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Abstract 

Energy storage and battery technologies have taken centre stage in the race to meet the UK government target to ban new petrol 
and diesel cars by 2030. However, underlying key issues such as resource demand and negative public opinion must be solved 
before the high uptake of electric vehicles. The research conducted in this paper proposed viable solutions to these challenges 
through modelling of real driver data utilising an agent based modelling approach. Per month state of charge analysis confirmed 
that the current charging infrastructure in circulation will not accommodate the miniaturisation of electric vehicle battery size. 
Thus, an improved alternative charging infrastructure was proposed, which enabled the optimal battery size to be reduced by up to 
40%. The users stop times were analysed to assign an optimal battery size based upon monthly driving behaviour concluding daily 
inner city drivers require a 30kWh battery and daily long distance drivers require a 40kWh battery. When decreasing the battery 
size by the proposed 40% there is a £2650.60 saving and a 6.4kg lithium demand decrease per battery when compared to the current 
average battery size. 
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1. Introduction 

In June 2019, parliament issued law requiring the government to reduce the UK's net emissions of greenhouse gases 
by 100% in relation to levels in 1990 by 2050. Cars accounted for 55.6% of carbon emissions in transport in 2019 and 
need to be decarbonised accordingly (Department for Transport, 2021)). Energy storage, especially in the case of 
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battery technology will be at the forefront of the solution as by 2030 sale of new petrol or diesel cars will be banned 
(HM Government, 2021)).  

The key objective of this paper is to create a scalable agent-based model that determines the optimal battery size 
for real drivers, which can prove the current average battery size can be reduced whilst ensuring users maintain an 
appropriate battery size for their average usage scenarios. Allowing for a smooth transition to electrified alternatives 
once the current 2030 deadline arrives, whilst also being conscious of the scarcity of the elements needed to construct 
batteries required in the automotive sector. 

This paper models real driver trips using the agent-based modelling software AnyLogic where the real data of travel 
patterns for a single driver is used as an input. Based on the travel behaviour and travel distance an optimal battery 
size for the driver is proposed. Different types and number of charging stations are included in the model with the goal 
of finding the link between charging infrastructure and battery range determining the optimal charging routine and 
battery size.  

Section two opens with a brief literature review, which analyses the key fundamentals alongside existing work, 
which has been used to guide the analysis conducted within this paper.  The final agent-based model is presented and 
divided into modules where the operation of each module is explained. Finally, the individual case studies that the 
agent-based model will be applied to for an individual driver in Glasgow are described. Section three examines the 
monthly state of charge for each case study, determining the optimal battery size for the user. The section concludes 
with a brief economic and material analysis is conducted to evaluate the selected battery sizes. Section four reinforces 
all the paper’s key findings in the form of a short conclusion. 

2. Theoretical Basis and Methodology 

To accurately model a real driver’s journey an understanding of electric vehicle energy consumption and electric 
vehicle charging is necessary.  

The two most important factors that need to be accounted for when modelling electric vehicle energy consumption 
are the driving patterns and the ambient temperature that the vehicle operates (Di Martino et al., 2022; Miri et al. 2021; 
Sweeting et al., 2011). Driving patterns can be divided into subcategories: driving behaviour, traffic, and altitudes (Di 
Martino et al., 2022; Miri et al., 2021). Ambient temperature directly influences the electric vehicles auxiliary systems 
e.g., air conditioning and temperature regulation (Di Martino et al., 2022; Sweeting et al., 2011). 

van Haaren (2011) investigates the potential of range anxiety when the full electrification of automotive transport 
takes place. By characterizing driver behaviour alongside values of energy consumption the number of driver trips 
that can be completed by an electrified alternative can be confirmed. The paper utilises data acquired by Straubel 
(2008), which records energy consumption at different speeds. The energy consumption data provided by Straubel 
(2008) is adjusted to factor in ambient temperature using findings presented by Al-Wreikat et al. (2022). 

Al-Wreikat et al. (2022) analyses the overall effect that ambient temperature has on energy consumption for specific 
real-world journeys. Journeys are summarised based upon their distance, stop percentage, and average speed to 
calculate consumption, which is then modelled based upon the ambient temperature. Through data analysis it was 
found that the energy consumption at cold temperatures is much higher than at moderate temperatures with the largest 
difference when travelling at speeds less the 60km/h. The paper establishes that the large increase in energy 
consumption at low temperatures is due to the increased use in vehicle auxiliaries, which can lead to a 28% decrease 
in vehicle range when operating in winter months compared to summer months (Al-Wreikat et al., 2022). 

By applying the ambient temperature effects to the original energy consumption dataset, the final agent-based 
model can accurately simulate a real driver’s journey. This is used to find an optimal battery size by also incorporating 
external factors such as charging infrastructure. 

Within literature the key architecture of the charging systems used for electric vehicles can be split into separate 
levels: slow, semi-fast and fast/rapid charging. Slow chargers and semi-fast (level 1) chargers are typically at home 
chargers with charging times varying from 30 minutes to 10 hours. Slow and semi-fast chargers (level 2) have low 
power levels with typical values of 1.1kW to 19.2kW. Fast/rapid chargers (level 3) are typically used in forecourts 
with a low charge time of 15 to 30 minutes but a high-power level of 20kW to 150kW (Veneri, 2016; Bayram and 
Tajer, 2017; Vahidinasab and Mohammad-Ivatloo, 2022). 
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battery technology will be at the forefront of the solution as by 2030 sale of new petrol or diesel cars will be banned 
(HM Government, 2021)).  

The key objective of this paper is to create a scalable agent-based model that determines the optimal battery size 
for real drivers, which can prove the current average battery size can be reduced whilst ensuring users maintain an 
appropriate battery size for their average usage scenarios. Allowing for a smooth transition to electrified alternatives 
once the current 2030 deadline arrives, whilst also being conscious of the scarcity of the elements needed to construct 
batteries required in the automotive sector. 

This paper models real driver trips using the agent-based modelling software AnyLogic where the real data of travel 
patterns for a single driver is used as an input. Based on the travel behaviour and travel distance an optimal battery 
size for the driver is proposed. Different types and number of charging stations are included in the model with the goal 
of finding the link between charging infrastructure and battery range determining the optimal charging routine and 
battery size.  

Section two opens with a brief literature review, which analyses the key fundamentals alongside existing work, 
which has been used to guide the analysis conducted within this paper.  The final agent-based model is presented and 
divided into modules where the operation of each module is explained. Finally, the individual case studies that the 
agent-based model will be applied to for an individual driver in Glasgow are described. Section three examines the 
monthly state of charge for each case study, determining the optimal battery size for the user. The section concludes 
with a brief economic and material analysis is conducted to evaluate the selected battery sizes. Section four reinforces 
all the paper’s key findings in the form of a short conclusion. 

2. Theoretical Basis and Methodology 

To accurately model a real driver’s journey an understanding of electric vehicle energy consumption and electric 
vehicle charging is necessary.  

The two most important factors that need to be accounted for when modelling electric vehicle energy consumption 
are the driving patterns and the ambient temperature that the vehicle operates (Di Martino et al., 2022; Miri et al. 2021; 
Sweeting et al., 2011). Driving patterns can be divided into subcategories: driving behaviour, traffic, and altitudes (Di 
Martino et al., 2022; Miri et al., 2021). Ambient temperature directly influences the electric vehicles auxiliary systems 
e.g., air conditioning and temperature regulation (Di Martino et al., 2022; Sweeting et al., 2011). 

van Haaren (2011) investigates the potential of range anxiety when the full electrification of automotive transport 
takes place. By characterizing driver behaviour alongside values of energy consumption the number of driver trips 
that can be completed by an electrified alternative can be confirmed. The paper utilises data acquired by Straubel 
(2008), which records energy consumption at different speeds. The energy consumption data provided by Straubel 
(2008) is adjusted to factor in ambient temperature using findings presented by Al-Wreikat et al. (2022). 

Al-Wreikat et al. (2022) analyses the overall effect that ambient temperature has on energy consumption for specific 
real-world journeys. Journeys are summarised based upon their distance, stop percentage, and average speed to 
calculate consumption, which is then modelled based upon the ambient temperature. Through data analysis it was 
found that the energy consumption at cold temperatures is much higher than at moderate temperatures with the largest 
difference when travelling at speeds less the 60km/h. The paper establishes that the large increase in energy 
consumption at low temperatures is due to the increased use in vehicle auxiliaries, which can lead to a 28% decrease 
in vehicle range when operating in winter months compared to summer months (Al-Wreikat et al., 2022). 

By applying the ambient temperature effects to the original energy consumption dataset, the final agent-based 
model can accurately simulate a real driver’s journey. This is used to find an optimal battery size by also incorporating 
external factors such as charging infrastructure. 

Within literature the key architecture of the charging systems used for electric vehicles can be split into separate 
levels: slow, semi-fast and fast/rapid charging. Slow chargers and semi-fast (level 1) chargers are typically at home 
chargers with charging times varying from 30 minutes to 10 hours. Slow and semi-fast chargers (level 2) have low 
power levels with typical values of 1.1kW to 19.2kW. Fast/rapid chargers (level 3) are typically used in forecourts 
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The previous research in the field of electric vehicle optimisation by Pearre et al. (2011) compared over four 
hundred daily driving patterns of combustion engine vehicle owners to decide on the most suitable size of electric 
vehicle for each owner based upon total distance travelled. Concluding that an electric vehicle with a range of 100 or 
150 miles would be suitable for up to 32% of drivers. However, this research only assumed a user would charge once 
a day overnight and determined optimal range rather than optimal battery size. 

2.1. Agent-Based Model 

Agent-based modelling was utilised to create the model as it is a flexible modelling type, which allows each key 
component of a real driver’s journey to be defined by an individual module that can be tuned easily enabling an 
accurate simulation of a real driver. AnyLogic was chosen to develop the model as the software incorporates three 
main modelling types: agent-based, discrete events, and system dynamics. AnyLogic has specifically designed 
simulation libraries for transportation and vehicle modelling, which allows vehicles to be modelled on an interactive 
Geographic Information System (GIS) map enabling real driver data to be implemented (Borshchev, 2013). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The structure of the final agent-based model is illustrated in Figure 1. The top level entity of the model is the Main 

agent. Within the Main agent input data is assigned to the Refill, Vehicle, and Locations agents, which are embedded 
inside the Main agent. The GIS map is used to place these embedded agents and simulate the interaction of these 
agents together. The Refill and Locations agents are specifically controlled by the Main agent whereas the Vehicle 
agents operate individually only presenting meaningful data, which is outputted via the Main agent.  

Refill and Locations are used to place multiple charging locations and real driver routes on the GIS map, 
respectively. Thus, they are defined as a population of agents. The Vehicle agents are utilised to simulate the real 
driver data for each month using a movement logic state chart with incorporated decision logic and a battery model. 
The Vehicle agents gather the speed profile, state of charge, and grid demand for each month, which formulates the 
output data. 

Fig. 1. System level diagram of the agent-based model. 
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2.2. Refill and Locations Agents 

To accurately simulate a real user’s daily driving behaviour the model must know the routes the user has taken 
alongside potential locations where the user can stop to refill their car. These routes and refill locations are stored by 
the population of agents Locations and Refill, respectively. 

For the case studies investigated by this paper ZapMap and Open Street Map were used to acquire locations of real 
charging stations and petrol stations, which fill the population of Refill agents. Each individual refill location forms 
an entry in an excel file where the latitude and longitude of the location is defined. The Refill agent places each agent 
using the setLatLon(latitude, longitude) function by reading from the excel file containing the latitude and longitude 
of each charger or petrol station location. 

The real driver data utilised in the case studies was acquired by the application TravelAi, which acted as an input 
to the Locations and Vehicle agents. Figure 2 best illustrates how TravelAi works. 

 
 
 
 
 
 
 
 
 
 
 
 
A user’s journey from two places is defined by a route, which is constructed from a series of legs. Each leg is 

assigned to the form of transport used e.g., walking, car, or public transport. A leg has multiple waypoints, which give 
the user’s exact path that was taken to reach their destination. The data utilised by the case studies only includes legs 
and waypoints that are travelled by a car. Each waypoint and leg are defined by the start time, start latitude, start 
longitude, end time, end latitude, and end longitude. 

The start times, latitudes, and longitudes are used with the end times, latitudes, and longitudes to calculate the 
overall journey time and the distance covered, which allowed speed to be calculated for use in the Vehicle agent. The 
Locations agent places agents on the GIS map by using the setLatLon(latitude, longitude) function taking the latitudes 
and longitudes from an excel file containing all route definitions. 

2.3. Main Agent 

As described by Figure 1, the Main agent is the top-level entity of the model, which initialises each embedded 
agent via selections made by a user. When a user selects the desired modelling conditions events are triggered within 
the Main agent. These events allow for communication between the Main agent and the embedded agents. The agent 
Refill is not event dependent as the refill locations are not dependent on the real driver data thus, refill locations are 
placed on model start up. However, the agents Locations and Vehicle are event dependent as their placement and 
operation is dependent on the selected simulation month from the real driver data. 

2.4. Vehicle Agent 

Each month from the real driver data is simulated by an individual Vehicle agent. When the battery size and 
charging type is selected the Main agent will communicate this to the Vehicle agent, which defines the fundamental 
characteristics of the Vehicle agent for the selected month. These fundamental characteristics are the starting point for 
both the movement logic and battery model embedded within the agent. 

Figure 3a illustrates the flow chart used to simulate the battery under test. The flow chart depicts the Battery's 
charging and discharging processes, regulated by Charge_Flow and Discharge_Flow. These rates rely on 

Fig. 2. Illustration of TravelAi data acquisition TravelAi (2022). 
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Charge_Amount and Discharge_Amount, determined by the product of two variables indicating flow level and status 
(1/0). Charge_Level and Vehicle_Consumption control charge and discharge levels, while Charge_On and 
Discharge_On indicate charging or discharging. Charge_Level depends on the chosen charging type, initially set by 
the user, which uses the charger power levels described in Section 2. Vehicle_Consumption is determined by the 
average energy consumption associated with the velocity and ambient temperature at which the Vehicle agent is 
operating. This average energy consumption is derived from data provided by Straubel (2008), incorporating the 
influence of ambient temperature as established by Al-Wreikat et al. (2022), which was previously mentioned within 
Section 2. The derived energy consumption is illustrated in Figure 3b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.5. Movement and Decision Logic 

The simulation of real driver data and behaviour is achieved through the utilization of a state chart governing the 
movement and decision-making logic of the Vehicle agent. The state chart determines the initial starting point of the 
Vehicle agent, corresponding to the simulated month. Subsequently, during the journey, the state chart configures 
parameters such as speed, destination, and discharge rate for the Vehicle agent. Following the completion of a journey, 
the state chart evaluates whether to proceed with the next journey or not. If the Vehicle state of charge is ≤ 20% or if 
the next journey is infeasible based on the current battery level, the Vehicle agent initiates charging by traveling to a 
predefined Refill agent location. Upon reaching the desired battery level, as specified by the user, the Vehicle agent 
resumes the journey. At the end of each month, the model generates output data for subsequent analysis and returns 
to the initial definition menu, ready for the next case study. 

2.6. Battery Size Optimisation Case Study 

To assess the practical application of the agent-based model for battery size optimisation, four case studies were 
investigated using real driver data from a user in Glasgow across the months February to July (ambient temperatures 
detailed in Table 1). The four case studies are as follows: (1) 30kWh battery with rapid charging using current chargers 
in circulation within 500 metres, (2) 40kWh battery with rapid charging using current chargers in circulation within 
500 metres, (3) 30kWh battery with rapid charging using an alternative charging infrastructure, and (4) 40kWh battery 
with rapid charging using an alternative charging infrastructure. 

These studies were chosen as they investigate the feasibility of battery optimisation by reducing the current average 
battery size from 50kWh to 30kWh or 40kWh. Based upon current charging conditions and future charging conditions 
that can be expected once the 2030 deadline has arrived. 

Fig. 3. (a) Battery flow diagram utilised in Vehicle agent. (b) Energy consumption incorporating ambient temperature 
(Straubel, 2008; Al-Wreikat et al., 2022). 
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The alternative charging infrastructure consists of clustered charging points at commonly user visited locations and 
transitioned petrol stations into rapid charging forecourts. This infrastructure is proposed to find the potential benefit 
an optimised charging infrastructure can have on the minimisation of electric vehicle batteries. 
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Average 
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5.6 6.7 8.1 11.8 13.9 16.6 

3. Results and Discussion 

This section presents an analysis of the results obtained from the four conducted case studies, categorizing them 
according to their respective charging scenarios. The agent-based model employed in each case study generated per-
minute data on the state of charge of the Vehicle agent. These state of charge values were evaluated to determine the 
appropriateness of the proposed battery size for the user including material and economic analysis, taking into 
consideration the predefined parameters outlined in the respective case study definitions.  

3.1. Current Chargers in Circulation 

This section investigates into whether the current charging infrastructure would allow for a user with a smaller 
battery size, whilst maintaining a positive state of charge ideally within the 20 – 80% bracket (Kostopoulos et al., 
2020). Figure 4 details the per month state of charge for case study (1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As seen in Figure 4 the existing charging infrastructure is suitable for short journeys and months with low distances 

traveled e.g., February, June, and July, where the user maintains a state of charge within the 20-80% range. In 
February, the vehicle doesn't require charging due to both the low average distance traveled and economical driving 
behavior. However, for further daily distances and higher average monthly distances, the current charging 
infrastructure cannot support a smaller optimized battery size, as observed in March, April, and May. Despite 
maintaining a state of charge within the 20-80% range, embarking on a journey of 80km or more leads to negative 
state of charge values, indicating the insufficiency of the current charging infrastructure for this battery size. In 

Table 1. Average monthly temperatures for the UK Met Office (2023). 

Fig. 4. Monthly state of charge for case study (1). 
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summary, the current charging infrastructure favours larger electric vehicle battery sizes and shorter journey durations. 
The results of case study (2) further expands upon this. 

By increasing the battery size by 10kWh, the current charging infrastructure now becomes capable of 
accommodating the journeys during February, May, June, and July, ensuring the state of charge maintains the 20-80% 
range, as depicted in Figure 5. However, the infrastructure remains unsuitable for months characterized by further 
distances travelled, particularly in the case of March and April.  

Despite April having a 2km lower total distance traveled compared to May, the negative state of charge observed 
in April can be attributed to individual journeys exceeding 80km. This is due to the sparse placement of existing 
charging stations, which results in insufficient charging opportunities for extended journeys. Overall, these findings 
underscore the need for an alternative charging infrastructure with a denser distribution and accessibility to effectively 
support electric vehicle usage during months with further distances travelled. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.2. Alternative Charging Infrastructure 

This section analyses the benefits of the proposed alternative charging infrastructure for a minimised battery size, 
whilst maintaining a positive state of charge ideally within the 20 – 80% bracket (Kostopoulos et al., 2020). Figure 6 
details the per month state of charge for case study (3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 5. Monthly state of charge for case study (2). 

Fig. 6. Monthly state of charge for case study (3). 
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Figure 6 illustrates the clear benefit of the alternative infrastructure as the state of charge consistently maintains 
the desired level. However, due to the smaller battery size the user must charge more, which is clearly shown in the 
months of March, April, and May. The amount of time spent charging is between 1.6% - 3.2% of the total journey 
time, which is negligible as these 15 minute charge times can be completed whilst the user has stopped at one of their 
routinely visited locations, removing the need to travel to a charging location not near their chosen destination. 

Case study (4) highlights the benefit of increasing the battery size by 10kWh on journey stop times. As seen in 
Figure 7 the number of stops has been approximately halved in comparison to case study (3). The amount of time 
spent charging is between 0.8% - 2.3%, which is a 0.8% decrease in added journey time compared to case study (3). 
Therefore, a 40kWh battery would be optimal for a user who has limited stops and a 30kWh battery would be optimal 
for a user with multiple stops. However, if a user with limited stops adjusted their driving behaviour N. Pearre et al. 
(2011) a 30kWh battery would become optimal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3. Economic and Material Benefits 

This section highlights the economic and material benefits of reducing the average electric vehicle battery size by 
up to 40%. The reduction in size directly corresponds to a decrease in the average amount of lithium required for 
construction by up to 6.4kg, considering that approximately 320 grams of lithium is needed per available kWh of 
battery capacity (Tahil, 2010). Additionally, reducing the average battery size by 40% translates to potential savings 
for electric vehicle consumers. Based on an average cost of £132.53 per kWh for an electric vehicle battery pack 
(Nicholas and Lutsey, 2019), a reduction of 40% in battery size can lead to savings of up to £2650.60 when purchasing 
a new electric vehicle. 

4. Conclusion 

The research conducted by this paper has introduced an agent-based model that can take real driver data as an input 
to produce an optimised electric battery size based upon vehicle consumption and charging availability. By applying 
the model across four case studies for a single driver in Glasgow it was concluded that the average electric vehicle 
battery size can be decreased to 30kWh or 40kWh when supported by an improved charging infrastructure. This will 
benefit users through conveniently placed charging locations and a 40% reduction in battery cost alongside a lithium 
reduction of up to 6.4kg. 

The agent-based model utilised within this paper has provided a valuable skeleton, which can be expanded further 
across multiple different applications factoring multiple unique sets of real driver data. Finally, the result of this paper 
demonstrates the importance of a high-level charging infrastructure when optimising battery size, which will aid 
government planners trying to meet the 2030 deadline. 

Fig. 7. Monthly state of charge for case study (4). 
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