or asymmetries. Factors, such as crest and shape, elucidate the transient behaviors of
the signal and its oscillatory nature. Combining these statistical features with the latent
features of an autoencoder derived from the CWT images can significantly enhance the
classification performance of EEG signals, particularly in epilepsy detection. Because
statistical features capture the basic characteristics of EEG signals, the latent space of the
autoencoder, derived from the CWT images, encapsulates more complex, nonlinear patterns
in the data. They offer a more comprehensive representation of the EEG signal. The fusion
of these two feature sets can increase the robustness of the model. This process benefits from
the generalization capabilities of autoencoders and the straightforward interpretability
of statistical metrics. Furthermore, epileptic seizures lead to characteristic changes in the
EEG patterns. Statistical features can highlight sudden spikes, deviations, and anomalies
in the signal, which are common indicators of epileptic activities. Combined with the
high-level patterns learned by the autoencoder from CWT images, the classification system
can better differentiate between epileptic and non-epileptic signals. Table 2 provides the
list of calculated statistical features.

Table 2. Statistical features and their mathematical expressions.

Feature Mathematical
Expression Feature Mathematical

Expression

Minimum min(s) Range max(s)−min(s)
Maximum max(s) Energy ∑ s2

Mean 1
N ∑ s Clearance Factor max(|s|)√

1
N ∑|s|2

Standard Deviation
√

1
N−1 ∑(s− µ)2 Variance 1

N−1 ∑
(
s− µ)2

Kurtosis
1
N ∑(s−µ)4

σ4
Impulse Factor max(|s|)

1
N ∑|s|

Skewness
1
N ∑(s−µ)3

σ3
Power ∑ s2

N

RMS
√

1
N ∑ s2 Peak to RMS max(|s|)√

1
N ∑ s2

Crest Factor max(s)√
1
N ∑ s2

Shape Factor
√

1
N ∑ s2

1
N ∑|s|
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2.6. Hybrid Features Pool

EEG signals are complex yet rich in information. It is very important to extract their
right features to analyze them. With simple statistical features, a broader and more useful
set of attributes can be obtained by combining the power of deep learning methods, such
as CWT images. This approach combines detailed patterns (from CWT images) and basic
signal traits (from statistical features) to provide a well-rounded view of the EEG data.

Ensuring the alignment of features accurately within this hybrid framework is essential
to preserve data consistency and optimize subsequent analytical outcomes. FAE represents
the set of features derived from the bottleneck of an autoencoder for a specific EEG window,
and Fstat denotes the statistical features for the same window. The harmonization of these
features can be represented as follows:

Fhybridi
=
{

fAEi ∪ fstati

∣∣ fAEi ∈ FAE ∧ fstati ∈ Fstat
}

(9)

The index i in fAEi and fstati ensures that the autoencoder latent space features and
statistical features are obtained from the same EEG window packet. This hybrid feature
pool offers a multidimensional view of EEG signals, amplifying the richness of information
available in each class. This feature integration promises robustness against potential
intra-class variations and maximizes the inter-class disparities, emphasizing its importance
for complex data, such as EEG and EMG signal classification applications. These hybrid
features are then input into an LSTM network for final classification.

2.7. Long Short-Term Memory

LSTM networks, a specific architecture of RNNs, have attracted significant attrac-
tion for predicting time-series data because of their unique cellular design. This design
is essential for the LSTM to transmit information selectively, addressing issues such as
vanishing and exploding gradients during backpropagation [35]. Figure 5 presents an
in-depth visualization of this architecture. At the core of an LSTM are three main gates:
forget, input, and output gates.
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Initially, the forget gate decides the segments of information that the cell state should
discard.

ft = σ
(

W f × [ht−1, xt] + b f

)
(10)

where ht−1 denotes the prior hidden layer output; xt symbolizes the current input, with σ
being the sigmoid activation; and W and b represent the weight matrix and bias, respectively.
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Subsequently, the input gate governs the preservation of information in the cell state,
spliting into identifying the data for updates and setting up an updated state. This can be
expressed mathematically as follows:

it = σ(Wi × [ht−1, xt] + bi) (11)

∼
Ct = tanh(WC × [ht−1, xt] + bC) (12)

The present state of the neuron can be derived by combining Equations (2) and (3):

Ct = ft−1Ct−1 + it−1
∼
Ct (13)

The role of the output gate is pivotal for determining the final output. The sigmoid
function evaluates which segment of the cell state to assign to output, subsequently under-
going processing by the tanh function and pointwise multiplication:

ot = σ(Wo × [ht−1, xt] + bo) (14)

ht = ot × tanh(Ct) (15)

In biomedical contexts, the strength of the LSTM lies in its ability to recognize the
patterns over time, making it particularly effective for detecting epileptic seizures.

EEG data, characterized by detailed time-based patterns, benefits from accuracy and
timely analysis by the LSTM, ultimately improving patient care and treatment outcomes.
This model uses an LSTM layer, consisting of 128 units, designed specifically to process the
time-dependent patterns in EEG data. The data are passed to a dense layer using softmax
activation, sorting the LSTM outputs into specific categories. The model is fine-tuned for
optimal performance with the “adam” optimizer and the categorical_crossentropy loss
function, which is suited for classifying multiple categories. The hyperparameters for
this study were selected through a series of experiments shown in Table 3. Combining
the strengths of autoencoder latent space features and statistical attributes, the LSTM
provides a thorough and accurate representation of the complex patterns of the EEG data.
This integration enhances the model robustness and its ability to identify subtle EEG
patterns accurately, which is crucial for advanced seizure detection. The effectiveness of
the proposed model will be further discussed in the next section.

Table 3. Hyperparameters Tuning.

Hyperparameter Fixed Parameters Values Tested Accuracies (%)

Number of Neurons Epochs = 50, Batch Size = 32 32, 64, 128, 256 90.28, 91.65, 93.25, 92.78
Batch Size Neurons = 128, Epochs = 50 16, 32, 64, 128 93.06, 92.22, 93.30, 92.36

Number of Epochs Neurons = 128, Batch Size = 32 20, 30, 40, 50 86.25, 89.40, 92.30, 93.35

3. Performance Evaluation
3.1. Meta Data

In this study, the EEG database from the University of Bonn, Germany, curated by
Andrzezak et al. [36], was chosen for data incorporation. This database was selected because
of its authority in the field and its frequent utilization in numerous epilepsy diagnostic
studies. The dataset comprises five sets (Z, O, N, F, and S) of 100 EEG signals each, captured
via a single channel from the scalp surface. Each EEG signal spans a duration of 23.6 s and
includes 4097 sample points. The signals were digitized using a 12-bit A/D converter at a
sampling frequency of 173.61 Hz.

In the data collection process, a total of 10 subjects were involved. Sets Z and O
originate from the EEG records of five healthy individuals, with eyes open and closed,
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respectively. Sets N, F, and S derive from the preoperative EEG records of five diagnosed
epileptic patients. In particular, Set N segments were from the hippocampus located in
the opposite hemisphere of the brain. Set F was obtained from within the epileptogenic
zone, with both sets containing measurements during seizure-free intervals. Set S solely
encompassed the seizure activity. Table 4 provides detailed information regarding these
data. For this study, all five sets were utilized, with representative EEG signal samples from
each group presented in Figure 6.

Table 4. Overview of EEG Bonn EEG dataset of University of Bonn, Germany.

Patient Stage Subject Activities Number
of Samples

Length of
Segments

Sampling
Frequency

(Hz)

Duration
(s)

Epileptic
Ictal Set S (Seizure Activity) 100 4097 173.61 23.60

Interictal
Set F (Seizure Free) 100 4097 173.61 23.60
Set N (Seizure Free) 100 4097 173.61 23.60

Healthy Normal
Set O (Eyes Closed) 100 4097 173.61 23.60
Set Z (Eyes Open) 100 4097 173.61 23.60
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Figure 6. EEG signals from different classes.

In this study, the classification performance of epilepsy seizure detection models is
evaluated using multiple metrics: accuracy, F1-score, precision, recall, and sensitivity. The
choice of these metrics provides a comprehensive understanding of the model proficiency
in accurately identifying the seizures and distinguishing between the various classes.

In a binary classification framework, the terminologies employed are as follows:

• True Positive (TP): instances confirmed to be positive.
• True Negative (TN): instances confirmed to be negative.
• False Positive (FP): instances incorrectly identified as positive.
• False Negative (FN): positive instances mistakenly identified as negative.

The metrics for binary classification are given by the following:

Accuracy =
TP + TN

TP + TN + FP + FN
, (16)

Precision =
TP

TP + FP
, (17)

Recall (or Sensitivity) =
TP

TP + FN
, (18)
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F1Score = 2× Precision× Recall
Precision + Recall

(19)

In this study, the performance of the model, built upon a hybrid feature pool, was
examined across different classification scenarios. The aim was to assess its proficiency in
distinguishing between various numbers of classes, ranging from binary classification to a
more complex five-class scenario. The specific scenarios for each classification problem are
detailed as follows:

• Binary Classification: N–S, Z–S, O–S, F–S, FN–S, FNZ–S, FNO–S, and NOZ–S.
• Three-Class Classification: F–O–S, N–Z–S, O–Z–S, and FN–OZ–S.
• Four-Class Classification: F–O–Z–S and N–O–Z–S.
• Five-Class Classification: F–N–O–Z–S.

3.2. Binary Classification

The proposed classification system exhibited an exceptional precision in classifying
critical EEG states when assessing the model performance on the previously mentioned
binary cases. As highlighted in Table 5, the model differentiates between the seizure activity
(Set S) and various non-seizure states, including the eye-closed (Set O), eye-open (Set Z),
and seizure-free states (Sets F and N), with remarkable accuracy, often achieving accuracy
and F1-scores of 100%. Nevertheless, when classifying the F–S binary combination, the
model accuracy decreased slightly, settling at 98.12%. The confusion matrices, which show
the true versus predicted labels across these binary combinations, are illustrated in Figure 7.
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Table 5. Performance metrics for binary classification.

Problem Accuracy (%) F1-Score (%) Precision (%) Sensitivity (%)

N–S 100 100 100 Class N: 100
Class S: 100

Z–S 100 100 100 Class Z: 100
Class S: 100

O–S 100 100 100 Class O: 100
Class S: 100

FN–S 100 100 100 Class FN:100
Class S: 100
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Table 5. Cont.

Problem Accuracy (%) F1-Score (%) Precision (%) Sensitivity (%)

FNZ–S 100 100 100 Class FNZ: 100
Class S: 100

FNO–S 100 100 100 Class FNO: 100
Class S: 100

NOZ–S 100 100 100 Class NOZ: 100
Class S: 100

F–S 98.12 98.12 98.13 Class FNZ: 97.85
Class S: 98.5

3.3. Three-Class Classification

After observing the promising results from the model performance for binary class
problems, the tests were extended to multi-class problems, specifically F–O–S, N–Z–S,
O–Z–S, and FN–OZ–S. The initial approach involved classifying three distinct categories:
the normal state, characterized by patients with closed eyes (Class “O”); the interictal state,
representing patients diagnosed with epilepsy but currently in a seizure-free state (Class F);
and the ictal state, indicative of active seizures. The proposed epilepsy seizure detection
architecture classified these three states, achieving 100% accuracy with no misclassifications,
as shown in Figure 8a. Furthermore, another set of three-class classification problems, the
N–Z–S classification problem, evaluated the model performance. The confusion matrix in
Figure 8b shows that the model precision remained high, achieving an overall accuracy
and sensitivity of 98.75% and 97.2%, respectively, for detecting seizures. This performance
was consistent, with an F1-score and a precision rate of 98.76%. In the subsequent O–S–Z
and FN–OZ–S classifications, the model sustained its robust performance, surpassing the
accuracy and sensitivity of 96% and 98%, respectively, for seizure detection (Figure 8c,d).
Table 6 lists the comprehensive performance of the proposed model for different three-class
problems.
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Table 6. Performance metrics for the three-class classification.

Problem Accuracy (%) F1-Score (%) Precision (%) Sensitivity (%)

F–O–S 100 100 100
Class F: 100
Class O: 100
Class S: 100

N–Z–S 98.75 98.75 98.76
Class Z: 98.76
Class N: 100
Class S: 97.2

O–Z–S 96.25 96.26 96.37
Class O: 93.18
Class Z: 98.60
Class S: 97.53

FN–OZ–S 98 97.93 97.98
Class FN: 96.56
Class OZ: 100
Class S: 97.40

3.4. Four-Class Classification

The model’s capabilities for detecting epileptic EEG signals in four-class problems were
assessed thoroughly. In particular, two different scenarios were examined: the N–O–Z–S
and F–O–S–Z classifications. In both cases, the model showed high performance even in
four-class problems, as illustrated in the confusion matrices in Figure 9. The classification
consistently achieved an approximate accuracy and precision of 97%. Table 7 provides a
detailed overview of the model metrics for these four-class classification problems.
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Table 7. Performance metrics for four-class classification.

Problem Accuracy (%) F1-Score (%) Precision (%) Sensitivity (%)

N–O–Z–S 96.60 96.57 96.70

Class N: 98.72
Class O: 94.51
Class S: 94.03
Class Z: 98.84

F–O–Z–S 98.75 98.75 98.76

Class F: 98.56
Class O: 95.65
Class S: 97.50
Class Z: 96.25

3.5. Five-Class Classification

Finally, the proposed model was evaluated for its ability to detect epileptic EEG
samples within complex signals. The model’s performance was evaluated using the Z–N–
O–Z–S five-class problem. The confusion matrix shows that the model achieved promising
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results with an overall accuracy, F1-score, precision, and general sensitivity of 93.25%,
93.21%, 93.23%, and 93.25%, respectively, as shown in Figure 10. In particular, the model
revealed a sensitivity of 100% in detecting the epileptic seizure signals with no false
detection. The model also recorded a sensitivity of 95.00%, 91.56%, and 90% for class O,
class N, and classes Z and F, respectively. In summary, these results confirm the reliable
detection performance of the model across various scenarios, i.e., binary, three-class, four-
class, or even five-class problems.
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4. Discussion

After evaluating the model across various classification problems, ranging from binary
to three-class, four-class, and even five-class scenarios, we observed that the proposed
algorithm showed promising results in all these tasks. The enhanced performance of our
epilepsy detection model is due to its hybrid architecture. This hybrid design leverages the
autoencoder’s feature distillation from high-dimensional data and the LSTM’s sequential
information processing. The integration of PCA retains key classification components, and
merging these with statistical features creates a comprehensive feature set. This fusion
effectively captures diverse signal characteristics, enhancing data classifiability. To assess
the impact of concatenating statistical features with CAE (Convolutional Autoencoder)
latent space features, we conducted an ablation study within a five-class classification
framework. Table 8 illustrates the outcomes of training the LSTM network with distinct
feature sets. When solely CAE latent space features were used, the LSTM achieved an
accuracy of 89.50%, an F-1 score of 89.57%, a precision of 89.83%, and a sensitivity for
the epileptic class of 91.78%. In contrast, training with only statistical features resulted in
lower performance across all metrics, with an accuracy of 78.50%, an F-1 score of 78.60%,
a precision of 79.17%, and a sensitivity for the epileptic class of 82.19%. However, the
combination of both CAE latent space features and statistical features substantially im-
proved the model’s performance, elevating the accuracy to 93.25%, F-1 score to 93.21%, and
precision to 93.23%, and achieving a perfect sensitivity for the epileptic class at 100%. This
demonstrates that the integration of both feature types significantly enhances the LSTM
network’s ability to classify and detect epilepsy in a multi-class setting. The LSTM’s profi-
ciency in sequential data analysis further ensures accurate epilepsy detection across various
scenarios. Overall, our approach sets a new standard in EEG data analysis for epilepsy
detection. The performance of the proposed model was compared with existing approaches.
Table 9 shows a comparison of the proposed model with some existing approaches.
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Table 8. Ablation experiment.

Training Features Test Accuracy (%) F-1 Score (%) Precision (%) Sensitivity for
Epileptic Class (%)

CAE latent space features 89.50 89.57 89.83 91.78
Statistical features 78.50 78.60 79.17 82.19
Combined features 93.25 93.21 93.23 100

Table 9. Comparison with some existing approaches.

Author Year Method Used Classifier Classification
Problem Results

Zarei et al. [37] 2021 DWT SVM Z–S, O–S
N–S, F–S

99.50, 99.75
99.00, 99.50

Wang et al. [38] 2019 Symlets wavelets and PCA SVM Z–S, O–S
N–S, F–S

100
98.4, 98.1

Yazid et al. [11] 2023

DWT, local binary pattern
transition histogram, and local
binary pattern mean absolute

deviation

KNN
Z–S
O–S
N–S
F–S

99.94
99.86
99.88
99.70

Gupta et al. [18] 2019
Fourier Bassel series expansion and

weighted multi-scale Renyi
permutation entropy

LS-SVM
Z–S
O–S
N–S
F–S

99.50
99.50
99.50
97.50

Mamli et al. [39] 2019
Fourier Synchro-Squeezed
Transform and gray level

co-occurrence matrix
KNN, SVM ZO–S

FN–S
99.73
99.59

Mandhouj et al. [26] 2021 STFT spectograms CNN ZO–S 98.33

Bari et al. [40] 2020 EMD with normalized intrinsic
mode function

Quadratic
Discriminant

Analysis (QDA)
NF–S 99.00

Kaur et al. [41] 2023 Activations from conv5 SVM ZNF–S
Z–N–S

99.75
98.00

Zhao et al. [42] 2019 Stationary WT and entropy
features

Back-Propagation
NN ZO–NF–S 93.30

Baykara et al. [43] 2021 Stockwell Transform, Entropies,
and Perservals energy ELM ZO–NF–S 90.00

Turk et al. [44] 2019 FFT, STFT, WT Transform CNN
Z–N–F–S
O–N–F–S
Z–O–N–F

90.50
91.50
93.60

Zhang et al. [45] 2021 Frequency Slice WT (FSWT), Fuzzy
entropy, and Higuchi FD

t-distributed
stochastic neighbor
embedding (t-SNE)

Z–O–N–F–S 93.62

Zhou et al. [46] 2020 DWT entropy features RBF NN Z–O–N–F–S 78.40

N–S, Z–S, O–S 100
FN–S, FNZ–S,

FNO–S, NOZ–S 100
F–S 98.12

F–O–S 100
This Proposed Study CWT and statistical features LSTM N–Z–S 98.75

Bonn Epilepsy dataset O–Z–S 96.25
FN–OZ–S 98.00
N–O–Z–S 96.60
F–O–Z–S 97.00

F–N–O–Z–S 93.25
This Proposed Study

CHB-MIT-Epilepsy dataset CWT, Statistical Features LSTM Ictal-interictal 96.45

5. Conclusions

This paper introduced an advanced intelligent EEG recognition framework for epilep-
tic seizure detection. This framework integrates deep autoencoders, statistical features, and
LSTM networks. An optimal overlapping windowing method was used to mitigate the
inherent spectral leakage. Subsequently, the CWT was used to produce time–frequency
images from each window. Simultaneously, the statistical attributes, such as mean, mode,
and standard deviation, were extracted during this wavelet transformation. A deep con-
volutional autoencoder (CAE) was trained to extract the essential features from the CWT
images. The latent space of this CAE, rich with features, was then refined using PCA and
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concatenated with the statistical features, forming a comprehensive hybrid feature pool.
This enhanced pool was processed through LSTM-based classification, addressing multiple
class problems.

The model demonstrated exceptional F-1 score, precision, and accuracy. In most
cases, it exhibited error-free classification in binary class problems, while in three- and
four-class problems, it exhibited over 95% and 93% accuracy, respectively. The model
sensitivity metrics are equally notable, scoring 100% for binary and some three-class
situations, maintaining over 97% for all three-class problems, and >94% for four-class
problems. Averaging across all classifications, this model achieved an accuracy exceeding
97%, highlighting its stability and validating its ability to detect epileptic events accurately
within complex signal scenarios.
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