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Abstract—Malware research has predominantly focused on
Windows and Android operating systems, leaving Mac OS
malware relatively unexplored. This paper addresses the growing
threat of Mac OS malware by leveraging Machine Learning
(ML) techniques. We propose a novel system for Mac malware
detection that extends beyond traditional executables to include
various Mach-O file types. Our research encompasses feature
selection, data sets, and the implementation of ML classifiers.
We meticulously evaluate system performance using Precision,
Recall, F1 score, and Accuracy metrics. Our findings highlight
the challenges and opportunities in Mac malware detection and
provide valuable insights for future research.

Index Terms—Mac OS Malware Detection, Mach-O Files,
Malware Detection, Static Malware Analysis.

I. INTRODUCTION

Malware detection has traditionally been focused on Mi-
crosoft Windows and Android operating systems due to their
historical dominance in the desktop and mobile markets.
Much of the research in this domain has centred on these
platforms, leveraging Machine Learning (ML) algorithms such
as Decision Trees and Support Vector Machines for malware
detection. However, these models’ choice of data features can
vary significantly between different operating systems and file
formats. Typically, ML models for malware detection have
depended on static analysis features related to the Windows
Portable Executable (PE) file format, Windows libraries, and
Windows system [1].

Contrary to popular belief, Apple’s Mac OS has emerged
as the second most popular desktop operating system, with a
market share estimated at 17 % in March 2023 [2]. In January
2023, Statista estimated Mac OS to hold a 15 % share of
the desktop market [3]. Despite its popularity, Mac OS has
faced security challenges, and some security researchers argue
that it may be less secure than Windows [4], [5], [6]. The
volume of Mac-specific malicious programs and potentially
unwanted software, such as adware, has been rising, outpacing
the growth rate of Windows-focused threats. A researcher at
Malwarebytes reported that the rate of virus detections on
Macs was more than double that on Windows devices in
2019 on a per-device basis [7]. Apple Computer’s Senior
Vice President of Software Engineering acknowledged the
increasing challenge of Mac malware in 2021, emphasizing
the need for improved security measures [8].

In the realm of ML, malware detection approaches can be
broadly categorized as either supervised or unsupervised. In
supervised learning, the training dataset includes input and
corresponding output labels. Conversely, unsupervised learn-
ing operates solely on input data, typically used for clustering
similar objects. Previous research has demonstrated that super-
vised learning outperforms unsupervised methods for malware
detection [9]. This paper focuses on supervised learning,
utilizing known malware samples for detection. Additionally,
this research focuses on static analysis, which involves the
examination of files stored on disk without executing their
code. Given the challenges and risks of executing malware
for machine learning purposes, static analysis is a safer and
more practical approach. Static analysis of disk-based files
presents its own set of challenges, as attackers employ various
techniques to evade detection [10] [11]. Recent advancements
in cloud-based security and big data analytics have elevated
static malware detection despite historical limitations [12].
Suspicious samples can now be analyzed centrally, improving
the detection of malware files. However, attackers have also
evolved their tactics, transitioning to fileless malware ap-
proaches [13]. This research aims to identify optimal features
for malware detection using Machine Learning, specifically
targeting Mac OS malware. The primary goal is to maximize
the malware detection rate while minimizing false alarms.
Previous works in this domain have predominantly focused on
metadata and import tables of Mach-O executables, overlook-
ing critical factors such as strings, entropy, and file size. The
research will involve a trade-off analysis between the number
of features, computation time, false positive rates, underfitting
risks, and overfitting risks.

The rest of the paper is organized as follows. Section II
surveys related studies in the literature. The proposed solution
and the performance evaluation are explained in Section III
and Section IV, respectively. We conclude the paper in Sec-
tion V.

II. RELATED WORK

In this section, we review notable contributions from the
existing literature, shedding light on the methodologies and
insights gained from previous work. Schultz et al. laid a foun-
dation for this research by proposing a data mining approach



to identify malware [14]. Their work focused on Windows PE
and achieved remarkable results by employing features related
to loaded Dynamically Linked Libraries (DLL), functions
called from DLLs, and the frequency of function calls. This
pioneering research set the stage for subsequent investiga-
tions in the field. Ucci et al. conducted a comprehensive
survey of sixty-four papers dedicated to ML for detecting
malicious Windows executables [15]. Their survey highlighted
key findings, including the challenges posed by obfuscation,
packing, and encryption in static analysis, the effectiveness of
opcodes, Application Program Interfaces (APIs), and System
Calls as significant features, and the imbalance problem in
dataset composition. The authors emphasized the complexity
of handling imbalanced datasets in malware detection due to
the prevalence of non-malware instances. Another research
noted the importance of functions in the IAT, offering valuable
insights into detecting malware [16]. However, attackers can
exploit compiler-generated functions, making feature selection
and data analysis complex.

In the realm of Mac OS malware detection, research has
been relatively limited compared to Windows-based studies
[17]. However, a work contributed to early research on Mac
malware detection using ML [18]. This approach involved
feature extraction from Mach-O executable headers and load
commands, focusing on metadata and structural features. Ro-
tation Forest and Random Forest algorithms proved effective
for this task, marking an early success in Mac malware
detection through ML. Subsequent researchers built upon this
foundation by exploring features specific to Mac OS malware
detection. Pajouh et al. utilized metadata features from Mach-
O executables and introduced features related to DLLs and
their probabilities [5]. Their approach addressed the data
imbalance issue using the Synthetic Minority Oversampling
Technique (SMOTE) but noted increased false positive rates.
The research underscored the relevance of library features in
classification. Sahoo et al. emphasized the significance of the
number of dynamically loaded libraries (LoadDYLIB) [19],
while Gharghasheh et al. favoured ensemble classifiers for en-
hanced performance [20]. Chen et al. furthered the exploration
of Mac malware detection, emphasizing the importance of
Decision Trees in achieving high accuracy [21]. Their research
retained metadata features and incorporated individual features
for loaded DLLs, highlighting various approaches within this
research domain.

Moreover, n-gram features, which involve sequences of
objects such as instructions, bytes, file loads, system calls, and
string characters, have been widely explored. However, their
effectiveness is debated, with some researchers suggesting
that obfuscation can render them less reliable. Overfitting and
diminishing returns with larger n-grams have been observed
[22]. Strings have consistently shown promise as features for
malware detection, with their presence or absence serving
as valuable indicators. The issue of handling large numbers
of strings has been addressed through hashing techniques,
reducing feature dimensionality while preserving relevancy
[23]. These insights from existing literature provide a solid

foundation for our research endeavours, guiding our pursuit
of enhanced Mac OS malware detection through effective
machine learning models.

III. PROPOSED SYSTEM MODEL

In this section, we present the design and implementation of
our proposed system for detecting Mac malware. Our approach
goes beyond traditional Mac malware detection, encompassing
various types of Mach-O files, including executables, libraries,
object code, and core dumps. Previous research primarily
focused on Mach-O executables, but our system aims to
address supply chain attacks that modify system files and
libraries, expanding the scope of detection. For instance, the
SeaFlower malware employed a modified dynamic library to
steal information [24], while the XCodeGhost malware altered
object files within Apple’s XCode development environment to
inject malicious code [25]. To achieve this broader coverage,
we analyzed all Mach-O files identified by their magic bytes,
which include 0xCAFEBABE, 0xCFFAEDFE, 0xCEFAEDFE,
0xFEEDFACE, 0xFEEDFACF, or 0xBEBAFECA.

A. Data Sets

We collected malware samples from various sources to train
and evaluate our Mac malware detection system. These sources
include:

1) Patrick Warder’s Objective See data set, curated over
eight years and widely recognized in the research com-
munity [26].

2) MalwareSamples provided samples uploaded in Febru-
ary 2021 and used in prior research [27].

3) The Contagio data set, published by Mila Parkour in
2013, with additional samples over the years [28].

4) MalwareBazaar from Abuse.ch, a live repository focus-
ing on recent samples [29].

We excluded the VirusShare repository due to its limited
number of Mach-O executables, and three malware samples
(Electrum, ElectrumStealer, and InstallCore) were excluded
due to archive/zip errors.

After addressing duplicates and verifying the samples using
McAfee and VirusTotal, our consolidated malware test set
included 852 samples. We also set aside 47 samples as a
validation set.

Table I provides an overview of the sample distribution
among different repositories and architectures.

B. Feature Selection

Feature selection is a crucial aspect of our Mac malware
detection system. We initially considered using n-grams for
feature extraction but opted for a more effective approach
based on strings. Strings offer several advantages: simplicity,
efficient parsing, and resilience against exponential feature
growth. To extract strings, we utilized the GNU Binutils 2.4
strings utility.

Our feature selection process involved identifying suspi-
cious strings that were prevalent in malware but rare in
goodware. We began with a set of 984 suspicious strings,



TABLE I
FILTERED DATASET AFTER REMOVING DUPLICATE MALWARE AND

VERIFICATION USING MCAFEE/VIRUSTOTAL

Repository Total Universal
Binary

64
Bit

32
Bit

Objective See 239 52 154 33
Malware Samples 479 15 429 35
Contagio 101 16 33 52
MalwareBazaar 94 17 77 0
Consolidated Malware Test Set 852 85 640 127

Malware Validation Set 47 8 39 0
Goodware x64 17968 15561 2359 48
Goodware M2 14365 12206 2092 67

which appeared in more than 10 % of malware samples and
less than 5 % of goodware samples. However, after initial
testing, we revised our feature set to include 1693 suspicious
strings.

Additionally, we considered metadata features extracted
from Mach-O files. These included entropy, the number of load
commands (nlcs), the size of load commands (slcs), cputype,
subtype, filetype, flags, and file size. We normalized these
features and used them as part of our feature set.

To capture the relative presence or absence of suspicious
strings in a sample, we introduced a calculated feature called
“ratio”. This feature represents the number of suspicious
strings found in a file divided by the maximum number of
suspicious strings, which is 1693.

Table II provides an overview of the average values for se-
lected features, highlighting the differences between malware
and goodware.

TABLE II
THE AVERAGE VALUES OF MACH-O FILES

Feature Goodware Average Malware Average
Entropy 4.338 5.599
Suspicious Strings (of 984) 22.2 137.8
Suspicious Strings (of 1693) 19.7 157.0
File Size 2.3MB 2.1MB
Number of Load Commands 27.35 23.34
Size of Load Commands 3141 2926

C. Implementation

Our system for Mac malware detection was implemented on
an Ubuntu 64-bit Arm Server (version 22.04.2). We collected
goodware samples from an M2 Max MacBook Pro and an Intel
Core i9 MacBook Pro, running Mac OS Ventura 13.5. These
laptops were in typical student configurations with various
software applications and development tools.

We utilized Python 3.11.4, Scikit-Learn 1.3.0, and Numpy-
1.25.2 for data analysis on an M2 Max MacBook Pro. Our
machine learning algorithms included nine different classi-
fiers: K-Nearest Neighbors (KNN), Decision Tree (DT), Ran-
dom Forest (RF), Stochastic Gradient Descent (SGD), Naive
Bayes (NB), Gradient Boosting (GB), Multi-Layer Perceptron
(MLP), Support Vector Machine (SVM), and Bagging Classi-
fier (BAG).

These classifiers were trained and evaluated using 5-fold
cross-validation on our dataset. We also conducted multiple
runs for some classifiers to account for randomness and
averaged the results.

D. Metrics

We assessed the performance of our Mac malware detection
system using several metrics, including Precision, Recall, F1
score, and Accuracy. The equation of the metrics can be
seen in Equations 1, 2, 3, and 4, respectively. We employ
the following variables in the equations: TP to denote true
positives, TN to signify true negatives, FP to represent false
positives, and FN to stand for false negatives. The F1 score
encompasses Precision and Recall, offering a harmonious per-
formance metric. Precision measures the rate of false positives,
while Recall measures the rate of true positives. Validation
Set Accuracy indicates the system’s performance on “newer”
malware samples.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

To further illustrate the trade-offs between true positive
rates and false positive rates for our RF classifier, we created
Receiver Operating Characteristic (ROC) curves, as can be
seen in Fig 1 and Fig 2. Our proposed system combines care-
fully chosen characteristics and machine learning classifiers to
detect Mac malware. By analyzing various types of Mach-O
files and utilizing a diverse dataset, we aim to enhance the
detection of Mac malware, including supply chain attacks that
target system files and libraries. Our system’s performance is
rigorously evaluated using various metrics and cross-validation
techniques.

IV. PERFORMANCE EVALUATION

In this section, we delve into the performance assessment
of our malware detection models. We meticulously evaluate
their proficiency in identifying malicious software, specifically
emphasising their capability to detect previously undiscovered
malware, as exemplified by the validation dataset. It is crucial
to highlight that our detection systems operated without any
prior awareness of the validation malware, all of which was
sourced within the past 18 months. To gauge the effectiveness
of our models, we conduct a comparative analysis against
McAfee, a widely used commercial antivirus solution.

We began our evaluation by testing the KNN classifier
with various numbers of neighbours ranging from 1 to 10.
The KNN models exhibited moderate F1 scores, but their
validation accuracy on new malware averaged only 43 % for
M2 goodware and 36 % for x64 goodware. These subpar



TABLE III
THE PERFORMANCE RESULTS FOR M2 MAC MODEL

Features DT SGD RF MLP GB SVM BAG
TN 14138.6 14187.3 14279.1 14219.1 14230.0 14223 14240.3
FP 226.4 177.7 85.9 145.9 135.0 142 124.7
FN 70.5 103.5 97.5 92.0 106.6 212 81.6
TP 781.5 748.5 754.5 760.0 745.4 640 770.4
Precision 0.7754 0.8081 0.8978 0.8389 0.8467 0.8184 0.8607
Recall 0.9172 0.8785 0.8856 0.8920 0.8749 0.7511 0.9042
F1 Score 0.8404 0.8419 0.8916 0.8647 0.8605 0.7883 0.8819
Validation Accuracy 0.6745 0.6191 0.6191 0.6447 0.5319 0.7021 0.6213

TABLE IV
THE PERFORMANCE RESULTS FOR X64 MAC MODEL

Features DT SGD RF MLP GB SVM BAG
TN 17455.4 17745.2 17854.3 17735.1 17723.5 17728 17631.4
FP 512.6 222.8 113.7 232.9 244.5 240 336.6
FN 130.3 135.1 170.7 109.8 184.4 194 153.6
TP 721.7 716.9 681.3 742.2 667.6 658 698.4
Precision 0.5847 0.7629 0.8570 0.7612 0.7319 0.7327 0.6748
Recall 0.8471 0.8414 0.7996 0.8711 0.7835 0.7723 0.8197
F1 Score 0.6918 0.8002 0.8273 0.8124 0.7569 0.7520 0.7402
Validation Accuracy 0.7085 0.6213 0.6574 0.6319 0.6170 0.6808 0.6128

TABLE V
IMPACT OF FEATURES ON F1 SCORE AND VALIDATION PERFORMANCE

(RESULTS BASED ON THE M2 MAC DATASET)

Feature 984
Strings

1693
Strings SSE SSE+2 SSE+6 SSE+6

+Ratio
F1 0.8140 0.8582 0.8688 0.8710 0.8912 0.8916
Validation 0.6191 0.5913 0.6978 0.6894 0.6894 0.6191

results can be attributed to the class imbalance, with a ratio of
16.8:1 for M2 and 21:1 for x64, as KNN’s performance tends
to degrade under such conditions. Additionally, due to the high
dimensionality of our feature space and its sparsity, finding the
nearest neighbours became challenging, a phenomenon known
as the “curse of dimensionality.” The NB Gaussian classifier
performed poorly, which was expected due to its known
limitations with the class imbalance and feature independence
assumption, which did not hold true for our dataset.

We also conducted tests using smaller subsets of goodware
samples (1000, 3000, 4000 samples), which showed promising
accuracy against new and test-set malware. However, these
results did not accurately replicate the challenge of false
positives that arise from a large, realistic dataset with noise.
Furthermore, we observed that the F1 scores for M2 Mac
models consistently outperformed those for x64 Mac models.
This discrepancy might be influenced by the larger quantity
of x64 goodware, potentially biasing the models towards
goodware. Since Macs generally employed an Intel-based
architecture until 2021, most malware is created for the Intel
architecture, which raises the possibility of another explanation
relating to the Instruction Set Architecture. Less than 11 %
of the malware in the training set used ARM64 instructions,
indicating that M2 ARM-based goodware is more recognisable
from earlier malware than x64 Intel-based goodware.

Using two separate goodware datasets and the malware set,

Fig. 1. Receiver Operating Characteristic Random Forest x64 (17968 Good-
ware - 852 Malware)

Fig. 2. ROC Random Forest M2 (14279 Goodware - 852 Malware)



Fig. 3. Impact of added features on F1 score and validation malware detection. (Analysis conducted using the M2 dataset.)

TABLE VI
TOP 25 FEATURES MOST FREQUENTLY OCCURRING

IN 20 DECISION TREES

Feature Appearances
in 20 Trees Remarks

entropy 207 external
filesize 168 external
nlcs 92 metadata
ratio 57 metadata
cputype 57 metadata
slcs 55 metadata
flags 52 metadata

program vars 51 string
filetype 44 metadata
1N0- 40
/Users/ 34 directory path
/usr/lib/libgcc s.1.dylib 30 gcc standard library
@ system 26 system call

system 21 system call
setuid 21 set user id

objc nlclslist DATA 21 objective-c class list
subtype 20 metadata
c—w{ 20
conn 20 ?network related
com.zoenzo.iMyMac 20 malicious url
coin 20 ?cryptocurrency
Reliance 20
L$hL 20
/usr/lib/libiconv.2.dylib 20 character set translator
/bin/bash 20 shell

we compared the performance of the nine machine-learning
techniques. Table III and Table IV present an overview of the
relative performance of these algorithms concerning F1 scores
on the training data and the detection of validation malware.
While a high F1 score on the training data is desirable, our
primary goal is to detect previously unseen malware from

the validation set. Many of the algorithms displayed similar
performance levels, with detection rates of validation malware
ranging from 60 % to 70 % and F1 scores in the 0.8 to 0.9
range. Based on this data, RF emerged as a strong candidate
due to its consistent performance between the two datasets,
high F1 scores (indicating low false positives), and its ability
to detect validation malware on par with other detectors.

We conducted an analysis of the feature impact on the
detection models. Fig. 3 and Table V demonstrate the impact
of adding various features on the F1 scores and validation
accuracy using the M2 Mac dataset. We started with 984 sus-
picious string features and observed an increase in the F1 score
when expanding the feature set to 1693. However, subsequent
iterations, which included features like File Size, Entropy, nlcs,
slcs, cputype, subtype, filetype, and flags, did not consistently
result in improved detection of newer validation malware.
Some features, such as cputype and subtype, performed well
on the training malware set but caused false negatives when
applied to the validation set, particularly for ARM64 malware.
This underscores the challenges in static malware analysis
posed by the evolution of hardware and software.

Table VI presents the 25 most popular features that appeared
in the DTs. These features include entropy, filesize, ratio, and
various internal metadata elements, all providing significant in-
formation gain for malware detection. Many strings associated
with malware also appeared in the list. Interestingly, only 442
of the 1693 suspicious string features appeared in any of the
20 DTs, suggesting that some string features could be pruned
from the datasets without affecting detector performance.

Our detectors performed competitively with commercial
antivirus solutions when tested against historical malware.
However, their performance dropped by 10 % - 15 % when



faced with newer validation samples. To enhance their capa-
bilities, our detectors would benefit from additional malware
samples, especially those representing newer ARM64 mal-
ware. Furthermore, feature sets for malware detection should
be dynamic, requiring continuous updates and tuning as both
malware and goodware evolve over time. This comprehensive
performance evaluation provides invaluable insights into the
strengths and weaknesses of our developed models, contribut-
ing to the advancement of static malware analysis techniques.

V. CONCLUSION

This paper addresses the pressing need for effective Mac
malware detection by developing a robust system that lever-
ages Machine Learning. Our approach goes beyond con-
ventional executables to include a diverse range of Mach-
O file types, broadening the scope of detection to supply
chain attacks. We extensively selected features and evaluated
nine ML classifiers, revealing Random Forest as a promising
candidate. Our results demonstrate competitive performance
with commercial antivirus solutions against historical malware.
However, the detection of newer validation samples poses
challenges, necessitating continuous model updates and the
inclusion of more recent malware samples, especially those
targeting ARM64 architecture. We conclude that our research
provides valuable insights into enhancing Mac malware detec-
tion and contributes to the evolution of static malware analysis
techniques. Future work can explore reasons behind low
detection rates for newer samples, incorporate more malware
samples, fine-tune ML algorithms, address class imbalance,
optimize features, and consider iOS devices. These directions
promise to advance Mac OS malware detection and bolster
security.
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