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Abstract 

Electric vehicles have attracted the attention of users because they do not burn fossil fuels and emit zero greenhouse gas emissions. 
Fuel cells have shown their potential to power vehicles as well. The most common fuel cell types as power sources for automobiles 
are i) Proton exchange membrane fuel cell (PEMFC) and ii) Solid oxide fuel cell (SOFC). Normally, the PEMFC is considered 
main propulsion system. On the other side, the SOFC is generally not considered for propulsion system but considered for auxiliary 
power unit (APU). In this paper, feedback linearization controller for solid oxide fuel cells is proposed. And the performance of 
proposed controller is simulated under current disturbances operation condition through Matlab simulation. 
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1. Introduction  

Electric vehicles have attracted the attention of users because they do not burn fossil fuels and emit zero greenhouse 
gas emissions. Just as many electric vehicles around the world use batteries as their primary power source, fuel cells 
have shown their potential to power vehicles as well. The most common fuel cell types as power sources for 
automobiles are i) Proton exchange membrane fuel cell (PEMFC) and ii) Solid oxide fuel cell (SOFC). Normally, the 
PEMFC is considered main propulsion system. PEMFC-powered electric vehicles have several advantages over 
battery-powered electric vehicles. i) PEMFC electric vehicles do not need battery charging and can refuel in less than 
5 minutes, increasing operational efficiency. ii) PEMFC electric vehicles can distribute hydrogen refueling stations 
around a central storage tank, saving space compared to charging pile parking lots. iii) PEMFC electric vehicles can 
maintain a constant voltage regardless of usage period or weather, unlike batteries that show a significant voltage drop 
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(Liu, 2016). On the other side, the high operating temperature of SOFCs results in a long startup time and so SOFC is 
generally not considered for propulsion system but considered for auxiliary power unit (APU). SOFCs for APUs are 
being developed since reformed gasoline and diesel can be used in these systems without construction of hydrogen 
supply infrastructures(Rechberger, 2016; Barelli, 2020).  

In SOFC, the reaction takes place at the anode and cathode. The ceramic electrolyte will be a good conductor for 
oxygen ions, not electrons. At the SOFC anode, hydrogen binds with the migrated oxygen ions. It makes water and 
releases electrons. 

SOFC is increasingly gaining traction due to some advantages: (Abdalla, 2018; Fernandes, 2018) i) SOFC have 
flexible fuel selection and can directly use hydrocarbons. This is a huge advantage over PEMFCs, which can only be 
supplied with pure hydrogen. ii) The SOFC's high-temperature working environment is compatible with the reforming 
of hydrocarbons to produce hydrogen-rich gases, providing more possibilities for heat recovery, system efficiency 
improvement and system modernization. iii) SOFC is mainly composed of ceramic materials and does not use precious 
metals, so there is a high possibility of cost reduction in large-scale application. 

The trend in SOFC control is towards developing more efficient, reliable, and cost-effective solutions to meet the 
challenges of controlling and regulating the output of SOFC stack. This includes developing advanced control systems 
that can monitor and adjust cell operating conditions in real time to optimize performance. This involves using 
advanced algorithms and sensors to detect changes in fuel cell environmental and operating conditions and 
automatically adjust cell performance accordingly. In addition, new technologies are being developed to improve fuel 
cell durability and life as well as improve efficiency and performance. SOFC control research trends including PID, 
model predictive control, H-infinity control, fault-tolerant control can be found in Peng et. al. (2021) and Yang et. al. 
(2022). 

In this paper, feedback linearization controller for solid oxide fuel cells is proposed. And the performance of 
proposed controller is simulated under current disturbances operation condition. 

2. Methodology  

The dynamic model of SOFC which is widely accepted as a benchmark model is used to verify the proposed control 
method. As shown in equation (1), SOFC system have nonlinearity due to the Nernst`s equation(Li, 2005; Padullés 
2000): 
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where, the partial pressures can be approximately expressed as the following transfer functions:  
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The system output 𝑉𝑉5 denote stack output voltage which is main control object. The manipulate input is  𝑞𝑞2 which 

denote natural gas flow(mol/s). 𝐼𝐼 represent current load(A). the partial pressure of hydrogen, oxygen, and steam in the 
cell are denoted as 𝑝𝑝-#, 𝑝𝑝4#, and 𝑝𝑝-#4, respectively. And other parameters are summarized in Table 1. The block 
diagram of SOFC model is shown in Fig 1 in order to improve understanding. 

The real output voltage may be reduced due to ohmic loss, activation loss, and concentration loss as follows: 
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Table 1. Parameters in the SOFC system. 

Parameters Value Unit Representation 

𝑇𝑇𝑜𝑜 1273 K Absolute temperature 

𝐹𝐹𝑜𝑜 96,485 C mol-1  Faraday’s constant 

𝑅𝑅𝑜𝑜 8.314 J mol-1 K-1 Universal gas constant 

𝐸𝐸𝑜𝑜 1.18 V Ideal standard potential 

𝑁𝑁𝑜𝑜 384 - Ideal standard potential 

𝐾𝐾𝑟𝑟 0.996 * 10-3 mol s-1 A-1  

𝐾𝐾𝐻𝐻2  8.32 * 10-6 mol s-1 Pa-1 Valve molar constant for hydrogen 

𝐾𝐾𝐻𝐻2𝑂𝑂 2.77 * 10-6 mol s-1 Pa-1 Valve molar constant for water 

𝐾𝐾𝑂𝑂2  2.49 * 10-5 mol s-1 Pa-1 Valve molar constant for oxygen 

𝜏𝜏𝐻𝐻2  26.1 s Response time of hydrogen flow 

𝜏𝜏𝐻𝐻2𝑂𝑂 78.3 s Response time of hydrogen flow 

𝜏𝜏𝑂𝑂2 2.91 s Response time of hydrogen flow 

𝜏𝜏𝐻𝐻−𝑂𝑂 1.145 - Ratio of hydrogen to oxygen 

𝑟𝑟 0.126 Ω Ohmic loss 

𝜏𝜏2 5 s Time constant of the fuel processor 

𝛼𝛼 0.05 - Tafel constant 

𝛽𝛽 0.11 - Tafel slope 

𝐼𝐼& 800 A Limiting current density 

 
 

 

Fig. 1: Illustrative block diagram of SOFC model 

In SOFC, the reaction takes place at the anode and cathode. The ceramic electrolyte will be a good conductor for 
oxygen ions, not electrons. At the SOFC anode, hydrogen binds with the migrated oxygen ions. It makes water and 
releases electrons. Based on benchmark model, feedback linearization controller is designed to regulate SOFC output 
voltage with current disturbance meanwhile fuel utilization maintains safe range from 0.7 to 0.9 as far as possible (Fig. 
2). The control object is to maintain the output voltage as small as possible under 1) external current load change, 2) 
complex system nonlinearity, and 3) strict input limitation of nature gas flow rate. 
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The SOFC system is defined with state variable 𝑥𝑥 = [𝑞𝑞-# 𝑝𝑝-# 𝑝𝑝-#4				𝑝𝑝4#],  the output variable  𝑦𝑦 = 𝑉𝑉67 and 
input variable 𝑢𝑢 = 𝑞𝑞2. The control error is defined as followings:  

 
𝑒𝑒 = B𝑉̈𝑉67,3@2 − 𝑉̈𝑉67D.                                                                          (5) 

 
Then, control error dynamics and control gain are designed as followings (Kim, 2021): 
 

B𝑉̈𝑉67,3@2 − 𝑉̈𝑉67D + 𝐾𝐾)B𝑉̇𝑉67,3@2 − 𝑉̇𝑉67D + 𝐾𝐾!B𝑉𝑉67,3@2 − 𝑉𝑉67D = 0, 𝐾𝐾) = 4, 𝐾𝐾$ = 4.                                   (6) 
 

 

 

 

Fig. 2: Designed feedback linearization control diagram 

3. Results and Discussion  

To illustrate the effectiveness of the proposed feedback linearization controller, Matlab simulation was examined. 
In simulation scenario, we assume that a current disturbance causes step changes at t=100s, t=200s, and t=300s, 
respectively. The simulation results are shown in through Fig. 3(a) ~ 3(d). The output voltage has converged quickly 
enough to respond to current fluctuations at t=100s, t=200, and t=300. At same time, it has been confirmed that fuel 
utilization is maintained within the allowable ranges. 

 

(a) output voltage (b) fuel utilization 

(c) flow rate (d) load current 
 

Fig. 3: Simulation results of the feedback linearization control 
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4. Conclusion  

The most common types of fuel cells to power source of vehicles are i) proton exchange membrane fuel cells 
(PEMFC) and ii) solid oxide fuel cells (SOFC). Generally, PEMFC is considered main propulsion system and SOFC 
is considered for auxiliary power unit. SOFC is increasingly gaining traction due to some advantages including fuel 
efficiency, flexibility of fuel selection and large scale application. The recent trend of SOFC control is towards 
developing more efficient, reliable, and cost-effective solutions to meet the challenges of controlling and regulating 
the output of SOFC stack. 

In this paper, we have proposed a feedback linearization controller for solid oxide fuel cells. The simulation results 
on the benchmark SOFC system have illustrated that the proposed method can successfully dela with not only output 
voltage regulate but also fuel utilization under step current disturbance. However, it is necessary to study additional 
research on controller performance comparison by referring to other control methods such as PID, MPC and SMC. 
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