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Abstract

We consider the construction of rational approximations to given power
series whose coefficients are vectors. The approximants are in the form of
vector-valued continued fractions which may be used to obtain vector Padé
approximants using recurrence relations. Algorithms for the determination of
these fractions have been established using Clifford algebras. We devise new
algorithms based on these which involve only vectors and scalars — a desirable
characteristic for computations involving vectors of large dimension.Finally,
we present a novel use of Clifford algebras by suggesting a definition of approx-
imant which reflects more faithfully the singularities of the given function.

1 Introduction

This paper illustrates some of the advantages of Clifford algebras in the construction
of rational approximants to vector-valued functions. The algebraic context allows a
development of the vector theory which parallels that of the scalar, so that proofs of
theorems and algorithms valid in the scalar case may be carried over to the vector
version. Baker and Graves-Morris provide an introduction to the usual theory of
Padé approximants and some generalisations. In particular, we focus attention on
the use of two related algorithms — viz the Viskovatov and Modified Euclidean —
to derive corresponding continued fraction representations of the given function. We
are then able to establish certain properties which are enjoyed by all vector Padé
approximants.

Since, in many applications, the dimension of the vectors can be quite large — in
some instances of several thousand — an approach is sought which allows the afore-
mentioned operations to be performed using scalars and vectors only. [N.B. Matrix
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representations of C`n involve dimensions of the order 2n/2 .] We demonstrate how
this may be achieved by taking advantage of the algebraic structure of C`n .

In section five, our interest centres around the application of rational approxi-
mation theory to the acceleration of the convergence of vector sequences. In this
context the vector ε -algorithm, introduced by Wynn in 1962, has been employed to
calculate vector Padé approximants. Indeed, it was McLeod(1971) and Wynn(1968)
who first used Clifford numbers in an attempt to build an algebraic description of
the vector ε -algorithm. However, the vector Padé approximant to the generating
function corresponding to a sequence yields too many singularities. We show how
this may be remedied, in general, by recourse to the Clifford description of the de-
nominator polynomial, which, together with the results of a particular convergence
theorem, suggests a natural definition as an alternative to the usual Padé version.
For the simplest non-trivial case the new approximant provides an acceleration pro-
cedure essentially that of a successful vector version of the well known Aitken δ2

method.

2 Vector Padé Approximants

We consider a vector-valued function, f : C → Cn, which has a MacLaurin series

f(z) = c0 + zc1 + z2c2 + . . . , z ∈ C, ci ∈ IRn, i = 0, 1, . . . (2.1)

valid in some neighbourhood of the origin. In this paper we restrict attention to
real vectors,which is the more common situation in practical applications.However,
for a discussion of the case of complex vector coefficients the reader is referred to
the author’s 1995 paper and to Graves-Morris et al., 1994. The right-handed [l/m]
vector Padé approximant (VPA) to f(z), if it exists, is defined by

[l/m](z) := p[l/m](z)[q[l/m](z)]−1 (2.2)

for which
[l/m](z)− f(z) = O(zl+m+1) (2.3)

where p[l/m](z) and q[l/m](z) are polynomials in z ∈ C over C`n of maximum
degrees l and m respectively. These approximants share many of the properties
enjoyed by the scalar version; in particular, for given l and m , [l/m](z) is unique —
for an explanation and further discussion see Roberts (1990). They may be arrayed
in a two-dimensional table as in Fig.1. Assuming that q[l/m](0) is invertible then,
on multiplying (2.3) by q[l/m](z) from the right, we obtain

p[l/m](z)− f(z)q[l/m](z) = O(zl+m+1) (2.4)
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[0/0] [1/0] [2/0] . . .
[0/1] [1/1] [2/1] . . .
[0/2] [1/2] [2/2] . . .

...
...

...

Figure 1: The Vector Padé Table

which yields a system of (l + m + 1) linear equations in the (l + m + 2) unknown
coefficients of p[l/m](z) and q[l/m](z). If we set

p[l/m](z) = a0 + a1z + a2z
2 + · · ·+ al−1z

l−1 + alz
l

and
q[l/m](z) = b0 + b1z + b2z

2 + · · ·+ bm−1z
m−1 + bmzm

where ai, bj ∈ C`n for i = 0, 1, · · · , l and j = 0, 1, · · · ,m then , on considering the

powers of z up to the (l + m)th ,we obtain

a0 = c0b0

a1 = c1b0 + c0b1

a2 = c2b0 + c1b1 + c0b2
...

al = clb0 + cl−1b1 + · · ·+ cl−mbm





(2.5)

and
cl+1b0 + clb1 + cl−1b2 + · · ·+ cl−m+2bm−1 + cl−m+1bm = 0
cl+2b0 + cl+1b1 + clb2 + · · ·+ cl−m+3bm−1 + cl−m+2bm = 0

...
cl+mb0 + cl+m−1b1 + cl+m−2b2 + · · ·+ cl+1bm−1 + clbm = 0





(2.6)

Example 1 . Let m := 1 and adopt the Baker convention (see for example Baker
et al. 1981) by setting b0 := e0 in (2.6). Then we obtain b1 = −c−1

l cl+1 thus
yielding

q[l/1](z) = e0 − zc−1
l cl+1. (2.7)

The [l/1] vector Padé approximant is given by

c0 + c1z + c2z
2 + · · ·+ cl−1z

l−1 + zlcl[e0 − zc−1
l cl+1]

−1 (2.8)

which may be verified by expanding the denominator using the binomial theorem.
Example 2 . For m := 2 equations (2.6) become

clb1 + cl−1b2 = −cl+1b0
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cl+1b1 + clb2 = −cl+2b0

If we eliminate b1 from the second equation we obtain

∆ lb2 = [clc
−1
l+1cl+2 − cl+2]b0

where we define the vector

∆ l := cl−1 − clc
−1
l+1cl.

More generally, systems of linear equations whose coefficients do not commute may
be solved using designants — of which ∆ l is an example. These were invented by
Heyting in 1927 and first applied in the current context by Salam in 1993. From
the above we have

b2 = ∆−1
l [clc

−1
l+1cl+2 − cl+1]

b1 = −c−1
l+1cl∆

−1
l [cl−1c

−1
l cl+2 − cl+1]

}
(2.9)

where b0 is again taken to be the identity e0 .We may now construct the [l/2]
denominator polynomial:

q[l/2](z) = e0 + b1z + b2z
2. (2.10)

However,one may see that the resulting expression in terms of the series coefficients
is rather cumbersome. Hence, a different approach to the computation of these ap-
proximants is desirable. The next section describes one based on continued fractions,
which offers the advantage of recurrence relations for their evaluation.

3 Corresponding Vector Continued Fractions

In this section we consider the problem of expressing the given power series in the
form of a continued fraction — as in equation (3.5). A common approach in the
scalar context is Viskovatov’s algorithm which dates from 1803-6. We develop this
method for the non-degenerate case and, in the course of doing so, demonstrate the
existence of the inverses necessary for its implementation.

Viskovatov’s algorithm as formulated by Baker et al. may be adapted for non-
commuting elements by constructing the identity

(
∑∞

i=0 dk,iz
i)(

∑∞
i=0 dk+1,iz

i)−1 =

dk,0(dk+1,0))
−1 + z[(

∑∞
i=0 dk+1,iz

i)(
∑∞

i=0 dk+2,iz
i)−1]−1





(3.1)

where

dk+2,i := dk,i+1 − [dk,0(dk+1,0)
−1]dk+1,i+1 for k, i = 0, 1 · · · . (3.2)

4



The application to the vector-valued power series (2.1) is achieved by setting

d0,i := ci i := 0, 1 · · ·
d1,0 := e0, d1,i := 0 i := 1, 2 · · ·

}
(3.3)

On defining
π k := dk,0(dk+1,0)

−1 (3.4)

and using (3.1) repeatedly we obtain a continued fraction expansion of f(z) ,

f(z) := π 0 + z[π 1 + z[π 2 + · · ·]−1]−1 (3.5)

The first few elements are

π 0 := c0, π 1 := c−1
1 , π 2 := −c1c

−1
2 c1, π 3 := [c1c

−1
2 c3c

−1
2 c1 − c1]

−1, · · ·
which are all vectors in IRn . However, we also require expressions for the dk,i ,viz

d2,i := ci+1, d3,i := −c−1
1 ci+2, d4,i := ci+2 − c1c

−1
2 ci+3, · · ·

– which become increasingly more complicated. In order to develop a version of this
algorithm which may be implemented using vectors and scalars only we proceed as
follows. Define

Sk(z) :=
∞∑

i=0

dk,iz
i

so that (3.2) and (3.4) become

Sk+2(z) :=
1

z
[Sk(z)− π kSk+1(z)] (3.6)

π k := Sk(0)[Sk+1(0)]−1 (3.7)

while the identity (3.1) now reads

Sk(z)[Sk+1(z)]−1 := π k + z[Sk+1(z)[Sk+2(z)]−1]−1 (3.8)

with
S0(z) := f(z) and S1(z) := e0 (3.9)

replacing the initialization (3.3). If we further define

Vk+1(z) := Sk(z)S̃k+1(z) and uk(z) := Sk(z)S̃k(z) for k = 0, 1 · · · (3.10)

then it is straightforward to prove by induction thatVk+1(z) is a real analytic vector
function and uk(z) a real analytic function for k = 0, 1 · · · .In fact , by considering
Sk(z)S̃k+1(z) and Sk+1(z)S̃k+1(z), using (3.6) and (3.9) we may obtain

Vk+2(z) = z−1[Vk+1(z)− πkuk+1(z)]
uk+2(z) = z−2[uk(z)− 2πk ·Vk+1(z) + (πk · πk)uk+1(z)]

}
(3.11)
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with the initializations

V1(z) := f(z) and u0(z) := f(z) · f(z) , u1(z) := 1. (3.12)

We then have

π k = Sk(0)[Sk+1(0)]−1 =
Vk+1(0)

uk+1(0)
(3.13)

which is a vector in IRn . In this section we assume non-degeneracy i.e. that Vk(0)
is non-null for k = 1, 2, · · · . Indeed , [Sk+1(z)]−1 exists as a power series if Sk+1(0) ∈
Γn which may be proved by induction using the definition of Vk+1(0) and the above
assumption. We may then also conclude that uk+1(0) is non-zero which ensures the
validity of (3.13).

In summary, the recurrence relations (3.11) with the initializations (3.12) form
a version of Viskovatov’s algorithm using only vectors and scalars, allowing the
determination of the continued fraction elements of (3.5). We now prove that this
fraction corresponds to the given power series, i.e. that the kth convergent

Ck(z) := π 0 + z[π 1 + z[π 2 + · · ·+ z[π k]
−1 · · ·]−1]−1

satisfies the order condition

f(z)−Ck(z) = O(zk+1). (3.14)

From Roberts (1990), we have

Ck(z) = pk(z)[qk(z)]−1 (3.15)

where the polynomials pk(z), qk(z), over C`n satisfy the recurrence relations

pk(z) := pk−1(z)πk + zpk−2(z) p−1(z) := e0, p0(z) := π0

qk(z) := qk−1(z)πk + zqk−2(z) q−1(z) := 0, q0(z) := e0

}
(3.16)

It is straightforward to prove the following by induction

f(z)qk(z)− pk(z) = (−1)kzk+1S̃k+2(z). (3.17)

Assuming non-degeneracy we observe that (3.14) is then satisfied, since

qk(0) = qk−1(0)π k = π 1 π 2 π 3 · · · π k 6= 0

using (3.16). We may, in fact, go further and obtain the leading term on the right
hand side of the order condition as follows. From (3.13) we have

Sk+2(0) = [π k+1]
−1Sk+1(0) = [π k+1]

−1[π k]
−1 · · · [π 1]

−1 = [π 1 π 2 π 3 · · · π k+1]
−1
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since S1(0) = e0 .Therefore,

f(z)qk(z)− pk(z) = (−1)kzk+1[π k+1 π k · · · π 2 π 1]
−1 + O(zk+2)

from which we obtain the symmetric result for the order condition (3.14)

f(z)− pk(z)[qk(z)]−1 = (−1)kzk+1[qk(0)πk+1q̃k(0)]−1 + O(zk+2)

= (−1)kzk+1[π1]
−1[π2]

−1 · · · [πk]
−1[πk+1]

−1[πk]
−1 · · · [π1]

−1 + O(zk+2).

The successive convergents of (3.5) yield the staircase sequence of vector Padé ap-
proximants [0/0], [1/0], [1/1], [2/1], · · · .

4 The Modified Euclidean Algorithm

The Viskovatov algorithm may be adapted in the event of meeting degeneracies i.e.
when, Vk(0) and hence Sk(0) vanish. However, a closely related method which
is reliable [see Baker et al. for a discussion of this characteristic] and generates
diagonal approximants, is the modified Euclidean algorithm as presented by Graves-
Morris and Roberts for the vector case. Here, we simply state this algorithm, which
employs a different definition of Sk(z) for positive k from that of Viskovatov, and
refer the reader to the aforementioned paper for a detailed discussion and proof,
which broadly uses the ideas of the previous section.

The aim is to generate a continued fraction which corresponds to the power series
of f(z) :

f(z) = π 0(z) + zµ1 [π 1(z) + zµ2 [π 2(z) + · · · · · ·]−1]−1 (4.1)

in which each π i(z) is a vector-valued polynomial of degree νi and each µi is a
positive integer. This is achieved by using (3.9) and repeatedly applying :

Sk(z)[Sk+1(z)]−1 := π k(z) + zµk+1 [Sk+1(z)[Sk+2(z)]−1]−1,

in which the integers µk and the polynomials π k(z) are provided by the modified
Euclidean algorithm as follows.

We start by defining the quantities :

π0 := S0(0)S1(0)−1 = f(0) ν0 := 0
µ1 := O(S0(z)− π0S1(z)) ν1 := µ1

}
(4.2)

Then the recurrence scheme is implemented :

Sk+1(z) := z−µk [Sk−1(z)− πk−1Sk(z)]
πk(z) := [Sk(z)Sk+1(z)−1]νk

0 ,

}
k := 1, 2, · · · (4.3)

7



µk+1 := O(Sk(z)− πk(z)Sk+1(z))
νk+1 := µk+1 − νk

}
k := 1, 2, · · · (4.4)

employing the Nuttal notation for the Maclaurin section :

[φ(z)]k0 :=
k∑

i=0

φiz
i.

As a consequence of this construction Sk(0) ∈ Γn for k ≥ 1 .
We implement this algorithm in such a way as to require scalar and vector

functions only, by following the approach outlined in the previous section. Using
the definitions (3.10) it may be demonstrated that, as before, Vk(z) ∈ Cn and that
uk(z) ∈ C . The first of the recurrence relations (4.3) is replaced by

Vk+2(z) = z−µk+1 [Vk+1(z)− πk(z)uk+1(z)]
uk+2(z) = z−2µk+1 [uk(z)− 2πk(z) ·Vk+1(z) + πk(z) · πk(z)uk+1(z)]

}
(4.5)

while the second becomes

π k(z) := [Vk+1(z)/uk+1(z)]νk
0 . (4.6)

We note that synthetic division is not necessary to calculate π k(z) . For, if we write

uk+1(z) = γ0 + γ1z + γ2z
2 · · · ,

Vk+1(z) = β0 + β1z + β2z
2 · · ·

and π k(z) = α 0 + α 1z + α 2z
2 · · ·+ α νk

zνk ,
where α i, β i ∈ IRn and γi ∈ IR for i := 0, 1, · · · , then we obtain

(γ0 + γ1z + γ2z
2 · · ·)(α0 + α1z + α2z

2 · · ·+ ανk
zνk) =

β0 + β1z + β2z
2 · · ·+ O(zνk+1)

since by construction, Sk+1(0) , and so γ0 and β 0 , do not vanish. By comparing
coefficients of powers of z , we may derive a triangular set of equations for the
coefficients of π k(z) , which may be solved by forward substitution to yield

α 0 =
β 0

γ0

αi =
1

γ0

[β i −
i−1∑

j=0

α jγi−j] i := 1, 2 · · · , νk

The initializations become

V1(z) := f(z) and u0(z) := f(z) · f(z) , u1(z) := 1
π0 := f(0) ν0 := 0
µ1 := O[V1(z)− π0(z)u1(z)] ν1 := µ1





(4.7)
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Graves-Morris et al. (1994) show that the successive convergents of (4.1) , Ck(z) ,
are the [τk/τk] vector Padé approximants of f(z) (correspondence), where τk :=∑k

i=0 νi . In fact, the following order condition is satisfied (νk+1 ≥ 1) :

f(z)−Ck(z) = O(z2τk+νk+1).

In the case of non-degeneracy we have τk = k since

ν0 = 0 , ν1 = µ1 = 1 , νk = 1 , µk = 2 for k ≥ 2

so that
f(z) = π 0 + z[π 1(z) + z2[π 2(z) + z2[π 3(z) · · · · · ·]−1]−1]−1

where each π k(z), k := 1, 2 · · · is a linear polynomial with real vector coefficients.
Hence, in this case, the [m/m] diagonal approximant is given, not by the 2mth

convergent as in Viskovatov’s approach, but by Cm(z) , which requires fewer appli-
cations of the recurrence relations.

In the general case, each of the diagonal approximants may be constructed using
either backward recurrence relations or a forward version similar to (3.16) Indeed,
we point out that, in the spirit of this paper, it is possible to render these relations
into a form which does not involve general Clifford elements, but only vectors and
scalars — Roberts (1992).

The [l/m] VPA for l > m , if it exists, is given by :

p[l/m](z)[q[l/m](z)]−1 = c0 + c1z + · · ·+ zl−m−1cl−m−1 + zl−m[m/m]h(z) (4.8)

in which [m/m]h(z) is the diagonal approximant to

h(z) := cl−m + cl−m+1z + · · ·+ z2mcl+m + · · · (4.9)

constructed using the above algorithm (for an appropriate value of k ). Use of
forward recurrence relations implies that q[l/m](0) = π 1(0)π 2(0) · · · π k(0) ∈ Γn .
We point out that only the first 2m + 1 coefficients of h(z) are required — i.e.
those actually quoted above. We shall require the following result (Roberts 1990) :

[l/m](z) = Pl+m(z)/Q2m(z). (4.10)

where Q2m(z) is a real analytic polynomial of even degree 2m given by

q[l/m](z) ˜q[l/m](z) = Q2m(z)e0 ∈ C. (4.11)

and each component of Pl+m(z) is a real analytic polynomial of maximum degree
(l + m) defined by

p[l/m](z) ˜q[l/m](z) =
n∑

i=1

P l+m
i (z)ei ∈ Cn. (4.12)

In order to construct approximants [l/m] where l < m we consider the in-
verse series for f(z) , if necessary after extracting an appropriate power of z . The
numerators and denominators satisfy similar properties to those outlined above.
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5 An Application — New Approximants

In this section, after introducing an application of vector Padé approximants, which
echoes the origins of this subject in the work of Wynn, we focus on an apparent
disadvantage of these constructs in this context, and then develop a modified form,
based on their Clifford algebraic description, which may produce a better perfor-
mance. The motivation for this procedure is founded on both theoretical reasons
and results of numerical experiments.

Suppose we are given a sequence of real vectors {sl} l := 0, 1, · · · , which
converges slowly to some limit s . The convergence of this sequence is accelerated if
we can construct a new sequence {tl} which converges faster to s . One approach
is to consider the generating function given (perhaps formally) by the power series
(2.1), in which c0 := s0 , cl := ∆sl−1 := sl − sl−1 , for l = 1, 2, · · · , such that
f(1) = s . Our task then becomes one of approximating f(z) at z = 1. This may be
attempted using vector Padé approximants — e.g. tl := [l/m](1) for fixed m — c.f.
Roberts 1995. If the sequence {sl} is generated from a matrix iterative method of
solving a system of linear equations then f(z) belongs to a certain class of functions
characterised as follows (Graves-Morris 1992):

f(z) :=
g(z)

λ(z)
(5.1)

where λ(z) is the monic polynomial
∏m

i=1(z − αi) in which the complex numbers
αi, i = 1, . . . , m, satisfy 0 < |αi| < ρ . The gj(z), j = 1, 2, . . . , n , are complex-
valued functions analytic in Dρ := {z : |z| < ρ} . The Maclaurin series for f(z)
may be determined and is of the form (2.1) if λ(z) and each gj(z), j := 1, · · · , n are
real analytic functions. Our concern is with the formation of [l/m] approximants
to f(z) for increasing values of l . Roberts (1994) proves a theorem governing the
convergence of approximants along this row of the vector Padé table assuming that

g(αi) · g(αi) 6= 0, i = 1, 2, . . . , m. (5.2)

In this paper we are particularly interested in the result that, as l → ∞ , the
monic denominators q[l/m](z) converge uniformly to λ(z)e0 in compact subsets of
the complex plane. We also note that the numerators p[l/m](z) converge uniformly
to g(z) in compact subsets of Dρ . The norm used is the absolute or spinor norm
on C`(Cn) — see e.g. Hile and Lounesto.

The vector ε -algorithm may be employed, as suggested by Wynn in 1962, to
construct the desired approximant at z = 1. However, from (4.10) we observe that
each [l/m] VPA has, in general, 2m poles — twice as many as required! It is
only in the limit of l tending to infinity that cancellation with numerator factors
is guaranteed, thus leaving the correct number of poles. Graves-Morris (1994a,b)
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suggested that this doubling of poles leads to poor approximations of f(z) , which
in turn yields disappointing acceleration results.

The monic denominator may be written as

q[l/m](z) := q
[l/m]
0 (z)e0 +

∑

J 6=∅
q
[l/m]
J (z)eJ (5.3)

where J denotes the multi-ordered index {j1, j2, · · · , jk} in which 1 ≤ j1 < j2 <

· · · < jk ≤ n and each eJ represents the basis element ej1ej2 · · · ejk
of C`n ; q

[l/m]
0 (z)

is a scalar monic polynomial of exact degree m , while each q
[l/m]
J (z), J 6= ∅, is a

scalar polynomial of degree strictly less than m . Then q
[l/m]
0 (z) is at least as good

an approximation to λ(z) as the full [ Clifford VPA ] polynomial q[l/m](z) in the
sense that

|q[l/m]
0 (z)− λ(z)| ≤ |q[l/m](z)− λ(z)e0| (5.4)

since
|q[l/m](z)− λ(z)e0|2 := |q[l/m]

0 (z)− λ(z)|2 +
∑

J 6=∅
|q[l/m]

J (z)|2. (5.5)

A numerator polynomial may be constructed by imposing the order condition (2.3):

p(l,m)(z) := [f(z)q(l,m)(z)]l+m
0 (5.6)

where the new denominator is denoted by q(l,m)(z) . An alternative definition would
be to retain the numerator degree (i.e. l ), thus reducing the order of approximation
to f(z) .

Furthermore, if the gj(z) for j := 1, 2 · · · , n , are in fact polynomials of maxi-
mum degree l then, from the uniqueness property of VPA’s, we obtain

[l/m](z) ≡ f(z)

leading to
q
[l/m]
0 (z) ≡ λ(z) , q

[l/m]
J (z) ≡ 0 J 6= ∅

and p[l/m](z) ≡ g(z)

i.e. the new denominator is also exact, as is the corresponding numerator (whichever
definition is chosen)

p(l,m)(z) ≡ g(z).

Example 3 . We obtain the monic form of the [l/1] denominator from (2.7) viz

q[l/1](z) := z − cl+1
−1cl (5.7)

which yields

q
[l/1]
0 (z) := z − cl+1 · cl

cl+1 · cl+1

(5.8)
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using
〈clcl+1〉0 = cl · cl+1.

In order to illustrate the mechanisms at work we consider, in some detail, the
[l/1] approximant to a simple generating function, viz

f(z) :=
n∑

i=1

γivi

z − αi

+ v0 (5.9)

where vj ∈ IRn for j = 0, 1, · · · , n and αi, γi ∈ IR for i = 1, · · · , n .This is the type
of function which arises from a matrix iteration : sl+1 := Gsl + a with a, sl ∈ IRn

for l = 0, 1 · · · and G ∈ IRn × IRn . Each vi (i = 1, · · · , n) is a unit eigenvector
of G corresponding to the eigenvalue αi

−1 . We further assume that there is one
dominant pole, α1 , and that the αi (i = 1, · · · , n) are distinct quantities satisfying
the inequalities

0 < |α1| < |α2| < |α3| ≤ |α4| ≤ · · · ≤ |αn|.
From the Maclaurin coefficients , cl = −∑n

i=1 γiαi
−l−1vi (l > 0) , we obtain

cl+1
−1cl = α1 + κ

[
α1

α2

]l+2

a−1
l bl

where
κ :=

γ2

γ1

(α2 − α1)

al := v1 +
n∑

i=2

γi

γ1

[
α1

αi

]l+2

vi

bl := v2 +
n∑

i=3

γi

γ2

(
αi − α1

α2 − α1

)
[
α2

αi

]l+2

vi

so that al → v1 and bl → v2 as l →∞ . The above theorem is applicable provided
γ1 is non-zero, since g(α1) = γ1v1 . This requires the initial guess, s0 , to contain a
component in the v1 direction.

If we denote the errors in the denominators of the vector Padé approximant (5.7)
and of the new approximant (5.8) by El

V and El
N respectively, then we may show

that

El
V =

γ2

γ1

(α2 − α1)
[
α1

α2

]l+2

+ O(βl) (5.10)

and

El
N =

γ2

γ1

(α2 − α1)
[
α1

α2

]l+2

cosθl + O(βl) (5.11)

where β := max(|α1/α2|2, |α1/α3|) and θl denotes the angle between al and bl . If
v1 · v2 = cosφ 6= 0 then θl = φ + O(γl) where γ := max(|α1/α2|, |α2/α3|). El

V and

12



El
N are each of order O(|α1/α2|l) , with |El

V | > |El
N | , for sufficiently large l , unless

φ = 0 in which case v1 = ±v2 , contradicting our assumption of a single dominant
eigenvalue.

However, if the vectors vi (i = 1, · · · , n) form an orthonormal system, then we
obtain

θl =
π

2
− γ2

γ1

[
α1

α2

]l+2

[1 + O(γ2l)] (5.12)

which implies that (5.11) is replaced by

El
N = (

γ2

γ1

)2(α2 − α1)
[
α1

α2

]2l+4

[1 + O(γ2l)]. (5.13)

(In fact, we only require that the system {vi ; i = 1, · · · , ν−1} is orthonormal, with
v1 · vν 6= 0 provided that |α1/α2|2 > |α1/αν | .) Hence,

lim
l→∞

(El
V )2

El
N

= α2 − α1, (5.14)

i.e. for large enough l , the new denominator is much more accurate than the original.
Not surprisingly, the above behaviour is reflected in the description of the dom-

inant singularity. The poles of the [l/1] vector Padé approximant are the zeroes
of

q[l/1](z)q̃[l/1](z) ∝ (al · al)(z − α1)
2 − 2(al · bl)(z − α1) + (bl · bl)

(c.f. (4.12)) which are given by zV and z∗V where zV := α1 + εl
V with

εl
V := κ

[
α1

α2

]l+2 |bl|
|al| e

iθl .

The zero of q
[l/1]
0 (z) is

zN := cl+1
−1 · cl = α1 + εl

N

with

εl
N := κ

[
α1

α2

]l+2 |bl|
|al| cosθl = Re(εl

V ).

If cosφ 6= 0, then the errors εl
V , εl

N in the pole position are of the same order and

lim
l→∞

(
Im(εl

V )

Re(εl
V )

)
= tanφ.

However, in the event of the {vi} forming an orthonormal system we discover, using
(5.12), that

lim
l→∞

(
(Im(εl

V ))2

Re(εl
V )

)
= α2 − α1,

13



i.e. the real part of the VPA pole has twice as many correct significant figures as the
imaginary part. Graves-Morris (e.g.1994a) observed this effect in test cases involving
infinite-dimensional vectors (functional Padé approximants) in the context of inte-
gral equations. The particular problems he considered concerned real symmetric
kernels and thus an orthogonal system of characteristic functions, as in the second
case above. This led to the construction of a linear denominator whose zero was in
fact the real part of the VPA estimate. The ideas presented here have similar conse-
quences, with the advantage that the generalisation beyond the case of a real simple
pole is evident, for the results and statements of this section up to equation(5.14)
are valid in the case of complex vectors and poles. Finally, Graves-Morris (1994a),
mentions two related denominators which, in our language, correspond to the scalar
part of the denominator polynomials with the monic and Baker normalisations. The
asymptotic behaviour of the errors involved is the same in each case.

Employing (5.6) , the new numerator is the vector polynomial

p(l,1)(z) = (
l∑

i=0

ciz
i)q(l,1)(z)− zl+1cl+1

[cl+1 · cl]

[cl+1 · cl+1]

leading to the accelerated sequence (z = 1)

tl+1 := sl −∆sl
(∆sl−1 ·∆sl)

(∆sl ·∆2sl−1)

which is a vector generalisation of Aitken’s δ2 method. Da Cunha and Hopkins,
using test examples, found that the acceleration can be greatly enhanced using such
methods.

Example 4 . For m = 2 we have , using (3.16) , and following (4.8) ,

q[l/2](z) = q4(z) = π 1 π 2 π 3 π 4 + z(π 3 π 4 + π 1 π 4 + π 1 π 2) + z2e0

— as an alternative, but equivalent, monic expression to (2.10) ; hence

q
[l/2]
0 (z) = q(l,2)(z) = z2 + z(π3 · π4 + π1 · π4 + π1 · π2)+
(π1 · π2)(π3 · π4)− (π1 · π3)(π2 · π4) + (π1 · π4)(π2 · π3).

It is intriguing to note that, if (2.10) is used — i.e. the Baker normalisation — to
compose the new denominator, the result is identical to that presented by Graves-
Morris (1994b), using completely different ideas based on Pfaffians.

Returning to the general problem, we present one method of calculating q
[l/m]
0 (z)

based on the corresponding continued fraction to f(z) introduced earlier. Our
approach is illustrated by considering the non-degenerate case using Viskovatov’s
method. If we define

vk(z) := [qk−1(z)]−1[qk(z)] k := 1, 2, · · · (5.15)
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then from the forward recurrence relation (3.16), we obtain

vk(z) = π k + z[vk−1(z)]−1 k := 2, 3, · · · (5.16)

with v1(z) = π 1 . That each of the vk(z) is a real (analytic) vector, is readily
proved by induction. In order to construct the [l/m] approximant we follow (4.8)
and first of all consider the [m/m] approximant to h(z) (4.9). The corresponding
denominator is given by

q[l/m](z) = q2m(z) = v1(z)v2(z) · · ·v2m(z). (5.17)

From (3.16) it is readily seen that q2m(z) is monic. A similar expression, involving
2m + 1 vectors, may be derived for the numerator polynomial. We point out that
the backward recurrence relations also yield vector products for these polynomials
— involving the same sequence of vectors for the numerator as for the denominator,
thus saving computation. The scalar part of a product of an even number of vectors
is given by

〈v1v2 · · ·v2m〉0 =
1

m!2m

∑
σ

εσ(vσ1 · vσ2)(vσ3 · vσ4) · · · (vσ2m−1 · vσ2m)

where the summation is over all permutations σ of the integers 1, 2 · · · , 2m and
εσ denotes the corresponding parity of the permutation — for example see Miller.
The construction of the vk(z) , given by (5.16), is useful for a numerical calculation
of q[l/m](z) and hence of q(l,m)(z) . However, although each qk(z) is a polynomial
over C`n , each vk(z) is a rational function of z , cancellation of the denominator
factors occurring only in the product (5.17). Hence, to determine the new approx-
imant we require algebraic expressions for the polynomials involved. This may be
achieved by noting that wk(z) := q̃k(z)qk(z) is a real analytic polynomial, while
Wk(z) := q̃k−1(z)qk(z) is a vector of such polynomials. Employing similar argu-
ments to section three, we may derive appropriate recurrence relations from (3.16).
It is then straightforward to construct the new approximant.

However, we could adopt an argument similar to that for the denominator —
viz by considering the vector part of p[l/m](z) which will, in fact, form at least as
good an approximation to g(z) as p[l/m](z) itself. For, from part (iii) of the above
theorem, we may conclude that

|〈p[l/m](z)〉1 − g(z)| ≤ |p[l/m](z)− g(z)|

using the definition of the spinor norm. This may be implemented as a numerical
computation with z = 1, thus avoiding the need for constructing polynomials. We
note that if the Modified Euclidean algorithm is used (to reduce the number of
iterations) care must be exercised to normalise the denominator properly.
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The above ideas serve to illustrate the flexibility and richness of the Clifford alge-
braic approach in not only forming useful algorithms for the construction of VPA’s
but also in allowing the invention and analysis of new approximants which have the
correct number of singularities and the desired residue behaviour (part (iii) of the
theorem). In particular, we have explained how new constructs may yield more ac-
curate results than VPA’s. Investigation of the numerical efficacy of the newcomers
is currently in progress.
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