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Abstract

The purpose of this article is to introduce two indicators designed to evaluate and consequently influence the indirect
emissions related to the operation of an EV. The first indicator, denoted as “Electric Vehicle CarbonFlex Potential” indicator,
evaluates an EV’s maximum and minimum achievable carbon emissions using an optimization approach and compares the user’s
resultant indirect carbon emissions to these boundaries, therefore, this indicator compares the users behavior to the optimal best
and worst cases. The second indicator is “EcoCharge Time” indicator, which provides feedback to an EV user based on their
charging behavior on the best and worst times of charging the vehicle in a day. Since human behavior cannot be controlled, such
indicators are essential tools for influencing the behavior of EV users toward a desired optimal, in this case, a charging schedule
with the lowest possible overall indirect emissions. The proposed indicators were tested on an EV dataset using the carbon intensity
data from a number of countries and the results show that there exists considerable flexibility potential. Additionally, the results
also showed the best charging times, which were typically clustered around, allowing for ease of use and understanding.
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1. Introduction

As the world continues to rely heavily on fossil fuels for transportation, the resulting greenhouse gas emissions
are a major facilitator of climate change. The transportation sector is considered a major contributor to global warming
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since it accounts for 23% of global COz emissions (International Energy Agency, 2022). To mitigate this impact of
transportation on climate change, electric vehicles (EVs) are becoming increasingly important in the fight against
climate change. Battery Electric vehicles (BEVs) have consequently emerged as one of the most promising and
prominent alternatives to traditional gasoline vehicles, as also illustrated in Figure 1 (European Environment Agency,
2018; International Energy Agency, 2021). Governments and private companies are investing heavily in EV
technology to accelerate their adoption and ensure a sustainable future for our planet. Therefore, electric mobility is
an important pillar to achieving the energy transition for mitigating climate change.
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Figure 1. Global EV stock for passenger light-duty vehicles- Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEV)
(International Energy Agency, 2022)

Compared to traditional ICE (internal combustion engine) vehicles, BEVs are a promising alternative that offers
several benefits, including lower emissions, reduced reliance on fossil fuels, and potentially lower operating costs
(Ingrid Malmgren, 2016). A key driver for the BEV revolution is that they have zero tailpipes (i.e. direct) emissions
and are effectively more environmentally friendly in their operational phase. This benefit can be further enhanced by
sourcing electrical energy from renewable sources, effectively making BEVs zero emissions. However, it is pertinent
to take into account the production and end-of-life phases of the vehicle as well (i.e. the entire life cycle of a BEV).
Literature shows that the manufacturing and end-of-life stages of BEVs have higher global warming potentials relative
to conventional ICEs (Hawkins et al., 2013; Zerrin Giinkaya et al., 2016).

Like all energy-dependent systems, the impact of BEVs on emissions is dependent on the source of electricity used
to power them. EVs powered by renewable electricity sources, such as wind and solar energy, can significantly reduce
emissions compared to ICEs. However, for high carbon-intensity grids, BEVs may have emissions similar to or even
higher than that of a similar ICE (Li et al., 2019). This brings to light the importance of optimizing human behavior
to minimize the indirect emissions associated with BEVs (Bohua et al., 2018). Effective energy or climate awareness
indicators can play an important role in influencing human behavior toward more sustainable choices. Indicators can
serve as a tool to nudge individuals towards more sustainable behaviors, such as charging EVs during periods of low
carbon intensity. Additionally, indicators provide a clear and concise way to communicate complex information (i.e.
reduce the cognitive strain associated with trying to process information (Calvo et al., 2022)) and can encourage
individuals to adopt more sustainable behavior (Midden et al., 2014).

Multiple studies have been conducted to evaluate the effect of feedback on building occupants’ behavior with
regard to energy consumption. Nilsson et al and Westskog et al (Nilsson et al., 2014; Westskog et al., 2015) concluded
that providing feedback resulted in no significant reduction in electricity consumption, whilst Lin et al (Lin et al.,
2016) recorded a 16.7% reduction in electricity consumption for a group of participants in their study. Effectively,
these studies point out the fact that indicators can be effective if they are well-designed (simple and easy to understand)
by incorporating the right socioeconomic factors (income, education, and cultural values) (Capellan-Pérez et al., 2016;
Twum-Duah et al., 2019). Thus, the purpose of this article is to provide feedback in the form of indicators to EV
owners and fleet operators, which would serve as a tool for assessing their performance relative to the best and worst
cases. The best case refers to the minimum possible indirect emissions given the historical charging behavior of the
EV user and vice versa for the worst case. Subsequently, Section 2 of this article provides details on the datasets used
in this article, Section 3 is the methodology, Section 4 presents the results and discussions and Section 5 is the
conclusion.
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2. EV and Grid Carbon Intensity Datasets

For this article, we consider two datasets, the EV dataset, and the grid carbon intensity dataset, for the period
between January 2021 and December 2021 (i.e. one year). The considered dataset is sampled at a one-hour timestep
and has undergone some pre-processing to remove outliers. All authors and as such this article adhere to the principles
of Open-Science, implying that all datasets, notebooks, and code associated with this article will be published
following the guidelines prescribed by ORUCE (Open and Reproducible Use Cases For Energy) (Hodencq et al.,
2021). This study considered a 2013 Renault Zoe with a battery capacity of 22 kWh that was primarily used in the
southeastern part of France. Figure 1 is a visualization of the EVs data and shows some usage patterns. Figure 1 (a
and d) shows the charging behavior of the EV user, Figure 1 (b and e) demonstrates the discharge patterns of EV’s
battery and Figure 1 (c and f) is a visualization of the distance traveled by the EV. From Figure 1 (d), it can be
observed that charging frequently happened in the early mornings (9:00 — 12:00). The driving (discharging) of the car
usually happened between 7:00 — 8:00 and 17:00 — 19:00 (Figure 1 (e)) with a typical distance less than 50 km. The
data infers that this vehicle was typically used for commutes to work based on the driving time and distances traveled.
The driver of the car also validated this inference.
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Figure 2: Daily usage summary of EV (a) Energy charged, (b) energy discharged, and (c) distance traveled and the distribution of EV (d) hourly
count of vehicle charging, (hourly count of vehicle discharge, (f) frequency of distance traveled data — typical daily distance less than 50km
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Figure 3: Hourly carbon intensity for the electricity grids of (a) Brazil-North, Netherlands, and Poland, and (b) Germany, France, India
(Maharashtra), and USA (California)
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The grid carbon intensity was sourced from the electricity map (Electricity Maps, 2022) for the following
countries; India (IN-MH), the USA (US-CAL-SISO), France (FR), the Netherlands (NL), Brazil (BR-N), Germany
(DE), and Poland (PL), see Figure 2. The data shows that India had the highest carbon intensity (with low levels of
variations) whilst France had the lowest levels of carbon emissions (also with low levels of variations). The German,
Dutch, and American (Californian) grids were also of high interest as they had high renewable energy penetration
rates.

3. Methodology

Considering the dataset, two indicators, namely, (i) the Electric Vehicle CarbonFlex Potential Indicator (EV-CP)
and (ii) the EcoCharge Time indicator (ECT) were proposed.

3.1. Electric Vehicle CarbonFlex Potential Indicator (EV-CP)

The EV-CP is an indicator that provides information on the potential an EV user has to improve the indirect carbon
emissions from their electric vehicle. It ranges from 0 — 1 (0 indicating optimal charging behavior and 1 indicating the
worst possible charging behavior) This indicator is computed using the Mixed Integer Linear Programming (MILP)
approach to minimize the carbon emissions related to charging (i.e. the best case) and the maximum carbon emissions
(the worst case) based on the charging behavior of an EV user. The MILP approach is explained further in section 3.3.
The EV-CP is then expressed mathematically as:

)

EmissionsS,eq; — EmMissionsyeq:
EV —CP = [ ]

Emissions,, s — Emissionsy s

Such that Emissions,,,; are the real emissions obtained from the available data and Emissions,,,,s and
Emissions,,,; are the emissions from the worst-case and best-case scenarios respectively and are denoted as

Emissionsyes. = min [ D" Panarge (0d,6) X C02yria(pd, )] @

Emissions,orse = Max )" > Penarge(pd, ) X C024010 (0, )] 3)

where Pepgrge (0d, t) and CO24,.4(pd, t) are the charging power (in kW) and grid carbon intensity (g-co2 eq/kwh) at
time step 't’ respectively.

3.2. EcoCharge Time indicator (ECT)

The ECT indicator, on the other hand, makes use of the results from the two optimizations (i.e. optimal and worst-
case scenarios) and evaluates the best hour and worst hour to charge based on the frequency of charging based on the
two optimizations. It ranges from -100 to +100, with -100 denoting the highest likelihood for high grid emissions (i.e.
bordering on the worst-case scenario), and +100 denoting the highest likelihood for low emissions for a given hour
(i.e. bordering on the best-case scenario). Thus, for the worst-case scenario, the most frequently used charging time
would yield the worst results and as such should be avoided. Similarly, using the results from the optimal scenario
(minimize emissions), the best charging time can be determined based on how frequently the optimizer decided to
charge for a specific hour. The goal of this indicator is to provide very generalized information (based on an EV users
charging behavior) which would serve as a guide and nudge an EV user to charge at the most optimal time with respect
to grid-related emissions. The ECT indicator is computed as the difference between the likelihood of a best-case
charge and the likelihood of a worst-case charge for each hour of the day and is given mathematically as:

Countbest case charge (t) - Countworst case charge (t)
T

where Countpese case charge (t) and Count,,ors; case charge (t) refer to the number of times during the evaluation

ECT = x 100 4)
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period that the optimizer chose to charge for hour ‘t’ for the best and worst case scenarios respectively. ‘T’ represents
the total number of hours ‘t’ present in the evaluation period (in this case 365).

3.3. Mixed Integer Linear Programming approach for computing best and worst case

As highlighted in the previous section, a mixed integer linear programming approach is applied to either determine
the scheduling of charging which would allow the indirect emissions to be maximized (worst-case) or minimized
(best-case). Figure 4 shows a block diagram representation of the system under consideration. For this optimization,
we considered two time scales, the main horizon of 1 year (365 days) and the sub-horizon of 1 day (24 hours), allowing
for the daily demand of the EV user to be respected. Thus, the proposed charging strategy will not be the global
optimal (it would be possible to improve results by removing the constraint of respecting the daily demand) however,
this strategy allows us to take into account human behavior in the optimization.

Figure 4. Graphical representation of the energy system for optimization

The objective function of the proposed optimization was defined for the best case and worst case as:
ObjeCtivebest = min [z z Pcharge(pd' t) X COZgrid (Pd. t)] (5)

objectivey,orsy = max [z z Peharge(pd, t) X CO24p19(pd, t)] (6)

where P parg.(Pd, t) is the charging power from the grid and €02 4,4(pd, t) is the grid carbon intensity for the

horizon pd and belongs to the set{0, 1, 2, -+, 364} at time step £ Moreover, to ensure that the battery state of charge
(SOC) stays within defined operational bounds:

SOCMin X Capbat < Ebat(pd» t) < SOCMax X Capbat (7)

where SOCyin X Cappq: and SOCy,, X Capy,, refers to the minimum and maximum bounds of battery energy
respectively and Ej 4, (pd, t) is the electric charge in the battery. The energy in the battery E,,.(pd, t) is given as:

Pdischarge (Pd' t) x

Ebat(pd: t) = Ebat(pd' t— 1) + Pcharge (pd: t) X Ncharge —
7’]discharge

ts 8
where, P gischarge @d, t) is the discharge power of the battery for the sub-horizon pdat time £ Ncharge and Ngischarge

are the battery charge and discharge efficiencies respectively and ts is the timestep coefficient (defined as the ratio of
time step in minutes to 60 minutes). In addition, to ensure charging and discharging respect the technical constraints
of the battery and the vehicle movement:

Pcharge (Pd' t) < Pmax—charge X availabilit}’(i’d. t) (9)
Pdischarge (Pd' t) < Pmax—discharge X availabilit}’(l?d, t) (10)

where, Prax—charge a4 Prgx—discharge are the maximum charging and discharging power of the EVs battery and
availability(pd, t) is a binary value which determined by the discharge power of the EV (i.e., it has a value of one

when the vehicle is not being discharged and zero when the vehicle is in motion). To ensure an energy balance in the
system:
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Pgrid (Pd; t) - Pcharge(pd: t) + Pdischarge (Pd' t) - Pdemand (Pd' t) =0 (11)

where Py,;4(pd, t) and Pyemana (pd, t) are the power imported from the grid and consumed by the EV, respectively.
Lastly, to ensure continuity in the battery’s State of Charge (SOC), particularly in the day strategy, an additional
constraint was added to ensure that the battery SOC charge stayed within the defined operating bounds.

Pdischarge(pd' T) x

77dis¢:ha11g]e

Ebat(pd +1 ’ 0) = Ebat(pdrT + 1) + [Pcharge (pd' T) X ncharge - ts 12

where T is the last time step in the set defined by the sub-horizon given by{0,1,2 ... T}, and the final battery energy is
constrained as defined in Equation (2). Thus, the starting battery energy for the various periods was defined as:

E, (pd O _{ Epo:(pd, T) < Cappgs, if pd =0andt =0
bat \PEG L) = Epat(pd — 1, T+1), ifpd >0andt =0
To carry out the optimization, the following technical parameters outlined in Table 1 were considered. Both day

and annual strategies were modeled as PYOMO (Python Optimisation, Modelling Objects) (Hart et al., 2011) concrete
models and were solved using the Gurobi solver (Gurobi Optimization, LLC, 2021).

13

Table 1. Technical parameters and assumptions considered for the optimization

No. Parameter Unit Value
1 Max Charging Power kW 20.0
2 Max discharging power kW 40.0
3 Charging Efficiency % 85.0
4 Discharging Efficiency % 100.0
5 Sub-horizon days 1

6 Horizon days 365

The discharging efficiency was kept at 100% since the sensors measured the energy being drawn out of the battery,
thus the losses have been accounted for in the measurements. The subsequent section details the results of the
optimizations.

4. Results and Discussion

Figure 5 (a) illustrates the actual results regarding the CO2 emissions of the reference-charging schedule with
minimum optimal schedule and maximum (worst case) schedule. Figure 5 confirms the earlier assertion about Poland
and India (Maharashtra) having higher indirect CO2 emissions and vice versa for France. Additionally, Figure 5 (a)
provides an indication of how much potential flexibility there exists (generally, the Netherlands and the USA have the
highest potential whilst France and India have the lowest potential).

Building on this premise, the EV-CP indicator was calculated for each of the studied grids and is shown in Figure
5 (b). It can be observed that for the French grid, the EV had a high (second highest potential (since the higher the
value the higher the flexibility potential available). Whilst the flexibility potential was lowest in the Brazilian grid.
The EV-CP in no way indicates that the actual emissions of the EV were lower in Brazil compared to the Emissions
in France. It does, however, indicate that for the given charging behavior, an EV’s emissions would be closer to the
optimal (i.e. the best case) emissions for the Brazilian grid as compared to the French grid.

The ECT indicator was thus computed for France, the Netherlands, Brazil, and India, From Figure 6, we can see
that for France, the best times to charge were found to be midnight to 4 AM, whilst the worst times to charge were
between 7 and 11 PM. Similarly, for the Netherlands, the best times were 12 noon to 4 PM whilst the worst times
were between 5 and 9 AM and 7 to 11 PM. In the case of Brazil-North, the best times to charge were between 4 and
7 PM whilst the worst times were between midnight and 5 AM. Lastly, for India, 10 Am to 2 PM were seen to be the
best times with most other hours falling in the negative zone hence not an ecological time to charge. The difference
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in best and worst time to charge is dependent on the energy mix of the respective grids. For example, Brazil has a high
penetration of hydro-electric energy supply, whilst India is highly dependant on fossil-fuel based electricity production
technology.

(a) Comparison of Reference, Best and Worst case Indirect EV emissions (b) Electric Vehicle CarbonFlex Potential Indicator
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Figure 5. (a) Comparison of CO: emissions (gCO2-eq/km) of reference charging schedule with minimum optimal schedule and maximum
optimal schedule, (b) Comparison of Electric Vehicle CarbonFlex indicator for studied countries.
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5. Conclusion

EVs have an associated operational global warming potential, though indirect yet it exists depending on the grid.
There exists a potential to further improve the performance of an EV by potentially giving EV users some feedback.
Using the EV-CP indicator, we propose a means of evaluating the behavior of EV users with respect to the emissions
related to the electricity used to charge the EV. To promote desirable behavior, the ECT indicator provides information
on behavioral change that would nudge an EV user in the desired optimal direction in terms of their indirect emissions.

These indicators have been proposed taking into account the behavior of one driver, and the results depicted here
may not be generally applicable. However, the methodology should be replicable and the feedback also applicable to
different users. A further study to evaluate the effectiveness of the proposed indicators and their potential consequence
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on the behavior of EV users would be required and is planned as a future perspective of this study.
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