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Abstract

Electric vehicles have attracted the attention of users because they do not burn fossil fuels and emit zero greenhouse gas emissions.
Fuel cells have shown their potential to power vehicles as well. The most common fuel cell types as power sources for automobiles
are 1) Proton exchange membrane fuel cell (PEMFC) and ii) Solid oxide fuel cell (SOFC). Normally, the PEMFC is considered
main propulsion system. On the other side, the SOFC is generally not considered for propulsion system but considered for auxiliary
power unit (APU). In this paper, feedback linearization controller for solid oxide fuel cells is proposed. And the performance of
proposed controller is simulated under current disturbances operation condition through Matlab simulation.

© 2023 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 8th International Electric Vehicle Conference

Keywords: Feedback Linearzation Controlm, PEMFC, SOFC,

1. Introduction

Electric vehicles have attracted the attention of users because they do not burn fossil fuels and emit zero greenhouse
gas emissions. Just as many electric vehicles around the world use batteries as their primary power source, fuel cells
have shown their potential to power vehicles as well. The most common fuel cell types as power sources for
automobiles are i) Proton exchange membrane fuel cell (PEMFC) and ii) Solid oxide fuel cell (SOFC). Normally, the
PEMFC is considered main propulsion system. PEMFC-powered electric vehicles have several advantages over
battery-powered electric vehicles. i) PEMFC electric vehicles do not need battery charging and can refuel in less than
5 minutes, increasing operational efficiency. ii) PEMFC electric vehicles can distribute hydrogen refueling stations
around a central storage tank, saving space compared to charging pile parking lots. iii)) PEMFC electric vehicles can
maintain a constant voltage regardless of usage period or weather, unlike batteries that show a significant voltage drop
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(Liu, 2016). On the other side, the high operating temperature of SOFCs results in a long startup time and so SOFC is
generally not considered for propulsion system but considered for auxiliary power unit (APU). SOFCs for APUs are
being developed since reformed gasoline and diesel can be used in these systems without construction of hydrogen
supply infrastructures(Rechberger, 2016; Barelli, 2020).

In SOFC, the reaction takes place at the anode and cathode. The ceramic electrolyte will be a good conductor for
oxygen ions, not electrons. At the SOFC anode, hydrogen binds with the migrated oxygen ions. It makes water and
releases electrons.

SOFC is increasingly gaining traction due to some advantages: (Abdalla, 2018; Fernandes, 2018) i) SOFC have
flexible fuel selection and can directly use hydrocarbons. This is a huge advantage over PEMFCs, which can only be
supplied with pure hydrogen. ii) The SOFC's high-temperature working environment is compatible with the reforming
of hydrocarbons to produce hydrogen-rich gases, providing more possibilities for heat recovery, system efficiency
improvement and system modernization. iii) SOFC is mainly composed of ceramic materials and does not use precious
metals, so there is a high possibility of cost reduction in large-scale application.

The trend in SOFC control is towards developing more efficient, reliable, and cost-effective solutions to meet the
challenges of controlling and regulating the output of SOFC stack. This includes developing advanced control systems
that can monitor and adjust cell operating conditions in real time to optimize performance. This involves using
advanced algorithms and sensors to detect changes in fuel cell environmental and operating conditions and
automatically adjust cell performance accordingly. In addition, new technologies are being developed to improve fuel
cell durability and life as well as improve efficiency and performance. SOFC control research trends including PID,
model predictive control, H-infinity control, fault-tolerant control can be found in Peng et. al. (2021) and Yang et. al.
(2022).

In this paper, feedback linearization controller for solid oxide fuel cells is proposed. And the performance of
proposed controller is simulated under current disturbances operation condition.

2. Methodology
The dynamic model of SOFC which is widely accepted as a benchmark model is used to verify the proposed control

method. As shown in equation (1), SOFC system have nonlinearity due to the Nernst's equation(Li, 2005; Padullés
2000):
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The system output V, denote stack output voltage which is main control object. The manipulate input is gy which
denote natural gas flow(mol/s). I represent current load(A). the partial pressure of hydrogen, oxygen, and steam in the
cell are denoted as py,, po,, and py, ¢, respectively. And other parameters are summarized in Table 1. The block
diagram of SOFC model is shown in Fig 1 in order to improve understanding.

The real output voltage may be reduced due to ohmic loss, activation loss, and concentration loss as follows:

Vac = Vo = Nact — Normic — Neonc 3)
where,

R T, 1
Nact = @ = Bl, Nopmic = Irand  Neone = %:ln (1 - Z) 4)
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Table 1. Parameters in the SOFC system.

Parameters Value Unit Representation
T, 1273 K Absolute temperature
F, 96,485 C mol-1 Faraday’s constant
R, 8.314 Jmol-1 K-1 Universal gas constant
E, 1.18 v Ideal standard potential
N, 384 - Ideal standard potential
K. 0.996 * 107 mol s-1 A-1
Ky, 8.32 %10 mol s-1 Pa-1 Valve molar constant for hydrogen
K0 2.77 * 10 mol s-1 Pa-1 Valve molar constant for water
Ko, 2.49 * 107 mol s-1 Pa-1 Valve molar constant for oxygen
Ty, 26.1 s Response time of hydrogen flow
Th,0 78.3 s Response time of hydrogen flow
o, 291 s Response time of hydrogen flow
Ty_o 1.145 - Ratio of hydrogen to oxygen
r 0.126 Q Ohmic loss
U 5 s Time constant of the fuel processor
0.05 - Tafel constant
0.11 - Tafel slope
I 800 A Limiting current density
I
2K,
v A v
/\;' & Nohmic Neonc Nact
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Fig. 1: Illustrative block diagram of SOFC model

In SOFC, the reaction takes place at the anode and cathode. The ceramic electrolyte will be a good conductor for
oxygen ions, not electrons. At the SOFC anode, hydrogen binds with the migrated oxygen ions. It makes water and
releases electrons. Based on benchmark model, feedback linearization controller is designed to regulate SOFC output
voltage with current disturbance meanwhile fuel utilization maintains safe range from 0.7 to 0.9 as far as possible (Fig.
2). The control object is to maintain the output voltage as small as possible under 1) external current load change, 2)
complex system nonlinearity, and 3) strict input limitation of nature gas flow rate.
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The SOFC system is defined with state variable x = [qu, PH,
input variable u = q¢. The control error is defined as followings:

€= (Vdc,ref - Vdc)-

Pu,0 Po,], the output variable y =V, and

©)

Then, control error dynamics and control gain are designed as followings (Kim, 2021):

(Vdc,ref - Vdc) + Kl(Vdc,ref - Vdc) + KO(Vdc,ref - Vdc) =0,K; =4, K, =4.

(6)
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Fig. 2: Designed feedback linearization control diagram

3. Results and Discussion

To illustrate the effectiveness of the proposed feedback linearization controller, Matlab simulation was examined.
In simulation scenario, we assume that a current disturbance causes step changes at t=100s, t=200s, and t=300s,
respectively. The simulation results are shown in through Fig. 3(a) ~ 3(d). The output voltage has converged quickly
enough to respond to current fluctuations at t=100s, t=200, and t=300. At same time, it has been confirmed that fuel

utilization is maintained within the allowable ranges.
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Fig. 3: Simulation results of the feedback linearization control
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4. Conclusion

The most common types of fuel cells to power source of vehicles are i) proton exchange membrane fuel cells
(PEMFC) and ii) solid oxide fuel cells (SOFC). Generally, PEMFC is considered main propulsion system and SOFC
is considered for auxiliary power unit. SOFC is increasingly gaining traction due to some advantages including fuel
efficiency, flexibility of fuel selection and large scale application. The recent trend of SOFC control is towards
developing more efficient, reliable, and cost-effective solutions to meet the challenges of controlling and regulating
the output of SOFC stack.

In this paper, we have proposed a feedback linearization controller for solid oxide fuel cells. The simulation results
on the benchmark SOFC system have illustrated that the proposed method can successfully dela with not only output
voltage regulate but also fuel utilization under step current disturbance. However, it is necessary to study additional
research on controller performance comparison by referring to other control methods such as PID, MPC and SMC.
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