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Abstract: Smart agricultural systems have received a great deal of interest in recent years because
of their potential for improving the efficiency and productivity of farming practices. These systems
gather and analyze environmental data such as temperature, soil moisture, humidity, etc., using
sensor networks and Internet of Things (IoT) devices. This information can then be utilized to
improve crop growth, identify plant illnesses, and minimize water usage. However, dealing with data
complexity and dynamism can be difficult when using traditional processing methods. As a solution
to this, we offer a novel framework that combines Machine Learning (ML) with a Reinforcement
Learning (RL) algorithm to optimize traffic routing inside Software-Defined Networks (SDN) through
traffic classifications. ML models such as Logistic Regression (LR), Random Forest (RF), k-nearest
Neighbours (KNN), Support Vector Machines (SVM), Naive Bayes (NB), and Decision Trees (DT)
are used to categorize data traffic into emergency, normal, and on-demand. The basic version of
RL, i.e., the Q-learning (QL) algorithm, is utilized alongside the SDN paradigm to optimize routing
based on traffic classes. It is worth mentioning that RF and DT outperform the other ML models in
terms of accuracy. Our results illustrate the importance of the suggested technique in optimizing
traffic routing in SDN environments. Integrating ML-based data classification with the QL method
improves resource allocation, reduces latency, and improves the delivery of emergency traffic. The
versatility of SDN facilitates the adaption of routing algorithms depending on real-time changes in
network circumstances and traffic characteristics.

Keywords: SDN; IoT; emergency/critical data; smart agriculture system; machine learning; reinforcement
learning

1. Introduction

Software-defined networks (SDNs) have evolved as potential tools for managing
and controlling modern network infrastructures [1]. The ability of SDNs to separate the
control and data layers allows for flexible network setups, effective resource management,
and granular traffic control, as shown in Figure 1. SDNs have found use in a number
of industries, including transportation, healthcare, smart cities, and agriculture. Modern
communication networks have undergone substantial changes due to the rise of Software-
Defined Networking (SDN). The administration of network resources is programmable,
dynamic, and extensible thanks to SDNs’ isolating of the control plane from the data plane.
This makes it possible to create intelligent and flexible network systems for various uses,
including in the agricultural sector [2,3].

Agriculture is one of the most important areas of the global economy; with a rising
population comes an inevitable increase in food consumption. Smart agriculture, which
combines cutting-edge technologies with traditional farming methods, has the ability to
transform how we create food and handle agricultural resources [4–9]. SDN-based solutions
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can promote smart agriculture by offering a dynamic and clever network architecture in
support of a broad variety of applications, such as precision agriculture, weather tracking,
and livestock management [10]. In modern agriculture, sensors play a critical role in
collecting information about various factors such as water, soil, climate, etc., as shown in
Figure 2. Analysis can be carried out with the help of data obtained from different sensors
to identify and improve the current situation of crop production [11]. The progressive
variability of acquired measurements is an essential aspect of the agricultural domain that
requires significant attention. The scale of agricultural production and industrial weakness
can be significantly changed through modern agriculture. Moreover, it has an imperative
role in agriculture development, as well as in the realization of a healthy society [12].

Figure 1. SDN architecture.

Traditional data processing techniques in smart agricultural systems face numerous
severe hurdles when dealing with the complexities of data management. The massive
amounts of data created by sensors and devices can overwhelm traditional workflows,
resulting in slow analysis and decision-making processes. This is worsened by the wide
range of data types, which necessitate specialized processing capabilities. The importance
of real-time monitoring heightens the requirement of quick data handling, which traditional
systems fail to satisfy [13–16]. In this context, data can be managed and analyzed with the
help of event-based data analysis methods. Event-based data analysis can assist in locating
patterns, trends, and anomalies in the data that can then be used to enhance agricultural
decision-making by identifying and analyzing events in real time. Thanks to its ability to
autonomously identify trends and correlations in massive datasets, machine learning (ML)
is a potent instrument for event-based data analysis. Real-time tracking of agricultural
circumstances is made possible by the use of software-defined networks and ML, offering
useful information for improved decision-making.

In this article, we suggest an event-based traffic control prioritization framework for
smart agriculture that makes use of ML techniques. The optimized traffic routing begins
with the categorization of incoming data using various ML techniques, such as Logistic Re-
gression (LR), Random Forest (RF), k-nearest Neighbours (KNN), Support Vector Machine
(SVM), Naive Bayes (NB), and Decision Tree (DT). These algorithms analyze characteristics
such as as humidity, temperature, wind speed, leaf moisture, soil temperature, and soil
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moisture to classify data traffic into emergency, normal, and on-demand categories. Fol-
lowing classification, Q-learning, a fundamental reinforcement learning (RL) algorithm,
manages dynamic routing in the SDN configuration. SDN allows the system to dynami-
cally handle network traffic and resources based on the requirements of the application.
The SDN design enables a centralized control layer that makes network management and
configuration simpler. It keeps a Q-table with the projected cumulative reward for certain
actions in specific data class conditions. QL converges to optimal Q-values through research
and application, suggesting the appropriate actions for each data class. The SDN controller
examines the Q-table during traffic routing to make decisions according to the previous
routing performance of the relevant data class. This integrated system modifies routing
pathways based on data traffic type, ensuring effective and fast decisions regarding routing
in the SDN environment. The combination of ML’s categorization expertise with QL’s
flexible decision-making results in a versatile system that optimizes data routing while
allowing for real-time adaptation.

The use of event-based traffic analysis serves to reduce data duplication and improve
data processing efficiency, while ML algorithms help to categorize the data into various
groups, such as normal or emergency conditions. The proposed technique employs QL
to dynamically alter routing decisions in accordance with real-time data classes and past
performance. This advancement enables optimal resource utilization and reduced latency.
Furthermore, the use of ML-based data categorization enables class-based routing, which
improves network intelligence and customizes routing decisions. The innovative com-
ponent is the interaction of ML classification with QL adaptive routing. This technique
provides real-time optimization, comprehensive traffic management, and empirical confir-
mation in a simulated environment by overcoming the gap between efficient categorization
and dynamic routing. The implementation of this research in smart agriculture has the
potential to increase agricultural yields, cut water use, and improve resource management.
Moreover, the execution of the system is made flexible and scalable through the use of a
software-defined IoT network.

The rest of this paper is organized as follows: Section 2 offers a comprehensive
overview of related work in the fields of SDN-based smart agriculture and event-based
traffic analysis; Section 3 covers the suggested methodology in depth, including the dataset
used for experimentation; Section 4 contains the testing results, along with a comparison
of the various ML methods used; finally, Section 5 concludes the paper by highlighting
upcoming research paths.

Figure 2. Traditional IoT scheme for smart agriculture.

2. Literature Review

ML methods are increasingly being used nowadays. These methods are thought
to be superior to conventional algorithms, especially when handling and analyzing big
data. Researchers are focusing on the application of such techniques in the field of net-
works. ML has found varied uses in the area of SDN, including traffic engineering [17,18],
resource management [19,20], intrusion detection systems [21,22], and other security ob-
jectives [23,24]. In this regard, Akyildiz et al. [25] presented the state of the art for traffic
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engineering in SDN/OpenFlow networks. Mijumbi et al. [26] used ML to adjust virtual
networks and control resources in virtualized networks using a control plane. As a result,
the significance of ML in SDN has increased of late due to its numerous applications.
SDN’s architectural reasoning works better with ML algorithms than with conventional
algorithms. In particular, numerous research findings have used SDN and ML methods
in combination to optimize routing. Furthermore, ML is considered a crucial technology
development for 6G and beyond [27].

Etengu et al. thoroughly evaluated AI-assisted networks for load balancing and green
routing. Their analysis centered on a pragmatic strategy, hybrid SDN, which is typically
utilized for smooth migration from legacy systems [28]. A collection of challenges and
prospective research paths were discussed and a particular framework for handling them
was proposed. Qian et al. provided a succinct overview of a variety of use cases in
communication networks that rely on reinforcement learning, such as network caching and
task sharing [29], although their review barely mentioned the connection between routing
apps and SDN. Mammeri et al. thoroughly examined reinforcement learning approaches
for routing for SDN-based networks as well as for other kinds of networks, providing a very
excellent overview of the evolution of this particular ML technique and its implementation
in communication networks [30].

Jamshidi et al. classified ML-based apps into six networking categories: network secu-
rity, traffic prediction, cloud services, domain name system, application identity, and QoS.
They then selected the best ML algorithms and raw datasets for each of these groups [31].
This approach highlights the key problems and outcomes of these raw data and ML tech-
niques. Zhang et al. showed various uses of ML in resource allocation and routing in
optical networks, though with no particular emphasis on SDN-enabled networks [32].
Boutaba et al. surveyed ML research possibilities and evolution in the area of network-
ing [33], providing a short summary of ML techniques in routing, anomaly detection, traffic
categorization, fault management, QoS/QoE, and intruder detection. The engineering
techniques, approaches, and methods for data collection in network traffic were discussed
as well, and they emphasized the value of online learning, safe learning assistance, and sys-
tem architectures that make it simple to use ML. Xie et al. provided a thorough description
of ML techniques and of the design and operation of SDNs [34] in terms of QoE/QoS,
optimization, resource management, security, and traffic categorization, various ML algo-
rithm types. Zhao et al. reviewed the various networking applications that profit from the
integration of SDN and ML, including a brief discussion of routing optimization [35].

Tamizhselvan and Vijayalakshmi discussed an SDN-based solution named “SDN-
MCHO” designed to improve reliable device routing in IoT contexts, especially for smart
surveillance applications [36]. Their key focus was on leveraging Software-Defined Net-
working (SDN) to optimize routing decisions in IoT networks. Sharma et al. provided
a method called “FCS-fuzzy net” that handles CH selection as well as routing for weed
categorization in IoT contexts [37]. Their study emphasized the use of fuzzy logic, and
relied on a framework known as MapReduce for effective data processing and routing in
IoT networks. Fuzzy logic was used to improve the decision-making process for picking
cluster heads, which play an important role in organizing data routing in IoT systems, with
a specific application focus on weed categorization. Naeem et al. used SDN to provide
a unique solution to energy-efficient routing optimization in the Industrial Internet of
Things (IIoT) [38]. Their major goal was to improve energy efficiency in IIoT networks by
optimizing routing decisions using SDN capabilities. In light of the vital role of energy
management in IIoT, their study is particularly pertinent with respect to industrial appli-
cations, where effective routing can result in considerable energy savings and enhanced
network efficiency.

3. Materials and Methods

We consider the band communication model with the SDN controller having re-
active flow installation mode and open flow enabling the switch, as shown in Figure 3.
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The employment of a controller in this study, particularly in the context of Software-Defined
Networking (SDN), provides numerous major advantages. First of all, it centralizes network
administration, effective decision-making, and allocation of resources. Second, the con-
troller allows for dynamic routing adaption based on data classification, guaranteeing that
data packets are routed appropriately depending on their priority and features. The net-
work’s flexibility improves its efficiency and responsiveness. Furthermore, the controller
optimizes resource allocation, resulting in better resource utilization and lower congestion,
and plays an important role in reducing latency for vital data types and improving data
delivery dependability. The proposed approach contains processes with an ultimate goal
of assisting the agricultural sector through a merged SDN paradigm and AI modeling
for normal, emergency, and data on demand operation. The first step is to collect data
from field sensors for various features. Data acquired from the sensors are preprocessed
before being sent to the ML Classification Layer. After collection, the data must be cleaned
and transformed into a format appropriate for machine learning models. After prepro-
cessing, the data are divided into training and testing sets. The training set is then used
to train an ML model. The model is finally tested on the testing dataset to evaluate the
accuracy. After training and testing, the model may be used to categorize traffic as normal,
emergency, or data on demand. The categorized data traffic is then passed to the SDN
control layer, where the controller uses the Q-learning algorithm to dynamically route
traffic flow depending on the data classifications. The Q-learning algorithm adapts to the
present state of the network and performs actions to optimize a reward signal, such as
prioritization, efficient routing, and bandwidth allocation. The Q-values are modified de-
pending on learned rewards, and the SDN controller alters traffic flow control mechanisms
appropriately. The detailed workflow process is discussed below.

Figure 3. System architecture.

3.1. Data Collection

A network of sensors strategically positioned in the city of Peshawar, Pakistan was
used to collect data. These sensors were meticulously placed to account for a variety of de-
termining factors, such as particular crop requirements, varying environmental conditions,
and the optimum range of each sensor type. To avoid interference, the sensors were equally
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spaced, and were placed in accordance with the specific data requirements. Locations for
sensors were chosen based on their accessibility to installation sites and their cost effective-
ness. Data for six different crop types (wheat, mint, coriander, radish, turnip, and carrot)
were collected over a four-month period from mid-October 2022 to mid-February 2023.
The chosen crops exhibit a variety of preferences with respect to climatic conditions, soil
properties, and other variations. Wheat grows best in loamy soils that are well-drained
and moderate. On the other hand, mint and coriander prefer somewhat warmer and more
humid settings, necessitating well-drained soils rich in compost. Root vegetables, including
turnip, carrot, and radish, are tolerant to a wide range of climate conditions and soil types,
generally preferring loose and well-drained soils.

For full data coverage, a total of twenty-five sensors were deployed within a range of
1000–3000 m over the agricultural region to measure humidity, temperature, wind speed,
leaf moisture, soil temperature, and soil moisture. The sensors were placed for compre-
hensive environmental data gathering while considering the field’s size and the research
objectives. Three sensors were positioned for temperature and humidity monitoring: one
dedicated to wheat, another to mint and coriander collectively, and a third to carrot, radish,
and turnip collectively. Similar combinations were employed for the leaf moisture and
wind speed sensors. Each of these sensor groups was tailored to the specific requirements
of the crops within their collective category. For critical factors such as soil moisture and
soil temperature, additional sensors were dedicated: six to soil temperature and seven for
soil moisture for each crop, with two sensors out of these latter seven dedicated to wheat
due to the larger crop area.

The specialized sensors were carefully selected to guarantee precise and complete
monitoring of critical environmental parameters: capacitive humidity sensors (DHT22,
TZT, China)for humidity levels in the air, resistance temperature detectors (RTD PT100,
MKYD, China) for temperature measurement, anemometers (UT363BT, UNI T, China)
for measuring wind speed and providing information about weather conditions, leaf
wetness sensors (LWS-31, LIYUAN, China) for monitoring the leaf moisture, thermo-
couples (MAX6675, Thermocouple Module + K type Sensor, TZT, China) to measure
soil temperature, and volumetric soil moisture sensors (Smart Electronics Soil Mois-
ture Hygrometer Detection Humidity Sensor, STLXY, China) for the soil moisture con-
tent. The sensors were connected to an Arduino microcontroller (UNO-R3, TZT, China)
for data collection, and the data collected by the sensors was transmitted via Wi-Fi
to a central hub for further processing. The data were then preprocessed to remove
any unusual or unnecessary data before being translated into a suitable format for the
machine-learning models. The preprocessed data were divided into training and test-
ing sets in order to train and assess the performance of several different machine learn-
ing models. The data used in this research can be accessed at the following repository:
https://github.com/researchcsaup/IoTs.git (accessed on 5 August 2023).

3.2. ML Models

ML is a prominent application for artificial intelligence, as it automates the system
and enables it to learn and develop. The ML learning process begins with the observation
of data through cases or observations. These data contain patterns that, when found, can
support more accurate predictions. Using the test dataset, the six alternative ML models
discussed below were employed to train the classifiers, then their classification performance
was assessed.

3.2.1. Logistic Regression

Logistic regression is a binary classification method that employs a logistic function to
describe the likelihood of a binary response variable [39]. The logistic function on which
the algorithm is built converts any input to a number between 0 and 1. This approach is
employed to estimate the likelihood of a specific occurrence.

https://github.com/researchcsaup/IoTs.git
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3.2.2. Decision Trees

Decision trees are a form of supervised learning algorithm commonly used for classifi-
cation issues [40]. They utilize a model of choices and potential outcomes that resembles a
tree. Decision trees operate by recursively dividing the data into smaller groups, which
they do by selecting the feature that best divides the data according to certain parameters,
such as the information gain or the Gini index.

3.2.3. Random Forest

Random forests are an expansion of decision trees founded on the concept of gener-
ating numerous decision trees, each with a random portion of the data, then combining
their findings to enhance overall performance [41]. Random forests are frequently used
for categorization issues, especially when working with higher-dimensional data.

3.2.4. Naive Bayes

Naive Bayes is a class of probabilistic algorithm that uses Bayes’ theorem to forecast
the likelihood of an occurrence happening [42]. In order to determine the likelihood of a
class given a collection of characteristics, the Gaussian Naive Bayes algorithm relies on the
presumption of the features being normally distributed.

3.2.5. Support Vector Machine

Support vector machines are a form of supervised learning algorithm used to solve
classification and regression issues [43]. The SVM algorithm divides data into groups
by locating a hyperplane in a high-dimensional region. The SVM approach is especially
helpful when working with data that are not linearly separable, as it uses a kernel functions
to convert the data to a higher-dimensional space where they can be divided.

3.2.6. K-Nearest Neighbros

K-nearest neighbors is a simple classification method that works by locating the k
nearest data points in the training set with respect to a particular test point and then
predicting the test point’s class based on the majority class of its k-nearest neighbors [44].
KNN is a non-parametric method, which means that it does not make any assumptions
about the distribution of the data.

3.3. Bootstrapping

In the bootstrapping technique, Hello, Feature-Request, and Feature-Reply messages
are exchanged via the Open Flow protocol when the network is switched on. This takes
place between the controller and the switch to obtain the network’s global view of the
controller. The Feature-Request message is periodically generated by the controller through
Hello messages to obtain the switch features.

The switch sends a Feature-Reply message to the controller after receiving the Feature-
Request message; the controller obtains the switch’s capabilities in this process. As dis-
cussed earlier, reactive flow installation mode is assumed. Unlike traditional forwarding
devices, the switches have no awareness in this mode when the network is configured for
routing and first starts running. When the data packet (PackectIn) of a flow arrives at the
switch, the switch immediately looks for the matching entry in its forwarding table; if the
matching flow entry is found, it forwards the said data packet using the corresponding
action in the flow table entry. Otherwise, the switch asks the controller to compute the
action for the flow.

The controller checks the network reachability rule for the flow among source and
destination IPs; whether it is allowed or denied is specified at the central controller next
to the receiving request from the switch. If the flow is denied, the controller installs the
drop action at the switches; otherwise, it computes the primary path, for which various
approaches can be used. When a switch is connected to a controller, the controller peri-
odically sends commands to the devices through the link layer protocol of the discovery
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broadcast domain’s discovery protocol via all interfaces of the switches. A discovery packet
contains the data path identification of the sending host along with the interface informa-
tion that generates the packet for the destination end. Occupied sets of destination device
MAC addresses and the Ethernet type are differentiated from other kinds of packets in the
network by the controller based on the link layer discovery protocol (LLDP). The LLDP is
widely used for discovery of direct links to the next hop in a network (for instance, among
two switches), while the broadcast domain discovery protocol is widely used for device
discovery in the same domain.

3.4. Controller Event Composition in Graph Theory

Event-driven application behavior has the composition of all SDN bindings (controller,
server, forwarding devices); in this paper, we use graph theory to support our proposed
approach. Applications use a hash object (dictionary) to store nodes, attributes, link
properties, communication channel attributes over SSL, and state-of-the-art algorithmic
path computation optimization. Graph composition can be inducted through the following
procedure in the POX controller:

G = (V, E), (1)

where “V” represents the end nodes and forwarding devices in the network and “E” is the
set of the edges of devices and end nodes in the network.

More specifically, a network translated or composed in the format of the graph encom-
passes the following attributes:

V = (MAC, IP, sensor connected, local sensor controller connected, time in network,
event on addition and deletion).

E = (edges among the nodes (sensors), edges among the controller in the network,
edges from switches to the sensor conveyer or controller, time stamp of joining the SDN
network, time of leaving the network).

3.5. Alternative Path Computation in Case of Critical Sensor Traffic

In this process, our control application is intended to find a path with intermediate
forwarding devices that are not included in the controller dictionary record of the installed
flow rule. Critical traffic requires alternate paths to enable speedy control of traffic by the
controller specification and receiving at the server.

OFPFC_ADD is an Open Flow command used for the flow rule installation in the flow
table of the switch. The match fields encapsulated in the flow-adding command are first
compared for a corresponding flow rule entry in the switch. Matching objects are matched:
nw_proto (application layer protocol), match.dl_type (opcode of IPV4, ARP), match.nw_src
(source IP address) and match.nw_dst (destination IP address). The timeout and the priority
values are specified by the controller, along with the flow rule installation command.

3.6. Routing Algorithm

Reinforcement Learning and Software-Defined Networking for Intelligent Routing
(RSIR) introduces a knowledge plane and identifies a routing algorithm using Reinforce-
ment Learning (RL) that takes link state information into consideration when exploring,
learning, and exploiting potential paths during intelligent routing regardless of any dy-
namic traffic transitions. This algorithm makes use of the environment’s interaction, the in-
telligence offered by RL, and the global perspective for managing the network provided by
SDN. It determines and implements optimum routes in the routing table of the data plane
switches in advance.

The RL agent defines the flow pathways using the Q-learning approach. Q-learning is
a method without models that does not require prior knowledge of the reward earned by
performing a given action in a specified situation [30]. The flow of the QL-based routing is
shown in Figure 4.
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Figure 4. Q-Learning algorithm.

3.7. ML Performance Metrics

The performance metrics used for evaluation were the accuracy, precision, recall,
and F1-score, using the following equations.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1-Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(5)
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3.8. Box Plot

A box plot is a statistical graphic that shows the distribution of a dataset in the form
of the median, interquartile range (IQR), and range of the data [45]. Box plots are helpful
for assessing a dataset’s distribution, skewness, and probable outliers. The middle 50% of
the data is indicated by the box itself, the lowest or first quartile (Q1) represents the 25th
percentile, and the highest or third quartile (Q3) indicates the 75th percentile. The line
inside the box shows the median value of the data. The IQR is the difference between
Q3 and Q1. There are two whisker lines that extend from the outside of the box; one
extends from the minimum to the lower quartile and the second from the upper quartile
to the maximum. The outlier values are indicated by the small circles on top of the top
whisker and at the bottom of the bottom whisker. An outlier in the data is a very high
or extremely low value. The boxplot’s top whisker reflects the greatest value in the data
that is not an outlier. The outlier values can be obtained as outlier >Q3+(3 × IQR) and
outlier <Q1−(3 × IQR).

3.9. Performance Evaluation

Mininet 2.2 EEL was used as a network simulator, as it provides good ease of use
for the user and offers formation and easy setting of SDN elements along with sharing,
customization, and testing of the SDN network’s performance. It includes forwarding
device switches, end hosts, links, and interfaces for controller interoperability. Further, it
provides a separate virtual environment for executing various applications for each host.
For control functions, the Pox controller event-driven approach was used. Our network
simulator-based virtual scenario encompasses the resources of an HP 450 G5, Core i7-8250U,
16GB of physical memory, and Linux distribution (Ubuntu) operating system.

The topology of our network consists of 25 sensors with the same geolocation for mea-
suring humidity level, temperature, wind speed, leaf moisture, soil temperature, and soil
moisture. More precisely, each sensor contributor has an IP address. The topology consists
of ten Open Flow-Enabled switches which are commanded by the Pox controller for reach-
ability specification and installation of flow rules. These forwarding devices act upon the
received commands instantaneously.

4. Results and Discussion

The results of the proposed number of sensor communications are discussed for
various parameters i.e., sensor nodes, protocol, controller, simulation time, packet time,
traffic, and total calculation time. The parameters used for the simulations are shown in
Table 1.

Table 1. Simulation parameters.

Sr. No Parameter Value

1 Number of Sensors 25
2 Protocol OpenFlow
3 Controller Pox
4 Simulation Time Per Iteration 1 min
5 Packets per iteration 10,000
6 Packet Size 512 bytes
7 Bandwidth 10 Mbps
8 Traffic UDP
9 Shortest Route Calculation RSIR [46]

Various evaluation metrics, such as accuracy, precision, recall, and F1 score, provided
in Equations (2)–(5), were used to evaluation the models’ performance, as mentioned in
Table 2. Notably, the RF and DT models outperform the other ML models in terms of accuracy.
A graphical presentation of the results for all the ML models is shown in Figure 5. Overall,
the RF and DT models perform well across all measures, indicating their ability to accurately
categorize data into the required categories. The performance of the KNN and SVM models is
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low compared to that of the LR and NB models, which in turn perform less effectively than
the RF and DT models.

Table 2. Performance evaluation of the proposed technique and individual classifiers.

Methods Accuracy Precision Recall F1 Score

LR 0.81 0.52 0.47 0.48
NB 0.84 0.68 0.73 0.65

KNN 0.93 0.82 0.85 0.83
SVM 0.94 0.82 0.85 0.83

RF 0.99 0.99 0.97 0.98
DT 0.99 0.99 0.97 0.98

Figure 5. Comparative analysis of various ML models.

The box plot results for all the features are presented in Table 3 and Figures 6 and 7.
A detailed analysis of the results for each feature is provided below.

Humidity Level:

The mean humidity level is 28, with 75% of the data being less than 31 and 25%
being less than 26. The maximum humidity level is 52, the minimum humidity level is 24,
and there are 106 outliers. The IQR is 5, with 38.5 being the highest outlier and 18.5 being
the lowest outlier.

Temperature:

The mean temperature is 20, with 75% of the data being less than 23 and 25% being
less than 18. The maximum temperature is 32, the minimum temperature is 8, and there
are twelve outliers. The IQR is 5, with 30.5 being the highest outlier and 18.5 being the
lowest outlier.

Wind Speed:

The mean wind speed is 9, with 75% of the data being less than 10 and 25% being
less than 8. The maximum wind speed is 20, the minimum wind speed is 7, and there are
98 outliers. The IQR is 2, with 13 being the highest outlier and 5 being the lowest outlier.

Leaf Moisture:

The mean leaf moisture is 86, with 75% of the data being less than 92 and 25% being less
than 84. The maximum leaf moisture is 97, the minimum leaf moisture is 66, and there are
no outliers. The IQR is 8, with 104 being the highest outlier and 72 being the lowest outlier.

Soil Temperature:

The mean soil temperature is 17, with 75% of the data being less than 19 and 25%
being less than 15. The maximum soil temperature is 24, the minimum soil temperature is
12, and there are no outliers. The IQR is 4, with 25 being the highest outlier and 9 being the
lowest outlier.
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Soil Moisture:

The mean soil moisture is 13, with 75% of the data being less than 14 and 25% being
less than 12. The maximum soil moisture is 15, the minimum soil moisture is 6, and there
are no outliers. The IQR is 2, with 17 being the highest outlier and 9 being the lowest outlier.

Figure 6. Comparative analysis of the data distribution for various parameters.

Table 3. Comparative analysis of the data distribution for various parameters.

Features Min
Value

25th
Percentile Median 75th

Percentile
Max

Value
No of

Outliers IQR Lower
Outlier

Higher
Outlier

Humidity Level 24 26 28 31 52 106 5 18.5 38.5
Temperature 8 18 20 23 32 12 5 18.5 30.5
Wind Speed 7 8 9 10 20 98 2 5 13

Leaf Moisture 66 84 86 92 97 0 8 72 104
Soil Temperature 12 15 17 19 24 0 4 9 25

Soil Moisture 6 12 13 14 15 0 2 9 17
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Figure 7. Data distribution analysis for the individual parameters.

Figure 8 presents a comparison of traffic types based on their average delay charac-
teristics. Because of the high frequency of data transfers in this category, “normal traffic”
has a significantly larger average latency in this context. The increased frequency of
regular data packet transmission causes network congestion, which contributes to an
increase in the average delay time. When “critical packet transmission” is considered,
the scenario changes, resulting in a path with less traffic. As this path encounters less
congestion, there are shorter wait times in this scenario compared to the usual traffic
category. This difference in latency can be related to differences in traffic flow and
packet reception frequencies, where normal traffic consists of a continuous flow of data
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packets; critical packet transmission comprises less traffic, and as a result, less congestion
and shorter delay periods.

Figure 9 shows the average packet loss encountered by the three data categories of
emergency, normal, and on-demand. Notably, the mean delays for emergency traffic are
consistently shorter than those for regular and on-demand traffic. The reason for this
disparity is that the RSIR algorithm is used for emergency data. RSIR prioritizes the use of
shorter and less congested paths for critical data packets. As a result, critical data packets
experience fewer delays and less packet loss. On the other hand, normal and on-demand
traffic, which may use alternative routing algorithms, tend to face significantly longer
delays, and as a result experience higher average packet loss.

Figure 8. Average delay throughout the week.

Figure 9. Average packet loss throughout the week.

Figure 10 represents the average throughput over the course of a week for the three
data traffic types of emergency, on-demand, and routine. It can be noticed that critical
and on-demand data traffic follow a unique pattern defined by a broader dispersion of
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flows over the network. When compared with normal data flow, this phenomenon results
in the use of a higher number of comparatively less-used channels. Surprisingly, despite
the decreased packet loss and mean delay encountered by critical and on-demand data,
the mean throughput for each category appears to be lower than for normal traffic. It is
worth mentioning that critical and on-demand data receive advantages such as decreased
data loss and shorter delays as a result of their more effective routing. The diversification of
their flows across multiple network channels may result in less optimized use of available
bandwidth, resulting in reduced bandwidth. This highlights the complexities of routing
schemes and their influence on network efficiency.

Figure 10. Average throughput throughout the week.

5. Conclusions

In this research, we have presented an event-based data analysis technique for
smart agriculture systems using the Internet of Things (IoT) based on machine learning
(ML) models such as Logistic Regression (LR), Random Forest (RF), k-Nearest Neigh-
bours (KNN), Support Vector Machine (SVM), Naive Bayes (NB), and Decision Tree
(DT). The models’ accuracy was used to evaluate their performance for features such as
humidity level, temperature, soil moisture, wind speed, etc., finding acceptable levels
of accuracy. The proposed approach makes use of software-defined networking (SDN)
capabilities to identify and manage essential network events. A software-defined net-
working (SDN) controller and the Q-learning algorithm are then used to route the data
traffic. Our results indicate that the proposed technique can efficiently manage the data
flow. The usefulness of merging ML and SDN for intelligent routing and network perfor-
mance optimization is demonstrated by this research. Having explored the benefits of
utilizing advanced algorithms for data classification and routing in a software-defined
IoT network, the scalability and application of this approach in larger or heterogeneous
networks may be an interesting area for future research.
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