
Scalable Multi-domain Trust Infrastructures for
Segmented Networks

Sam Grierson∗, William J Buchanan∗, Craig Thomson∗, Baraq Ghaleb∗, Leandros Maglaras∗, Chris Eckl†,

∗ Blockpass ID Lab, Edinburgh Napier University, Edinburgh, UK
Email: {s.grierson2, b.buchanan, c.thomson3, b.ghaleb, l.maglaras}@napier.ac.uk

† Condatis Group Limited, Edinburgh, UK
Email: chris.eckl@condatis.com

Abstract—Within a trust infrastructure, a private key is often
used to digitally sign a transaction, which can be verified with
an associated public key. Using PKI (Public Key Infrastructure),
a trusted entity can produce a digital signature, verifying the
authenticity of the public key. However, what happens when
external entities are not trusted to verify the public key or in
cases where there is no Internet connection within an isolated
or autonomously acting collection of devices? For this, a trusted
entity can be elected to generate a key pair and then split the
private key amongst trusted devices. Each node can then sign
part of the transaction using their split of the shared secret. The
aggregated signature can then define agreement on a consensus
within the infrastructure. Unfortunately, this process has two
significant problems. The first is when no trusted node can act
as a dealer of the shares. The second is the difficulty of scaling the
digital signature scheme. This paper outlines a method of creating
a leaderless approach to defining trust domains to overcome
weaknesses in the scaling of the elliptic curve digital signature
algorithm. Instead, it proposes the usage of the Edwards curve
digital signature algorithm for the definition of multiple trust
zones. The paper shows that the computational overhead of the
distributed key generation phase increases with the number of
nodes in the trust domain but that the distributed signing has a
relatively constant computational overhead.

Index Terms—DKG, ECDSA, EdDSA, Trust infrastructures

I. INTRODUCTION

Within critical infrastructure protection, there are often a
large number of devices which need to intercommunicate and
gather and process data. Each node can generate a key pair
and identify themselves with a private key to enhance trust.
Using these generated keys, overlay networks may need to
be created in which devices could be part of multiple trust
domains.

As networked infrastructures scale, they often still employ
a client-server approach in which a leader is defined for the
control and organisation of an infrastructure. Nonetheless, this
situation can pose challenges if the leader acts maliciously
or becomes unavailable, raising the need for a more resilient
trust-based infrastructure. In this resilient infrastructure, nodes
should have the capacity to self-organize while maintaining
security through the use of distributed digital signature cryp-
tography, even in the absence of a central leader. While this
setup can enable a leaderless infrastructure, it raises the issue
of multiple trust zones across the network and how specific
nodes will bind with a distributed private key and associated

public key. Unfortunately, many existing methods use the ellip-
tic curve digital signature algorithm, which does not scale well
for signature aggregation. Hence, this paper outlines a new
distributed trust framework based on the Edwards-curve digital
signature algorithm that can scale trusted infrastructures.

This paper aims to build on the usage of the Edwards curve
digital signature algorithm with the signature aggregation
method proposed by Komlo et al. [1] and propose a framework
which allows for the creation of multiple trust zones where
there are no leaders, and where no private keys ever have
to be revealed. The core contributions are reviewing existing
methods and defining a multi-zone trust domain without a
leader.

II. PRELIMINARIES

A. Elliptic Curve Cryptography

Proposed independently in the late 80s by Koblitz [2] and
Miller [3], Elliptic Curve Cryptography (ECC) has quickly be-
come the preference for establishing public-key cryptosystems.
The rapid uptake in ECC-based cryptosystems results from the
smaller key sizes and more efficient implementations than their
non-ECC counterparts, such as the Digital Signature Standard
(DSS) [4].

Several elliptic curves are used in practical applications.
The curves themselves are typically denoted in the Weierstrass
form E : y2 = x3 + ax + b where a and b are elements
of a finite field Fp for a small prime p > 3. For a curve
E(Fp) a cryptographic protocol uses a subgroup of (x, y) ∈ F2

p

solutions to the equation of the curve, plus the point at infinity.
The size of this cryptographic subgroup is denoted by |E(Fp)|,
and the prime order is denoted by n. A fixed generator point
in the cyclic subgroup is denoted by G ∈ E(Fp).

Two standardised algorithms utilise ECC in their construc-
tion: The Elliptic Curve Digital Signature Algorithm (ECDSA)
[5] and the Edwards-curve Digital Signature Algorithm (Ed-
DSA) [6].

ECDSA was proposed as a variant of DSA using ECC by
Johnson, et al. [5], and has subsequently been standardised
by NIST in the FIPS 186-4 [7] and FIPS 186-5 [8] standards.
ECDSA requires the definition of both a conversion function
conv : E(Zp) → Zp for converting elliptic curve subgroup

ar
X

iv
:2

31
0.

04
89

8v
2

 [
cs

.C
R

]
 1

0
O

ct
 2

02
3

elements into integers and a collision-resistant hash function
H : {0, 1}∗ → Zp.

ECDSA is formally defined as a set of three algorithms. The
first is the key generation algorithm ECDSA.gen(1λ) which
randomly generates a private key sk ∈ Zp of bit length λ and
computes the public key pk := sk ·G ∈ E(Zp).

The second is the signing algorithm ECDSA.signsk(m)
which takes a message m ∈ {0, 1}∗ and performs the fol-
lowing steps:

1) Compute h := H(m) ∈ Zp.
2) Uniformly sample a k ∈ Z∗

p and compute r := conv(k ·
G) ∈ Zp.

3) Compute s := k−1 · (h+ r · sk) ∈ Zp

4) return σ := (r, s)

The third is the verification algorithm ECDSA.vrfypk(σ,m)
which, given the signature σ and the message m performs the
following steps:

1) Compute h := H(m) ∈ Zp.
2) Compute R := G · σ−1 · h+ pk · σ−1 · r
3) If R ̸= 1 and conv(R) = r return accept else return

reject.
Due to some of the problems related to the practical

implementation of ECDSA, EdDSA was proposed by Bern-
stein et al. [9] and subsequently standardised in RFC 8032
[6] and NIST’s FIPS 186-5 [8]. While still being an ECC-
based signature scheme, EdDSA uses a twisted Edwards curve
defined by the equation E : ax2+y2 = 1+bx2y2 over a finite
field Fp for small prime p > 3. Similar to ECDSA, EdDSA
requires the definition of a collision-resistant hash function
H : {0, 1}b → {0, 1}2b, but EdDSA differs in that its hash
function takes a bit string of length b and outputs a bit string
of length 2b. The EdDSA signature scheme then uses a Fiat-
Shamir transformed Schnorr-like identification protocol [10]
to generate the cryptographic signature.

For the following, assume that bit strings are interpreted
as elements in Zp when unspecified. EdDSA, much like
ECDSA, is defined as a set of three algorithms. The first is the
key generation algorithm EdDSA.gen(1λ) which randomly
generates the private key sk ∈ {0, 1}λ and compute the public
key pk := k ·G ∈ E(Zp) where k is the first λ bits of H(sk).

The second is the signing algorithm EdDSA.signsk(m)
which takes a message m ∈ {0, 1}∗ and performs the fol-
lowing steps:

1) Compute k ∈ Zp by taking the first λ bits of H(sk).
2) Compute r := H(h || m) ∈ Zp where h is the remaining

λ bits of H(sk) not used in step 1.
3) Compute R := r ·G ∈ E(Zp) and s := r+H(R || pk ||

m) · k ∈ Zp.
4) Return σ := (R, s).

The third is the verification algorithm EdDSA.vrfypk(σ,m)
which, given the signature σ and the message m and checks
that s · G = R + H(R || pk || m) · pk. If this check is true,
the algorithm returns accept else it returns false.

B. Threshold Schemes

First proposed by Shamir in 1979 [11], (t, n)-threshold
schemes allow a set of n participants to share a secret such
that any t out of the n participants are required to cooperate to
recover that secret. Any fewer than t participants should not
be able to recover any information about the secret.

SHAMIR SECRET SHARING: Many threshold schemes are
based upon Shamir’s original secret sharing scheme based
on Lagrange interpolation [11]. In a (t + 1, n)-secret shar-
ing scheme a secret s ∈ Zq is shared among P1, . . . , Pn

participants through two algorithms. The first is share(t, n)
which uniformly generates a element s ∈ Zq and elements
z1, . . . , zt ∈ Zq . and forms the polynomial

f(x) = s+ z1x+ · · ·+ ztx
t ∈ Zq[x].

Each participant Pj can be given a share µj := f(j) ∈ Zq . The
second is recover(µ1, . . . , µt+1) which takes t+1 shares and
recovers s through polynomial interpolation. Any coalition of
participants running recover with fewer than t+1 shares can
learn nothing about s. This method requires a trusted dealer
to generate, distribute and delete the shares.

VERIFIABLE SECRET SHARING: Verifiable Secret Sharing
(VSS) gives a way to share a secret between participants
P1, . . . , Pn and verify that they are distributed the correct
shares by the dealer. Feldman [12] proposed a VSS scheme us-
ing Shamir’s secret sharing combined with any homomorphic
commitment scheme.

In the Feldman scheme, the dealer takes the polynomial f
as defined in share and computes a polynomial commitment
vector c := (gs, gz1 , . . . , gzt) ∈ Gt+1 where g is a group
element in the group G. The commitment c is then sent to
participants P1, . . . , Pn and each participant is dealt a share
µj := f(j) ∈ Zq . A participant Pj can use their share µj and
the commitment c to check their share is correct by checking
that

∏t−1
i=0 c

ji

i = gµi . Even if the dealer is corrupted, the secret
can be reconstructed if at least t+1 parties received the correct
shares.

In the original paper [12], Feldman does not specify actions
to take if a participant detects an incorrect share. Pederson [13]
designed a protocol to deal with the incorrect shares sent by a
corrupted dealer in the Feldman VSS scheme. Furthermore, the
Feldman scheme doesn’t completely hide the secret s, since
c0 = gs. Some applications may accept this, but others might
require stronger guarantees.

Pederson’s VSS scheme generates an additional polynomial
f ′ ∈ Zq[x] of degree at most t. The shares for each participant
Pj are now the pair (µj , µ

′
j) := (f(j), f ′(j)). As in the

Feldman scheme the dealer sends the polynomial commitment
c ∈ Gt+1 to P1, . . . , Pn, however c is now defined as
the vector (gshs, gz1hz1 , . . . , gzthzt) where h ∈ G is a
random generator defined as a public parameter of the scheme.
Each participant Pj can then check its share is correct by
checking that

∏t−1
i=0 c

ji

i = gµjhµ′
j . As defined in [13], if this

check fails for any participant, they can raise an issue, and

the protocol will terminate. This differs from how Feldman
originally presented their scheme in [12], as it was assumed
that an honest majority could recover the secret if a dishonest
participant raised an issue.

ASYNCHRONOUS VERIFIABLE SECRET SHARING: The pri-
mary pitfall of the Feldman and Pederson VSS schemes
outlined above is their inability to function correctly in asyn-
chronous communication models. The notion of an Asyn-
chronous VSS (AVSS) was first proposed by Ben-Or et al.
[14], but the first protocol was outlined in work by Cachin et
al. [15].

In their AVSS protocol, Cachin et al. uses a similar con-
struction to that of Pederson [13], with improved efficiency
for asynchronous systems. Rather than a simple uni-variate
polynomial, the dealer produces a two-dimensional sharing of
a secret by generating a bi-variate polynomial f ∈ Zq[x, y]
with degree k − 1 and f(0, 0) = s. The dealer then produces
a polynomial commitment by using a second random polyno-
mial f ′ ∈ Zq[x, y] to compute the matrix C = (c1, . . . , ck−1)

where cj = gµjhµ′
j . The dealer then sends to participants

P1, . . . , Pn the commitment matrix C and the two share
polynomials aj(y) = f(j, y) and a′j(y) = f ′(j, y) and the
two sub-share polynomials bj(x) = f(x, j) and b′j = f ′(x, j).

When the participants receive their messages from the
dealer, they send the points in which their share and sub-share
polynomials overlap. When the participant receives messages
that agree on C and contain valid points, they interpolate
their share and sub-share polynomials from the received points
using Lagrange interpolation. In the case of an honest dealer,
the resulting polynomials are the same as those originally sent
to them. The participants can then message the dealer that the
sharing process is complete.

Despite its guarantees, the AVSS protocol defined by Cachin
et al. [15] may not be as efficient as other options and
has a communication complexity of O(n3λ) where λ is the
security parameter. Backes et al. [16] proposed an AVSS
protocol with communication complexity O(n2λ), which uses
polynomial commitments that require their group supports a
pairing operation, making it unusable for several commonly
used digital signature schemes. AlHaddad et al. [17] proposed
a protocol with communication complexity O(n2 log n · λ)
which does not require pairing but relies on Bulletproofs [18].
Finally, Groth and Shoup designed an AVSS scheme to work
with threshold ECDSA, which, unlike the protocol defined by
Cachin et al., only achieves computational privacy but achieves
O(n2λ) communication complexity.

C. Distributed Key Generation

The unfortunate fact of threshold cryptography schemes
that use secret sharing techniques, such as Shamir’s secret
sharing, is their reliance on a trusted dealer. Distributed
Key Generation (DKG) ensures that each protocol participant
equally contributes to generating a shared secret. The core
idea of a DKG protocol is that each participant uses a secret
sharing protocol to disseminate a secret value. The participants

then must reach a consensus on which secret values have been
correctly shared. The resulting disseminated secrets can then
be combined, with the outcome being a threshold private-
public key pair.

Pederson [19] was the first to propose a practical two-round
DKG scheme in which each participant acts as a dealer of
the Feldman VSS protocol [12]. Essentially, for participants
P1, . . . , Pn each participant Pj generates a polynomial fj
and a polynomial commitment cj as in the Feldman VSS
protocol and broadcasts cj to the network. Participant Pj

then privately sends participants Pℓ the share µjℓ = fj(ℓ) for
l = 1, . . . , n and keeps µjj for itself. Each participant Pj then
verifies their received shares are consistent with their published
commitments and computes their share as µj =

∑n
i=1 µij .

Work by Gennaro et al. [20] discovered a weakness in the
Pederson DKG scheme [19] in which misbehaving participants
can directly bias the distribution of secrets through issuing
complaints against participants after seeing their sent secret.
This resulted in the disqualification of the targeted nodes from
contributing to the DKG protocol. Furthermore, Gennaro et al.
showed that Pederson’s DKG scheme is secure in specific con-
texts, particularly more significant distributed systems where
the chance for bias from the misbehaving participants is much
smaller.

In 2007, Gennaro et al. [21] proposed some modifications
to the Pederson DKG scheme [19] to ensure its security
properties are maintained even in smaller distributed systems.
The authors introduce the notion of using the Feldman VSS
[12] and Pederson’s own VSS protocol [13], making the
protocol require three rounds of communication. Furthermore,
Gennaro et al. added a commitment round, which forces the
participants to perform the commitment round before revealing
their inputs.

III. LEADERLESS CONSENSUS THROUGH DISTRIBUTED
SIGNING

This section illustrates achieving a byzantine fault-tolerant
leaderless consensus using threshold signatures. Unlike sig-
natures in a single-party setting, threshold signature schemes
require the cooperation of n participants up to a threshold
t, each of which shares a secret that acts as a private key
distributed across them. If fewer than t of the participants are
corrupted and act maliciously in the signing process, the sign-
ing will fail, resulting in no consensus among the participants.
In this paper, an instantiation of the Flexible Round-Optimized
Schnorr Threshold (FROST) signature scheme proposed by
Komlo and Goldberg [22] is used to achieve this.

As was discussed previously, many threshold schemes pro-
vide the notion of robustness [20], whereby, if one participant
acts maliciously, the remaining honest participants can detect
that malicious action and complete the protocol as long as
there is a threshold of at least t honest participants. The
FROST protocol trades robustness in favour of efficiency by
allowing honest parties to identify malicious participants and
aborting the protocol. Furthermore, in the instantiation of the
FROST protocol given by Komlo and Golberg in their original

paper [22], the use of a signature aggregator resulted in a semi-
trusted distributed system, in which the aggregator could cause
a denial of service. In this paper, rather than use the Schnorr
signature scheme, the instantiation of FROST proposed will
use the RFC 8032 standardised EdDSA signature scheme [6]
due to its efficiency. Komlo and Goldberg briefly discuss using
EdDSA in their original work [22].

A. Trust Overlays

Within critical infrastructure applications, we may need to
overlap trust domains and where devices form a distributed
grouping. As showin in Figure 1, there are multiple nodes
connected across three trust domains (Group A, Group B and
Group C). The devices become self-organising and leaderless
within each group, but the EdDSA public key for each group
can be generated for the nodes in that specific group. In this
way, none of the nodes in each group has to store a private key
for the group but will only have fragments of the key, which
can be used as a consensus to create a digital signature. The
threshold method used can support Byzantine fault tolerance
for devices becoming malicious or when specific devices
become inoperable. By examining any of the nodes on the
network, it will not be possible to discover the private key
used for the group.

Fig. 1. Trust distribution

B. Key Generation

The generation of the secret key shares is built on top of
the Pederson DKG scheme [19]; the details for this are given
in Protocol 1. Pederson’s original DKG was a straightforward
process in which each participant acted as a dealer executing
the Feldman VSS protocol [12] in parallel. Each participant
would then derive their secret share as a sum of all shares
received from each participant. In addition to the Pederson
DKG protocol, FROST requires that each participant Pj gen-
erate proof of knowledge of their initial secret sj and provide
that proof to all participants to verify.

The key generation protocol assumes the participants are
formed using an implementation-defined mechanism. After
participating in the Pederson DKG protocol, each participant
Pj should hold a value skj that is the secret share they can use
to participate in the signing protocol. The other participants
in the system can use the participant’s public key share pkj
to verify the correctness of Pj’s signature shares. The group
public key pk can be used by anyone external to the system
to verify signatures issued by the participants in the future.

PROTOCOL 1: DISTRIBUTED KEY GENERATION

Round 1
1 Each participant Pj generates a degree t−1 polynomial
fj(x) := sj +

∑t−1
i=1 ajix

i where sj is their secret.
2 Each Pj computes the proof of knowledge of their
secret sj by πj := (G·k, k+s·H(j, crs, g·sj , G·k)) where
k ∈ Zq is uniformly sampled, and crs is a common
reference string used to prevent replay attacks.
3 Each Pj computes a public polynomial commitment
cj := (G · sj , G · aj2, . . . , G · aj(t−1)).
4 Each Pj broadcasts both cj and πj to all other
participants.
5 Participant PJ upon receiving cℓ and πℓ for ℓ =
1, . . . , n verifies that πℓ0 = cℓ0 · −H(ℓ, crs, G · cℓ0, πℓ0)
and delete all proofs πℓ. The protocol aborts on failure.

Round 2
1 Each Pj privately sends all participants P1, . . . , Pn a
share µj := fj(j).
2 Each Pj verifies the share µℓ using the polynomial
commitment cℓ by checking that G·µℓ =

∑t−1
i=0 c

jk mod q
ℓi

for ℓ = 1, . . . , n. The protocol aborts on failure.
3 Each Pj computes their private signing share skj :=∑n

i=1 µi and deletes each µℓ for ℓ = 1, . . . , n.
4 Each Pj computes their public verification share
pkj := G ·skj . The public key for the distributed system
is pk =

∑n
i=1 ci0

C. Threshold Signing

The signature operation of the FROST protocol uses the
shared secrets with secret conversion to non-interactively
generate nonce values for each signature. Furthermore, the
operation employs a binding technique to avoid forgery attacks
without limiting the concurrency of the protocol. In their
original work, Komlo and Goldberg separate the preprocessing
phase from the actual signing phase [22]. In this work, the two
are combined into a two-round signing protocol. Furthermore,
the operation is described using the RFC 8032 standardised
EdDSA signature algorithm [6] to work with the DKG oper-
ation described in Protocol 1.

The binding designed into the original FROST protocol [22]
prevents malicious participants from manipulating the result-
ing challenge c for a set of participants performing a group

signature operation. Each participant’s response is bound to
a specific message and the set of participants’ commitments
during that operation. The advantage of this additional process
is that a combination of responses over different messages or
participant commitment pairs results in an invalid signature.

PROTOCOL 2: SIGNING

Round 1
1 Each participant Pj generates an empty list Nj then for
ℓ = 1, . . . ,m, uniformly sample two single-use nonces
(ajℓ, bjℓ) ∈ Z∗

q×Z∗
q and compute the commitment shares

(Ajℓ, Bjℓ) := (G · ajℓ, G · bjℓ) and append the shares to
the list.
2 Publish (j,Nj), allowing all participants to access the
commitment shares.

Round 2
1 Each Pj takes the nonce commitments Nj , constructs
n := ((A1, B1), . . . , (An, Bn)) and checks that Aℓ, Bℓ ∈
E(Zq) for ℓ = 1, . . . , n. The protocol aborts on failure.
2 Each Pj takes the message m ∈ {0, 1}∗ and computes
a set of binding values βℓ := H1(ℓ || m || n) for ℓ =
1, . . . , n, the group commitment Rj :=

∑n
i=0 Ai+Bi ·βi

and the challenge cj := H2(Rj || pk || m).
3 Each Pj then computes zj := aj+(bj ·βj)+λj ·skj ·cj
where λj is the jth Lagrange coefficient. zj can now be
broadcast to the network.
4 Each Pj now acts as an aggregator via the following
steps:
4.a. Compute βℓ := H1(ℓ || m || n) and Rℓ := Aℓj +
Bℓj · βℓ for ℓ = 1, . . . , n.
4.b. Compute the values R :=

∑n
i=1 Ri and c := H2(R ||

pk || m).
4.c Verify that G · zℓ = Rℓ · pkℓ · c · λℓ for ℓ = 1, . . . , n.
The protocol aborts on failure.
4.d. Compute the systems response z =

∑n
i=1 zi and

publish the signature σ := (R, z) and message m.

IV. SIGNATURE AGGREGATION

In their original paper, Komlo and Goldberg [22] proposed
FROST be instantiated in two ways: using a signature ag-
gregator to reduce overhead or using broadcast messages to
aggregate the signatures, incurring significantly more com-
munication overhead. To avoid O(n2λ) verification work, a
gossip protocol is designed to speed up signature aggregation
without electing a signature aggregator. The main observation
is that any participant who has verified several responses can
aggregate them together into a single response and forward this
to the next participant. Through careful use of the gossip pro-
tocol and aggregation, the verification time can be decreased
significantly, especially considering large distributed systems
with many individual aggregators.

The gossip protocol outlined in Protocol 3 has each party
send its currently aggregated DKG transcript to O(c log n)

participants and terminates when it has reached an agreement
on a full transcript, in other words, when the transcript has
reached t+ 1 contributions. In this case, c is a small success
parameter such that c ≥ 4. Deciding when to terminate the
protocol is difficult since the full aggregated transcripts may
all be different. This is why the broadcast must be invoked
to ensure that the participants know which transcript is to be
used. However, the goal was to reduce broadcasts achieved
by making the broadcast only happen with a probability
of 2/n in any given round of the gossip protocol which
makes the protocol likely to terminate in O(c log n) rounds
of messaging. Participants can then use any implementation-
defined convention to agree on which transcript to use. The
resulting communication complexity is O(c log2 n) broadcasts.

PROTOCOL 3: AGGREGATION GOSSIP PROTOCOL

1 Each Pj sends (zj , transcriptj) to a random 2/n of
the participants P1, . . . , Pn.
2 If Pj’s transcript transcriptj contains t + 1 contribu-
tions broadcast the transcript and end the protocol with
probability 2/n.
2 If a send request is received by Pj from Pℓ for ℓ =
1, . . . , n verify that zℓ and tanscriptℓ are correct then set
transcriptj := transcriptj + transcriptℓ and repeat the
protocol.

V. IMPLEMENTATION AND EVALUATION

In this section, we measured the communication overhead
of the DKG of the proposed framework as a function of the
network size, where the number of participating nodes ranges
from a minimum of four nodes to a maximum of 255 nodes.
The core focus of the evaluation is the usage of the FROST
method and where each node can check that they have a valid
share of the distributed private key and also whether other
nodes have valid shares; each group then has an associated
public key.

In order to understand the basic dynamics of the systems, a
prototype of the system was built using the Kryptology library
[23] and validated for a distributed EdDSA signature for a
t out of n scheme. Other demonstrators were created that
used the GG20 [24], [25] and DKLS [26], [27] distributed
signature schemes. Both GG20 and DKLS use ECDSA signa-
tures and perform worse in scaling the network. Furthermore,
the original GG20 protocol has been shown to have security
weaknesses and is not advised for current implementation (see
CVE-2023-33241 [28]). The FROST method has three main
phases: secret key generation, verification key generation,
and splitting secret keys and rebuilding the verification key.
Table I shows the results running on a t2.medium instance
in AWS (two vCPUs and 4GB of memory) for the broadcast
and verification phase of Round 1. The broadcast period is
acceptable, but the time penalty for the verification for 128
nodes is over 7.4 seconds, and for 255 nodes, it is nearly
31 seconds. The table also shows that the signing phase in
the system performs well, with the time taken for signing

remaining consistently under 10.3 milliseconds under various
numbers of nodes in the 3-from-n threshold scheme, indicating
that the computational overhead is fairly constant in creating
the signature.

TABLE I
RESULTS FOR PROTOCOL 1 (DISTRIBUTED KEY GENERATION).

Time (ms)

Threshold (t) Participants (n) Round 1 Round 2

3 4 3.4 12.4
3 8 4.0 30.1
3 16 7.0 122.6
3 32 17.5 442.1
3 64 33.2 2,030
3 128 71.9 7,460
3 255 222.1 30,760

VI. CONCLUSION

This paper outlines an EdDSA-based framework to create
leaderless trusted groups within a large-scale network, which
can be applied to the protection of critical infrastructure.
The proposed approach is found to outperform ECDSA-based
approaches in terms of scalability and could have great benefits
where an EVM (Ethereum Virtual Machine) is not required.
The approach defined is also able to act autonomously from
other networked systems. The evaluation results have shown
that the greatest computational overhead of the proposed
approach is in the second round of the DKG, where it can
take several seconds for the distributed key to be verified. Once
the keys are distributed, the computational resources required
for the subsequent signing process remain relatively constant,
even when the network is scaled up to include as many as 255
nodes.

REFERENCES

[1] C. Komlo and I. Goldberg, “Frost: flexible round-optimized schnorr
threshold signatures,” in Selected Areas in Cryptography: 27th Interna-
tional Conference, Halifax, NS, Canada (Virtual Event), October 21-23,
2020, Revised Selected Papers 27. Springer, 2021, pp. 34–65.

[2] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation,
vol. 48, pp. 203–209, 1987.

[3] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in
Cryptology — CRYPTO ’85 Proceedings, H. C. Williams, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1986, pp. 417–426.

[4] D. W. Kravitz, “Digital signature algorithm,” May 1993, U.S. Patent
US5231668A.

[5] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital
signature algorithm (ecdsa),” International Journal of Information Se-
curity, vol. 1, no. 1, pp. 36–63, Aug 2001.

[6] S. Josefsson and I. Liusvaara, “Edwards-curve digital signature algo-
rithm (EdDSA),” Tech. Rep., jan 2017.

[7] E. Barker, “Digital signature standard (DSS),” 2013.
[8] D. Moody, “Digital signature standard (DSS),” 2023.
[9] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-

speed high-security signatures,” Journal of Cryptographic Engineering,
vol. 2, no. 2, pp. 77–89, Sep 2012.

[10] C. P. Schnorr, “Efficient identification and signatures for smart cards,”
in Advances in Cryptology — CRYPTO’ 89 Proceedings, G. Brassard,
Ed. New York, NY: Springer New York, 1990, pp. 239–252.

[11] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, p.
612–613, nov 1979.

[12] P. Feldman, “A practical scheme for non-interactive verifiable secret
sharing,” in 28th Annual Symposium on Foundations of Computer
Science (sfcs 1987), 1987, pp. 427–438.

[13] T. P. Pedersen, “Non-interactive and information-theoretic secure veri-
fiable secret sharing,” in Proceedings of the 11th Annual International
Cryptology Conference on Advances in Cryptology, ser. CRYPTO ’91.
Berlin, Heidelberg: Springer-Verlag, 1991, p. 129–140.

[14] M. Ben-Or, B. Kelmer, and T. Rabin, “Asynchronous secure compu-
tations with optimal resilience (extended abstract),” in Proceedings of
the Thirteenth Annual ACM Symposium on Principles of Distributed
Computing, ser. PODC ’94. New York, NY, USA: Association for
Computing Machinery, 1994, p. 183–192.

[15] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl, “Asynchronous
verifiable secret sharing and proactive cryptosystems,” in Proceedings of
the 9th ACM Conference on Computer and Communications Security,
ser. CCS ’02. New York, NY, USA: Association for Computing
Machinery, 2002, p. 88–97.

[16] M. Backes, A. Datta, and A. Kate, “Asynchronous computational vss
with reduced communication complexity,” in Topics in Cryptology –
CT-RSA 2013, E. Dawson, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 259–276.

[17] N. AlHaddad, M. Varia, and H. Zhang, “High-threshold avss with
optimal communication complexity,” in Financial Cryptography and
Data Security, N. Borisov and C. Diaz, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2021, pp. 479–498.

[18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,” in
2018 IEEE Symposium on Security and Privacy (SP), 2018, pp. 315–
334.

[19] T. P. Pedersen, “A threshold cryptosystem without a trusted party,” in
Advances in Cryptology — EUROCRYPT ’91, D. W. Davies, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1991, pp. 522–526.

[20] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure applications
of pedersen’s distributed key generation protocol,” in Topics in Cryptol-
ogy — CT-RSA 2003, M. Joye, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 373–390.

[21] ——, “Secure distributed key generation for discrete-log based cryp-
tosystems,” Journal of Cryptology, vol. 20, no. 1, pp. 51–83, Jan 2007.

[22] C. Komlo and I. Goldberg, “Frost: Flexible round-optimized schnorr
threshold signatures,” in Selected Areas in Cryptography, O. Dunkelman,
M. J. Jacobson, Jr., and C. O’Flynn, Eds. Cham: Springer International
Publishing, 2021, pp. 34–65.

[23] W. J. Buchanan, “Distributed key generation (dkg) using frost threshold
schnorr signature protocol in kryptology,” https://asecuritysite.com/
kryptology/dkg, Asecuritysite.com, 2023, accessed: September 08,
2023. [Online]. Available: https://asecuritysite.com/kryptology/dkg

[24] R. Gennaro and S. Goldfeder, “One round threshold ecdsa with identi-
fiable abort.” IACR Cryptol. ePrint Arch., vol. 2020, p. 540, 2020.

[25] W. J. Buchanan, “Any t-of-n threshold ecdsa signing algorithm using
gg20 with kryptology,” https://asecuritysite.com/kryptology/sss gg03,
Asecuritysite.com, 2023, accessed: September 08, 2023. [Online].
Available: https://asecuritysite.com/kryptology/sss gg03

[26] J. Doerner, Y. Kondi, E. Lee, and A. Shelat, “Threshold ecdsa from
ecdsa assumptions: The multiparty case,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 1051–1066.

[27] W. J. Buchanan, “Threshold ecdsa using kryptology,” https://
asecuritysite.com/kryptology/tecdsa, Asecuritysite.com, 2023, accessed:
September 08, 2023. [Online]. Available: https://asecuritysite.com/
kryptology/tecdsa

[28] “CVE-2023-33241,” Available from NIST, CVE-ID CVE-2023-
33241., Aug. 2023. [Online]. Available: https://nvd.nist.gov/vuln/
detail/CVE-2023-33241

https://asecuritysite.com/kryptology/dkg
https://asecuritysite.com/kryptology/dkg
https://asecuritysite.com/kryptology/dkg
https://asecuritysite.com/kryptology/sss_gg03
https://asecuritysite.com/kryptology/sss_gg03
https://asecuritysite.com/kryptology/tecdsa
https://asecuritysite.com/kryptology/tecdsa
https://asecuritysite.com/kryptology/tecdsa
https://asecuritysite.com/kryptology/tecdsa
https://nvd.nist.gov/vuln/detail/CVE-2023-33241
https://nvd.nist.gov/vuln/detail/CVE-2023-33241

	Introduction
	Preliminaries
	Elliptic Curve Cryptography
	Threshold Schemes
	Distributed Key Generation

	Leaderless Consensus Through Distributed Signing
	Trust Overlays
	Key Generation
	Threshold Signing

	Signature Aggregation
	Implementation and Evaluation
	Conclusion
	References

