Available online at www.sciencedirect.com :
Transportation

. . Research
ScienceDirect

P di
Transportation Research Procedia 70 (2023) 263-270 M

www.elsevier.com/locate/procedia

8th International Electric Vehicle Conference (EVC 2023)
The Role of EV Parking Lots for Supporting the Distribution
System Operation Considering EV Uncertainties
Mahoor Ebrahimi®*, Mahan Ebrahimi®, Miadreza Shafie-khah?, Hannu Laaksonen?

“School of Technology and Innovations, University of Vaasa, Finland
*Department of Electrical Engineering, Sharif University of Technology, Iran

Abstract

Due to the dramatic increase in the penetration of the Electric Vehicle Parking Lots (EVPLs) in future, there will be a
crucial challenge in the operation of the distribution systems. In this regard, the potential of the EVPLs for acting as
a flexible load can be employed besides their capability to support the system with positive or negative reactive power
if they are equipped with the required power electronic facilities. Our results show that EVPLs can modify their
charging schedule to provide positive or negative reactive power support to improve the system condition in terms of
congestion and voltage to let for deploy the cheaper generation sources that result in a decrease in total system cost.
In this regard, EVPLs’ location has a very important impact on the optimal operation of the system and the amount of
benefit from their active and reactive power support.
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1. Introduction

Distribution system management can be impacted both positively and negatively by Electric Vehicles (EVs). It is
possible to obtain different results by charging and discharging EVs in controlled and uncontrolled modes.
Uncontrolled charging could develop an increase in loss and demand, unbalancing of the distribution system loads,
and a decrease in the life span of distribution system infrastructures, as they are assessed in the works of Shariff et al.
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(2022), Kiitt et al. (2013), and Shukla, Verma, and Kumar (2019), respectively. On the other hand, taking advantage
of controlled charging and discharging technologies such as vehicle-to-grid (V2G) Guille et al. (2009) will grant the
distribution system the ability to manage its production-consumption balancing. In other words, peak load shaving
Solanke et al. (2020), a decrease in emissions Vidhi et al. (2018), and voltage regulation Hu et al. (2021) could be
mentioned as the main advantages of the controlled charging and discharging of EVs. Several studies have been
performed to investigate the EVPL’s impact on the distribution system and how they can support its operation. In
general, researchers have studied the impact of EV charging on the distribution system, including the impact of
charging schedule on the distribution system and the potential need for reinforcement and upgrading of the network
Ramadhani et al. (2020). Moreover, some articles have also studied the optimization of EV charging in parking lots to
improve the overall efficiency of the system Chippada and Reddy (2022); Ebrahimi et al. (2022). Integration of
renewable energy sources into EVPLs has also been assessed to reduce the carbon footprint of charging EVs and to
improve energy security Al-Thani et al. (2022). Researchers have also studied the integration of smart grid
technologies into EVPLs, including advanced metering, demand response, and energy storage systems, to improve the
distribution system’s efficiency and reliability Judge et al. (2022). User behavior and adoption of EVs, including the
impact of incentives and tariffs on user behavior are also investigated in Von Bonin et al. (2022).

Authors in Shahbazitabar et al. (2018) solved a stochastic unit commitment problem considering EVPLs and
renewable generations. Similarly, a bi-level method has been presented in Sadati et al. (2019) that incorporates EVPLs
in energy and reserve markets. In this research, a novel approach for minimization of costs and addressing the
distribution grid constraints was deployed. Authors in Wenzel et al. (2017) proposed a two-level model for charge-
scheduling of EVs in order to facilitate frequency regulation services inside the distribution grid. In Zheng et al. (2018)
an EV charging scheduling model is presented. In this research, an AC power flow is used to reach the most efficient
scheduling in the case of energy cost and EV demand supply. Similar purposes have persuaded the authors of Latifi et
al. (2018) to present a game theory-based decentralized model for EV charging strategies. Ref Ahmad et al. (2022)
investigated the influences that several EV charging lot allocation strategies have on the distribution system. Authors
in Ahmadi et al. (2022) presented a decentralized optimization approach for optimizing the operation of multi-agent
microgrids in presence of sector coupling. The authors aim to address the challenges associated with coordinating the
decisions of multiple agents, uncertainty in energy demand and supply, and the integration of multiple energy storage
technologies. The article Hamidan et al. (2022) focuses on the integration of battery energy storage systems (BESS)
and EV charging stations into smart distribution networks to enhance the flexibility and reliability of the electricity
grid and presents a flexible planning approach optimizing the deployment and operation of BESS in a way that
balances the trade-off between energy storage capacity and energy storage utilization, and considers the uncertainties
in load demand and renewable energy sources. Authors in Pirouzi et al. (2019) discussed the potential use of single-
phase EVs for power conditioning in distribution networks to enhance the stability and reliability of distribution
networks. The proposed approach considers the impact of EV charging and discharging dynamic behavior on the
distribution network. Ref Baherifard et al. (2022) explored the impact of intelligent charging planning for EVs on
distribution network's imbalance indices.

This paper tries to fill the gap in the literature to investigate the role of EV parking lots in supporting the distribution
system with a focus on reactive power support considering the uncertain arrival and departure of EVs. This way the
optimal operation of the distribution system components like EVPLs, renewable energy resource, distributed
generation units, and energy storage are conducted based on the hourly active and reactive power prices as well as the
network topology, lines capacity, and the fixed active and reactive loads by deploying a linearized AC power flow
formulation.

2. Problem Formulation
As stated in previous section, the main aim of this paper is to study the operation of distribution system that is

equipped with EVPL. This way the optimal energy management of the distribution system operator in presence of
EVPL, Renewable Energy Sources (RES) and Distributed Generation (DG) is investigated in this paper.
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2.1. Objective function

The objective of the DSO is to minimize its operational cost as stated in (1) where the first and second terms stand
for the cost of trading active and reactive power with the upstream grid. The third and fourth terms are related to the
generation cost of RES and DGs. PPV, QPV, PRES, and PP?, stand for active and reactive power traded between the
distribution system and the upstream power system as well as generated power by RES and segment n of the DG
generation, respectively.
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2.2. Constraints
The operational constraints of the different DSO-owned facilities are explained below.

2.2.1 Grid constraints

The linear active and reactive power flow equations are adopted from Yuan et al. (2016) as stated in (2)-(7). PEYP*

QFYPE, Piiss‘dc, PiiSS’Ch, Pl Q. P, Q;, Pij, Q;; stand for active and reactive power of EVPL, discharging and
charging power of the ESS, nonflexible active and reactive load, active and reactive injection power at bus i as well

as active and reactive power in the line between bus i and j.
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2.2.2 EV parking lot

EVPL in this paper is modelled as energy storage where the parameters are obtained via the characteristics of
different EV classes hosted by EVPL and the PDF of the arrival and departure of EVs. In this paper, similar to most
of the papers in the literature, the EV arrival and departure pattern is modelled with a Truncated Normal Distribution
(TND) in the related studies. This way, using the cumulative distribution function (CDF) of TND, the number of
arriving and departing EVs in each hour is obtained. Then, EVPL's charging and discharging power, EVPL’s stored
energy, and EVPL’s active and reactive power constraints are represented in (8)-(18).N, E, Cap, cl, arr, and dep
denotes the number of EVs, level of energy, capacity of the EV Battery, EV class, arrival, and departure. Moreover,

Sh,, and CiP Linseh stand for share of the EV class and installed capacity of the EV chargers in the EVPL.
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2.2.3 RES and DG

(11)
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The generated power by DGs should satisfy the ramp rate and nominal capacity constraint as indicated in (19)-
(21). In addition, the uncertainty of RES generation is modelled by the chance-constrained-based formulation
presented in (Yi et al. 2020) as represented in (22). ®,(.) is the CDF of the standard normal distribution, 1 is the

confidence level, and 0; 1 for is the standard deviation.
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2.2.4 Energy storage system

The operation of energy storage system (ESS) is modelled as represented in (23)-(26).

ESS
8i¢

(19)
(20)
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(22)

is a binary variable for

defining the charging/discharging status of the ESS. n;,,and 0, are the charge and discharge efficiency.
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2.3. Linearization

(23)
(24)
(25)
(26)

There are quadratic constraints in the power flow, EVPL, and DG modelling. To remove the nonlinearity the
linearization method presented in Yang et al. (2017) is deployed where the circle feasible area of the quadratic
constraint is approximated with a polygon. Therefore, the optimization problem is handled via mixed integer linear

programming.
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3. Simulation results
3.1. Case study

We used the case study of Yi et al. (2020) and modified it by adding EVPLs to the system as depicted in Fig. 1.
This way, we have considered two systems for our simulations with different locations of EVPLs in the grid. In the
first system, EVPLs are located at the margins of the network, while in the second system, EVPLs are located in the
central areas. In this paper, we considered that there are 10 EV classes with the characteristics presented in Table 1.
For all EV classes SOC%is equal to 0.85 and P2“™*is equal to PS*™%*. Moreover, the share of each EV class in
total available EVs is 0.1. Furthermore, the parameters of TND for arrival are as follows: the minimum and maximum
EVs arrival times are 5 and 17, the average arrival time is 8 and the standard deviation is 3. In addition, the parameters
of TND for departure are as follows: the minimum and maximum EVs departure times are 11 and 24, the average
departure time is 16 and the standard deviation is 3. Finally, the number of charging stations in all EVPLs is 3000.

Table 1. EV classes and characteristics

cl 1 2 3 4 5 6 7 8 9 10
PSR () 7 10 10 7 0 7 5 5 7 10
CapE? (kWh) 15 20 20 15 20 15 0 10 15 20
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Fig. 1 Distribution system topology in (a) Case 1 and (b) Case 2
3.2. Results and discussion

We have studied the system operation in two cases to study the impact of the reactive power support capability of
EVPL, coordinated operation of EVPL, deploying bidirectional EV chargers, and location of EVPL on the optimal
system operation in terms of operational cost. As EV chargers in EVPLs are equipped with power electronic facilities
to convert the AC current to DC current, there is a possibility to provide reactive power support Paudyal et al. (2017).
This way, by investing in the power electronic facilities in the EV chargers, there will be a reactive power support
capability in EV chargers. The impact of reactive power support capability on system operation has been investigated
in two cases with the same system but different EV locations. The results show that in both cases the EVPLs' reactive
power support capability will result in a decrease in the system cost. Moreover, EVPLs based on their location provide
the system with different positive and reactive power support during the day as represented in Fig. 2 which is related
to case 1 and Fig. 3 which is relayed to case 2. In these figures, the operation of EVPLs with and without reactive
power capability is investigated to assess the impact of reactive power support capability and the location of the
EVPLs on their operation. In this regard, when there is no reactive power support from EVPLs, their charging schedule
is managed like a flexible load to reduce the system cost. However, when there is a reactive power support capability,
EVPLs can modify their charging schedule to provide positive or negative reactive power support to improve the
system condition in terms of congestion and voltage to let for deploy the cheaper power sources. In this regard, the
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(a) EVPL1 located at bus 23 (a) EVPLI located at bus 2
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Fig. 2 The active and reactive power of (a) EVPLI, (b) EVPL 2,and  Fig. 3 The active and reactive power of (a) EVPL1, (b) EVPL 2, and
(¢) EVPL3 in case 1 (EVPLs are located in buses 2, 4, and 6) (c) EVPL3 in case 2 (EVPLs are located in buses 23, 8, and 17)

operation of EVPLs 1, 2, and 3 are different in cases 1 and 2 as their locations are different in these two cases.
Therefore, EVPLs location has a very important factor in the optimal operation of the system for two reasons. Firstly,
the active power load would be different in different system buses and secondly, the reactive power support capability
is also different in different buses. Therefore, the impact of the EVPLs on the distribution system operation depends
on the distribution system topology and active and reactive loads and different assists in different parts of the system
besides the characteristics and capabilities of EVPLs. In addition, it is understood that when EVPLs are equipped with
reactive power support, their optimal charging schedules are changed to enable them for reactive power support. This
way, the system voltage at that bus would be regulated to let for optimal active and reactive power flow to reduce the
active power cost.

Table 2. The whole system cost for cases 1 and 2

Case Case 1 Case 2
Q support capability
System cost 18955.68 € 19468.06 € 18369.03 € 18395.24 €

The other important point is that the cost reduction amount is different for the two cases. For case 1, the whole
system cost with and without Q support is 18369.03 €and 18395.24 €, accordingly. Therefore, the cost reduction from
EVPLs’ reactive power support is 26.21€ in case 1. However, the whole system cost with and without Q support is
18955.68 € and 18468.06 €, accordingly. Hence, the cost reduction from EVPLs’ reactive power support is 512.36 €
in case 2. This shows that deploying Q support from EVPLs in case 1 is way more beneficial due to the system topology
than in case 2. The different benefits from reactive power support can be understood by noticing the operation of DGs
and RES for case 1 and case 2 in the presence and absence of reactive power support as depicted in Fig. 4, Fig. 5, Fig.
6, and Fig. 7. Fig. 4 shows that in case 1, reactive power support capability allows for more RES generation in some
hours, while as depicted in Fig. 5, reactive power support from EVPLs has not any impact on the RES generation in
case 2. Similar behaviour can be seen in DGs’ operation in cases 1 and 2. In case 1, when reactive power support from
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EVPLs is available, the DG generation pattern can be totally modified to let for reducing the system cost, as shown in
Fig. 6, while in case 2, the change in the DG generation pattern is way less compared to case 1. This way, deployment
of reactive power support from EVPLs is more beneficial in case 1 compared to case 2.
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Fig. 6 Generation of DGs in case 1 Fig. 7 Generation of DGs in case 2

4. Conclusion

In this paper, the impact of the commercial EVPL on the optimal distribution system operation was investigated.
The results show that EVPLs can modify their charging schedule to provide positive or negative reactive power
support to improve the system condition in terms of congestion and voltage to let for deploy the cheaper power sources.
In this regard, EVPLs’ location has a very important impact on the optimal operation of the system for two reasons.
Firstly, the active power load would be different in different system buses and secondly, the reactive power support
capability is not similar in different buses. Therefore, the location of the EVPLs and their situation in the distribution
system is an important factor in deciding on the investment in equipping them with reactive power support facilities.
In future studies, the effect of residential EV chargers can also be studied to assist decision-makers to define the proper
locations for both residential and commercial EVPLs. In addition, the voltage violation cost should be considered in

the whole system cost to better highlight the impact of the reactive power support from EVPLs in improving the
distribution system operation.
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