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Abstract—Speaker Recognition Systems (SRSs) are 

becoming increasingly popular in various aspects of life due 

to advances in technology. However, these systems are 

vulnerable to cyber threats, particularly adversarial attacks. 

Traditional adversarial attack methods, such as the Fast 

Gradient Sign Method (FGSM) and Projected Gradient 

Descent (PGD), are designed for a white-box setting where 

attackers have complete knowledge of the inner workings of 

the target systems. This limits the practicality of these 

attacks. To overcome this limitation, we propose a new 

attack model that uses a neural network to generate 

adversarial examples directly, without the need for full 

knowledge of the recognition model in a target SRS. In 

addition, we have designed a novel loss function to balance 

the effectiveness and confidentiality of adversarial examples. 

Our new approach was evaluated against SincNet, a state-of-

the-art SRS. Experimental results show that our approach 

achieves outstanding performance, with the best attack 

success rate of 99.83% and the best Signal-to-Noise Ratio 

(SNR) value of 41.30. 

Keywords—speaker recognition systems, adversarial 

attack, adversarial example, information security 

I. INTRODUCTION 

Voice is the most direct and fast means for humans to 
communicate and exchange information. It is also a 
behavioral biometric that contains information about 
human identity, such as gender, age, and emotion [1]. 
Research has found that it is possible to distinguish 
different people by their voices because the information in 
each person’s voice is completely distinct from each other 
[2]. Just like fingerprints, voiceprints can also be used as a 
marker of a person’s identity and have become an 
important means of identity authentication. Therefore, 
Speaker Recognition Systems (SRSs) have been developed 
to identify people based on the unique characteristics of 
their voice, and have been embedded into various smart 
devices, nowadays. 

However, with the widespread use of SRSs, security 
threats against this technique have gradually emerged. To 
our knowledge, voice conversion attacks [3], replay attacks 
[4] and synthesis attacks [5] have been the focus of 
previous offensive security research works before Deep 
Neural Networks (DNNs) were introduced to build SRSs 
in recent years. Since Szegedy et al. [6] discovered the 
vulnerability of DNNs, the research interest in attacks on 
deep neural networks has been growing. Nowadays, 

adversarial attacks against DNN-based SRSs [7, 8] have 
gained increasing attention from researchers. This type of 
attack can be broadly described as a perturbation that 
changes the classification of a recognition model, making 
the smart device believe that a certain voice of Alice 
belongs to Tom. This is because the original voice of Alice 
has been processed by attackers, who fine-tune some 
information about the voice and control these changes 
from being noticed by people. Chen et al. [9] summarize a 
variety of attack purposes. For example, someone illegally 
accesses a device without authorization or hides identity 
information when illegally accessing the device, or limits 
someone’s right by forging voice information. This type of 
attack can cause irreversible damage to personal safety and 
property. 

In the image domain, there are gradient-based methods 
for generating adversarial examples, such as L-BFGS [6], 
the Fast Gradient Sign Method (FGSM) [2], iterative 
FGSM (i-FGSM) [10], or Project Gradient Descent (PGD) 
[11], etc. Inspired by recent studies on adversarial attacks 
in the image domain, some scholars have begun to focus 
on the generation of adversarial audio examples. The 
method of generating adversarial examples in the image 
domain can be migrated to the audio domain. Just like in 
the image domain, in the audio domain the adversarial 
attacks are also categorized as white-box, black-box, and 
gray-box attacks. For white-box attacks [12, 13, 14] to 
achieve good performance, they require the adversary to 
acquire crucial knowledge such as the gradient and training 
parameters of the attacked target model. Therefore, these 
attacks are not applicable in actual scenes because the 
knowledge of the target model is difficult to obtain, 
especially from commercial systems that are often not 
released to the public.  

Gray-box adversarial attacks have become a popular 
research topic due to the challenge of obtaining model 
information. Compared to white-box attacks, gray-box 
attacks are more practical and do not require complete 
information from the target model. Li et al. [12] presented 
a novel adversarial examples generation method that 
referenced the generating approach [15] and successfully 
introduced the generation of adversarial examples in the 
image domain to the audio domain. Inspired by their work, 
we propose our adversarial attack method, where we 
borrow the structure of the network [16] from the image 
domain and apply our newly designed perturbation 



generator to directly transform the input signal waveform 
into adversarial audio examples for real-world attack 
scenarios. Furthermore, a new type of loss function is 
designed to guarantee a good balance between the quality 
of adversarial examples and the attack success rate. Our 
method ensures that the adversarial examples are similar to 
the original examples in terms of hearing, so the attack is 
not easy to detect by humans. 

The main contributions of this research are:  

• A new perturbation generator in which an attacker 
directly converts the input raw signal waveform 
into adversarial examples and uses them to attack 
the advanced SRSs with a higher attack success 
rate. This generator has also been shown to have 
the potential in real-time attack. 

• A new loss function that can optimize the 
perturbation generator to balance the effectiveness 
and imperceptibility of the adversarial examples. 
This helps ensure that adversarial attacks are 
successful. 

In this paper, we conducted experiments to test our 
proposed attack method against the well-trained state-of-
the-art SRS called SincNet, using the TIMIT dataset. The 
results demonstrate that our method achieves an 
impressive attack success rate of 99.83%. Additionally, the 
best signal-to-noise ratio value reaches 41.30. 

The rest of the paper is structured as follows. The 
related work on adversarial attacks is summarized in 
Section II. Section III provides our adversarial attack 
framework on a speaker recognition system. Section IV 
lists the experimental evaluation. Section V concludes this 
paper.  

II. RELATED WORK 

Smart devices can be controlled through voice 
commands with SRSs installed in them. These systems 
identify users through valid voice information [17], 
making it convenient for those who cannot type and 
speeding up the identity verification process. SRSs are 
now commonly used in everyday life, and many smart 
devices featuring them as an identity verification method. 
The identity vector (i-vector) [18] based on the Gaussian 
Mixture Model (GMM) [19] is typically used in existing 
speaker recognition models. However, recent studies show 
that SRSs are now incorporating DNNs, where acoustic 
features are fed into neural networks to generate deep 
embeddings. 

A new end-to-end CNN-based SRS, SincNet [20], 
implements band-pass filters with parametrized sinc 
functions. Unlike previous SRSs, SincNet uses neurons in 
the hidden layer to directly extract feature information 
from the original signal waveform instead of relying on 
hand-crafted features. We conducted a performance 
assessment of our attack method using SincNet as a target 
model. 

Adversarial attacks are classified as white-box, black-

box, and gray-box attacks based on the amount of 

information the attacker has about the target model [21, 

22]. 

A. White-box Attack 

To attack a target model, attackers can gain complete 
information about its internal structure, parameters, and 
defense mechanisms. One common method is to use 
gradients to design attack strategies. For example, some 
attackers use an approach under a white-box scenario to 
attack SRS [7, 8]. Other methods, such as the Adaptive 
Decay Attack (ADA) [23], focus on improving the 
confidentiality of adversarial examples. Furthermore, 
universal perturbation can be generated using internal 
information of the target model [13, 14, 24]. Then, a well-
trained neural network called the Adversarial 
Transformation Network (ATN) that can directly transform 
input data into adversarial examples. However, it is 
important to note that launching such attacks heavily relies 
on having a lot of knowledge about the victim model, 
which is relatively impractical in real-world scenarios. 

B. Black-box Attack 

In a black-box attack, the attacker has no access to 
information about the victim and can only make 
assumptions about the internal workings based on its input 
and outputs. Researchers have proposed various methods 
to generate adversarial examples, such as SirenAttack by 
Du et al. [25] that uses the Particle Swarm Optimization 
(PSO) algorithm, and the optimization-based approach 
with constraints proposed by Chen et al. [26, 27, 28]. They 
also developed a threshold estimation method and a 
gradient estimation algorithm based on Natural Evolution 
Strategy (NES) to generate adversarial examples. Another 
technique is CC-CMA-ES by Zheng et al. [29], which uses 
a Cooperative Co-evolution (CC) framework in 
conjunction with the Covariance Matrix Adaptation 
Evolution Strategy (CMA-ES) and has been successful 
against commercial systems in an absolute black-box 
environment. Deng et al. [30] recently proposed a 
decision-based method to attack SincNet that is effective in 
real-world scenarios. However, in a black-box setting, 
obtaining internal information about the victim model 
requires numerous queries, making black-box attacks a 
significant challenge. 

C. Gray-box Attack 

In this type of attack, the attackers only access partial 
information and cannot see the interior of the target. 
Confidence scores and feature representations may be 
obtained in such attacks [22, 31]. Li et al. [32] developed a 
generative network that can create universal adversarial 
perturbations in a gray-box environment. Furthermore, 
Zhang et al. [33] introduced a new voiceprint mimicry 
attack called VMask, which employs a gradient-based 
technique to produce adversarial perturbations. They used 
psychoacoustic masking to manage the disturbance, 
making it imperceptible to humans, thereby demonstrating 
the effectiveness in practical circumstances. 

In Table I, we have compiled a summary of related 
work on the topic. From the table, it is evident that only a 
handful of studies have utilized neural networks to create 
adversarial examples, with SincNet being the target victim 
model. 

TABLE I.  RELATED WORK ON ADVERSARIAL ATTACKS AGAINST 

SRSS 

Methods Type Untargeted / Target  Attack 



Targeted Model Method 

Sirenattack 

[25] 
Black Targeted 

ResNet18 

VGG19 
PSO 

FAKEBOB 
[27] 

Black Both 
i-vector 
Commercial Services 

NES 

Xie [14] White Targeted x-vector 
Gradient-

based 

Li [32] Gray Both SincNet 
Generative 

Network 

Li [12] White Both SincNet 
Generative 
Network 

Occam [29] Black Targeted Commercial Services 
CC-CMA-

ES 

Deng [30] Black Targeted SincNet 
Decision-

based 

AdvPulse 
[13] 

White Targeted x-vector 
Optimization
-based 

Two-step 

[24] 
White Targeted VGG 

Optimization

-based 

ADA [23] White Both 
i-vector 

x-vector 

Gradient-

based 

VMask [33] Gray Targeted VGGVox 
Gradient-

based 

 

III. ADVERSARIAL ATTACKS ON SPEAKER RECOGNITION 

SYSTEMS 

A. Problem Formulation 

Our aim is to create adversarial audio examples that 
can influence the target classifier to produce a 
classification that differs from the ground truth label.  To 
achieve this, we introduce perturbations into the original 
clean inputs to obtain polluted speech. Although obvious 
changes in the original input can increase the success rate 
of adversarial attacks, they may also be noticeable due to 
the distinctiveness of the voice. From practical purposes, a 
sufficiently small perturbation makes it harder for the 
listener to detect any alteration in the sound, thereby 
ensuring the confidentiality of the attack. In this study, we 
propose an attacker network specifically designed for 
generating adversarial audio examples, with a loss function 
that regulates the distance between the adversarial example 
and the original example. This ensures the effectiveness of 
the attack and the imperceptibility of the adversarial 
examples. 

Our study focuses on nontargeted attacks against 
SincNet [20]. Suppose that we have an input audio 
waveform S, which is depicted as the original example 
with its ground truth label t. Ordinarily, in case of no 
attack, SincNet accurately identifies the speaker when we 
input S. To attack the CNN-based speaker recognition 
system, SincNet, perturbations to S are introduced using 
the perturbation generator to create an adversarial example 
S′. If SincNet’s prediction result for S′ is anything other 
than t when S′ passes through the target model, the attack 
is successful. We can formally define this attack problem 
as 

 F(S) = t, F(S′) = y, s.t. D(S, S′) ≤ ε, (1) 

where F(·) is a well-trained speaker recognition system, y 
is the predicted label of S′. D(·) is a distance metric used to 
calculate the similarity between S and S′, and ε denotes a 
very tiny value for controlling the perturbation range.  

B. The Attack Framework 

The framework is comprised of three main 

components as shown in Fig. 1. 

1) The generation of adversarial examples, 

represented by the blue rectangle, is heavily on the 

perturbation generator that creates an adversarial example 

S′ of a clean example S to prepare for subsequent attacks. 

The details of the perturbation generator are discussed in 

Section III-D. 

2) The target classifier, marked by the green rectangle, 

is referred to as F, whose details can be found in Section 

III-C. The classification result is indicated by F(·). In the 

event of an adversarial attack, the loss function is 

calculated using the result provided by the target classifier. 

3) The loss function, shown in the red rectangle, 

consists of three elements which are detailed in Section 

III-E. When optimizing the loss function, the quality of 

the generated adversarial examples is progressively 

enhanced. 

 

Fig. 1. The workflow of the whole attack framework. 

C. Target Classifier 

For this study, we utilized the publicly available pre-
trained SincNet model from [20], which was trained on the 
TIMIT dataset [34], as the target classifier. Our 
experimental setup was identical to that used in [20]. 
SincNet replaces the first layer of a standard CNN with a 
set of learnable bandpass filters. The first layer of a 
network is critical for extracting low-dimensional features, 
which are necessary for higher-level networks to learn 
more useful feature information. 

D. Perturbation Generator 

We propose a method for creating adversarial examples 
through a perturbation generator, whose process is 
illustrated by Fig. 2. The original audio waveform is 
inputted into a neural network and processed through a 
multi-layer structure to produce an adversarial example 
directly, achieving a successful attack with minimal 
perturbations. Due to the high computational speed of 
neural networks, this method outperforms other 
approaches that rely on perturbation generation algorithms.  

 The perturbation generator is based on the Adversarial 
Imitation Network (AIN) structure [16], which 
incorporates the residual technique [35] and the self-
attention mechanism. The model has two components: a 
convolutional Encoder and Decoder.  

• The convolutional Encoder has five Enc blocks, 
each with 3-dimensional convolution, BatchNorm, 
and LeakyReLU, followed by a residual block. 
The Enc block encodes the input and outputs a 
representative state that has the same shape as the 



input. Additionally, the self-attention module can 
comprehensively analyze all the input data, 
allowing the machine to focus on the relationships 
among different components of the input and 
assign high weights to essential information. 
Harnessing these relationships to their fullest 
during the training process leads to improved 
model training results. A self-attention block is 
placed between two Enc blocks to capture 
correlation between sampling points and allow for 
efficient encoding, which enable the encoder to 
encode the input into the representative vectors.  

• The convolutional Decoder has a structure similar 
to the Encoder.  

The encoder-decoder is not a universal way to generate 
adversarial audio examples. This structure has only 
appeared in the image domain and is not commonly used 
in the audio domain. In this work, the Encoder analyzes the 
input and produces a vector, which the Decoder uses to 
generate the output. Random noise is injected into the 
hidden layers of the neural network during training and 
testing to diversify the adversarial examples. In addition, 
the approach of introducing random noise directly into the 
original example lacks precision in regulating the 
magnitude of the added noise. Each data point in the 
dataset may require a different level of perturbation to 
achieve a successful attack. The arbitrary random noise can 
cause the detection of adversarial examples or, conversely, 
lead to unsuccessful attacks due to exceedingly subtle 
perturbations. However, the perturbation generator that we 
develop can automatically generate the optimal 
perturbations required to perform a successful attack. 

 

Fig. 2. The architecture of perturbation generator. 

 We aim for the perturbations created by the 
perturbation generator to be minimal, making them 
undetectable to humans. By directly introducing these 
perturbations to the original audio sampling values, we 
generate time-domain perturbations. To observe the size 
and frequency bands of the perturbations, we present the 
visualization results of the two examples. We can 
determine the smallest possible magnitude of the 
adversarial perturbation by comparing these results with 
those of the original and adversarial examples. If the range 
of the perturbation is insignificant, it proves that the 
inserted perturbation is small enough.  

 The waveforms before and after adding perturbations 
in the time domain are provided, which will make the 
stealthiness of the adversarial examples more intuitive. 
Additionally, researchers have made a discovery about 

human frequency perception—it is non-linear. The human 
ear is more sensitive to variations in low-frequency 
signals and less responsive to changes in high-frequency 
signals. To align with this observation, the Mel 
spectrogram employs a Mel scale crafted to match the 
characteristics of the human ear, preserving the essential 
information necessary for comprehending speech. If the 
audios are converted to Mel spectrograms, it becomes 
easier to identify these perturbations [31]. Thus, we 
convert both the original audio and adversarial audio into 
Mel spectrograms to observe the size and frequency bands 
of the perturbations. For a more detailed example, see 
Section IV. 

E. Loss Function 

We have also designed a loss function to improve the 
training of the perturbation generator. Our aim is to 
generate strong adversarial examples while maintaining a 
high level of audio similarity to the original examples. The 
loss function is a multitask function with three 
components, divided into two categories: Distance loss 
(with Euclidean Distance and Kullback-Leibler 
divergence) and Misclassification loss. The total loss is 
expressed by (2). 

 Loss = λ1 Loss1+ λ2 Loss2+ λ3 Loss3, (2) 

where λ1, λ2, and λ3 denote the weight of each component, 
respectively.  

1) Distance loss: The Distance loss is used to measure 

the distance between the original example S and the 

adversarial example S′. It ensures that the difference 

between them is small enough to maintain similarity. This 

is important to maintain the stealthiness of the adversarial 

examples. Loss1 is calculated using speech sampling 

points, directly measuring the disparity between the two 

examples themselves. On the contrary, Loss2 serves to 

restrict noise according to the distribution similarity of the 

recognition results. Both the original and adversarial 

examples are fed into the target classifier, producing sets 

of probability values for all the classes. This part of the 

loss function prevents the adversarial perturbations that 

we create from inducing excessive changes in the 

recognition results. The two components working together 

are shown to be more effective, whose detailed 

experimental results can be found in Section Ⅳ-B. 

a) Loss1: In the experiments, the examples are read 
as N-dimensional arrays, allowing for direct calculation of 
the Euclidean distance, as shown in (3). 

 Loss1= Euclidean Distance (S, S′) (3) 

b) Loss2: The Loss2 is calculated using the 
Kullback-Leibler Divergence (KLD), which is a 
distribution similarity metric that helps to prevent 
excessive distortion of the results. Calculating the result of 
KLD can be challenging due to the vast number of classes 
in the dataset, leading to an extremely small probability 
value after the softmax layer. To address this, we utilize 
the pre-softmax layer (i.e., logit layer) of the classifier F(·) 
to determine the distance between two examples. For an 
input S, the output P of the logit layer means a distribution 
that contains all probability scores, and is indicated by P = 
Flogit(·). Likewise, P′, denoting the respective output of the 
input S′, can be calculated using the same equation.  



 Loss2 = KLD (P, P′) (4) 
2) Misclassification loss (Loss3): This is to ensure the 

effectiveness of adversarial examples. For example, 
Flogit(S′)t  is the logit value at position t with input S′. Our 
aim is to minimize infinitely the value of Flogit(S′)t. To 
achieve this goal, we can maximize the output values in 
all categories except for t.  

 Loss3 = Flogit(S′)t −  Flogit(S′)y , (5) 

where y = argmax { } { }i X t − Flogit(S′)i. X indicates all the 

indexes in the dataset. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Settings 

1) Dataset: The TIMIT [34] dataset is one of the most 
widely used datasets in the audio domain, featuring 
speakers from various regions in the United States with 
different dialects, genders, races, and education 
backgrounds. Each person in the dataset has 10 sentences, 
in which two are in the dialect class (SA), five are in the 
phonetically-compact class (SX), and three are in the 
phonetically-diverse class (SI). We followed the approach 
used in [20], with 462 speakers in the dataset, training on 
five SX sentences and testing on three SI sentences.   

The target model, SincNet, works with the raw audio 
without any feature extraction. The audio files are read as 
N-dimensional arrays with different lengths. Our 
perturbation generator is adapted from the image domain, 
where two-dimensional convolution is used in the network. 
Therefore, we cannot directly use the data in the network. 
To address this issue, we first cut the audio files into a 
fixed length to resize the data. This ensures that the 
number of sampling points in the audio is suitable for the 
neural network. 

2) Evaluation Metrics: a) Attack Success Rate (ASR): 
The contaminated adversarial examples are not recognized 
as the ground-truth labels, indicating a successful 
adversarial attack. This metric measures the ratio of 
successful adversarial attacks to the total number of 
attacks. b) Signal-to-Noise Ratio (SNR): The formula is 

expressed as SNR = 10
10 ( )

Ps
log

Pn
, where Ps and Pn 

represent the effective power of signal and noise, 
respectively. This metric is used to adjust the magnitude 
of the noise. A higher SNR indicates a better quality of 
adversarial examples. c) Generation time: The generation 
time of the adversarial example, which is a metric of the 
effectiveness of an attack. A shorter time to generate 
adversarial examples means that we launched a successful 
real-time attack. 

B. Experimental Results of Adversarial Attack 

This section discusses the effectiveness of our 
proposed attack method. Experiments were carried out 
using a system that had PyTorch 1.2, a 2080 Ti-11G GPU, 
and an Intel Xeon E5-2696 v2 CPU. Table II reveals the 
experimental results of our method. 

1) Effectiveness of the adversarial attack: To validate 
the effectiveness of our attack, the baseline data of SincNet 
(target model) is presented. Under no adversarial attack, 
the recognition accuracy of the target model is 98.48%. 
However, as shown in Table II, the recognition accuracy of 
the target model drops to about 0.3% in the event of an 

adversarial attack, suggesting that our proposed method 
has significant impacts on the target SRS. 

TABLE II.  EXPERIENTIAL RESULTS BY FINE TUNING λ1 : λ2 : λ3 

λ1 : λ2 : λ3 SNR (dB) ASR (%) Generation Time (s) 

0 : 0 : 1 37.21 96.10 

0.7 

1 : 0 : 1 37.22 96.32 

0 : 1 : 1 39.43 94.59 

1 : 1 : 1 36.99 99.78 

1 : 1: 100 38.03 98.65 

1 : 100 : 1 41.30 95.90 

100 : 1: 1 37.20 95.96 

100 : 1 : 100 37.21 95.89 

1 : 100 : 100 36.71 99.83 

 
2) Impacts of the components of the loss function: In 

this experiment, the three losses differ in orders of 
magnitude. Adding them together to obtain a total loss 
function for network training may cause different 
convergence speeds due to their different weights. This 
will lead to a situation when we observe that the total 
function tends to be stable, while a component with an 
order of magnitude smaller has yet to reach a stable state. 
To address this issue, we standardize the magnitudes of the 
three components in the total loss function during the 
training process. Furthermore, the loss function that we use 
consists of three components, each having a specific 
impact on the attack performance. To understand these 
impacts, we assigned different weights to conduct ablation 
studies. As shown in Table II, the weights are set to 0, 1 
and 100 respectively, enabling us to evaluate the impact of 
each component on the outcomes.  

The two components, Loss1 and Loss2, work together to 
minimize the distance between clean and adversarial 
examples. Adjusting the weights of these components 
during training by increasing λ1 or λ2 can greatly enhance 
the quality of the adversarial examples. The experimental 
results show that Loss2 is more effective in improving the 
auditory quality of the adversarial examples. Removing 
either λ1 or λ2 results in a significant drop in the SNR and 
ASR compared to the best results. On the other hand, Loss3 
is used to deceive the target model, making it misclassify 
the examples. It, therefore, controls the effectiveness of the 
attack. Increasing the weight of λ3 improves the ASR but 
sometimes comes at the expense of a lower SNR. 
However, when both misclassification and distances are 
scaled up equally, the changes in results are minimal. For 
instance, when both λ2 and λ3 are increased by a factor of 
100, as seen in the fourth and ninth rows of Table II, the 
results barely change. This suggests that the two 
components may counterbalance each other, leading to 
relatively complex results. 

3) Stealthiness of the adversarial attack: We have 
evaluated stealthiness by comparing the visualization 
results of the original and adversarial examples from 
different speakers. In each subfigure of Fig. 3, the images 
on the left come from the original audios, while those on 
the right are from the adversarial examples. The target 
model misclassifies the generated adversarial example as 
an arbitrary speaker, whose ID is called the predicted label. 
The ground-truth label of the original audio and the 
predicted label of the adversarial example are shown in 
each image of Fig. 3.  



 

 

 

 

  

  

  

Fig. 3. The visualization results of original examples and adversarial examples. 

Additionally, the SNR, which indicates the magnitude 
of the perturbation, is calculated for each pair of original 
and adversarial audios. These images demonstrate that our 
method can generate an adversarial example with high 
similarity to the original example, regardless of the speaker 
of the audio. 

4) Efficiency: Our perturbation generator offers fast 
training speeds, with the entire process taking only 3 
epochs and around 3 hours to achieve a stable state in the 
neural network. Additionally, the perturbation generator 
does not require gradients during the testing phase, 
resulting in a short average generation time of about 0.7 
seconds for an adversarial example. This indicates the 
potential for a real-time attack. 

C. Performance Comparison 

 In this section, we compare the results with other 
studies, among which Li et al. [32] developed a generative 
network to synthesize different Universal Adversarial 
Perturbations (UAPs) against SincNet. Similarly, to our 
experimental approach, their study also adjusted the 
parameters of the optimization function. Besides, our 
method acquires the feedback by querying the target 
model, and continuously adjusts training parameters based 
on the feedback information. So our proposed method also 
belongs to gray-box attack. As this article shares an 
experimental scenario with our work, we believe that 
comparing our results with this study is more appropriate 
to demonstrate the performance of our work. There are 
many results in [32], and we have selected the results that 
correspond to the adversarial examples with the strongest 

attack capability for comparison. Table III shows the ASR 
and its corresponding SNR. The success of an attack is 
heavily on the intrusiveness of the adversarial example. 
The experimental results demonstrate that our method can 
achieve a superior ASR of 99.83%, which is 2% higher 
than the compared work. This implies that our method has 
a higher success rate of attack, albeit with a slightly lower 

SNR. 

 Furthermore, our method offers a diversity of 
adversarial examples, as illustrated in Fig. 3. Even when 
using audio from the same speaker, we can produce a 
variety of adversarial audios that the target model 
misclassifies as different speakers, making the attack more 
diverse difficult to control. This feature ensures that the 
attack remains effective in real-world scenarios, and not 
limited to a single type of attack. 

TABLE III.  THE PERFORMANCE COMPARISON OF ADVERSARIAL 

EXAMPLES GENERATED BY DIFFERENT METHODS 

Methods Dataset Target Model ASR (%) SNR (dB) 

UAPs [32] TIMIT SincNet 97.50 44.13 

Our method TIMIT SincNet 99.83 36.71 

V. POTENTIAL DEFENSE METHODS 

This part explores the feasible defense methods that 
could effectively defend against our proposed attack. Our 
approach is query-based. It becomes difficult for the 
attacker to succeed when the target classifier has the 
defense mechanism which restricts the number of queries. 



Besides, adversarial training is a currently widely used 
defense technique, which integrates adversarial examples 
into the original dataset to retrain the neural network to 
improve the robustness of the model. However, the 
adversarial examples used to train the model cannot be 
updated in time owing to the attacker frequently changes 
the attack parameters, which will also diminish the 
defensive efficacy of adversarial training. 

VI. CONCLUSION AND FUTURE WORK 

There has been an increase in the use of deep learning-
based systems in smart devices, which has led researchers 
to investigate adversarial attacks in the field of speaker 
recognition systems. This paper proposes a perturbation 
generator for creating adversarial audio examples that are 
characterized by high intensity, good confidentiality, 
diversity, and fast generation speed. Our method 
overcomes the limitations of traditional methods that rely 
heavily on internal model information. It is applicable in 
scenarios where attackers cannot access the model 
parameters and gradients. The experimental results show 
that our method outperforms other closely related research.  

However, our proposed method also has certain 
limitations. Our query-based approach may become 
detectable if there are too many queries. Moreover, in 
practical scenarios, some devices will have defense 
mechanisms that limit the number of queries. Moving 
forward, we plan to explore the generation of adversarial 
examples in restricted black-box scenarios, as to well as 
focus on physical attacks in real environments. In these 
scenarios, adversarial examples can only be generated by 
surrogate models, rather than using feedback information 
from the target model. Further, adversarial audio examples 
are played through loudspeakers, and we will study issues 
such as distortion caused by air propagation. 
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