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Abstract 

In this paper, four EV fast chargers are assumed to be located at the parking lot of a commercial facility, namely a supermarket. 
The supermarket consists of different centers that provide different services at different hours of operation. The Monte Carlo 
Simulation method is utilized to estimate the power profile of the commercial load. Both the commercial load and the fast charging 
station (FCS) are connected to the main grid at the point of common coupling (PCC). The aim of this paper is to apply load 
disaggregation using a single point sensing at the PCC to manage the system’s energy by proposing a machine learning-based 
method for detecting and classifying the four EV fast chargers rated 50 kW, 90 kW, 150 kW, and 350 kW, respectively. The 
commercial load can be considered as a background load disturbing the disaggregation process at the PCC. The voltage and current 
signals are monitored at the PCC and utilized by Fourier transform to determine three features: the change of the active, reactive, 
and apparent power. Two machine learning classifiers, i.e., Kernel Naive Bayes (KNB) and k-Nearest Neighbors (KNN), are 
introduced in order to develop the appropriate prediction models. The results reveal that the KNB outperforms the KNN based on 
the mean classification accuracy as well as the F-measure index. 
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1. Introduction 

The interconnection of high penetration levels of electric vehicles (EVs) and their infrastructures could overload 
power grid components, such as transformers and cables. Furthermore, the fast-charging mechanism of EVs 
exacerbates the situation as such charging drains high levels of power from the power network, thus stressing the local 
grid. The aim of this current work is to manage the system’s energy by detecting individual fast charger operations 
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using single point sensing for non-intrusive load monitoring and load disaggregation at EV fast charging points in the 
commercial sector. 

1.1. Previous Work 

Energy disaggregation can be applied at loads in the residential sector (Zhao et al., 2019), as well as in the 
commercial sector (Ling et al., 2021). In both cases, a sensor is required. When a sensor is needed for each individual 
(load) appliance, it is known as intrusive load monitoring (ILM) (Ridi et al., 2014). The term non-intrusive load 
monitoring (NILM) (Norford and Leeb, 1996) is used when only one sensing point is required in order to sense the 
end-use of energy, thus involving no need for intrusion onto the energy customer’s property. In both methods of 
monitoring, features are required to distinguish between the considered loads. In ILM, the hardware is complicated 
but the software is simple. In NILM, the hardware is simple but a complex signal processing is utilized to extract the 
features (Kang et al., 2022). Different features have been proposed in the previous work extracted from one of three 
analysis modes: steady-state mode (Hart, 1992), transient mode (Liang et al., 2009), and hybridization between steady-
state and transient modes (Chang et al., 2012). Different machine learning algorithms (MLA) have been utilized in 
the relevant work to develop an appropriate prediction model (Rehman et al., 2021). MLAs have been trained in the 
previous work based on both supervised learning (Moreno Jaramillo et al., 2020) and unsupervised learning (Thokala 
et al., 2022). Nevertheless, load disaggregation using a single point sensing on fast charging stations has not been 
considered in the related studies. 

1.2. Aim of the Study 

The objective of this paper is to fill the research gap by applying load disaggregation using a single point sensing 
on fast charging stations (FCSs) to increase the capability and the effectiveness of any energy management program 
applied at the FCSs. 

2. Methodology 

2.1. Modelling and Modification of the Distribution Test System 

 The IEEE 4 bus test system is considered in this work (Schneider et al., 2017). The nominal voltage of the system 
is 12.47 kV. The source voltage steps down to the distribution voltage level of 4.16 kV in order to feed the connected 
load via a one 3-phase transformer bank. The secondary of the distribution transformer is configured as a delta 
connection to feed the connected load at a distance of 2,500 ft. The distribution transformer is rated 6000 kVA whereas 
the spot load of each line-to-line is rated as 1.5 MVA, 2 MVA, and 2.5 MVA, at 0.85, 0.9, and 0.9 lagging power 
factor, respectively. The configurations of the secondary of the distribution transformer as well as the spot load are 
modified to be balanced Wye connected. Furthermore, a commercial facility (a supermarket) and FCSs are integrated 
to the distribution test system, as shown in Fig 1. Therefore, the total load fed by the transformer is 5400 kW at 0.9 
lagging power factor. 

2.2. Connection of Fast Charging Stations 

 At the point of common coupling (PCC), four FCSs are connected to the test system via four distribution 
transformers. Each transformer (𝑇𝑇!) is connected to an 𝐹𝐹𝐹𝐹𝐹𝐹! via a 𝐵𝐵𝐵𝐵! breaker, where 𝑖𝑖 indicates the FCS number. Each 
𝐹𝐹𝐹𝐹𝐹𝐹! operates at nominal voltage 0.480 kV. Thus, each 𝑇𝑇! transformer steps down the primary voltage of 4.16 kV to 
0.480 kV.  
 Each 𝐵𝐵𝐵𝐵! breaker has two states of operation: on and off. The state “on” indicates that the breaker 𝑆𝑆! is closed and 
thus the 𝐹𝐹𝐹𝐹𝐹𝐹! is occupied. The state “off” means that the breaker 𝐵𝐵𝐵𝐵! is open and thus the 𝐹𝐹𝐹𝐹𝐹𝐹! is idle. 
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modified to be balanced Wye connected. Furthermore, a commercial facility (a supermarket) and FCSs are integrated 
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2.3. Connection of a Commercial Load 

2.3.1. Reason for Inclusion 

 The number of charging events occurred at an FCS may be affected by the location of that FCS (Alshareef, 2022). 
The proposed commercial load in this study is a supermarket that is connected to the test system at the PCC from 
which FCSs are integrated. The assumption is that the four FCSs are located at the supermarket parking lot. The aim 
is to disaggregate the total load at the PCC. The supermarket includes different centers providing different services 
whereby their hours of operation are varied, which results in varying their power consumption at the PCC. Therefore, 
the supermarket is considered as a background load whereas its varying power consumption at the PCC may disturb 
extracting the patterns from the feature space and, consequently, detecting the events of FCSs.  

 
Fig. 1. Modified IEEE 4 bus standard test feeder. 

2.3.2. Commercial Load Profile 

 The supermarket benchmark models are developed by the U.S. Department of Energy (DOE) represented by annual 
load profiles in kW estimated at an hourly basis (8760 hours) (Deru et al., 2011). The models describe the supermarket 
profiles in 936 cities located in 50 states characterized by one or more climate zones, based on the geographic 
coordinates (Alshareef and Morsi, 2017). Three steps are required in order to utilize the load profile of the supermarket, 
namely: data collection, data processing, and Monte Carlo simulation (MCS). For the first step, a load matrix of 8760 
rows and 936 columns is generated to include all the profiles from all the cities where the number of rows corresponds 

to the number of hours in a year while the number of columns indicates the cities. Subsequently, from each column in 
the data matrix, the 25th and 75th percentiles are calculated to generate the empirical cumulative distribution functions 
of each quartile. An MCS is then used in this step to generate two uniform random variables. The inverse transform 
method is adopted to estimate the lower and upper bounds of the kW power of the supermarket from the generated 
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random variables as well as the empirical cumulative functions of the 1st and 3rd quartiles, respectively. Given the 
values of the lower and upper bounds, a uniform random number is generated to represent the demand of the 
supermarket seen at the PCC at that instance of time. The kW power of the 25th and 75th percentiles is depicted in Fig. 
2 as well as their empirical cumulative distribution functions.    

2.4. Fourier Transform 

The Fourier transform (FT) is formulated mathematically as follows (Weeks, 2007): 

Χ(𝜅𝜅) = ∫ 𝜒𝜒(𝑡𝑡). 𝑒𝑒"#$!%𝑑𝑑𝑑𝑑&
"&                                                                                                                                 (1) 

When the FT is applied to discrete waves, it is called the Discrete Fourier Transform (DFT) and formulated 
mathematically as (Weeks, 2007): 

Χ[𝜅𝜅] = ∑ 𝜒𝜒[𝑛𝑛]. 𝑒𝑒"#$!'(")
'*+                                                                                                                                   (2) 

where Χ[𝜅𝜅] is the discrete Fourier transform of the discrete time signal 𝜒𝜒[𝑛𝑛], evaluated over a range of values of 𝜅𝜅 
from 0 up to 𝑁𝑁/2, 𝜅𝜅 is an integer called the bin number, 𝑒𝑒 is the Euler’s number, 𝜔𝜔, = 2𝜋𝜋𝜋𝜋/𝑁𝑁 is the frequency 
associated with bin 𝜅𝜅, radians per sample, 𝑁𝑁 is the number of samples of the discrete time signal 𝜒𝜒[𝑛𝑛] being analysed. 
The active, reactive, and apparent power at the fundamental frequency of each phase R, S, and T can be determined 
by applying the DFT to the three-phase voltage and current waveforms as follows (Ribeiro et al., 2013): 

𝑃𝑃𝒿𝒿) = 𝑉𝑉𝒿𝒿)𝐼𝐼𝒿𝒿) cos 𝛾𝛾𝒿𝒿                                                                                                                                              (3) 

𝑄𝑄𝒿𝒿) = 𝑉𝑉𝒿𝒿)𝐼𝐼𝒿𝒿) sin 𝛾𝛾𝒿𝒿                                                                                                                                              (4) 

𝑆𝑆𝒿𝒿) = 𝑉𝑉𝒿𝒿)𝐼𝐼𝒿𝒿)                                                                                                                                                         (5) 

where 𝒿𝒿 is an index for each phase (i.e., R, S, and T), (𝑉𝑉𝒿𝒿) and 𝐼𝐼𝒿𝒿)) are the root mean square value of the voltage and 
the current at the power system frequency, respectively.	𝛾𝛾𝒿𝒿 is the phase angle displacement and (𝑃𝑃𝒿𝒿), 𝑄𝑄𝒿𝒿)and 𝑆𝑆𝒿𝒿)) is 
the active, reactive, and apparent power, respectively.  

2.5. Feature Selection 

After decomposing the original time domain signals, features are extracted and utilized to disaggregate the different 
charging events at the FCSs. Instead of using the fundamental power components, the change in the power components 
is utilized. Thus, changes of the active (𝑃𝑃I), reactive (𝑄𝑄I), and apparent (𝑆𝑆I) power are determined as in equations (8)-
(10) and utilized to build the attribute matrix. The attribute matrix is used as input to the classification system.  

𝑉𝑉I𝒿𝒿[𝑛𝑛] = 𝜐𝜐𝒿𝒿[𝑛𝑛] − 𝜐𝜐𝒿𝒿[𝑛𝑛 − 𝒮𝒮 − 1]                                                                                                                          (6) 

𝐼𝐼I𝒿𝒿[𝑛𝑛] = 𝜄𝜄𝒿𝒿[𝑛𝑛] − 𝜄𝜄𝒿𝒿[𝑛𝑛 − 𝒮𝒮 − 1]                                                                                                                             (7) 

𝑃𝑃I𝒿𝒿[𝑛𝑛] = 𝑃𝑃𝒿𝒿[𝑛𝑛] − 𝑃𝑃𝒿𝒿[𝑛𝑛 − 1]                                                                                                                                 (8) 

𝑄𝑄I𝒿𝒿[𝑛𝑛] = 𝑄𝑄𝒿𝒿[𝑛𝑛] − 𝑄𝑄𝒿𝒿[𝑛𝑛 − 1]                                                                                                                               (9) 

𝑆𝑆I𝒿𝒿[𝑛𝑛] = 𝑆𝑆𝒿𝒿[𝑛𝑛] − 𝑆𝑆𝒿𝒿[𝑛𝑛 − 1]                                                                                                                               (10) 
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random variables as well as the empirical cumulative functions of the 1st and 3rd quartiles, respectively. Given the 
values of the lower and upper bounds, a uniform random number is generated to represent the demand of the 
supermarket seen at the PCC at that instance of time. The kW power of the 25th and 75th percentiles is depicted in Fig. 
2 as well as their empirical cumulative distribution functions.    

2.4. Fourier Transform 

The Fourier transform (FT) is formulated mathematically as follows (Weeks, 2007): 

Χ(𝜅𝜅) = ∫ 𝜒𝜒(𝑡𝑡). 𝑒𝑒"#$!%𝑑𝑑𝑑𝑑&
"&                                                                                                                                 (1) 

When the FT is applied to discrete waves, it is called the Discrete Fourier Transform (DFT) and formulated 
mathematically as (Weeks, 2007): 

Χ[𝜅𝜅] = ∑ 𝜒𝜒[𝑛𝑛]. 𝑒𝑒"#$!'(")
'*+                                                                                                                                   (2) 

where Χ[𝜅𝜅] is the discrete Fourier transform of the discrete time signal 𝜒𝜒[𝑛𝑛], evaluated over a range of values of 𝜅𝜅 
from 0 up to 𝑁𝑁/2, 𝜅𝜅 is an integer called the bin number, 𝑒𝑒 is the Euler’s number, 𝜔𝜔, = 2𝜋𝜋𝜋𝜋/𝑁𝑁 is the frequency 
associated with bin 𝜅𝜅, radians per sample, 𝑁𝑁 is the number of samples of the discrete time signal 𝜒𝜒[𝑛𝑛] being analysed. 
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where 𝒿𝒿 is an index for each phase (i.e., R, S, and T), (𝑉𝑉𝒿𝒿) and 𝐼𝐼𝒿𝒿)) are the root mean square value of the voltage and 
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where 𝒿𝒿 is an index for each phase (i.e., R, S, and T), 𝑃𝑃𝒿𝒿[𝑛𝑛], 𝑄𝑄𝒿𝒿[𝑛𝑛] and 𝑆𝑆𝒿𝒿[𝑛𝑛] indicate , respectively, the values of the 
power components of the 𝒿𝒿%.  phase, at the 𝑛𝑛%.  instant, 𝑃𝑃𝒿𝒿[𝑛𝑛 − 1], 𝑄𝑄𝒿𝒿[𝑛𝑛 − 1]  and 𝑆𝑆𝒿𝒿[𝑛𝑛 − 1]  are values of the 
fundamental power components calculated using the voltage, 𝜐𝜐𝒿𝒿[𝑛𝑛 − 𝒮𝒮 − 1] , and current, 𝜄𝜄𝒿𝒿[𝑛𝑛 − 𝒮𝒮 − 1] , values 
sampled one cycle ago, where 𝒮𝒮 is the number of samples per cycle. 

2.6. Machine Learning Techniques 

Load disaggregation requires differentiating between individual appliances and their combinations. As a result, 
these loads need to be classified at the individual device level. After extracting the fast chargers’ features, a machine 
learner should be introduced and trained using these features for generalization. When classes of these features are 
unknown, the machine learner is known as unsupervised learning. When classes of these features are known, the 
machine learner is termed as supervised learning. In this paper, known data and their responses are fed to a classifier 
in order to be trained based on these inputs. This classifier is then utilized to predict the classes for unseen data.  

2.6.1. Kernel Naïve Bayes Classifier 

The first proposed classifier is the Kernel Naive Bayes (KNB). The kernel function can be chosen to reflect the 
nature of the data and the problem being solved. Some common kernel functions include radial basis functions, 
polynomial functions, and sigmoid functions. Once the data has been mapped onto the high-dimensional feature space, 
the Naive Bayes algorithm is applied to classify the data. The algorithm works by estimating the probability 
distribution of each class and then using the Bayes' theorem to calculate the probability that a new event belongs to 
each class. The class with the highest probability is then assigned to the new event (Murakami and Mizuguchi, 2010). 

2.6.2. k-Nearest Neighbors Classifier 

Let 𝓂𝓂 represent the number of attributes; each record is then represented by the k-Nearest Neighbors (KNN) 
classifier as a data point in the 𝓂𝓂-dimensional space. In order to classify a new record, the proximity of that new 
record to each data point in the training data set is computed using a proximity measure (i.e., the Euclidean distance). 
The Euclidean distance (𝒰𝒰) between two points 𝓅𝓅 and 𝓆𝓆 is given as (Laaksonen and Oja, 1996): 

𝒰𝒰(𝓅𝓅, 𝓆𝓆) = S∑ (𝓅𝓅/ − 𝓆𝓆/)0𝓂𝓂
/*)                                                                                                                          (11) 

where 𝓂𝓂 is the number of dimensions, 𝓅𝓅/ is the 𝑘𝑘%. components of  𝓅𝓅, and 𝓆𝓆/ is the 𝑘𝑘%. attributes of  𝓆𝓆.  

2.7. Performance Metrics 

The accuracy of a machine learning classification model is computed as the ratio of the number of instances that 
classified accurately with the total number of instances, as in (12). The confusion matrix is a tool commonly used in 
machine learning to evaluate the performance of a classifier. Table 1 shows the confusion matrix of two variables. 
Accuracy for models is computed based on the confusion matrix as the ratio of numbers of instances that classify 
accurately with the total number of instances. Precision and recall are two additional metrics that are calculated from 
the confusion matrix to evaluate the performance of the classifier. Given that, precision and recall are calculated, 
respectively, as in (13) and (14) (Tan et al., 2016). 

     Table 1. Confusion matrix for a 2-class problem. 

  Actual Class 
  Positive Negative 

Predicted 
class 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 
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23453
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝔯𝔯 = 23
2345(

                                                                                                                                             (14) 

The evaluation depends on the F-measure (𝔗𝔗), which combines both precision (𝔭𝔭) and recall (𝔯𝔯) to measure the extent 
to which a cluster includes only instances of a particular class and all instances of that class (Powers, 2020). The F-
measure is calculated as: 

F −measure, 𝔗𝔗 = 0×𝔭𝔭	×𝔯𝔯
𝔭𝔭4𝔯𝔯

                                                                                                                                  (15) 

3. Simulation Results and Discussion 

3.1. Case Study 

In order to recharge an EV via a fast charger, any breaker 𝐵𝐵𝐵𝐵!, shown in Fig. 1, has to be turned “ON” in order to 
connect the charger to the distribution grid. When any breaker 𝐵𝐵𝐵𝐵! is turned “ON”, it means that the slot is occupied 
by an EV and a charging event is considered, based on the turned “ON” state. A large number of scenarios are 
simulated in this case. The generated scenarios are dependent on the breakers’ states.  In each scenario, one breaker 
will be switched on at time 𝑡𝑡  while the rest of the breakers will have been switched on and/or off in advance. 
Furthermore, the profile of the commercial load (the supermarket) is estimated as explained in section 2.3.2 The total 
number of applied scenarios is 864 cases, resulting from the sum of: four fast chargers × eight possible combinations 
× five cases of harmonic distortion (adding the 5th harmonic in 1% step, from 1% to 5%) × 11 cases of frequency 
variation (in 1Hz step, from 55Hz to 65Hz) × 11 cases of voltage magnitude variation (in 1% step, from -5% to 5%). 
Half of the applied scenarios are utilized for training the classifiers while the other half are for the evaluation.  

3.2. Training and Testing Data Sets 

Each classifier was trained using the same data set consisting of 432 cases generated under different power quality 
disturbances, such as harmonic distortion, frequency variations, and volage magnitude variations. Also, in each 
generated case, MCS is applied to estimate the commercial load profile, which represents another disturbance for 
charging event disaggregation. After developing the machine learning models using the charging events, each 
classifier is tested using the testing data set to predict their classes. The testing data set consists of 432 cases generated 
under similar scenarios as applied to the training data set. 

3.3. Performance Evaluation of the Turn-on Event of Fast Charging Stations 

The performance of the proposed model is evaluated using the classification accuracy metric. Moreover, precision, 
recall, and the F-score are utilized for assessing the performance in order to overcome the imbalanced classification 
problem in the data set. In the classification process, one FCS is considered as a true positive class and the absolute 
classification accuracy for that class is determined accordingly, as depicted in Table 2. The results reveal that, in the 
case of FCS4, both classifiers provide 100% classification accuracy while the lowest classification accuracy is achieved 
in the case of FCS2 (rated 90 kW), where the KNB and KNN provide 93.52% and 62.03%, respectively. Further, the 
mean classification accuracies obtained by the KNB and KNN are determined as 99.3% and 87.2%, respectively. The 
results for precision and recall for both classifiers are presented in Fig. 3. Achieving high absolute classification 
accuracy for each individual positive class positively impacts the results of precision and recall, as shown in Fig. 3. 
As the per unit values of the precision and recall increase, the classifier is able to predict most of the true positive and 
true negative classes. Given the values of precision and recall, the value of the F-score is computed as shown in Fig. 
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in order to be trained based on these inputs. This classifier is then utilized to predict the classes for unseen data.  
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nature of the data and the problem being solved. Some common kernel functions include radial basis functions, 
polynomial functions, and sigmoid functions. Once the data has been mapped onto the high-dimensional feature space, 
the Naive Bayes algorithm is applied to classify the data. The algorithm works by estimating the probability 
distribution of each class and then using the Bayes' theorem to calculate the probability that a new event belongs to 
each class. The class with the highest probability is then assigned to the new event (Murakami and Mizuguchi, 2010). 
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the confusion matrix to evaluate the performance of the classifier. Given that, precision and recall are calculated, 
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Furthermore, the profile of the commercial load (the supermarket) is estimated as explained in section 2.3.2 The total 
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Each classifier was trained using the same data set consisting of 432 cases generated under different power quality 
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generated case, MCS is applied to estimate the commercial load profile, which represents another disturbance for 
charging event disaggregation. After developing the machine learning models using the charging events, each 
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problem in the data set. In the classification process, one FCS is considered as a true positive class and the absolute 
classification accuracy for that class is determined accordingly, as depicted in Table 2. The results reveal that, in the 
case of FCS4, both classifiers provide 100% classification accuracy while the lowest classification accuracy is achieved 
in the case of FCS2 (rated 90 kW), where the KNB and KNN provide 93.52% and 62.03%, respectively. Further, the 
mean classification accuracies obtained by the KNB and KNN are determined as 99.3% and 87.2%, respectively. The 
results for precision and recall for both classifiers are presented in Fig. 3. Achieving high absolute classification 
accuracy for each individual positive class positively impacts the results of precision and recall, as shown in Fig. 3. 
As the per unit values of the precision and recall increase, the classifier is able to predict most of the true positive and 
true negative classes. Given the values of precision and recall, the value of the F-score is computed as shown in Fig. 



362	 Sami M. Alshareef  / Transportation Research Procedia 70 (2023) 356–363
 Sami M. Alshareef/ Transportation Research Procedia 00 (2019) 000–000  7 

4. The results of the F-measure illustrate that the KNN achieved the lowest classification accuracy to classify the 
FCS2. The FCS4 is able to correctly predict all cases, thus the value of the F-measure is 1. In the case of the KNB as 
depicted in Fig. 4, values of the F-measure for all classes are above 0.94, indicating that the KNB outperforms the 
KNN based on the mean classification accuracy as well as the F-measure index. 

     Table 2. Confusion matrix using both classifiers. 

  Positive Classes  
  FCS1 FCS2 FCS3 FCS4 Mean 

Kernel Naïve Bayes 95.37 93.52 100 100 99.3% 

k-Nearest Neighbors 95.37 62.03 91.67 100 87.2% 

 
It is worth mentioning that the commercial load (the supermarket), as presented in Fig. 1, is acting as a background 

load whose profile is estimated randomly based on empirical cumulative distribution functions using MCS. Thus, the 
power consumption of the supermarket may overlap with the output power of FCS2 and cause degrading of the 
performance of the classifier, as in the case of the KNN.  

Fig. 3. Precision and Recall values for KNBC and KNNC. 

Fig. 4. F-measure for disaggregation of different fast chargers using KNBC and KNNC. 

4. Conclusion  

This paper applies load disaggregation at fast charging stations that consist of four slots that vary in their rated 
power from 50 kW to 350 kW. The charging station is located at the parking lot of a commercial facility (a 
supermarket) whereas both loads are fed by the main grid at the point of common coupling. The Monte Carlo 
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simulation method is utilized to estimate probabilistically the load profile of the supermarket. The results have shown 
that the power signature can be utilized in disaggregating the output power of the four EV fast chargers considered in 
this study, using the appropriate machine learning classifier. However, the power variation caused by the commercial 
load (the supermarket) at the point of common coupling may disturb the disaggregation process by overlapping with 
the output power of the fast chargers causing the performance of the classifiers to degrade. 
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4. The results of the F-measure illustrate that the KNN achieved the lowest classification accuracy to classify the 
FCS2. The FCS4 is able to correctly predict all cases, thus the value of the F-measure is 1. In the case of the KNB as 
depicted in Fig. 4, values of the F-measure for all classes are above 0.94, indicating that the KNB outperforms the 
KNN based on the mean classification accuracy as well as the F-measure index. 

     Table 2. Confusion matrix using both classifiers. 

  Positive Classes  
  FCS1 FCS2 FCS3 FCS4 Mean 

Kernel Naïve Bayes 95.37 93.52 100 100 99.3% 

k-Nearest Neighbors 95.37 62.03 91.67 100 87.2% 

 
It is worth mentioning that the commercial load (the supermarket), as presented in Fig. 1, is acting as a background 

load whose profile is estimated randomly based on empirical cumulative distribution functions using MCS. Thus, the 
power consumption of the supermarket may overlap with the output power of FCS2 and cause degrading of the 
performance of the classifier, as in the case of the KNN.  

Fig. 3. Precision and Recall values for KNBC and KNNC. 

Fig. 4. F-measure for disaggregation of different fast chargers using KNBC and KNNC. 

4. Conclusion  

This paper applies load disaggregation at fast charging stations that consist of four slots that vary in their rated 
power from 50 kW to 350 kW. The charging station is located at the parking lot of a commercial facility (a 
supermarket) whereas both loads are fed by the main grid at the point of common coupling. The Monte Carlo 
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simulation method is utilized to estimate probabilistically the load profile of the supermarket. The results have shown 
that the power signature can be utilized in disaggregating the output power of the four EV fast chargers considered in 
this study, using the appropriate machine learning classifier. However, the power variation caused by the commercial 
load (the supermarket) at the point of common coupling may disturb the disaggregation process by overlapping with 
the output power of the fast chargers causing the performance of the classifiers to degrade. 
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