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Abstract 

With Electric Vehicles’ (EV) market adoption surging in recent years, the smart grid paradigm requires accurate forecasts of EV 
arrivals at charging points. One efficient way to model these arrivals is to use Point Processes. This study introduces an additive 
model using both spline and wavelet effects for fitting the intensity of a non-homogeneous Poisson process applied to EV arrivals 
at charging points. The key contribution of this work is a novel estimation procedure inspired from backfitting which is illustrated 
by a case study on real-world EV arrivals at charging points. The results obtained show that this approach can help better capturing 
EV arrival peaks. 
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1. Introduction 

Integrating Electric Vehicles (EVs) into the large-scale distribution network represent a major challenge. Poor 
management of this new market can have a negative impact on the load curve such as increased demand peaks. In 
addition, this new constraint on the network can lead to the overloading of certain system components linked to voltage 
and frequency imbalances Adderly et al. (2018). By moving to a smart charging paradigm, EVs can be used as a 
solution rather than a problem a to better balance the grid Aslam et al. (2020). This requires minimising the uncertainty 
of EV arrivals in order to better plan charging schedules. Furthermore, modelling EV arrivals can contribute to better 
infrastructure sizing Gjelaj et al. (2020). Finally, knowing ahead the arrival patterns of EVs raises the prospect of 
storing renewable energy in EVs as a viable strategy Ghotge et al. (2020). Modelling arrivals is a typical task for non-
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homogeneous Poisson Processes (NHPPs). NHPPs have been used to model a diverse range of phenomenons in the 
literature (e.g., seismology Aktas et al. 2009, imaging Streit 2010, extreme weather events Ngailo et al. 2016). NHPPs 
have also been applied to model EV arrivals in recent work (e.g., Zhang and Grijalva 2015 and Lahariya et al. 2020). 
The objective of the paper is to develop an NHPP model to predict EV arrivals at charging points, focusing on 
enhancing peak arrival forecasts. It presents an additive model using spline and wavelet effects to capture NHPP 
intensity for EV arrivals. The paper is organized as follows: Section 2 reviews related work, Section 3 introduces 
model specifics and the estimation procedure. Lastly, Section 4 presents a case study on real world data. 

2. Related Work 

 NHPP intensity estimation. Historically, point process estimation has been thoroughly detailed in Daley and Vere-
Jones (2003) including NHPP. The likelihood of a NHPP process with n observed arrival times {𝑡𝑡!#}"∈{%⋯'}  can 
generally be written as follows:  
 

𝐿𝐿 = '(𝜆𝜆(𝑡𝑡!#)
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Estimators of the intensity function can thus be obtained by maximising L. In Brillinger (1997), a semi-parametric 

estimator of the conditional intensity of temporal point processes was introduced with a Tukey shrinkage procedure. 
The theoretical properties of wavelet coefficient estimators were later studied for the first-order intensity of multi- 
dimensional NHPPs (de Miranda and Morettin, 2011) with results applicable to Haar wavelets in practice. In Bigot 
et al. (2013), Meyer wavelets are preferred to Haar wavelets for estimating the intensity function for n independent 
realisations of a NHPP. A wider class of wavelets is studied in Reynaud-Bouret and Rivoirard (2010) with biorthogonal 
wavelets. More recently, Youngman and Economou (2017) have proposed fitting procedure for the intensity of NHPP 
with splines basis instead of wavelets. 

Additive models. A general procedure for fitting semi-parametric regression models with additive functional 
effects was proposed in Hastie and Tibshirani (1986) with backfitting. In parallel, a General Cross Validation (GCV) 
criterion first defined in Craven and Wahba  (1979) was used for estimating a single smoothing spline and extended 
in Gu  and Wahba (1991) to multiple smoothing parameters. This result was used to propose a PIRLS fitting procedure 
for generalised additive models (GAMs) in Wood (2000). While splines have been the basis of choice for additive 
semi- parametric models, wavelet basis have gained more and more interest over time. Wand and Ormerod (2011) 
proposes to integrate wavelets into semi-parametric regression in a similar way as it is done for splines in generalised 
additive models (Wood, 2017). While splines estimated with PIRLS contain a ridge-like penalty, wavelets are given 
a lasso- type penalty. The close relationship of the lasso penalty with soft thresholding established in Antoniadis and 
Fan (2001) is what makes it our choice in our work. 

Gaps. The literature review indicates a scarcity of papers combining NHPP intensity estimation with additive 
models, with most studies focusing on either splines or wavelets. A hybrid model proposed in Liu et al. (2017) did 
combine backfitted splines and kernel methods. However, very rarely splines and wavelets are combined in the same 
model specification. The only occurrence of this kind of work the authors have found is in Amato and Antoniadis 
(2017) where a hybrid approach for Gaussian regression is proposed with an application of this model to electricity 
demand in Amato et al. (2021). Therefore, the goal of the work presented in this paper is to extend these papers and 
study more precisely an additive model of the first-order intensity function of NHPPs combining both splines and 
wavelet basis as presented in equation (2). 

3. Problem Formulation 

Model. This study considers an additive model of the intensity function of a NHPP of the following form: 
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with, β0 the intercept, β. the coefficients of the linear component, s. and w. respectively spline and wavelet basis 
expansions. In addition, x(t) = (xp(t), xs(t), xw(t)) the vector of covariates evaluated at time 𝑡𝑡𝑡𝑡[0, 𝑇𝑇](𝑇𝑇𝑇𝑇ℝ1 being the 
final time at which the NHPP is observed). 𝑥𝑥.(𝑡𝑡) = J𝑥𝑥,

.(𝑡𝑡)K{%,⋯,-}  , 𝑥𝑥/(𝑡𝑡) = {𝑥𝑥,/(𝑡𝑡)}{%,⋯,-}  and 𝑥𝑥0(𝑡𝑡) =
{𝑥𝑥,0(𝑡𝑡)}{%,⋯,-} are the vectors of covariates respectively used for the linear, spline and wavelet effects. The idea behind 
this model is to decompose the signal into linear, smooth and irregular components. Also, the additive structure was 
chosen to have an interpretable model with the contribution of each component made clear for analysis. 

Likelihood estimation. In practice, the likelihood presented in equation (1) is intractable unless approximations are 
made. In particular, the intensity function can be considered piecewise constant provided that a small enough timestep 
is taken relative to the phenomenon modelled. With that approximation, the integral term becomes a discrete sum over 
the number of timesteps. Therefore, equation (1) becomes: 

 

𝐿𝐿 = '(𝜆𝜆(𝑡𝑡!#)
'

")%

, exp'− = 𝜆𝜆(𝑡𝑡)
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Here, the intensity function is expressed in the unit of the timestep chosen so that there is no need to multiply each 

term of the sum by the timestep. This approximation is widely used as it is enough to make the likelihood tractable 
under reasonable assumptions on the intensity function. The intensity function of a Poisson process is often confused 
with the rate (also denoted by λ in most cases), even though they are conceptually different. These two quantities 
coincide exactly when the intensity function is assumed piecewise constant. Adopting a Poisson regression approach 
leads to another version of the likelihood presented in equation (3) which depends on time through different temporal 
signals x(t). In the context of our problem, a sample {(Yi, xi), i Î {1 . . . n}} of size  𝑛𝑛	𝜖𝜖	ℕ is observed. Therefore the 
likelihood of the equivalent regression formulation of the NHPP likelihood from equation (3) can be rewritten as 
follows: 𝐿𝐿(𝜃𝜃) = ∏ 9:;<=>$(@)B>$(@)%$

C$!
'
")%  with θ the vector containing the parameters for all effects. Finally, the log-

likelihood is as follows: 𝑙𝑙(𝜃𝜃) = ∑ 𝑌𝑌"'
")% 𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆"(𝜃𝜃)) − ∑ 𝜆𝜆"'

")% (𝜃𝜃) − ∑ 𝑙𝑙𝑙𝑙𝑙𝑙'
")% (𝑌𝑌"!)  with the last term of this log-

likelihood independent of λ which makes it irrelevant for maximising the log-likelihood. 
Background. First, the Generalized Linear Model (GLM) extends traditional linear regression by allowing a wider 

range of statistical distributions for the response variable and incorporating a non-linear relationship between the re- 
sponse and covariates using a link function. In our case, the GLM corresponds to the parametric part of the model, 
estimated using the iteratively (reweighted) least squares (IRLS) algorithm: log 𝜆𝜆(𝑡𝑡) = 𝛽𝛽+ + ∑ 𝛽𝛽,𝑥𝑥,

.(𝑡𝑡)-!
,)% . IRLS 

updates the parameter estimates iteratively, taking into account the residuals of each observation. Next, the 
Generalized Additive Model (GAM) represents the non-parametric part of the model. It is formulated as a sum of 
smooth functions, with each function modeling a specific covariate log 𝜆𝜆(𝑡𝑡) = ∑ 𝑠𝑠,(𝑥𝑥,/(𝑡𝑡))

-"
,)%  . The backfitting 

procedure is commonly used to fit GAMs (Hastie and Tibshirani, 1986), and it has been proven to converge to an 
optimal solution (Ansley and Kohn, 1994). A more recent approach, called penalized IRLS (PIRLS), introduced a 
penalty term on the second-order derivatives of the smooth functions to ensure smoother estimates while maintaining 
computational efficiency (Wood, 2000). Lastly, the Penalized Wavelet Additive Model is similar to GAM but uses 
wavelet basis functions instead of splines log 𝜆𝜆(𝑡𝑡) = ∑ 𝑤𝑤,(𝑥𝑥,0(𝑡𝑡))

-#
,)%  . This model is suitable for capturing the 

piecewise constant nature of the function being modeled. To optimize the LASSO-penalized likelihood, a coordinate 
gradient descent (CGD) approach is chosen (Hastie et al., 2022). Cross-validation is used to select the penalty 
coefficient (gamma), and the soft-thresholding operator is employed to perform the coordinate-wise parameter 
updates. 

Combining wavelets and splines basis. Wavelets are versatile tools for signal processing and representing functions 
of varying regularity (Mallat, 1999). They offer the ability to capture local behavior at different time scales. 
Orthonormal wavelet bases provide a comprehensive analysis of irregularities and allow for efficient decomposition 
algorithms with linear complexity. While splines are powerful for functional estimation, wavelets complement them 
by offering better temporal localization, particularly in representing peaks and discontinuities (Vidakovic, 2009). 
Wavelets excel in representing such functions with a sparse set of non-zero coefficients. When combining splines and 
wavelets in a model, it is recommended to use a sequential estimation approach. Splines are employed first to estimate 
low frequencies and regular parts, followed by wavelets to focus on breaks or peaks. The Haar wavelet is especially 
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suitable for this purpose due to its optimal localization properties. Increasing the number of zero moments (N) can 
provide additional regularity by using the Daubechies wavelet family, denoted as db2N . 

Proposed approach. Using the stepping stones introduced above, an algorithm can be proposed to successfully fit 
model (2). It is referred to as BAC, being a version of backfitting applied to this model. It consists in fitting sequentially 
the different effects of the model. Firstly, the linear part is fitted. Then, for each variable considered in the non- 
parametric part of the model, the splines components are first fitted and then the wavelet effects. The idea behind this 
algorithm is to move from the lowest frequency (linear part and splines with not too many degrees of freedom) to the 
highest frequency of the signal (wavelet basis of relative high-order). The BAC  algorithm does not involve an a priori 
on the order in which the different effects should be fitted. In practice, effects are fitted in a random order. Each time 
an effect is fitted, the rest of the model fitted up until this iteration is subtracted from the target response. So only the 
residuals of the current model iteration are fitted at each step. Like backfitting, this procedure is repeated multiple times 
until convergence. Algorithm 1 formally presents the implementation of this approach with the notations introduced 
in the introduction. In addition, η−l(θ−l) is the additive model without the l-th effect which can also be extended to 
components. For instance, 𝜂𝜂=,=/(𝜃𝜃=,=/) = 𝛽𝛽+ + ∑ 𝛽𝛽,&
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0(𝑡𝑡)Y	, which is 
simply the same model as in equation (2) without the spline component. Similarly, ηl(θl) is the additive model only 
with the l-th effect composed of its spline 𝜂𝜂,/(𝜃𝜃,/) and wavelet 𝜂𝜂0(𝜃𝜃,0) counterparts. 

4. Problem Formulation 

Data. The dataset in the scope of this application gathers charging session information in the United Kingdom 
(UK) during 2017 (Amara-Ouali et al., 2021). It concerns domestic chargers ranging from 3kW to 22kW. However, it 
is expected that the great majority of EV chargers in this dataset are 3kW or 7kW chargers. This data was collected 
by the UK department of transport. One key finding on arrival times (or plug-in times) of EVs was that domestic 
charging events were more frequent with different patterns on weekdays than on weekends. That is why this study 
focuses solely on weekdays. The circumstances of EV uptake in 2017 in the UK was strong. The total number of plug-
in cars on UK roads passed 130,000 that year. The best BEV seller was the Nissan LEAF with more than 13,000 
registrations. Across the whole country, the largest sales were made in London and Eastern England with Scotland 
and South West garnering the fastest growth (UK Department for Transport, 2018). While public EV charging 
infrastructure is increasing at a fast pace, domestic charging remains the first choice for a majority of EV users. In 
addition to this dataset, temperatures in the UK from 8 of the top 10 cities in terms of population from the Iowa 
Environment Mesonet website (Salmon, 2016) were gathered. That is, London (8.9 million), Birmingham (1.15 
million), Glasgow (612 thousand), Liverpool (579 thousand), Bristol (572 thousand), Manchester (554 thousand), 
Leeds (503 thousand), Edinburgh (508 thousand). The temperature for each city is not particularly recorded at the same 
time nor at a regular timestep. Therefore, all these temperature were interpolated with cubic splines. In order to 
have a more compact model, a weighted average version of the temperature can be calculated as follows: 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =
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/)% 𝑝𝑝/𝑇𝑇/,3 where Ts,t is the temperature recorded at time t by station s and temp(t) is the weighted mean 

temperature which will be used in the modelling experiments. 
Experimental setting. The experimental protocol chosen to test the methods is close to the operational setting. In 

fact, it is a rolling forecast origin procedure, where the model is trained on all the data available up to a certain date in 
order to forecast the following week. The first training set runs from 1 January to 29 September 2017. As weekends 
are not included, it comprises 10 test weeks from 4 September to 8 December 2017. The algorithm considered in our 
experiments is BAC as defined in section 3. The algorithm was tested with three different variations. All of them 
include a linear part, which is simply the indicator of the day of the week. The first variation only takes into account 
the spline components for the hour of the day, the weighted temperatures and the time as an index (BAC_s). The second 
variation is the same with only the wavelet components (BAC_w). Finally, the third variation includes both splines 
and wavelet components only, with the time of day modelled by a wavelet component and the other effects assumed 
to be smooth enough to be captured by the splines component only (BAC_sw). Our assumption is that the linear and 
spline components will capture most of the variations in the intensity function, while the wavelets would improve 
performance during peak and/or irregular times. The dataset and code used for this experiment are available at Amara-
Ouali (2023). 
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with, β0 the intercept, β. the coefficients of the linear component, s. and w. respectively spline and wavelet basis 
expansions. In addition, x(t) = (xp(t), xs(t), xw(t)) the vector of covariates evaluated at time 𝑡𝑡𝑡𝑡[0, 𝑇𝑇](𝑇𝑇𝑇𝑇ℝ1 being the 
final time at which the NHPP is observed). 𝑥𝑥.(𝑡𝑡) = J𝑥𝑥,

.(𝑡𝑡)K{%,⋯,-}  , 𝑥𝑥/(𝑡𝑡) = {𝑥𝑥,/(𝑡𝑡)}{%,⋯,-}  and 𝑥𝑥0(𝑡𝑡) =
{𝑥𝑥,0(𝑡𝑡)}{%,⋯,-} are the vectors of covariates respectively used for the linear, spline and wavelet effects. The idea behind 
this model is to decompose the signal into linear, smooth and irregular components. Also, the additive structure was 
chosen to have an interpretable model with the contribution of each component made clear for analysis. 

Likelihood estimation. In practice, the likelihood presented in equation (1) is intractable unless approximations are 
made. In particular, the intensity function can be considered piecewise constant provided that a small enough timestep 
is taken relative to the phenomenon modelled. With that approximation, the integral term becomes a discrete sum over 
the number of timesteps. Therefore, equation (1) becomes: 
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Here, the intensity function is expressed in the unit of the timestep chosen so that there is no need to multiply each 

term of the sum by the timestep. This approximation is widely used as it is enough to make the likelihood tractable 
under reasonable assumptions on the intensity function. The intensity function of a Poisson process is often confused 
with the rate (also denoted by λ in most cases), even though they are conceptually different. These two quantities 
coincide exactly when the intensity function is assumed piecewise constant. Adopting a Poisson regression approach 
leads to another version of the likelihood presented in equation (3) which depends on time through different temporal 
signals x(t). In the context of our problem, a sample {(Yi, xi), i Î {1 . . . n}} of size  𝑛𝑛	𝜖𝜖	ℕ is observed. Therefore the 
likelihood of the equivalent regression formulation of the NHPP likelihood from equation (3) can be rewritten as 
follows: 𝐿𝐿(𝜃𝜃) = ∏ 9:;<=>$(@)B>$(@)%$
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likelihood independent of λ which makes it irrelevant for maximising the log-likelihood. 
Background. First, the Generalized Linear Model (GLM) extends traditional linear regression by allowing a wider 

range of statistical distributions for the response variable and incorporating a non-linear relationship between the re- 
sponse and covariates using a link function. In our case, the GLM corresponds to the parametric part of the model, 
estimated using the iteratively (reweighted) least squares (IRLS) algorithm: log 𝜆𝜆(𝑡𝑡) = 𝛽𝛽+ + ∑ 𝛽𝛽,𝑥𝑥,
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updates the parameter estimates iteratively, taking into account the residuals of each observation. Next, the 
Generalized Additive Model (GAM) represents the non-parametric part of the model. It is formulated as a sum of 
smooth functions, with each function modeling a specific covariate log 𝜆𝜆(𝑡𝑡) = ∑ 𝑠𝑠,(𝑥𝑥,/(𝑡𝑡))
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procedure is commonly used to fit GAMs (Hastie and Tibshirani, 1986), and it has been proven to converge to an 
optimal solution (Ansley and Kohn, 1994). A more recent approach, called penalized IRLS (PIRLS), introduced a 
penalty term on the second-order derivatives of the smooth functions to ensure smoother estimates while maintaining 
computational efficiency (Wood, 2000). Lastly, the Penalized Wavelet Additive Model is similar to GAM but uses 
wavelet basis functions instead of splines log 𝜆𝜆(𝑡𝑡) = ∑ 𝑤𝑤,(𝑥𝑥,0(𝑡𝑡))

-#
,)%  . This model is suitable for capturing the 

piecewise constant nature of the function being modeled. To optimize the LASSO-penalized likelihood, a coordinate 
gradient descent (CGD) approach is chosen (Hastie et al., 2022). Cross-validation is used to select the penalty 
coefficient (gamma), and the soft-thresholding operator is employed to perform the coordinate-wise parameter 
updates. 

Combining wavelets and splines basis. Wavelets are versatile tools for signal processing and representing functions 
of varying regularity (Mallat, 1999). They offer the ability to capture local behavior at different time scales. 
Orthonormal wavelet bases provide a comprehensive analysis of irregularities and allow for efficient decomposition 
algorithms with linear complexity. While splines are powerful for functional estimation, wavelets complement them 
by offering better temporal localization, particularly in representing peaks and discontinuities (Vidakovic, 2009). 
Wavelets excel in representing such functions with a sparse set of non-zero coefficients. When combining splines and 
wavelets in a model, it is recommended to use a sequential estimation approach. Splines are employed first to estimate 
low frequencies and regular parts, followed by wavelets to focus on breaks or peaks. The Haar wavelet is especially 
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suitable for this purpose due to its optimal localization properties. Increasing the number of zero moments (N) can 
provide additional regularity by using the Daubechies wavelet family, denoted as db2N . 

Proposed approach. Using the stepping stones introduced above, an algorithm can be proposed to successfully fit 
model (2). It is referred to as BAC, being a version of backfitting applied to this model. It consists in fitting sequentially 
the different effects of the model. Firstly, the linear part is fitted. Then, for each variable considered in the non- 
parametric part of the model, the splines components are first fitted and then the wavelet effects. The idea behind this 
algorithm is to move from the lowest frequency (linear part and splines with not too many degrees of freedom) to the 
highest frequency of the signal (wavelet basis of relative high-order). The BAC  algorithm does not involve an a priori 
on the order in which the different effects should be fitted. In practice, effects are fitted in a random order. Each time 
an effect is fitted, the rest of the model fitted up until this iteration is subtracted from the target response. So only the 
residuals of the current model iteration are fitted at each step. Like backfitting, this procedure is repeated multiple times 
until convergence. Algorithm 1 formally presents the implementation of this approach with the notations introduced 
in the introduction. In addition, η−l(θ−l) is the additive model without the l-th effect which can also be extended to 
components. For instance, 𝜂𝜂=,=/(𝜃𝜃=,=/) = 𝛽𝛽+ + ∑ 𝛽𝛽,&
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simply the same model as in equation (2) without the spline component. Similarly, ηl(θl) is the additive model only 
with the l-th effect composed of its spline 𝜂𝜂,/(𝜃𝜃,/) and wavelet 𝜂𝜂0(𝜃𝜃,0) counterparts. 

4. Problem Formulation 

Data. The dataset in the scope of this application gathers charging session information in the United Kingdom 
(UK) during 2017 (Amara-Ouali et al., 2021). It concerns domestic chargers ranging from 3kW to 22kW. However, it 
is expected that the great majority of EV chargers in this dataset are 3kW or 7kW chargers. This data was collected 
by the UK department of transport. One key finding on arrival times (or plug-in times) of EVs was that domestic 
charging events were more frequent with different patterns on weekdays than on weekends. That is why this study 
focuses solely on weekdays. The circumstances of EV uptake in 2017 in the UK was strong. The total number of plug-
in cars on UK roads passed 130,000 that year. The best BEV seller was the Nissan LEAF with more than 13,000 
registrations. Across the whole country, the largest sales were made in London and Eastern England with Scotland 
and South West garnering the fastest growth (UK Department for Transport, 2018). While public EV charging 
infrastructure is increasing at a fast pace, domestic charging remains the first choice for a majority of EV users. In 
addition to this dataset, temperatures in the UK from 8 of the top 10 cities in terms of population from the Iowa 
Environment Mesonet website (Salmon, 2016) were gathered. That is, London (8.9 million), Birmingham (1.15 
million), Glasgow (612 thousand), Liverpool (579 thousand), Bristol (572 thousand), Manchester (554 thousand), 
Leeds (503 thousand), Edinburgh (508 thousand). The temperature for each city is not particularly recorded at the same 
time nor at a regular timestep. Therefore, all these temperature were interpolated with cubic splines. In order to 
have a more compact model, a weighted average version of the temperature can be calculated as follows: 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =
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temperature which will be used in the modelling experiments. 
Experimental setting. The experimental protocol chosen to test the methods is close to the operational setting. In 

fact, it is a rolling forecast origin procedure, where the model is trained on all the data available up to a certain date in 
order to forecast the following week. The first training set runs from 1 January to 29 September 2017. As weekends 
are not included, it comprises 10 test weeks from 4 September to 8 December 2017. The algorithm considered in our 
experiments is BAC as defined in section 3. The algorithm was tested with three different variations. All of them 
include a linear part, which is simply the indicator of the day of the week. The first variation only takes into account 
the spline components for the hour of the day, the weighted temperatures and the time as an index (BAC_s). The second 
variation is the same with only the wavelet components (BAC_w). Finally, the third variation includes both splines 
and wavelet components only, with the time of day modelled by a wavelet component and the other effects assumed 
to be smooth enough to be captured by the splines component only (BAC_sw). Our assumption is that the linear and 
spline components will capture most of the variations in the intensity function, while the wavelets would improve 
performance during peak and/or irregular times. The dataset and code used for this experiment are available at Amara-
Ouali (2023). 
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Metrics. To assess the efficiency of the various approaches, different metrics were retained: mean absolute error 

(MAE), root-mean squared error (RMSE), peak RMSE, deviance and dynamic time warping (DTW). The MAE and 
RMSE are the L1 and L2 norms divided by the number of observations. The peak RMSE is the RMSE restricted to 
daily peaks. So the value of the peak observed is compared to the prediction at the same time of day. Deviance is used 
as a goodness of fit test. In the context of Poisson regression, the deviance formula can be written as follows 𝐷𝐷 =
2∑ X𝑌𝑌" log X
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")%  with 𝑌𝑌d" being the model prediction. This formula can be derived from the likelihood 
ratio test comparing the proposed model and the saturated model. The latter predicts exactly the observed value (like 
an oracle model). Finally, unlike the peak RMSE, DTW is used to measure the similarity between two time series that 
may be slightly out of sync. It calculates the distance between two time series by aligning them in a way that minimises 
the differences between corresponding points (Müller, 2007). 

 

 

Fig. 1: Decomposition of the predicted signal approach on week 3 of test data (lin - linear component only; lin spl - linear and spline components; 
lin spl wav - all components). 
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Fig. 2: Haar basis before fit on hour of day variable Fig. 3: Haar basis after fit on hour of day variable 

Results. Fig. 1 shows a fitted BAC_	sw approach for a random week of the test set. From this fit, it is interesting to 
note that the benefit of the wavelet component is clearly observed on all peak estimates. In addition, the benefit of the 
wavelets can also be seen on the ascending and descending parts of the curve where the arrivals are most irregular. 
This confirms our a priori assumption that wavelets could help to better capture peaks and irregularities in the data. In 
figure 2 the wavelet basis expansion of the time of day effect can be observed. This effect does not have too many 
levels and is easier to understand. The Haar basis is used here because of the assumption of piecewise constant intensity 
function and also because it is easy to implement. However, the proposed procedure is not restricted to any particular 
type of wavelet. It is interesting to compare what happens to this basis after fitting. In particular, the soft- thresholding 
procedure obtained by the LASSO fit is illustrated in Fig. 3. It shows the same wavelet functions as in Fig. 2, multiplied 
by the coefficients estimated in the BACsw	approach. The sum of all these individual functions can be represented to 
show the the time (hour) of day - tod effect for the BACsw	approach as well as the splines. The same thing can be done 
for the toy (time of year) and temp (temperature) effects used in the model. Fig. 4 achieves exactly this. The toy (time 
of year) and temp (temperature) evolve smoothly while tod requires a wavelet component to capture irregularities in 
the ascendant part of the intensity function (between 8am and 10am). 

 

 

Fig. 4: All effects fitted with their splines and wavelet (only for tod - time of day [hours]) components 
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Fig. 5: Boxplots of performance metrics on the rolling train set  Fig. 6: Boxplots of performance metrics on the 10 weeks of test data 

In terms of performance on the training sets, Fig. 5 shows the boxplots of the 10 rolling training sets for the 5 
performance metrics retained in this analysis. The 5 metrics seem to agree that the BAC_w performs best on fitted 
data. However, Fig. 6 shows that BAC w actually performs worse when predicting arrivals on new data. This indicates 
overfitting by the BAC_w variant. The BAC_sw showcases more generalising capabilities as it is the best model across 
all metrics on the test set. Furthermore, the metrics for BAC_sw do not change significantly from training to test sets. 
 

5. Conclusion 

In this paper, an additive model with both wavelet and spline components for estimating the first-order intensity 
function of NHPP was studied. A novel algorithm inspired by backfitting has been proposed: BAC. This study shows 
that a model with both spline and wavelet components can help to better capture the peak arrivals of EVs at charging 
points, using wavelets to capture irregularities and sudden changes in the intensity function. The proposed 
methodology can be extended to any time step (as long as it is constant) as well as to other wavelet bases (e.g. 
Daubechies, Meyer). Better performance could be obtained by giving more degrees of freedom (knots) to the splines, 
but this can sometimes lead to overfitting and could defeat the purpose of the model. 
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Fig. 5: Boxplots of performance metrics on the rolling train set  Fig. 6: Boxplots of performance metrics on the 10 weeks of test data 

In terms of performance on the training sets, Fig. 5 shows the boxplots of the 10 rolling training sets for the 5 
performance metrics retained in this analysis. The 5 metrics seem to agree that the BAC_w performs best on fitted 
data. However, Fig. 6 shows that BAC w actually performs worse when predicting arrivals on new data. This indicates 
overfitting by the BAC_w variant. The BAC_sw showcases more generalising capabilities as it is the best model across 
all metrics on the test set. Furthermore, the metrics for BAC_sw do not change significantly from training to test sets. 
 

5. Conclusion 

In this paper, an additive model with both wavelet and spline components for estimating the first-order intensity 
function of NHPP was studied. A novel algorithm inspired by backfitting has been proposed: BAC. This study shows 
that a model with both spline and wavelet components can help to better capture the peak arrivals of EVs at charging 
points, using wavelets to capture irregularities and sudden changes in the intensity function. The proposed 
methodology can be extended to any time step (as long as it is constant) as well as to other wavelet bases (e.g. 
Daubechies, Meyer). Better performance could be obtained by giving more degrees of freedom (knots) to the splines, 
but this can sometimes lead to overfitting and could defeat the purpose of the model. 
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