
1.  Introduction
Since the last century, influenced by short and/or long-term climate fluctuations and human actions, the more 
frequent and severe water events, such as droughts, floods, and extreme rainfall have exacerbated global water 
insecurity and posed great challenges to global and regional water resources management (Dottori et al., 2018; 
Hinkel et al., 2014; IPCC, 2022; Kreibich et al., 2022). Among them, the El Niño-Southern Oscillation (ENSO), 
which is the largest signal in the interannual variation of the atmosphere-ocean system on periods ranging from 
about 2 to 7 years caused by sea surface temperature anomalies (SSTA) in the equatorial Pacific, has been shown 
to impact the frequency of droughts and floods significantly at a global scale (Dilley & Heyman, 1995; Emerton 
et al., 2017; Kao & Yu, 2009; Kug et al., 2009) and a regional scale, such as the California Coast (Andrews 
et  al.,  2004), the Ganges and Brahmaputra River basins (Pervez & Henebry, 2015), the Mekong River basin 
(Räsänen & Kummu, 2013), Papua New Guinea (Cobon et al., 2016), and the Middle-Lower reaches of the Yang-
tze River basin (MLYRB, Tong et al., 2006; Y. Yin et al., 2009).

As a major development area for China, the MLYRB has been suffering extreme water events that have proven 
to be related to ENSO events over the centuries, and seriously affect the located agricultural production and 
people's livelihoods (Ayantobo et al., 2022; Qi et al., 2022). Hence, effective monitoring of water extremes in 
the MLYRB and an attempt to obtain the impact of ENSO on these extremes is essential. Gravity Recovery and 
Climate Experiment (GRACE) satellite and its subsequent mission GRACE Follow-On (GRACE-FO) launched 
in March 2002 and May 2018, respectively, enable researchers to monitor water storage changes and identify 
water extremes efficiently and accurately over the past 20 years at a scale of about 20,000 km 2 (Chen et al., 2022; 
Rodell et al., 2018; Tapley et al., 2019). In practice, a large number of studies have shown that ENSO, especially 
the 2010–2011 La Niña and the 2015–2016 El Niño, is closely related to water extremes in the MLYRB in the 
past 20 years (Chen et al., 2022; Long et al., 2016; Reager et al., 2016; Rodell et al., 2018; Tapley et al., 2019; 
Z. Zhang et al., 2015; Zhao et al., 2017). However, the recording time of TWSA from GRACE and GRACE-FO 
(∼20 years) is much shorter than that of ENSO (generally more than 40 years), which may lead to unreliable 
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results when making a correlation analysis between TWSA and ENSO. Hence, to increase confidence in the 
assessment this requires a longer record that extends prior to the GRACE period (i.e., before 2002). We define the 
TWSA data set with a recording time longer than GRACE as a long-term TWSA in this study.

Several studies have made great efforts to reconstruct the long-term TWSA series by establishing empirical 
statistical relationships between GRACE and climatic variables. These provide invaluable data sets to explore the 
long-term characteristics of water resource change, including the period prior to the GRACE era and/or assess 
the risk of extreme events (F. Li et al., 2021; D. Zhang et al., 2016). These statistical methods can be divided 
into component statistical models and overall statistical models. A component statistical model decomposes the 
GRACE TWSA series into multiple components. Then it reconstructs one/more components by establishing its/
their relations with long-term climate indicators and adds these reconstructed components together to obtain the 
long-term TWSA finally (Humphrey et al., 2017; Humphrey & Gudmundsson, 2019a; F. Li et al., 2020, 2021). 
Instead of decomposing the GRACE TWSA into several components, an overall statistical model reconstructs 
the whole TWSA directly using GRACE and long-term climate indicators (Liu et al., 2021). In addition, global 
hydrological models, such as the WaterGAP Global Hydrology Model (WGHM), provide a long-term TWSA 
data set using a series of advanced numerical models (Döll et al., 2003). However, the applicability of these long-
term TWSA data sets has not been sufficiently evaluated in the MLYRB. For example, Long et al. (2017) and 
Scanlon et al. (2018) assessed the performances of long-term TWSA products only from hydrological models, 
while Deng et al. (2023) evaluated the long-term TWSA products only derived only from statistical models. As 
a result, to avoid issues in applications such as data mismatch and data errors, the evaluation of these long-term 
TWSAs' performances in the MLYRB needs to be supplemented.

After the evaluation session, the goal of this study is to select the best-performing long-term TWSA and explore 
the impact of ENSO on the long-term TWSA in the MLYRB. However, though many studies have analyzed 
ENSO's impact on TWSA in the MLYRB, these studies have discussed either only at the basin scale (Ren 
et al., 2022; Wang et al., 2022; Z. Zhang et al., 2015) or only at the grid cell scale (Phillips et al., 2012; P. Yang 
et al., 2022), which probably lead to a lack of understanding of the relationship between TWSA and ENSO. 
Therefore, the correlation of TWSA and ENSO at multiple spatial scales (i.e., basin, subbasin, and grid cell) is 
necessary to be discussed and its spatial distribution difference needs to be explained.

Hence, this study aims to evaluate the performances of different long-term TWSAs in the MLYRB, analyze 
the multi-spatial scale effect of ENSO on long-term TWSA, and attempt to make an attribution analysis to the 
differences of spatial distribution. Data sets are outlined in Section 2, and methods used to evaluate the long-
term TWSA and the impacts of ENSO events on TWSA are discussed in Section 3. Results of the evaluation of 
the long-term TWSA are shown and discussed in Section 4.1. Time-domain and frequency-domain correlations 
between the long-term TWSA and ENSO are described in Sections 4.2 and 4.3. In Section 4.4, we attempt to 
explain the spatial distribution regimes from the perspective of two key drivers: natural factors and human activ-
ities. The conclusion is presented in Section 5.

2.  Data
2.1.  Study Area

The Yangtze River, the longest river in China, runs from west to east across China, with a total length of approx-
imately 6300 km before flowing into the East China sea in Shanghai. Taking Yichang and Hukou as the demar-
cation points, the Yangtze River is divided into upper, middle, and lower reaches. Since the ocean signals (e.g., 
ocean tide and storm tide) may cause massive uncertainty to the water level and discharge measurements in 
coastal regions, Datong station, located in Anhui Province with a distance to the estuary of the Yangtze River at 
about 624 km is regarded as the control station of the Yangtze River. In this study, we define region from Yichang 
to Datong as the MLYRB, and regions downstream of the Datong station are ignored (Figure 1a).

The MLYRB (24.49°N∼34.20°N, 106.09°E∼118.60°E) is about 7  ×  10 5  km 2 and is mainly located in the 
subtropical monsoon region. Generally, the MLYRB can be divided into four subbasins: the Dongting Lake basin 
(DLB, controlled by Chenglingji station), the Hanjiang River basin (HRB, controlled by Xiantao station), the 
Mainstream River basin from Yichang to Datong (MRB, no control station) and the Poyang Lake basin (PLB, 
controlled by Hukou station) based on its hydrological systems shown in Figure 1a. Four hydrological stations' 
monthly average in-situ discharge regimes are characterized by a markedly unimodal cycle (Figure  1b). The 
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difference is that the MLYRB and the PLB peak occur in June, while the DLB and the HRB peak in July and 
August, respectively. More information about the MLYRB and subbasins is shown in Table S1 in Supporting 
Information S1.

2.2.  Terrestrial Water Storage Data

2.2.1.  GRACE TWSA

In this study, two monthly RL06Mv2 GRACE and GRACE-FO mascon solutions released by the Center for 
Space Research (Save et al., 2016, abbreviated to CSRM) and the Jet Propulsion Laboratory (Watkins et al., 2015, 
abbreviated to JPLM) cover from April 2002 to June 2017 and July 2018 to July 2022 are utilized to obtain TWSA 

Figure 1.  Location of the Middle-Lower reaches of the Yangtze River basin (MLYRB), subbasins, hydrological control 
stations, and monthly mean discharges of control stations. Datong, Chenglingji, Hukou, and Xiantao are control stations 
of the MLYRB, the Dongting Lake basin (DLB), the Poyang Lake basin (PLB), and the Hanjiang River basin (HRB), 
respectively.
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and make evaluation together with long-term TWSA data sets. The spatial resolution of CSRM and JPLM are 
published as 0.25° × 0.25° and 0.5° × 0.5°, respectively. The 11-month gap (July 2017 to June 2018) is caused by 
the delayed launch of the GRACE-FO mission.

2.2.2.  Long-Term TWSA From Statistical Model and Global Hydrological Model

Four monthly long-term TWSA data sets: three from statistical models and one from global hydrological model 
are utilized:

1.	 �The average of the six GRACE_REC_v03 data sets trained with GRACE GSFC mascon and JPLM solutions 
and forced with MSWEP, GSWP3, and ERA5 forcing (Humphrey & Gudmundsson, 2019a, abbreviated to 
HG19) with 0.5° × 0.5° grids from 1901 to 2019.

2.	 �The long-term gridded TWSA reconstructed based on CSRM and dozens of climate inputs released by F. Li 
et al. (2021, abbreviated to Li21) with output grids of 0.5° × 0.5° from 1979 to 2020.

3.	 �The climate-driven water storage anomalies released by Liu et  al.  (2021, abbreviated to Liu21) driven by 
in-situ precipitation and temperature produced and forced by JPLM with 0.5° × 0.5° globally grids from 1979 
to 2021.

4.	 �The long-term TWSA from WGHM 2.2d that was released by Müller Schmied et al. (2021) with 0.5° × 0.5° 
cell grids from 1901 to 2016 are selected in this study (abbreviated to WGHM).

2.2.3.  In-Situ Measured TWS

Except for TWSA products from satellite gravity and statistical models, yearly TWS (note that not the TWSA) 
data sets in the MLYRB and its four subbasins produced by the Changjiang Water Resources Commission of the 
Ministry of Water Resources (CWRC) from 2006 to 2021 are used to assess the yearly water storage change in 
the MLYRB and its subbasins in this study. The in-situ TWS released by CWRC is defined as the sum of surface 
runoff and the amount of groundwater replenishment by precipitation and surface water infiltration.

2.3.  Water Balance Components Data

In order to assess the long-term TWSA, based on the water balance equation, a data set generated by precipita-
tion, evapotranspiration, and river discharge from satellite and gauging stations is applied in this study. For more 
information about the water balance equation, please see Section 3.1.

We use monthly precipitation from four data sets: CRU TS 4.06 released by National Center for Atmospheric 
Research (New et  al.,  2000) from 1901 to 2021, ERA5 produced by European Center for Medium-Range 
Weather Forecasts (Hersbach et al., 2020) from 1950 to 2021, GPCC v2022 released by Deutscher Wetterdienst 
(Schneider et al., 2022) from 1891 to 2019, and U.Delaware V501 produced by University of Delaware (Willmott 
& Matsuura,  1995) from 1900 to 2017. This study uses two monthly evapotranspiration data sets: REA ET 
released by J. Lu et al. (2021a) from 1980 to 2017, and GLEAM v3.3a from 1980 to 2017 (Miralles et al., 2011). 
Monthly in-situ discharge data till 2021 of Datong, Chenglingji, Xiantao, and Hukou stations are available from 
CWRC.

2.4.  Climate Index

In order to clarify the duration of the ENSO event and quantify its intensity, scholars usually generate ENSO 
indices from SSTA of the equatorial Pacific (Kao & Yu, 2009). In this study, the eastern Pacific type ENSO index 
(EPI) and the central Pacific type ENSO index (CPI) that characterizes ENSO events originating from SSTA of 
the eastern and central Pacific released by Sullivan et al. (2016) are utilized. The two indices are calculated from 
normalized Niño-3 and Niño-4 indices and cover 1854 to August 2021.

2.5.  Human Water Use

2.5.1.  Outputs of PCR-GLOBWB Model

This study uses the PCRaster Global Water Balance hydrological model (PCR-GLOBWB) to simulate long-term 
human water use outcomes (Cheng et al., 2021; Sutanudjaja et al., 2018; W. Yin et al., 2022). PCR-GLOBWB is 
an advanced grid-based global hydrology and water resources model released by Utrecht University. In the latest 
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version of PCR-GLOBWB 2.0, three types of human activities (i.e., non-irrigation water use, irrigation water 
use, and reservoir operation) are considered and fully integrated within the hydrological model. Human water 
use equals actual withdrawals from surface water (reservoirs, lakes, and rivers) and groundwater for industry, 
domestic, livestock, and irrigation. Numerous studies have confirmed the applicability of PCR-GLOBWB in the 
Yangtze River basin and China (Jiao et al., 2020; X. Yang et al., 2020).

Four 0.5-degree gridded components (i.e., industry, domestic, livestock, and irrigation water use) of monthly 
human water use simulated by PCR-GLOBWB 2.0 from 1960 to 2015 in the MLYRB are applied to evaluate the 
impact of human activities on regional water storage.

2.5.2.  In-Situ Measurement of Water Diversion

As the largest inter-basin water diversion project in China, the South-to-North Water Diversion Project 
(SNWD) has transferred large amounts of fresh water from the Danjiangkou reservoir (starting point of the 
Central Route) and Jiangdu water conservancy hub (starting point of the Eastern Route) to North China since 
2014. Due to the Danjiangkou reservoir located in the HRB, the impact of inter-basin water diversion on 
regional water storage must be addressed. Produced by CWRC, the yearly diversion quantity of the Central 
Route of the South-to-North Water Diversion Project (abbreviated to SNWD) during 2014 and 2021 are used 
in this study as a supplement to human water use. Please see Table 1 for more information of data sets used 
in this study.

3.  Methods
3.1.  Water Balance Equation

Water balance equation provides a completely independent method to assess the long-term TWSA using 
climatic data sets. For a given basin, the instantaneous equation of water balance equation (Scanlon 
et al., 2018):

��
��

= � − ET − �� (1)

where P, ET, and R is precipitation, evapotranspiration, and runoff, respectively. 𝐴𝐴
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 means terrestrial water stor-

age change (TWSC), that is defined as the difference between two successive months in TWSAs:

TWSC𝑡𝑡𝑖𝑖
= TWSA𝑡𝑡𝑖𝑖+1

− TWSA𝑡𝑡𝑖𝑖� (2)

where 𝐴𝐴 TWSC𝑡𝑡𝑖𝑖
 and 𝐴𝐴 TWSA𝑡𝑡𝑖𝑖

 mean TWSC and TWSA of month ti (i = 1, 2, 3, …, n), respectively. We define TWSC 
from HG19, Li21, Liu21, and WGHM as HG19C, Li21C, Liu21C, and WGHMC, respectively.

3.2.  Windowed Cross-Correlation (WCC) in the Time Domain

Pearson Correlation coefficient (CC) is used to assess the temporal correlation of yearly series. However, to 
obtain the time lag of TWSA in response to ENSO indices, we carry out the Windowed Cross-Correlation (WCC) 
at a 95% confidence level (Boker et al., 2002; Jammazi & Aloui, 2015):

𝑟𝑟𝑘𝑘 =

𝑁𝑁−𝑘𝑘
∑

𝑡𝑡=1

(

𝑥𝑥𝑡𝑡 − 𝑥𝑥
)(

𝑦𝑦𝑡𝑡+𝑘𝑘 − 𝑦𝑦
)

√

𝑁𝑁
∑

𝑡𝑡=1

(

𝑥𝑥𝑡𝑡 − 𝑥𝑥
)2

𝑁𝑁
∑

𝑡𝑡=1

(

𝑦𝑦𝑡𝑡 − 𝑦𝑦
)2

� (3)

where xt and yt are time series with length N; 𝐴𝐴 𝑥𝑥 and 𝐴𝐴 𝑦𝑦 mean average value of these two series. rk represents the 
cross-correlation coefficient at time lag k (k = 1, 2, 3, …, n). Here, we regard ENSO indices as xt and TWSA as 
yt to explore the leading relationship between ENSO and TWSA.
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3.3.  Wavelet Coherence (WTC) in the Frequency Domain

Wavelet Coherence (WTC) has been a useful adaptive time-frequency analysis method for nonstationary signals 
(Fu et al., 2021; Rezaei & Gurdak, 2020; Su et al., 2019). As for series xt and yt, WTC could be defined as 
(Torrence & Compo, 1998):

�2
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|
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|
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in which 𝐴𝐴 𝐴𝐴
𝑥𝑥

𝑖𝑖
(𝑠𝑠) and 𝐴𝐴 𝐴𝐴

𝑦𝑦

𝑖𝑖
(𝑠𝑠) are wavelet transforms (Maraun & Kurths, 2004). S is the smooth operator depending 

on the wavelet type, and s is the wavelet scale. 𝐴𝐴 𝐴𝐴
𝑥𝑥𝑥𝑥

𝑖𝑖
(𝑠𝑠) is defined as the following (Su et al., 2019):

𝑊𝑊
𝑥𝑥𝑥𝑥

𝑖𝑖
(𝑠𝑠) = 𝑊𝑊

𝑥𝑥

𝑖𝑖
(𝑠𝑠) ⋅𝑊𝑊

𝑦𝑦∗

𝑖𝑖
(𝑠𝑠)� (5)

here, * means the complex conjugate. 𝐴𝐴 𝐴𝐴
2
𝑛𝑛 ranges from 0 to 1, representing the coherence of two series from no 

correlation to totally correlated. The phase angle of an arrow in a WTC map, which indicates the phase differ-
ence between two time series, enables us to obtain time lag between two time series using a conversion criterion 
Grinsted et al. (2004). For example, a phase arrow pointing right or left means the in-phase or anti-phase rela-
tionship between two time series.

3.4.  Evaluation Metrics

CC, Nash-Sutcliffe efficiency (NSE), and root mean square error (RMSE) are utilized in this study to quantify the 
effect of the long-term TWSA. For two time series, CC indicates their relationship in phase, while NSE describes 
the matching of magnitude, phase, and bias between two series, and RMSE measures the deviation between them. 
These evaluation metrics are obtained as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

CC =
∑�

�=1

(

���−�
)(

���−�
)

√

∑�
�=1

(

���−�
)2

√

∑�
�=1

(

���−�
)2

NSE = 1 −

�
∑

�=1
(���−��� )

2

�
∑

�=1

(

���−�
)2

RMSE =
√

1
�

∑�
�=1

(

��� − ���

)2

� (6)

where 𝐴𝐴 𝐴𝐴𝑡𝑡𝑖𝑖
 and 𝐴𝐴 𝐴𝐴𝑡𝑡𝑖𝑖

 represent the long-term TWSA to be evaluated and data sets used to evaluate, respectively. n is 
the length of 𝐴𝐴 𝐴𝐴𝑡𝑡𝑖𝑖

 and 𝐴𝐴 𝐴𝐴𝑡𝑡𝑖𝑖
 . 𝐴𝐴 𝐻𝐻  and 𝐴𝐴 𝑂𝑂 are the mean value of 𝐴𝐴 𝐴𝐴𝑡𝑡𝑖𝑖

 and 𝐴𝐴 𝐴𝐴𝑡𝑡𝑖𝑖
 .

3.5.  Pre-Process TWSA Before Correlation Analysis of ENSO

As mentioned in Jin et al.  (2020) and Scanlon et al.  (2019), TWSA can be decomposed into a linear trend, a 
seasonal component, an interannual component, and a high-frequency residual as the follows:

TWSA(𝜃𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃) = 𝑎𝑎0 + 𝑎𝑎1𝑡𝑡 +

2
∑

𝑖𝑖=1

𝑏𝑏𝑖𝑖 cos(2𝜋𝜋𝜋𝜋𝑖𝑖𝑡𝑡 + 𝜑𝜑𝑖𝑖) + 𝐼𝐼interannual + residual� (7)

where θ, λ are the colatitude and longitude, respectively; a0 and a1 are the offset and trend, respectively; bi, fi, and 
φi are amplitude, frequency, and initial phase of annual and semi-annual signals. Iinterannual mean the interannual 
component.

However, ENSO typically occurs every 3–5 years, and in the historical record, this interval has varied from 2 to 
7 years, showing the periodic characteristics of low frequency (Chen et al., 2020). As a result, it is necessary to 
pre-process TWSA so that it has the same frequency band as ENSO to ensure the accuracy of correlation analysis. 
In this study, we remove the linear trend and the seasonal item from TWSA data sets using the least square method 
and then utilize a 13-month moving average filter to suppress the high-frequency residual (Jin et al., 2020).
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3.6.  Evaluating the Long-Term TWSA

To make the analysis concerning ENSO's impact on TWSA more realistic, it is one of the key steps to evaluate 
the performance of all of the long-term TWSAs and select the best-performing one in this manuscript. Here, we 
develop a framework that enables us to evaluate a long-term TWSA's performance in a specific basin using two 
completely independent data sets: the in-situ measured TWS in Section 2.2.3 and hydrometeorological data in 
Section 2.3 (Figure 2).

For example, when we attempt to evaluate long-term TWSAs' performance in the MLYRB, we would calculate 
as follows:

1.	 �Obtain the in-situ TWS of the MLYRB from CWRC, and remove its mean value to obtain the in-situ TWSA 
series. At the same time, we upscale the monthly long-term TWSAs into annual ones. Calculate CCs, NSEs, 
and RMSEs between the annual long-term TWSAs and the annual in-situ TWSA.

2.	 �Use Equation 2 to obtain the long-term TWSC, and obtain TWSC from the water balance equation by Equa-
tion 1. Note that in this study, TWSC from the water balance equation is a set of 15 members, which are 
permutations of 5 precipitation products (4 models and their average) and 3 evapotranspiration products (2 
models and their average) that mentioned in Section 2.3. Calculate CCs, NSEs, and RMSEs between the long-
term TWSC and TWSCs from the water balance equation.

3.	 �Assess CCs, NSEs, and RMSEs from steps 1 and 2, and select the long-term TWSA with the best 
performance.

4.  Results and Discussion
4.1.  Evaluation of the Long-Term TWSA Data Sets

In this Section, we use the evaluation framework developed in Section 3.6 to evaluate four long-term TWSA's 
performance in the MLYRB and its four subbasins (i.e., the DLB, the HRB, the MRB, and the PLB). When 
making an assessment using in-situ measured TWS, we set the time period from 2006 to 2016. While for the 
assessment using the water balance equation, the time period is set from 2000 to 2016. Note that when we assess 

Figure 2.  Flowchart of the framework for evaluating the long-term terrestrial water storage anomaly (TWSA). The 
evaluation time between the long-term TWSA and the in-situ TWSA is set from 2006 to 2016, while that between the long-
term terrestrial water storage change (TWSC) and TWSCs from the water balance equation is set from 2000 to 2016.

 23335084, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023E

A
003007 by N

es, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [01/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Earth and Space Science

LI ET AL.

10.1029/2023EA003007

9 of 23

the long-term TWSA using the water balance equation, the MRB is excluded because it has no control station, 
which results in it having no runoff observations.

4.1.1.  Test I: Evaluation Using the In-Situ TWS Measurements

CC, NSE, and RMSE between the long-term TWSA and the in-situ TWSA (the deaveraged in-situ TWS) in the 
MLYRB and its subbasins are shown in Figure 3 (series comparison of four long-term TWSA and the in-situ 
TWS please see Figure S1 in Supporting Information S1). It is clear that in the MLYRB, though HG19 has the 
largest CC (0.97) with the in-situ TWSA, WGHM has the largest NSE (0.73) and the smallest RMSE (6.86) 
with the in-situ TWSA (Figures  3a, 3f, and  3k). In Figures  3b–3e, we find that Liu21 (in the DLB and the 
MRB) and WGHM (in the HRB and the PLB) are more dominant in four subbasins. HG19 shows the largest 
NSE in the MRB, but it is WGHM that shows dominance in the NSE metric in the DLB, the HRB, and the PLB 
(Figures 3g–3j). Besides, it is obvious that compared to CCs in subbasins, NSEs between the long-term TWSA 
(especially Li21) and the in-situ TWSA are very poor and negative in most scenarios, which may reveal that 
the long-term TWSAs from statistical models and hydrological models do not predict the in-situ measurements 
well. In Figures 3l–3o, WGHM shows the lowest RMSE in the DLB, the HRB, and the PLB, and HG19 has the 
smallest RMSE in the MRB.

These results suggest that HG19 and WGHM have significant dominance in the MLYRB and its four subbasins in 
test I, which reveals that the annual HG19 and the annual WGHM agree well with the in-situ TWSA.

4.1.2.  Test II: Evaluation Using the Water Balance Equation

The overall performance statistics of the long-term TWSCs are calculated in the MLYRB and its three subbasins 
(i.e., DLB, HRB, and PLB) using the water balance equation from 2000 to 2016 (Figure 4). The statistical results 
clearly show that HG19C has a very significant dominance in various metrics of the MLYRB. HG19C depicts the 
highest CC (0.87) and NSE (0.74) in the MLYRB, with medians of CCs 2∼14% and NSEs 1∼23% higher than 
the other three long-term TWSC (i.e., Li21C, Liu21C, and WGHMC). Additionally, HG19C also has the small-
est median of RMSE (13.29) among the long-term TWSCs. In three subbasins, HG19C demonstrates the best 
performance with the highest medians of CC and NSE and the lowest RMSE among the four long-term TWSC 
products, followed by Li21C, Liu21C, and WGHMC.

Figure 3.  Comparison of Correlation coefficient (CC), Nash-Sutcliffe efficiency (NSE), and root mean square error (RMSE) between the long-term terrestrial water 
storage anomaly (TWSA) and the in-situ TWSA from 2006 to 2016 in the Middle-Lower reaches of the Yangtze River basin (MLYRB) and its four subbasins. Values are 
marked in blue. (a–e) The CC in the MLYRB and subbasins, (f–j) the NSE in the MLYRB and subbasins, and (k–o) the RMSE in the MLYRB and subbasins.
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4.1.3.  Discussion of the Evaluation Results

To sum up, HG19 has the best comprehensive performance in the two groups of tests, so we select HG19 as the 
long-term TWSA and will conduct a time-frequency correlation analysis with ENSO in the follow-up. Meanwhile, 
it is necessary to discuss why HG19 performs better than other long-term TWSA (i.e., Li21, Liu21, and WGHM).

1.	 �WGHM.
�As the only long-term TWSA from the global hydrological model in this study, WGHM's performance is 
analyzed first. As described in Müller Schmied et al. (2021), WGHM has been calibrated to match observed 
long-term average annual water flux (e.g., streamflow) and water storage in all grid cells within the basin, 
which explains why the annual WGHM shows quite good agreement with the annual in-situ TWSA in test I. 
However, the monthly variations of WGHM have not been calibrated by the built-in programs, which leads to 
WGHM's poor performance in test II (Döll et al., 2020).

2.	 �HG19, Li21, and Liu21.
�Three long-term TWSA data sets generated by statistical models and inputted by GRACE and hydrometeor-
ological data have different performances in two groups of tests. Generally, HG19 performs better than Li21 
and Liu21, which could be explained from two perspectives.
�First, the selection of the driven GRACE data is a potential reason. Referring to Liu et al. (2021), the recon-
structed TWSA is strongly dependent on the driven GRACE data sets. Considering that HG19 is driven by 
JPLM, and Li21 and Liu21 are driven by CSRM, we assess the performance of JPLM and CSRM in the 
MLYRB and its subbasins using the evaluation framework in Section 3.6 (Figures S2 and S3 in Supporting 
Information S1). As shown in Figure S2 in Supporting Information S1, though CSRM has higher CCs in the 
MLYRB and the DLB, JPLM shows higher CCs in the HRB, the MRB, and the PLB. Besides, JPLM has 
better performance in NSE and RMSE in the MLYRB and its subbasins. In Figure S3 in Supporting Informa-
tion S1, we find that in the MLYRB and the HRB, JPLM performs better than CSRM, while in the MRB and 

Figure 4.  Boxplot of Correlation coefficient (CC), Nash-Sutcliffe efficiency (NSE), and root mean square error (RMSE) between the long-term terrestrial water storage 
change (TWSC) and 15 TWSCs from the water balance equation from 2000 to 2016 in the Middle-Lower reaches of the Yangtze River basin (MLYRB) and its three 
subbasins. The labeled red dots mean outliers, and the medians are marked in blue. (a–d) The CC in the MLYRB and subbasins, (e–h) the NSE in the MLYRB and 
subbasins, and (i–l) the RMSE in the MLYRB and subbasins.
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the PLB, the performance of CSRM is superior. It can be concluded that JPLM has a better comprehensive 
performance in the evaluation programs, which leads to better performance of HG19 than Li21 and Liu21.
�Second, the difference in reconstruction algorithms is the direct reason. HG19 decompose TWSA as four 
items: a liner trend, an interannual component, a seasonal component, and a high-frequency sub-seasonal 
component, and then only reconstructs the nonseasonal variations (detrended and deseasonalized term) 
using a statistical model and then calibrate them at a monthly scale against the detrended and deseasonal-
ized GRACE TWSA using a linear equation. Not only that but Humphrey and Gudmundsson (2019a) have 
regarded GRACE seasonal cycles as HG19's seasonal component. Therefore, HG19 is very close to GRACE 
mascons. F. Li et al. (2021) divided GRACE TWSA into spatial patterns, and temporal modes, then recon-
structed the temporal modes using climate fields based on a statistical model, and finally combined the recon-
structed temporal modes with GRACE TWSA spatial patterns to obtain Li21. However, F. Li et al. (2021) 
discarded temporal modes with low variance contribution of GRACE when establishing statistical models, 
which may lead to underestimating the low-frequency component, especially the interannual item. Liu21 is 
reconstructed directly from GRACE TWSA and climatic data sets without decomposing GRACE TWSA as 
many components. Since there are no more constraints on each component (e.g., detrended and deseason-
alized term), the method in Liu et al. (2021) presumably lead to many uncertainties and ultimately lead to 
Liu21's poor performance.

4.2.  Time-Domain Correlation Between the Long-Term TWSA and ENSO Indices in the MLYRB

Considering that ENSO shows 2–7 years of periodic characteristics of low frequency, a 13-month smoothing 
filter is utilized to suppress the high-frequency noise in both detrended and deseasonalized HG21 and ENSO 
indices to obtain more reliable results in the correlation test (Jin et al., 2020).

4.2.1.  Uncertainty of CC Between the Long-Term TWSA and ENSO Indices

After selecting HG19 in Section 4.1, we add uncertainty analysis in this section that uses a Monte-Carlo simula-
tion (Tiwari et al., 2009) to generate a distribution of CC. The calculation method is as follows:

1.	 �At each month, we calculate the standard deviation of four long-term TWSAs and regard it as a measurement 
error.

2.	 �We assume HG19 is Gaussian distribution with a standard deviation equal to our measurement error, and 
simulate many random instances (i.e., 10,000 in this study) of data sets from that distribution.

3.	 �We remove the linear trend and the seasonal component from each data set and suppress its high-frequency 
residual using a 13-month moving average filter, and then calculate the CC for it and the 13-month moving 
average ENSO index.

4.	 �We generate a distribution in the CCs from step 3 and take their mean value as the final CC.

In this study, the Monte-Carlo simulation enables us to quantify the uncertainty in the CC between the long-
term TWSA and ENSO indices, which is much more informative than having a single value without a sense of 
uncertainty.

4.2.2.  Correlations at Basin Scale

Correlations of HG19 and two ENSO indices in the MLYRB are shown in Figure 5 and Figure S4 in Supporting 
Information S1. Results demonstrate that CPI fails the significance test with p < 0.05, and the peak CC is only 
0.14 with a 6-month time lag, while EPI (CC = 0.56, time lag = 6 months) pass the significant test. The lagged 
monthly EPI has good agreement with HG19 most of the time, especially during three strong El Niño years in 
1983, 1998, and 2016 (mentioned in https://ggweather.com/enso/oni.htm), which revealed the Eastern pacific 
type ENSO's significant impacts on three extreme floodings in the MLYRB (Bett et al., 2018; Yuan et al., 2017). 
However, consistency between lagged CPI and HG19 is poor from 1979 to 2019, except for some periods, such 
as 2009–2011, in which the strong La Niña event starting in early 2010 was reported as one of the critical drivers 
of the once-in-a-50-year drought in middle 2011 preceded by six consecutive months of low precipitation from 
September 2010 (E. Lu et al., 2014; S. Yang et al., 2013).

Abnormal variations at 95% confidence are found in the detrended and deseasonalized TWSA during these four 
water extremes happened in 1983, 1998, 2011, and 2016, which show significant overwhelm surpluses in strong 
El Niño years (i.e., 1983, 1998, 2016) and deficit signals in strong La Niña year (2011) of TWSA in the MLYRB. 
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Interestingly, not all strong La Niña years after 1979 (i.e., 1989, 1999, 2000, and 2008, mentioned in https://
ggweather.com/enso/oni.htm) accompany by significant anomalies in the detrended and deseasonalized TWSA. 
We attempt to explain this issue in two ways. First, some strong La Niña events have limited influence on TWSA 
in the MLYRB. Miralles et al. (2014) found a decrease in the amount of precipitation, evapotranspiration, and 
soil moisture in eastern and central Australia, southern Africa, and eastern South America, but not significant in 
the MLYRB during two strong La Niña events in 1989, 1999, and 2000. Second, compensation for TWSA from 
snowfalls or/and icy rainfalls. The 2008 La Niña is reported to be an essential driver of the heaviest snow disaster 
in southern China (including the MLYRB) from January to February 2008, costing 150 billion CNY and affecting 
10 million people (Hui, 2009). However, during the 2008 La Niña episodes, compensation from snowfalls or/and 
icy rainfalls limited the reduction of TWSA. It is unlike the persistent lack of rainfall during the 2011 La Nina 
(Chen & Sun, 2010).

4.2.3.  Correlations at Subbasin Scale

As shown in Figure 6, different subbasins respond differently to four water extremes. Among them, detrended and 
deseasonalized TWSA in the HRB is quite different from other subbasins (Figure 6b) that do not show significant 
peaks and valleys in 1998, 2011, and 2016. Nevertheless, performances of detrended and deseasonalized TWSA 
in the DLB, the MRB, and the PLB are similar to the MLYRB in these four strong El Niño and La Niña years 
with peaks and valleys. However, time nodes of peak values in the MRB appear 2–7 months later than those in the 
DLB and the PLB, while the time node of valley value is almost the same in these three subbasins (May or June 
2011). It is obvious that when three El Niño extremes happen, the DLB and the PLB were affected first, and the 
MRB was affected several months later, which relates to the track of water vapor under the influence of El Niño 
(Yu et al., 2019; Zhai et al., 2016). However, the severe drought due to the 2011 La Niña almost simultaneously 
occurs in the MLYRB except in the HRB (E. Lu et al., 2014).

4.2.4.  Correlations at Grid Cell Scale

There is a spatial variability in detrended and deseasonalized HG19's response for ENSO events in the MLYRB 
shown in Figure 7. Results suggest that over 52% of grid cells in the MLYRB failed the p < 0.05 significance test 
with CPI (Figures 7a and 7d and Table 2), while the passed cells are mainly distributed in the southern DLB and 
the HRB with the mean CC at only 0.20 and the mean time lag at 7.35 months. However, as shown in Figures 7b 
and 7e, about 56% of the grid cells that are mainly distributed in the DLB and the PLB passed the significance 

Figure 5.  Correlation relationship of detrended and deseasonalized HG19 and two lagged El Niño-Southern Oscillation (ENSO) indices in the Middle-Lower reaches 
of the Yangtze River basin (MLYRB). Four water extremes to hit the MLYRB from 1979 to 2019 are labeled. Black dotted lines indicate the 95% confidence level. 
Pink rectangles reveal four strong El Niño and La Niña years that impact the MLYRB extremely (i.e., 1983, 1998, 2011, and 2016). The gray area depicts the standard 
deviation of HG19.
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Figure 6.  Correlation relationship between detrended and deseasonalized HG19 and two lagged El Niño-Southern Oscillation (ENSO) indices in four subbasins of 
the Middle-Lower reaches of the Yangtze River basin (MLYRB). (a) The Dongting Lake basin; (b) the Hanjiang River basin; (c) the Mainstream River basin; and (d) 
the Poyang Lake basin. Black dotted lines indicate the 95% confidence level. Pink rectangles reveal four strong El Niño and La Niña years that impact the MLYRB 
extremely (i.e., 1983, 1998, 2011, and 2016). The gray area depicts the standard deviation of HG19. CCs and time lags are referring to Table S2 in Supporting 
Information S1.
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test between EPI and HG19 with the mean CC of 0.47 at a typical time lag of 4–8 months, which is consistent 
with the series results.

Overall, among the two ENSO indices, CPI has a weaker link with HG19 than EPI. EPI not only shows a 
larger correlation coefficient (CC = 0.56), but also has a higher consistency with HG19 from 1979 to 2019 at 
multi-spatial scales, especially three strong El Niño years in 1983, 1998, and 2016. However, in the strong La 
Niña year 2011, CPI shows a higher correlation with TWSA than EPI.

4.3.  Frequency-Domain Correlation Between the Long-Term TWSA and ENSO Indices in the MLYRB

As demonstrated in Figures 8a and 8f, resonance periodicities of HG19 and lagged ENSO indices (see Table S2 
in Supporting Information S1) show that both CPI and EPI indices are all strongly correlated with HG19 at the 
2–8 years band. CPI demonstrates significant positive correlations with HG19 from the late 2000s to the early 
2010s at the 5–6 years band, and the −𝐴𝐴

1

4
π phase angle manifests HG19 led CPI by 𝐴𝐴

1

8
 period length. Therefore, 

CPI significantly impacts the fluctuation of HG19 from 2011 to the middle 2010s, which could explain the 
consistency of HG19 and CPI series during this period in Figure 5. In contrast, the extended period and darker 
red reveal a higher correlation between the long-term TWSA and EPI than CPI. The in-phase relationship with 
phase angle ranged 0∼𝐴𝐴

1

4
π from the middle 1980s to the late 1980s, demonstrating the phase of EPI is 0∼𝐴𝐴

1

8
 period 

length lead by HG19, along with their significant positive correlation. Meanwhile, the rightward arrows during 
the late 2000s to the middle 2010s at the 2–8 years band reveal the in-phase correlation between HG19 and EPI 
with almost no time delay.

WTC results shown in Figures  8b–8e and  8g–8j reveal that the frequency correlation between HG19 and 
lagged ENSO indices in different subbasins is quite different. Right-downward arrows with phase angle about 
−𝐴𝐴

1

4
π during the early and middle 2010s in Figure 8e suggest a pattern of HG19 leads that of CPI by 𝐴𝐴

1

8
 period 

length in the PLB. Except the above, the coherence between HG19 of subbasins and CPI is relatively weak and 

Figure 7.  Correlation relationship of detrended and deseasonalized HG19 and two El Niño-Southern Oscillation (ENSO) indices at the grid scale. (a, b) The spatial 
distribution of Correlation coefficient (CC) peak values within the Middle-Lower reaches of the Yangtze River basin (MLYRB) in a 0.5° × 0.5° grid cell between HG19 
and two ENSO indices; (c) the histograms show the percent area that pass the p < 0.05 significant test between terrestrial water storage anomaly (TWSA) and ENSO 
indices with a different range of CC values; (d, e) the spatial distribution of time lags within the MLYRB between HG19 and two ENSO indices; (f, c) the histograms 
show the percent area that pass the p < 0.05 significant test between TWSA and ENSO indices with a different range of time lags. The black square in a grid cell 
indicates that the HG19 of this grid cell has passed the p < 0.05 significant test with ENSO indices.
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even shows a negative value in the HRB during the middle to late 1990s 
at the 2–3  years band, that reveals their significant negative correlation. 
However, the EPI shows a more vital link with HG19 in the frequency 
domain. In-phase correlations between HG19 in four subbasins and EPI 
are observed during the early 2000s to middle 2010s (2–8  years band) 
when phase angle remained within the range 0∼𝐴𝐴

1

4
π, that reveals the about 

𝐴𝐴
1

8
 period length phase difference of them. In addition, the positive relation-

ship during the early and late 1990s at 2–5 years band in Figure 8j repre-
sents EPI's significant impact on the long-term TWSA in the PLB during 
this period.

Generally, the EPI has significantly higher and positive coherence with 
HG19 in all subbasins than the CPI, which is the same as the series compar-
ison results.

4.4.  Causes of the Different Patterns in the Hanjiang River Basin and 
the Mainstream River Basin

According to time-frequency domain results in Sections 4.2 and 4.3, HG19 in 
the HRB and the MRB shows a weak correlation with both CPI and EPI. As 
suggested in Figures 7a and 7b, though about 87% of grid cells in the HRB 
pass the significant correlation test between HG19 and CPI, the mean CC 
peak and time lag are calculated as 0.03 and 6.75 months. Besides, although 
HG19 in the MRB has similar performance in the frequency domain to the 
DLB and the PLB, detrended and deseasonalized TWSA of only 20% and 
17.78% grids in the MRB pass p < 0.05 significant test with CPI and EPI in 
the time domain, accompanied by the mean CC peaks at −0.01 and 0.52, and 
the mean time lags at 6.89 and 6.38, respectively. The causes of this different 
pattern of TWSA's response to ENSO in the HRB and the MRB need to be 
studied deeply.

Many studies reveal that TWSA in the HRB and the MRB is affected by two key drivers: climate change and 
human activity (Felfelani et al., 2017; Wang et al., 2022; Williams et al., 2022). In this study, the precipitation 
data set from CRU TS 4.06 and the human water use data set from PCR-GLOBWB 2.0 are utilized to assess the 
impact of climate change and artificial activities on TWSA variations in the HRB and the MRB. The goal is, first, 
to examine the influence of these two drivers on the TWSA in the past 20 years. If the effect is non-negligible, 
then second, whether this factor is significantly affected by ENSO. As a result, ideally, one or all of these two 
factors have significant effects on TWSA in the HRB and the MRB and are not significantly correlated with 
ENSO, thus explaining the poor correlation between TWSA and ENSO in these two basins.

4.4.1.  Impact of Natural Factor

Precipitation is reported as a crucial path of ENSO affecting land water, especially in the Yangtze River basin 
(Sun et al., 2018; T. Zhang et al., 2019). Results shown in Figures 9a and 9b reveal that the detrended and desea-
sonalized HG19 of the HRB and the MRB display matches with the detrended and deseasonalized precipitation 
both monthly (CC = 0.78, time lag = 2 months, see Figure 9a) and seasonally (CC = 0.97, time lag = 2 months, 
see Figure 7b). However, as illustrated in Figures 9c and 9e, there is no significant correlation between precipita-
tion and CPI, with mean CC at 0.06 and mean time lag at 7.99 months. In addition, Figures 9d and 9f show that 
only about 13% of grid cells, mainly distributed in the MRB, pass the significant test between precipitation and 
EPI with the mean CC at 0.31 and the mean time lag at 6.78 months.

As a result, the weak correlation between precipitation and ENSO indices in the HRB and the MRB could 
account for the mismatch between HG19 and ENSO indices from the perspective of the natural driver. However, 
the discussion about why ENSO has a weak link with precipitation in the HRB and the MRB is beyond the scope 
of the present study.

HG19—CPI HG19—EPI

Proportion (%) Mean value Proportion (%)
Mean 
value

CC peak ranges

  (−0.4∼−0.2) 0 / 0 /

  (−0.2∼0) 0 / 0 /

  (0∼0.2) 20.69 0.14 2.68 0.16

  (0.2∼0.4) 31.42 0.24 9.96 0.31

  (0.4∼0.6) 0 / 43.30 0.50

  (0.6∼0.8) 0 / 0 /

Time lag ranges (month)

  (0∼2) 0 / 0 /

  (2∼4) 0 / 0 /

  (4∼6) 4.21 5.00 1.15 5.00

  (6∼8) 23.37 6.07 53.26 6.10

  (8∼10) 15.33 8.35 0 /

  (10∼12) 9.20 10.00 1.53 10.10

Note. Results indicates statistical information in Figure 7 between HG19 and 
ENSO indices. Grid cells with TWSAs fail the p < 0.05 significant test with 
ENSO indices are not considered.

Table 2 
The Proportion of the Number of Grid Points in Different CC Peak or Time 
Lag Value Ranges to the Total Number and the Mean Value
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Figure 8.  Wavelet coherence (WTC) of HG19 and two El Niño-Southern Oscillation (ENSO) indices in the Middle-Lower 
reaches of the Yangtze River basin (MLYRB) and four subbasins. (a–e) The WTC results between HG19 and CPI in these five 
basins; (f–j) the WTC results between HG19 and EPI in five basins. The opaque regions indicate no significant periodicities 
at the 95% confidence level. Leftward or rightward represent the in-phase or anti-phase relationship between two series, while 
downward or upward arrows represent HG19 lagged or leaded ENSO indices by 90°, respectively.
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4.4.2.  Impact of Anthropic Factor

As shown in Figures 10a and 10b, we compare monthly HG19 and four monthly human water use outputs (i.e., 
human water use: industry, domestic, livestock, and irrigation water use) from 1979 to 2015. Note that the 2004 
to 2009 averages have been removed from the human water use series for consistency with GRACE mascon. 
The annual amplitude of irrigation water use is much larger than those of the other three human water use items, 
which could also be proven by statistical results in Table 3 calculated by Equation 7 using the least square method. 

Figure 9.  Comparison of HG19 and precipitation and correlation relationship between El Niño-Southern Oscillation 
(ENSO) indices and precipitation within the Hanjiang River basin (HRB) and the Mainstream River basin. (a) The series 
comparison between monthly HG19 and precipitation. The gray area depicts the standard deviation of HG19; (b) the mean 
seasonal cycles of the average of HG19 and precipitation; (c, d) the spatial distribution of Correlation coefficient peak 
values within the HRB and the MRB in a 0.5° × 0.5° grid cell between precipitation and two ENSO indices; (e, f) the spatial 
distribution of time lags within the HRB and the MRB between precipitation and two ENSO indices. The black square in a 
grid cell indicates that the HG19 of this grid cell has passed the p < 0.05 significant test with ENSO indices.
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Among them, the MRB's annual amplitude of irrigation water use is about 5.8 times that of the HRB. It is due to 
a large number of plains (part of the Middle-Lower Yangtze Plain in China) distributed in the MRB and the great 
demand for irrigation water for paddy that ripens a year (Hu et al., 2013; Tian et al., 2021). However, the ampli-
tudes of human water use are only small fractions of the amplitude of TWSA at about 4% and 16% in the  HRB 
and the MRB, respectively, which reveals the limited impact of human activities in regional water storage.

The gridded annual amplitude of TWSA and human water use is shown in Figures 10c and 10d. We find that the 
amplitude of human water use is far smaller than that of TWSA, and their ratios have obvious spatial patterns 
(Figure 10e). The mean proportion is calculated as 6%, and proportions in the lower HRB and the Central MRB 
are much larger than that of other regions. Interestingly, regions with large proportions in Figure 10e are highly 
coincident with the distribution of the annual irrigation water uses in Figure 10f. It can be concluded that the 
TWSA of regions with higher-intensity irrigation is more vulnerable to anthropic activities in the HRB and the 
MRB. However, this impact is insignificant (Liu et al., 2021).

Inter-basin water diversion is the most direct way humans affect regional TWSA. As the largest inter-basin water 
diversion project in China, the SNWD is reported as an essential factor in the groundwater storage change of 
the North China Plain (Long et  al.,  2020), runoff of the Danjiangkou reservoir (L. Li et  al.,  2015), regional 

Figure 10.  Impact of human activities on terrestrial water storage anomaly (TWSA) in the Hanjiang River basin (HRB) and the Mainstream River basin (MRB). (a, b) 
Series comparison of TWSA from HG19 and human water use from PCRaster Global Water Balance hydrological model 2.0 from 1979 to 2015. The gray area depicts 
the standard deviation of HG19; (c, d) the spatial distributions of annual amplitudes of TWSA and human water use at a 0.5° × 0.5° grid cell from 1979 to 2015; (e) the 
percentage of the annual amplitude of human water use to the annual amplitude of TWSA; (f) the mean annual irrigation water uses from 1979 to 2015. (g) Tracks of the 
Central Route of the South-to-North Water Diversion Project (SNWD) (red lines); (h) the series comparison of yearly TWSA and SNWD from 2014 to 2021 from CWRC.
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environmental response (Lin et al., 2012), and so on. In this study, we take SNWD as an example to evaluate 
the impact of inter-basin water diversion on TWSA in the HRB. Results in Figure 10 indicate that although the 
cumulative amount of water diversion is enormous, the average annual water diversion volume of SNWD is about 
20.65 mm, which is only 4.39% of the water storage of the HRB and the MRB (470.45 mm). It can be seen that 
impact of SNWD on TWS in the HRB and the MRB is extremely limited.

Combining results from Figures 9 to 10, one of the main reasons for the mismatch between TWSA and the ENSO 
index in the HRB and the MRB is the feeble impact of ENSO on precipitation. However, because of the human 
activity's insignificant impact on TWSA, this mismatch is unrelated to human activities, including the SNWD, 
China's largest inter-basin water diversion project.

This study provides an example for subsequent relevant studies focusing on long-term water storage in the 
MLYRB. In addition, conclusions related to natural and anthropic factors provide suitable guidance for optimiz-
ing regional water resources management.

It should be noted that there are some limitations in this study. First, though we have developed an evaluation 
framework using two groups of tests, the time periods of the two tests are different, which probably leads to 
different evaluation results between the two tests. For example, WGHM has a quite good performance in test I, 
but a poor performance in test II. We hope that in the future, CWRC will be able to release water storage products 
in the MLYRB with longer time spans. Second, in Section 4.4, we regard precipitation as the only natural factor. 
Though precipitation is proven as the most important natural factor in water storage variations in the MLYRB, 
it is not the only one (T. Zhang et al., 2019). As a result, we will consider other natural factors in the follow-up 
studies, including temperature, sunshine duration, and wind speed.

5.  Conclusions
Under rapid industrialization and urbanization and the ensuing anthropogenic global warming, climate change 
hazards closely related to the ENSO events have been frequent extreme water events in the MLYRB over the 
centuries. With the support of TWSA monitored by GRACE and GRACE-FO missions, these extreme events 
can be detected directly. However, the too short period (2002 to the present) of GRACE and GRACE-FO limits 
robustness to the assessment of ENSO's impact on TWSA and need to be extended. In addition, regional varia-
tions of TWSA's response to ENSO caused by the difference in climatic conditions and human activity intensity 

Basin Water storage

Amplitude (mm)

Annual Semi-annual

Hanjiang River basin (HRB) TWSA 40.88 12.24

Industry water use 0.00 0.00

Domestic water use 0.07 0.01

Livestock water use 0.01 0.00

Irrigation water use 1.41 1.35

Human water use 1.49 1.36

Mainstream River basin (MRB) TWSA 54.05 11.65

Industry water use 0.01 0.00

Domestic water use 0.09 0.01

Livestock water use 0.01 0.00

Irrigation water use 8.54 2.69

Human water use 8.65 2.70

Note. Human water use is the sum of industry, domestic, livestock, and irrigation water use. Annual and semi-annual 
amplitudes are calculated by Equation 7 using the least square method.

Table 3 
Statistical Results of Monthly TWSA From HG19 and Monthly Human Water Use From PCR-GLOBWB 2.0 in the HRB and 
the MRB From 1979 to 2015
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in the MLYRB need to be confirmed. To solve these two questions, we assess four long-term TWSA data sets in 
the MLYRB using an evaluation framework and then choose the best one. Further, we explore the driving effect 
of ENSO on long-term TWSA in the time-frequency domain at the basin, subbasin, and grid cell scales, respec-
tively. Finally, in view of the spatial-variable patterns of ENSO's impact on TWSA, we attempted to explain in 
detail from natural and man-made perspectives.

Results indicates that HG19 has the best all-around performance in the evaluation tests, so it is regarded as 
the long-term TWSA making further analysis. Both time and frequency domain results show that the EPI 
(CC = 0.56, time lag = 6 months, p < 0.05) has a higher correlation with HG19 than the CPI (CC = 0.14, time 
lag = 6 months, p > 0.05) in the MLYRB, and the same in two of the four subbasins (the DLB and the PLB). 
However, TWSA in the other two subbasins (the HRB and the MRB) demonstrates poor correlations with the 
CPI and EPI.

To explain the different regimes in the HRB and the MRB, precipitation from CRU and artificial activity 
data sets from PCR-GLOBWB model are utilized to evaluate the impact of natural and human factors on 
TWSA. We find that precipitation is the one of the key drivers of TWSA in the HRB and MRB (CC = 0.81, 
time lag = 2 months). Further analysis indicates that ENSO has almost no link with precipitation in the HRB 
and MRB. However, the annual amplitude of human activities is calculated as only 6% of that of TWSA. As 
a result, this diverse pattern in the HRB and the MRB could be explained as the weak impact of ENSO on 
precipitation, but artificial activities' (including inter-basin water diversion) impact on regional TWSA is 
limited.

Overall, this study reflects the multi-spatial scale response characteristics of the long-term TWSA to ENSO in the 
time-frequency domain in the MLYRB and helps to promote appropriate use of water resources operations and 
climate change responses and highlight areas for future improvements.
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data/hrg/, https://doi.org/10.24381/cds.68d2bb30 (Muñoz Sabater, 2019), https://doi.org/10.5676/DWD_GPCC/
FD_M_V2020_050 (Schneider et  al.,  2020), and https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.
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ZFYIzuxBwWN (Jin,  2023). Two type of ENSO indices are available from https://icar.nuist.edu.cn/_upload/
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de-967cc084836c.txt. PCR-GLOBWB 2.0 model and input data are available in https://github.com/UU-Hydro/
PCR-GLOBWB_model and https://zenodo.org/record/1045339#.XWUr7E2P5aR (Sutanudjaja et al., 2017). The 
authors gratefully appreciate these publicly accessible data sets used in this research.
Processing of the data has been done using Matlab_R2021a (https://ww2.mathworks.cn/products/matlab.html), 
and the Generic Mapping Tool (GMT, https://www.generic-mapping-tools.org/) software is used for drawing 
figures.
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