
Real-time Facial Animation for 3D Stylized Character with
Emotion Dynamics

Ye Pan∗
Shanghai Jiao Tong University

Shanghai, China

Ruisi Zhang
Shanghai Jiao Tong University

Shanghai, China

Jingying Wang
Shanghai Jiao Tong University

Shanghai, China

Yu Ding
Virtual Human Group, Netease Fuxi

AI Lab
Hangzhou, China

Kenny Mitchell
Roblox & Edinburgh Napier

University
CA, USA

ABSTRACT
Our aim is to improve animation production techniques’ efficiency
and effectiveness. We present two real-time solutions which drive
character expressions in a geometrically consistent and perceptu-
ally valid way. Our first solution combines keyframe animation
techniques with machine learning models. We propose a 3D emo-
tion transfer network makes use of a 2D human image to gen-
erate a stylized 3D rig parameter. Our second solution combines
blendshape-based motion capture animation techniques with ma-
chine learning models. We propose a blendshape adaption network
which generates the character rig parameter motions with geo-
metric consistency and temporally stability. We demonstrate the
effectiveness of our system by comparing it to a commercial product
Faceware. Results reveal that ratings of the recognition, intensity,
and attractiveness of expressions depicted for animated characters
via our systems are statistically higher than Faceware. Our results
may be implemented into the animation pipeline, supporting ani-
mators to create expressions more rapidly and precisely.

CCS CONCEPTS
• Computing methodologies → Motion capture; • Human-
centered computing → User studies.
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1 INTRODUCTION
Keyframe animation and motion capture are practical approaches
for producing animation, and both have their pros and cons [11, 31].
Keyframe animation generates expressive and artistic animation
based on the twelve principles of animation, but it is very tedious
work. Motion capture captures actor performance, which is lim-
ited to realistic animation. It is difficult to produce perceptual valid
expressions for stylized characters because the geometric features
of human faces are different from that of stylized characters. Ac-
cording to the storyline, characters must have readily discernible
facial expressions that are congruent with their emotional condi-
tion [21, 22, 24]. Recently, there has been a couple of solutions [2, 34]
that could generate perception-valid character expressions; how-
ever, these systems are not real-time.

We start with proposing our first solution generating stylized
character expressions from human performances that is both per-
ceptually and geometrically consistent, by using lightweight meth-
ods and interpolation techniques. We train the 3D expression trans-
fer network that takes images of human faces and generates the rig
parameters or controller values of the character that best match the
human’s facial expression. To increase performance, we develop a
two-step filtering strategy to learn the mapping between human
and character feature space. We used a lightweight method, called a
multi-character adaption network, transfers character expressions
to secondary characters.

We then propose our second solution by combining traditional
blendshape animation techniques with a machine learning model.
To begin, we train the blendshape adaption network that generates
the character rig parameters based on the corresponding blend-
shape weights. In order to produce temporally stable, flicker-free,
and geometrically consistent results, we take the rig parameters
over the last three previous frames, together with the blendshape
weights at the current frame, as the input to our network. The
multi-character adaption network is then used to drive secondary
characters, allowing us to reuse a principal character rig that we
trained in the previous steps.

We investigated the effectiveness of using our methods to ani-
mate the characters. We compared three different tracking methods:
first solution (Interpolation), second solution (Blendshape), and
Faceware on the expression recognition, emotion intensity, and
overall attractiveness, as these are crucial factors for audience en-
gagement [10, 32]. Results show that both our methods significantly
improved ratings of the expression recognition, thus validating the
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effectiveness of the 3D expression transfer network and the blend-
shape adaption network, respectively.

The following are the key contributions of our work: (1) For
the first time, we contributed two real-time methods transferring
human facial expressions to multiple 3D stylized characters in
a geometrically consistent and perceptually correct way. (2) The
amalgamation of data sources (e.g., human expression video data-
base, character blendshape database, controller value database, etc.)
motivates further study in the domains of character rigging and
animation. In particular, we constructed a high-quality emotional
audio-visual dataset as materials for our user study: a set of video
clips featuring two male and two female stylized characters talk-
ing with seven basic emotions. (3) We systematically conducted a
user study to validate the effectiveness of our solutions in terms
of expression recognition, intensity, and appeal. This grows the
existing knowledge of how animated characters’ facial expressions
can influence our perception.

2 RELATEDWORK
2.1 Blendshape facial animation
An industrial standard for rigging facial animation is the use of
blendshapes and may be broadly classed among morphable models
[5]. The sum of weighted blendshape models can represent facial
expressions quickly and compactly [12]. The neutral phase of an
avatar is denoted as 𝐵0, a set of its blendshapes are {𝐵1, 𝐵2, ..., 𝐵𝑁 }
and a expression can be expressed as 𝐵 = 𝐵0 +

∑𝑁
𝑖=1𝑤𝑖𝐵𝑖 , where𝑤𝑖

are blendshape weights. Several software tools for markerless face
motion capture have already been developed [5, 35]. Faceware and
Faceshift/ARkit [1], for instance, collect the blendshapes related to
a set of standard expressions given by a human source and map
them into stylized characters.

Despite the ease of use of the blendshape representation, there
are a few matters to consider. To begin, in order to depict a wide
range of emotions, digital artists must frequently construct vast
libraries of blendshape targets. For a professional artist, creating
a suitably detailed model can take up to a week of labor and nu-
merous cycles of refinement. There have been attempts to auto-
mate blendshape construction with individualized comprehensive
human facial geometry capture and subsequent optimization pro-
cedures [28]. However, generating blendshapes for styled avatars
still necessitates a time-consuming and labor-intensive modeling
process [9, 20]. At the moment, each blendshape is typically hand-
crafted by experienced artists using professional applications like
Blender or MAYA.

Second, in some circumstances, the generally linear structure
of blendshapes impacts the quality of the animation [15, 27]. Ex-
aggerated expressions or specific expressions would be impossible
to portray outside of the linear span [25]. In fact, animators must
sometimes account for these shortcomings by sculpting new key
shapes or adding new correctives per 3 to 5 frames [13].

In light of the success of previous data-driven shape analytical
techniques [2, 4, 26], we propose a real-time blendshape-based
system that combines blendshape animations with our machine
learning techniques to improve expression representation from
linear to nonlinear.
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Figure 1: Overview of our first solution (Interpolation), which
takes the human facial images as input and predicts the
character’s controller values

2.2 Data-based animation
The most related previous work to ours are DeepExpr [3], and
ExprGen [2].

To begin, DeepExpr [3] presented a retrieval approach for lo-
cating the closest 2D expression image in the present database to
a specific human image, while our Interpolation proposed a way
for generating for human image a 3D stylized character expression.
While DeepExpr inspired us, we employed alternative distance
measurements. DeepExpr trained a Convolutional Neural Network
(CNN) on a huge human expressions dataset to input a human
expression and output the seven classes’ probabilities, then trained
a similar character model on a character expression dataset, and
finally used transfer learning approaches to learn a mapping be-
tween the human and character feature space. Alternatively, we
propose a two-step filtering approach to find the best-matched
primary character image with the human face.

Second, our method shares a similar goal as ExprGen to learn 3D
character expressions from individuals in a geometrically consistent
and perceptually valid way, but our lightweight methods support
live animation. ExprGen detects human and character face expres-
sions to provide a perceptual metric for expression generation, and
then develops a joint embedding to transfer human expressions
to character expressions. In particular, ExprGen created triplets of
training images to solve the issue of incorrect geometry matches
within the same expression class. The triplets are generated by
selecting the hard positive/negative exemplars from within a mini-
batch. We did, however, present a novel method for learning the
mapping between the human and character feature space.

Finally and most importantly, we integrate our solution with ani-
mation techniques to present two real-time methods. Different from
static images, we need to take the time dimension into considera-
tion to avoid flickering output. We further introduced a predictive
model producing temporal stability and geometric consistency for
the character rig parameter motions.

3 FIRST SOLUTION (INTERPOLATION)
We begin with the first solution (see Figure 1) that takes human
facial image as input and predicts character’s controller values.
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3.1 Data Acquisition
Our first solution framework employs four databases: (1) Human
expression database (HED), (2) Character Expression Database-3D
(CED-3D), (3) Character Expression Database-2D (CED-2D), and (4)
Human Expression Video Database (HEVD). The specifics of these
datasets are as follows:

Human Expression Database (HED): We created the HED by
combining four publicly accessible labeled face expression datasets:
(a) the Extended Cohn-Kanade database (CK+)[18], (b) the Denver
Intensity of Spontaneous Facial Actions (DISFA) database[19], (c)
the Karolinska Directed Emotional Faces (KDEF)[8] , and (d) the
MMI database[23]. The HED database contains about 100K images
with seven labeled expressions: anger, sadness, joy, neutral, disgust,
fear, and surprise.

Character Expression Database-3D (CED-3D): We use FERG-
3D-DB [2], which has about 40000 annotated examples for four
stylized characters. Each example is a set of controller values that,
when applied to the 3D rig, produce a certain facial emotion. Each
character’s expressions are classified into seven subgroups: anger,
sadness, joy, neutral, disgust, fear, and surprise.

Character Expression Database-2D (CED-2D): We render the
3D character rigs in the CED-3D into 2D images. When rendering
frames, we mark 49 landmarks on the characters’ texture and save
the geometric information for each image. After the characters’
faces are cropped and registered with 49 facial landmarks [33], the
images are resized to 256 by 256 pixels for analysis.

Human Expression Video Database (HEVD): For training,
we make use of the Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS) [17], which includes expressions from
24 professional performers. Anger, sadness, joy, neutral, disgust,
fear, and surprise are all expressions. Each expression has two levels
of emotional intensity, with an additional neutral expression.

3.2 Human-Characters Match
3.2.1 Human-Primary Character Match. To find the best-matched
primary character image and HED human face pairs, we proposed
a two-step filtering approach: given an input human face query,
first, retrieve the rendered primary character dataset and find the
top 30 character images with the closest emotional distance; then
retrieve matched character image with closest geometric distance
among the 30 candidate images.

Emotional Distance We use the 512 dimension vector from
the fully connected layers of the expression classification network
proposed in DeepExpr[3] as the Emotion Feature Vector. The ex-
pression classification network is first trained on HED and then
fine-tuned on CED-2D. For each human-primary character pair, we
measure the Jensen—Shannon divergence in Eqn.1 as their Emotion
Distance.

𝐽𝑆𝐷 (𝐻 | |𝐶) = 1
2
𝐷 (𝐻 | |𝑀) + 1

2
𝐷 (𝐶 | |𝑀) (1)

where 𝑀 = 1
2 (𝐻 + 𝐶), 𝐷 (𝐻 | |𝑀) and 𝐷 (𝐶 | |𝑀) represents the

Kullback—Leibler divergence.
Geometric DistanceWe register 49 facial landmarks from aver-

age frontal faces using an affine transformation. Then, we normal-
ize the following geometric distance as Geometric Feature Vector:

mouth width (left mouth corner to right mouth corner distance),
closed mouth height (distance is vertical between the upper and
the lower lip), nose width (distance is horizontal between leftmost
and rightmost nose landmarks), left/right eyebrow height (distance
is vertical between the top of the eyebrow and center of the eye),
left/right eyelid height (distance is vertical between the top of an
eye and bottom of the eye), and left/right lip height (distance is
vertical between the lip corner from the lower eyelid). For each
human-primary character pair, the L2 norm distance between their
Geometric Feature Vectors is used as Geometric Distance.

The highlight of our two-step filtering strategy is to further
improve the efficiency and accuracy of the retrieved results in a
perceptually valid and geometrically consistent way. For example,
some expressions, e.g., sad and disgust, the emotional distance is
close, while others, e.g., fear and surprise, the geometric distance
is close. Thus, the one-step solution combining the emotional dis-
tance and the geometric distance together could result in retrieving
images with incorrect emotion or far geometry distance.
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Figure 2: Second solution (Blendshape), which takes blend-
shape weights as input and produces characters’ expressive
controller values.

3.2.2 Character-Character Match. Primary character to secondary
character matching pairs are retrieved in a similar manner: given
an input primary character face query, first retrieve rendered sec-
ondary character dataset and find the top 30 character images with
the closest emotional distance; then retrieve the matched charac-
ter image with closest geometric distance among the 30 candidate
images.

3.3 3D Expression Transfer Network
We train a 3D expression transfer network, which takes human faces
in HED as input and generates controller values for the primary
character. The human-primary character pairs are used as ground
truth during training. The loss function is formulated in eqn. 2,
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where 𝜶 is the controller value generated by 3D expression transfer
network, 𝜶

′
is the controller value in human-primary character

pair and 𝑎𝑖 and 𝑎
′
𝑖
are the i-th item in 𝜶 and 𝜶

′
.

𝐻𝐻

(
𝜶 ,𝜶

′ )
= −

∑︁
𝑖

𝑎′𝑖 log (softmax (𝑎𝑖 )) (2)

3.4 Character to Character Transfer
Our multi-character adaptation model is designed to learn to map
the controller values of the primary character to the secondary
character automatically. We used a lightweight method instead of
training a new network for each additional secondary character. We
create a separate multilayer perceptron (MLP) for each secondary
character, which refers to a two-hidden-layer neural network with
N output nodes, M input nodes, and a two-hidden-layer neural
network with ReLU activation, where N and M are the number of
controller values of the secondary and primary characters, respec-
tively. These networks (together referred to as the Multi-character
adaption network) are trained in parallel and then enhanced at the
conclusion of the 3D expression transfer network to imprint the
input human expression on numerous stylized characters at the
same time.

Note that our multi-character adaptation model is inspired by
the C-MLP model of the ExprGen [2] system. The key difference is
the methodology of producing a set of matching primary and sec-
ondary character pairs. Our two-step filtering strategy further en-
sures retrieval results that are both perceptually and geometrically
consistent. The minor difference is our model is two hidden-layer
neural networks, whereas C-MLP model is one hidden-layer neural
network.

3.5 Frame Interpolation
In order to create smooth transitions between images, the con-
vention in animation requires at least 24 frames per second (FPS).
However, our first solution only generates at 3 to 4 FPS, since
processing each individual frame in deep neural networks takes a
considerable amount of time. Thus, the animation would no longer
look live or realistic and the user would see images jumping from
one expression to another. We simply use linear interpolation to
inbetween frames and create more frames to fill the spaces between
the original. This allowed to increase this frame rate to 24 FPS
without fully solving for the additional frames.

4 SECOND SOLUTION (BLENDSHAPE)
The first solution described above is based on static images. It has
several drawbacks: (1) The deep neural network leads to a delay
when generating keyframes. (2) Mapping facial geometry features
to emotion space without constraint often produces flickering re-
sults. In our second method, we designed a lightweight network
which takes blendshape weights as input and generates expressive
controller values.

4.1 Data Collection
Our blendshape-based framework makes use of two databases: (1)
Character Blendshape Database (CBD), and (2) Character Controller
Value Database (CCVD).

Character Blendshape Database (CBD): We collect the blend-
shape weights of weak emotion intensity videoes in HEVD using
Faceware[7]. Faceware is a real-time face tracking system that can
effectively caption the geometry feature of human facial poses and
provide weights of a range of shapes. We first calibrate human faces
in neutral expression pose and recover the optimized blendshape
coefficients (eg. brow down left, brow up left) frame by frame with
animation tuning.

Character Controller Value Database (CCVD): We collect
controller value of weak emotion intensity videos in HEVD using
the solution discussed in Section 3.

4.2 Human Expression to Primary Character
Both the blendshape weights and controller values can animate the
characters’ expression and some of the parameters are correlated.
For example, “mouthClose" is a coefficient describing closure of the
lips independent of jaw position in the blendshape, and controller
values provide “up_lf_lip_inout" and “up_rf_lip_inout" to enable
more precise manipulation. However, the frame-by-frame mapping
method can cause flickering results. To overcome the inconsistency
between frames, we train a blendshape adaption network, which
takes blendshape weights and controller values over the last three
frames as input and generates controller values in the current frame.
The controller values in CCVD are used as ground truth during
training. The training process can be formulated as follows:

Given an input vector 𝜷 which consists of blendshape weights
in the current frame and controller value from the last three frames,
the blendshape adaption network 𝑩 outputs the controller value in
the current frame vector is 𝜶

′
= 𝑩(𝜷).

The loss function of the blendshape adaption network can be
formulated as eqn.3, where 𝜶 is the controller value from CCVD,
𝜶

′
is the controller value generated from our blendshape adaption

network and, 𝑎𝑖 and 𝑎
′
𝑖
are the 𝑖-th item in 𝜶 and 𝜶

′
.

L(𝜶 ,𝜶
′
) =

𝑛∑︁
𝑖=0

(
𝑎𝑖 − 𝑎

′
𝑖

)2
(3)

4.3 Character to Character Transfer
Our multi-character adaptation model for our system is designed to
learn to map the controller values of the primary character to the
secondary character automatically. We create a separate multilayer
perceptron (MLP) for each secondary character, which refers to a
two-hidden-layer neural network with N output nodes, M input
nodes, and a two-hidden-layer neural networkwith ReLU activation,
where N andM are the number of controller values of the secondary
and primary characters, respectively. We use the Gradient descent
with a mini-batch size of 10 and a learning rate of 0.01 to minimize
the square loss between the input and output parameters. These
networks are trained in parallel and then enhanced at the conclusion
of the 3D expression transfer network to imprint the input human
expression on numerous stylized characters at the same time.

5 EVALUATION
By comparing the expression recognition accuracy of the interpolation-
based solution , blendshape-based solutions to that of the commer-
cial product Faceware, we were able to assess their effectiveness.
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Figure 3: Resulting images generated from Faceware, Interpo-
lation, andBlendshape for all four characters. The uppermost
image in each column is the input image.

Faceware was selected for two purposes: (1) It is the only viable and
equivalent system with the same input and output modalities as
our platforms. Because the results of Faceshift Studio/ARkit require
depth sensors to catch human facial motion, we did not compare
them. (2) We also used Faceware Live Client for Unity to produce
the blendshape weight sequence for our second solution.

In all the subsequent figures, we use the 2D rendered images to
represent the 3D characters and employ the expression categories
in the following manner: N = neutral, A = anger, Sa = sadness, F =
fear, D = disgust, J = joy, Su = surprise.

5.1 Participant
We recruited 24 participants from Shanghai Jiao Tong University
to complete all conditions of this study. The average age of the
participants was 21 years, ranging between 19 and 24 years old; 12
were men. They were naïve to the purposes of the experiment.

5.2 Material
5.2.1 Animation clips. We first took alternative 4 sets of recordings
from 2 male and 2 female actors from HEVD. The dialogue was

recorded with 7 basic emotions. The dialogue used for each set of
recordings is the same (e.g., “Dogs are sitting by the door”), and we
used a face-only format (face, but no voice). Each recording lasted
about 3 or 4 seconds. Then, we ran Faceware, Interpolation, and
Blendshape solutions to create 4 × 7 animation clips for 4 characters
(Mery, Bonnie, Ray & Malcolm).

5.2.2 Images. We used one frame in each recording discussed
above and retrieved the same frame via Faceware, Interpolation,
and Blendshape solutions to create 4 × 7 images for 4 characters
(Mery, Bonnie, Ray & Malcolm).

5.3 Design
The experiment utilized 4 characters (Mery, Bonnie, Ray & Mal-
colm) × 7 emotions (Neutral, Anger, Sadness, Fear, Disgust, Happi-
ness, & Surprise) × 3 capturing methods (Faceware, Interpolation
& Blendshape) × 2 media (Image & Video) in a mixed design, with
a between-subject design for media, but a within-subject design
regarding characters, emotions, and tracking methods.

Each participant took part in 91 trials to evaluate the input human
expression (7 emotions = 7 trials), the generated primary character
expression (7 emotions × 3 capturing methods = 21 trials), and the
expression transfer results on different three stylized characters
(63 trials). Thus, there were 2184 trials in total. To avoid fatigue
or carry-over effects, images or video clips were presented to the
participants in random order.

5.4 Procedure
Participants were first presented with an information sheet and
asked to sign a corresponding consent form. They were randomly
assigned to either an image condition or a video condition. They
were instructed to view an image or animation clip and then asked
to answer three questions:

• “Which expression did the character depict?” Participants
were asked to select one of the words: Neutral, Anger, Sad-
ness, Fear, Disgust, Happiness, Surprise or Other.

• “How intense was the indicated emotion depicted by the
character?” Participants rated the intensity on a scale from
1 to 7, where 1 represents a rating of “Not at all”, and 7
represents “Extremely”.

• “How attractive was the character overall?” Participants
rated attractiveness on a scale from 1 to 7, where 1 represents
a rating of “Not at all”, and 7 represents “Extremely”.

Each participant undertook one practice trial where they could
ask questions, and then undertook 91 measured trials.

The participants were paid 10 GBP amount. The experiment took
about 30 minutes. The experiment was approved by Shanghai Jiao
Tong University Research Ethics Committee.

5.5 Scoring & results
Weapplied separate repeatedmeasures Analysis of Variances (ANOVAs)
for both video and image, looking at the results on recognition, in-
tensity, and attractiveness. EachANOVAhad thewithin-participants
factors character (4), emotion (7), and tracking methods (3). There
were no outliers, and the data was normally distributed for each
condition as assessed by boxplot and Shapiro–Wilk test (𝑝 > 0.05),
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Figure 4: Mean for each trackingmethod and character on recognition, appeal, and intensity. Error bars show standard deviation.

respectively. We conducted Mauchly’s test to assess the sphericity
of the data, and whenever it is violated, we report results applied
with Greenhouse-Geisser correction and marked with an asterisk
“∗”. Bonferroni test was performed as Post Hoc test for multiple
comparisons of means.

5.5.1 Recognition. For the recognition of expressions, responses
were converted to scores, “1” for correct or “0” for incorrect, and
then averaged over stimuli repetitions.

Videos Figure 4(a) shows the comparison of average scores
obtained for three tracking methods across four characters. The
average score over all characters for Interpolation (𝑀 = .321) and
Blendshape (𝑀 = .348) are significantly higher than the average
score for Faceware (𝑀 = .116). Firstly, the main effect of the track-
ing method was significant, 𝐹 (2, 22) = 26.531, 𝑝 < .001. Bonferroni
post-hoc comparisons indicated the mean recognition rates for
Faceware is significantly lower than Interpolation, 𝑝 < .001 and
Blendshape, 𝑝 < .001. However, the mean for Interpolation did not
significantly differ from Blendshape, 𝑝 > .05. Secondly, tracking
methods × characters interaction, tracking methods × emotions in-
teraction and tracking methods× characters× emotions interaction

were not significant, 𝐹 (6, 66) = 1.004, 𝑝 = .43, 𝐹 (3.654, 40.192) =
1.717, 𝑝 = .17∗, 𝐹 (6.732, 74.057) = .999, 𝑝 = .437∗, respectively.

Images Figure 4(d) shows the results for images on the recog-
nition scores. It confirms that the average score over all charac-
ters for Interpolation (𝑀 = .515) and Blendshape (𝑀 = .396) are
significantly higher than the average score for Faceware (𝑀 =

.146). Firstly, the main effect of tracking method was significant,
𝐹 (2, 22) = 42.094, 𝑝 < .001. Bonferroni post-hoc comparisons in-
dicated the mean recognition rates for Faceware are significantly
lower than Interpolation, 𝑝 < .001 and Blendshape, 𝑝 < .001. How-
ever, the mean for Interpolation did not significantly differ from
Blendshape, 𝑝 = .069. Secondly, tracking methods × characters
interaction, tracking methods × emotions interaction were not sig-
nificant, 𝐹 (6, 66) = .403, 𝑝 = .875, 𝐹 (3.217, 35.39) = 2.409, 𝑝 = .079∗,
respectively. However, tracking methods × characters × emotions
interaction was significant, 𝐹 (6.793, 74.727) = 2.639, 𝑝 = .018∗.

5.5.2 Intensity. As expected, intensity ratings for our Interpolation
and Blendshape systems were high, because the facial expressions
for stylized characters are generally exaggerated.

Videos Figure 4(b) shows the mean intensity ratings for three
tracking methods across four characters. The average score over
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Figure 5: Confusion matrix for perceived expression recognition (%) for basic expression classes.

all characters for Interpolation (𝑀 = 5.021) and Blendshape (𝑀 =

5.048) are significantly higher than the average score for Face-
ware (𝑀 = 4.286). Firstly, the main effect of tracking method
was significant, 𝐹 (2, 22) = 62.811, 𝑝 < .001. Bonferroni post-hoc
comparisons indicated the mean intensity ratings for Faceware
is significantly lower than Interpolation, 𝑝 = .016 and Blend-
shape, 𝑝 = .017. However, the mean for Interpolation did not
significantly differ from Blendshape, 𝑝 > .05. Secondly, tracking
methods × characters interaction, tracking methods × emotions
interaction and tracking methods × characters × emotions inter-
action were not significant, 𝐹 (2.045, 22.496) = 1.745, 𝑝 = .197∗,
𝐹 (4.91, 54.009) = .412, 𝑝 = .835∗, 𝐹 (7.339, 80.725) = 1.13, 𝑝 = .353∗,
respectively.

Images Figure 4(e) shows the results for images on the intensity
ratings. The average score over all characters for Interpolation (𝑀 =

4.765) are significantly higher than the average score for Faceware
(𝑀 = 4.107) and Blendshape (𝑀 = 4.336). Firstly, the main effect
of tracking method was significant, 𝐹 (2, 22) = 6.259, 𝑝 = .007. Bon-
ferroni post-hoc comparisons indicated the mean intensity ratings
for Blendshape is significantly higher than Interpolation, 𝑝 = .026
and Faceware, 𝑝 = .037. However, the mean for Blendshape did
not significantly differ from Faceware, 𝑝 = .83. Secondly, track-
ing methods × characters interaction, tracking methods × emo-
tions interaction and tracking methods × characters × emotions
interaction were not significant, 𝐹 (2.827, 31.1) = .671, 𝑝 = .568∗,
𝐹 (4.387, 48.255) = .819, 𝑝 = .529∗, 𝐹 (6.855, 75.4) = 1.258, 𝑝 = .283∗,
respectively.

5.5.3 Appeal. We look at the effect of tracking methods on appeal
ratings across all characters.

Videos Figure 4(c) shows the mean appeal ratings for three
tracking methods across four characters. The average score over all
characters for Interpolation (𝑀 = 4.568) are significantly higher
than the average score for Faceware (𝑀 = 4.158). However, the

mean for Blendshape (𝑀 = 4.524) is not significantly different
than either these two conditions. Firstly, the main effect of track-
ing method was significant, 𝐹 (2, 22) = 6.259, 𝑝 = .007. Bonferroni
post-hoc comparisons indicated the mean appeal ratings for Inter-
polation is significantly higher than Faceware, 𝑝 = .036. Secondly,
trackingmethods× characters interaction, trackingmethods× emo-
tions interaction and tracking methods × characters × emotions
interaction were not significant, 𝐹 (3.211, 35.317) = .443, 𝑝 = .737,
𝐹 (4.88, 53.68) = 1.621, 𝑝 = .172∗, 𝐹 (7.702, 84.725) = 1.368, 𝑝 =

.224∗, respectively.
Images Figure 4(f) shows the results for images on the ap-

peal ratings. The average score over all characters for Interpo-
lation (𝑀 = 4.741) and the Blendshape (𝑀 = 4.503) are signifi-
cantly higher than the average score for Faceware (𝑀 = 4.024).
Firstly, the main effect of the tracking method was significant,
𝐹 (1.209, 13.304) = 12.859, 𝑝 = .002. Bonferroni post-hoc compar-
isons indicated the mean appeal ratings for Faceware is signifi-
cantly lower than Interpolation, 𝑝 = .005 and Blendshape, 𝑝 = .045.
The mean for Blendshape is also significantly different from In-
terpolation, 𝑝 = .01. Secondly, tracking methods × characters in-
teraction, tracking methods × emotions interaction, and tracking
methods × characters × emotions interaction were not significant,
𝐹 (2.776, 30.54) = .264, 𝑝 = .836∗, 𝐹 (4.62, 50.825) = 1.289, 𝑝 = .285∗,
and 𝐹 (5.879, 64.673) = .791, 𝑝 = .578∗.

6 DISCUSSION
6.1 Expression recognition
The main effect of emotions was significant, 𝐹 (2.742, 60.329) =

5.531, 𝑝 = .003, according to our preliminary data on expression
recognition. Thus, we look into participants’ rating for seven ex-
pression classes. Figure 5 depicts the confusion matrix for each
expression class’s perceived expression recognition. For a specific
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row (e.g., anger) in each sub-figure, the columns show the per-
centage (e.g., averaging nearly over all observed individual anger
expressions) of respondents agreeing on the associated expression
classes.

HumanWe included the human videos and images as the ground
truth. The confusion matrix of observed expression recognition rate
for humans is shown in Figures 5(a) and 5(b). Surprise and joy are
highly accurate, while fear and disgust are extremely difficult for
people to recognize and express. This is similar to Aneja et al.’s [2]
prior result of evaluating human photos as input. We also noticed
that character expression identification accuracies are sometimes
higher than human, which could be due to the characters’ simpler
geometry and stylization, which makes the expressions simpler to
discern.

Faceware, Interpolation & Blendshape Figure 5(c) and Fig-
ure 5(d) show that the majority of expressions are incorrectly per-
ceived as neutral for Faceware condition. This indicates blendshape-
based approaches often produce ambiguous expressions, due to the
constraints of correspondence mapping. Figure 5(e) to Figure 4(d)
show that our Interpolation and Blendshape system results in more
precise expression transfer for the majority of expression classes
when compared to Faceware. The most prevalent blunders are mix-
ing up fear and surprise, as well as disgust and fury. Because the
confounded statements have similar looking geometric arrange-
ments, these errors are intuitively understandable. Disgust and fear
were the least accurate results, as these reactions are difficult to
discern in both human and character depictions.

6.2 Videos & images
We took videos from the RAVDESS [17] stimuli. We note our ex-
pression recognition ratings for human is different from the re-
sults reported by RAVDESS where their validation tasks were used
with North American participants. There is strong evidence for a
‘in-group’ advantage in emotion recognition, with accuracy being
higher for facial expressions and identified by people from the same
cultural group [6].

6.3 Characters
We used ‘Mery’ as the base character, ‘Bonnie’, ‘Ray’ & ‘Malcolm’ as
the secondary character. Our results show the tracking methods ×
emotions interaction were insignificant regarding expression recog-
nition, intensity, and appeal. It indicates our solutions were effective
irrespective of whether the character is primary or secondary.

We also benchmarked the retargeting ability and include the
inference error per controller value on the test dataset. The error
is calculated by the L2 distance between the predicted controller
value and the ground truth. Error on Bonnie, Malcolm, and Ray test
datasets are 0.033, 0.091, and 0.025, respectively.

6.4 Emotional audio-visual dataset
We built the stylized character emotional audio-visual dataset based
on RAVDESS [17] via our real-time blendshape based system. This
is the first video dataset with animated stylized characters (2 male
and 2 female) talking with seven basic emotions. The set consists of
synchronized 3D rig parameters, synchronized blendshape weights,
synchronized RAVDESS input video and synchronized RAVDESS

audio presented in North American English. All available in high-
definition formats. Our user study revealed test-retest reliability
and high rates of emotional validity. This set may be of interest to
a wide range of technologists and researchers.

6.5 Comparison, limitation and future work
Compared to the current state-of-the-art technique, we present the
first real time facial expressions capture approach for stylized
character in a geometrically consistent and perceptually valid
way. (1) Both DeepExpr [3], and ExprGen [2], similar to our step 1
Interpolation, include emotion recognition framework. However,
they processing each individual frame in deep neural networks
takes a lot of time and thus cannot perform in real-time. However,
our interpolation solution is based on a lightweight method. Addi-
tionally, for the second blendshape-based method, we process 24
FPS in order to compare with the Faceware system. Note that the
exact inference time for blendshape-based methods and Faceware
is 9 ms and 24 ms, respectively. (2) Some real-time expression trans-
fer frameworks [29, 30] focus on transferring a source human’s
facial expressions to a target human face, instead of stylized and
expressive character expressions. (3) In other facial motion capture
applications (e.g., [14, 16]), they would drive stylized characters,
but lack of the expressive quality and perceptual validity created
by professional artists.

The focus of our system is to generate rig parameters/ controller
value to drive a stylized characters animation, without tedious
handcrafted work by professional artists. However, we note pro-
ducing high quality animation videos require a lot of aspects which
is beyond the scope of this paper, such as, 3D modeling, texturing,
and lighting etc. We plan to improve the rendering results in future
work. Our future work also plans to add the concept of a universal
base character rig that is powerful enough to create a full range
of expressions and can be readily expanded to any new secondary
characters.

7 CONCLUSION
In summary, for the first time, we contribute a real time system
that captures human facial expressions to drive a stylized character
in a perceptually correct and geometrically cohesive fashion. We
conducted a user survey to show that our system creates more
perceptually accurate expressions than popular commercially ac-
cessible software applications, such as, Faceware.

The ease of use of the our system and the expressiveness of our
resulting animations can potentially improve the effectiveness of
visual storytelling in areas of online marketing, gaming, animated
films, and immersive experiences. Our system can also be used in
real-time (“live") animation situations, where facial expression is a
useful input modality and amateurs can communicate stories with
expressive animation by capturing their own performances.

ACKNOWLEDGMENTS
This work was supported by National Natural Science Foundation
of China (NSFC, NO. 62102255), CCF-Tencent Open Research Fund
(RAGR20220128), European Union’s Horizon 2020 research and
innovation programme (NO.101017779).



Real-time Facial Animation for 3D Stylized Character with Emotion Dynamics MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

REFERENCES
[1] 2019. Apple ARKit. https://developer.apple.com/arkit/. (2019).
[2] Deepali Aneja, Bindita Chaudhuri, Alex Colburn, Gary Faigin, Linda Shapiro,

and Barbara Mones. 2018. Learning to generate 3D stylized character expressions
from humans. In 2018 IEEE Winter Conference on Applications of Computer Vision
(WACV). IEEE, 160–169.

[3] Deepali Aneja, Alex Colburn, Gary Faigin, Linda Shapiro, and Barbara Mones.
2016. Modeling Stylized Character Expressions via Deep Learning. In Asian
Conference on Computer Vision. Springer, 136–153.

[4] Keyu Chen, Jianmin Zheng, Jianfei Cai, and Juyong Zhang. 2020. Modeling
Caricature Expressions by 3D Blendshape and Dynamic Texture. arXiv preprint
arXiv:2008.05714 (2020).

[5] Bernhard Egger, William A. P. Smith, Ayush Tewari, Stefanie Wuhrer, Michael
Zollhoefer, Thabo Beeler, Florian Bernard, Timo Bolkart, Adam Kortylewski,
Sami Romdhani, Christian Theobalt, Volker Blanz, and Thomas Vetter. 2020. 3D
Morphable Face Models—Past, Present, and Future. ACM Trans. Graph. 39, 5,
Article 157 (June 2020), 38 pages. https://doi.org/10.1145/3395208

[6] Hillary Anger Elfenbein and Nalini Ambady. 2002. On the universality and
cultural specificity of emotion recognition: a meta-analysis. Psychological bulletin
128, 2 (2002), 203.

[7] Inc. Faceware Technologies. 2021. Award-winning, Gold Standard Facial Motion
Capture Solutions. https://facewaretech.com/

[8] Ellen Goeleven, Rudi De Raedt, Lemke Leyman, and Bruno Verschuere. 2008. The
Karolinska Directed Emotional Faces: A validation study. Cognition and Emotion
22, 6 (2008), 1094–1118.

[9] Ju Hee Han, Jee-In Kim, Hyungseok Kim, and Jang Won Suh. 2021. Generate
Individually Optimized Blendshapes. In 2021 IEEE International Conference on Big
Data and Smart Computing (BigComp). IEEE, 114–120.

[10] Jennifer Hyde, Elizabeth J Carter, Sara Kiesler, and Jessica K Hodgins. 2015.
Using an interactive avatar’s facial expressiveness to increase persuasiveness and
socialness. In Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems. 1719–1728.

[11] John Lasseter. 1987. Principles of traditional animation applied to 3D computer
animation. In Proceedings of the 14th annual conference on Computer graphics and
interactive techniques. 35–44.

[12] J. P. Lewis, Ken Anjyo, Taehyun Rhee, Mengjie Zhang, Fred Pighin, and Zhigang
Deng. 2014. Practice and Theory of Blendshape Facial Models. In Eurographics
2014 - State of the Art Reports, Sylvain Lefebvre and Michela Spagnuolo (Eds.).
The Eurographics Association. https://doi.org/10.2312/egst.20141042

[13] John P Lewis, Matt Cordner, and Nickson Fong. 2000. Pose space deformation:
a unified approach to shape interpolation and skeleton-driven deformation. In
Proceedings of the 27th annual conference on Computer graphics and interactive
techniques. 165–172.

[14] Hao Li, Laura Trutoiu, Kyle Olszewski, Lingyu Wei, Tristan Trutna, Pei-Lun
Hsieh, Aaron Nicholls, and Chongyang Ma. 2015. Facial performance sensing
head-mounted display. ACM Transactions on Graphics (ToG) 34, 4 (2015), 1–9.

[15] Hao Li, Thibaut Weise, and Mark Pauly. 2010. Example-based facial rigging. Acm
transactions on graphics (tog) 29, 4 (2010), 1–6.

[16] Hao Li, Jihun Yu, Yuting Ye, and Chris Bregler. 2013. Realtime facial animation
with on-the-fly correctives. ACM Trans. Graph. 32, 4 (2013), 42–1.

[17] Steven R. Livingstone and Frank A. Russo. 2018. The Ryerson Audio-Visual
Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set
of facial and vocal expressions in North American English. PLOS ONE 13 (05
2018), 1–35.

[18] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews. 2010.
The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit

and emotion-specified expression. In 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition - Workshops. 94–101.

[19] S. M. Mavadati, M. H. Mahoor, K. Bartlett, P. Trinh, and J. F. Cohn. 2013. DISFA:
A Spontaneous Facial Action Intensity Database. IEEE Transactions on Affective
Computing 4, 2 (2013), 151–160.

[20] Hayato Onizuka, Diego Thomas, Hideaki Uchiyama, and Rin-ichiro Taniguchi.
2019. Landmark-guided deformation transfer of template facial expressions
for automatic generation of avatar blendshapes. In Proceedings of the IEEE/CVF
International Conference on Computer Vision Workshops. 0–0.

[21] Ye Pan, Ruisi Zhang, Shengran Cheng, Shuai Tan, Yu Ding, Kenny Mitchell, and
Xubo Yang. 2023. Emotional Voice Puppetry. IEEE Transactions on Visualization
and Computer Graphics 29, 5 (2023), 2527–2535.

[22] Ye Pan, Ruisi Zhang, JingyingWang, Nengfu Chen, Yilin Qiu, Yu Ding, and Kenny
Mitchell. 2022. MienCap: Performance-based Facial Animation with Live Mood
Dynamics. In 2022 IEEE Conference on Virtual Reality and 3D User Interfaces. IEEE,
654–655.

[23] M. Pantic, M. Valstar, R. Rademaker, and L. Maat. 2005. Web-based database for
facial expression analysis. In 2005 IEEE International Conference on Multimedia
and Expo.

[24] Tom Porter and Galyn Susman. 2000. On site: Creating lifelike characters in pixar
movies. Commun. ACM 43, 1 (2000), 25.

[25] Sarah Radzihovsky, Fernando de Goes, and Mark Meyer. 2020. FaceBaker: Bak-
ing Character Facial Rigs with Machine Learning. In Special Interest Group on
Computer Graphics and Interactive Techniques Conference Talks. 1–2.

[26] Roger Blanco i Ribera, Eduard Zell, John P Lewis, Junyong Noh, and Mario
Botsch. 2017. Facial retargeting with automatic range of motion alignment. ACM
Transactions on graphics (TOG) 36, 4 (2017), 1–12.

[27] Yeongho Seol, Jaewoo Seo, Paul Hyunjin Kim, John P Lewis, and Junyong Noh.
2011. Artist friendly facial animation retargeting. ACM Transactions on Graphics
(TOG) 30, 6 (2011), 1–10.

[28] Robert W Sumner and Jovan Popović. 2004. Deformation transfer for triangle
meshes. ACM Transactions on graphics (TOG) 23, 3 (2004), 399–405.

[29] Justus Thies, Michael Zollhöfer, Matthias Nießner, Levi Valgaerts, Marc Stam-
minger, and Christian Theobalt. 2015. Real-time expression transfer for facial
reenactment. ACM Trans. Graph. 34, 6 (2015), 183–1.

[30] Justus Thies, Michael Zollhofer, Marc Stamminger, Christian Theobalt, and
Matthias Nießner. 2016. Face2face: Real-time face capture and reenactment
of rgb videos. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 2387–2395.

[31] Frank Thomas, Ollie Johnston, and Frank Thomas. 1995. The illusion of life:
Disney animation. Hyperion New York.

[32] Pisut Wisessing, Katja Zibrek, Douglas W Cunningham, John Dingliana, and
Rachel McDonnell. 2020. Enlighten Me: Importance of Brightness and Shadow
for Character Emotion and Appeal. ACM Transactions on Graphics (TOG) 39, 3
(2020), 1–12.

[33] X. Xiong and F. De la Torre. 2013. Supervised DescentMethod and Its Applications
to Face Alignment. In 2013 IEEE Conference on Computer Vision and Pattern
Recognition. 532–539. https://doi.org/10.1109/CVPR.2013.75

[34] Juyong Zhang, Keyu Chen, and Jianmin Zheng. 2020. Facial Expression Retarget-
ing from Human to Avatar Made Easy. IEEE Transactions on Visualization and
Computer Graphics (2020).

[35] Michael Zollhöfer, Justus Thies, Pablo Garrido, Derek Bradley, Thabo Beeler,
Patrick Pérez, Marc Stamminger, Matthias Nießner, and Christian Theobalt. 2018.
State of the art on monocular 3D face reconstruction, tracking, and applications.
In Computer Graphics Forum, Vol. 37. Wiley Online Library, 523–550.

https://doi.org/10.1145/3395208
https://facewaretech.com/
https://doi.org/10.2312/egst.20141042
https://doi.org/10.1109/CVPR.2013.75

	Abstract
	1 Introduction
	2 Related Work
	2.1 Blendshape facial animation
	2.2 Data-based animation

	3 First solution (Interpolation)
	3.1 Data Acquisition
	3.2 Human-Characters Match
	3.3 3D Expression Transfer Network
	3.4 Character to Character Transfer
	3.5 Frame Interpolation

	4 Second solution (Blendshape)
	4.1 Data Collection
	4.2 Human Expression to Primary Character
	4.3 Character to Character Transfer

	5 Evaluation
	5.1 Participant
	5.2 Material
	5.3 Design
	5.4 Procedure
	5.5 Scoring & results

	6 Discussion
	6.1 Expression recognition
	6.2 Videos & images
	6.3 Characters
	6.4 Emotional audio-visual dataset
	6.5 Comparison, limitation and future work

	7 Conclusion
	Acknowledgments
	References

