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Abstract—The rapid growth of the Internet of Things
(IoT) has brought about a global concern for the security of
interconnected devices and networks. This necessitates the
use of efficient Intrusion Detection System (IDS) to mitigate
cyber threats. Deep learning (DL) techniques provides a
promising approach to effectively detect irregularities in
network traffic, enhancing IoT network security and reduc-
ing cyber threats. In this paper, DL-based IDS is proposed
using Feed Forward Neural Networks (FFNN), Long Short-
Term Memory (LSTM), and Random Neural Networks
(RandNN) to protect IoT networks from cyberattacks. Each
DL model has its potential benefit as reported in this paper.
For example, the FFNN can handle complex IoT network
traffic patterns, while the LSTM is good in capturing long-
term dependencies present in the network traffic. With its
random connections and flexible dynamics, the RandNN
model uses its data-learning ability to adapt and learn
from network data. These algorithms boost cybersecurity
by enabling defense mechanisms against challenging cyber
threats and ensuring the security of sensitive data as IoT
networks expand. The proposed technique exhibits superior
performance when compared with the current state-of-the-
art DL-IDS using the CIC-IoT22 dataset. An accuracy of
99.93 % is achieved for the FFNN model, 99.85 % for
the LSTM model, and 96.42 % for the RandNN model
in detecting. Moreover, the models have the potential to
enhance intrusion detection in IoT networks by generating
swift responses to security problems in IoT networks.

Index Terms—Internet of Things, Intrusion Detection,
Cyber Threats, Deep Learning, Random Neural Network,
Long Short Term Memory, Feed Forward Neural Network,
Machine Learning, Network Security.

I. INTRODUCTION

The advancements of the Internet of Things (IoT),
cloud computing, computer security, and cyber
security has undergone significant progress on a
broad scope recently. IoT is a potential paradigm
for societal innovation concerned with the Internet
and real things, including smart home automation,
business applications, smart cities, and environmental
monitoring. IoT presents enhanced adaptability and

productivity, thereby facilitating the establishment of
extensively interconnected frameworks that enable novel
services [1]. The advantages are attractive for both
industrial and consumer applications. The emergence
of the IoT paradigm has been noted to coincide with
the development of tailored solutions within the past
decades, thereby defining the concepts of Industrial
IoT and Industry 4.0 [2]. According to projections,
there will be nearly three times as many IoT devices in
the world in 2030 compared to the 15.14 billion that
exist today. There are over 60 % of IoT devices used
in consumer markets and other corporate sectors. The
percentage is expected to stay the same for the next ten
years [3].

IoT networks are open and constantly changing
topology by nodes joining and leaving the network in
real-time. The lack of centralized network management
tools makes them vulnerable to security threats. IoT
devices have special characteristics, including tiny
memory size, restricted data storage, limited power
supply, and connection bandwidth [4]. The efficacy of
security protocols for IoT infrastructures, in terms of
growth and performance is significantly impacted by
these limits. As a result, developing an effective intrusion
detection system for an IoT network is challenging due
to the increased overhead that requires computation
power. Cyberattacks are getting more complicated
and harder to identify as hackers employ cutting-edge
techniques to steal sensitive data while evading detection
by IDS. The communication between internetworks is
also subject to cybersecurity risks. Because of this,
innovative methods are crucial for timely intrusion
detection and attack prevention measures. Recently,
Machine Learning (ML) and Deep Learning (DL)
algorithms have been used for network abnormality
detection, intrusion detection, and prevention [5].
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Integrating physical objects and sensors enable data
exchange through the IoT paradigm. Utilizing technol-
ogy components in IoT networks has enhanced efficacy
in collecting, analyzing, reporting, and projecting data
for future planning [6]. Multiple layers comprise an IoT
architecture, which identifies, examines, and monitors
system consistency. Application, network, and percep-
tion are the three levels that make up the basic config-
uration. The application layer delivers services and pro-
grams that are user-specific. The network layer addresses
the issues related to inter devices dependability, capacity
building of data, energy utilization, and most signifi-
cantly security aspects while connecting IoT devices to
other networks, machinery, and services. The perception
layer gathers data from the environment via sensors,
actuators, and computing hardware. Considering power
conservation, security, and interoperability issues, the
physical layer manages operations like signal processing,
encryption, and data transfer [7]. Security solutions for
each layer of the IoT are broken down and categorized
in Figure 1 with the security threats on each tier. Most
IoT architectures includes a wide variety of information,
enabling features, and technology expansion across three
distinct tiers [8].

For data processing, the Internet connects the IoT
network and enables people and organizations to do
more with few resources, including time. Alongwith
the advancement in IoT technology, there is also
a proportional increase in attacks targeted on IoT
systems [10]. IoT-based critical infrastructures are more
susceptible to cyber vulnerabilities and are targeted
by several attacks. The current state of cyber threats
is characterized by growing complexity, persistence
and intelligence owing to the rapid evolution of
adversarial tactics. Improving the cybersecurity posture
of crucial cyber infrastructures is a serious global
concern. It is, therefore, crucial to identify cyber risks
before implementing effective and robust cybersecurity
remedies [9]. Figure 2 depicts an overview of the
architecture of the IoT, which interacts openly with
authorized and unauthorized users encompassing many
components, including but not limited to devices,
sensors, servers, actuators, protocols, cloud services,
and applications within a network. Identifying the
inherent characteristics of the content is challenging,
whether normal or malicious, when a user engages with
an IoT network. In an IoT network, unauthorized users
may carry cyber attacks as no protection mechanisms
are enforced.

Expanding network devices increases cyberattacks,
making IoT security essential. With the growing
use of IoT devices in several industries, including

homes, securing the IoT infrastructure that strengthens
devices is crucial [11]. IoT devices frequently exhibit
constrained processing capabilities, limited memory
capacity, and inadequate security features, making
them vulnerable to malicious actors. Attackers can
penetrate many vulnerable IoT devices, building botnets
and interconnected networks of compromised devices
under their command, flooding them with excessive
network traffic and resulting in major delays. IoT
devices with vulnerabilities can be manipulated to
obtain unauthorized access [12]. Data breaches occur
frequently in all IoT devices, which acquire and
transfer sensitive data. It allows attackers to intercept
data transfer, manipulate data, and inject malicious
commands into the communication channel. The ability
to remain undetected for prolonged durations provides
a security risk [13]. The invasion of privacy can occur
by exploiting IoT devices equipped with cameras
or microphones, as the unauthorized transmission of
sensitive information can occur. Therefore, strong
authentication must be implemented to ensure the
security of users and IoT devices in IoT network [14].

IoT intrusion refers to an illicit action or activity
that harms the IoT ecosystem that undermines the
confidentiality, integrity, or availability of information
in any manner. Secure and encrypted communication
channels can be established by employing VPNs,
ensuring the confidentiality and integrity of the
transmitted data [15]. An incursion refers to a situation
where access to computer services is impeded by an
attack, thereby preventing legitimate users from using
such services. An Intrusion Detection System (IDS) is a
technological solution, either using software, hardware
or both, designed to oversee computer systems and
detect malicious activity to maintain system security.
Implementing Intrusion Detection and Prevention
Systems (IDPS) to monitor network traffic and detect
any abnormal activities that signify a security breach
is essential [16]. The primary objective of IDS is to
identify malicious network traffic and unauthorized
computer usage, a task that a traditional firewall cannot
accomplish. The two main subcategories of IDS are
Signature-based Intrusion Detection Systems (SIDS) and
Anomaly-based Intrusion Detection Systems (AIDS)
[17]. Methods for intrusion detection are shown in
Table I.

To detect network intrusions, deep learning
frameworks have become a popular field. While
multiple surveys cover the developing research area
on this topic, the literature requires an unbiased
comparison of diverse deep learning models, especially
in light of new datasets for intrusion detection [18].
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Fig. 1: Security threat and its mitigation in IoT layers [8], [9].

In today’s environment, cybersecurity is a crucial
concern. For example, firewalls have been employed to
protect sensitive data whereas IDS look for indications
of malicious activity. Significant improvements in
techniques such as pattern recognition and anomaly
detection have been made due to the expansion of
Artificial Intelligence (AI) research rapidly [19]. AI
is a promising strategy for addressing cybersecurity
threats and ensuring security [20]. It is suggested
that implementing an Anomaly-based IDS will be
a suitable measure to ensure the security of IoT
networks, including servers, clouds, sensors, devices,
and applications operating within the infrastructure
illustrated in Figure 3.

In view of the above discussion, researchers
have modified neural network topologies to enhance
IDS. Deep Neural Networks (DNN) use computational
resources to evaluate large amounts of data, find patterns
and correlations, and classify the data according to
specified criteria. The usage of DNN in IoT security

is a potential method for anomaly-based intrusion
detection to identify and classify data in a properly
trained DNN. In this research, Intrusion Detection
System is proposed for the Internet of Things (IoT),
employing Deep Neural Networks for real-time data
anomaly. This research aims to develop an Intrusion
Detection System (IDS) for the Internet of Things (IoT)
by utilizing Feed Forward Neural Networks (FFNN),
Long Short-Term Memory (LSTM) and Random Neural
Networks (RandNN) models. The research introduces
a framework for deploying a Deep Learning technique
for an Intrusion Detection System (DL-IDS) within
the Internet of Things (IoT) networks to integrate
cyber security measures and achieve effective intrusion
detection performance. The present study involves
developing an Intrusion Detection System with a Multi-
Layered Neural Network to identify distinct categories
of attacks commonly observed in the IoT. These include
Denial of Service (DoS), Bruteforce, HTTP Flood,
UDP Flood, and TCP Flood. Following are the main
contribution of the study:
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Fig. 2: IoT network communicates with authorized and unauthorized users without any protection mechanism.

Fig. 3: Protecting the IoT network with an Intrusion Detection System.
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Detection
Method Signature based Intrusion Detection System Anomaly based Intrusion Detection System

It uses attack signatures to identify known
threats. These fingerprints may detect known
risks in network traffic or system activity.

It may detect zero-day attacks. It establishes
a baseline of normal activity and flags
deviations, revealing unusual attack patterns.

Attack signatures reduce false positives. It may be used to find new assaults.

It reacts quickly to known threats since it
doesn’t require processing or analysis.

It may detect new threats without signatures.
Even if security is ignorant of the attack, it
senses abnormalities.

It involves establishing the IDS with a
signature database and monitoring network
traffic or system logs.

IDS may detect insider threats when
authorized users abuse their abilities or
conduct crimes.Benefits

Signature databases provide many signatures
for known attack patterns and vulnerabilities,
boosting SIDS.

It can learn and update its baseline to reflect
system behavior or network dynamics,
offering accurate detection.

It only works against known threats with
database signatures. It cannot identify zero-day
attacks or new attack methods.

It may falsely notify of departures from
normal behavior. False positives may tire
security personnel.

It cannot identify encrypted assaults, reducing
its efficacy against such threats.

It may conflate benign and malignant
abnormalities. Anomalies may indicate
security or behavioral issues.

If a new attack variation or updated signature
is not in the database, resulting in a false
negative limits signature detection.

Analyzing network traffic or system records
for baseline, deviation may be computationally
intensive and require particular hardware.

It needs frequent signature database upgrades
to work. New attack patterns need signature
updates in the database.

It cannot process encrypted packets and the
the attack might go unnoticed and pose a threat.Drawbacks

It has scalability issues as network traffic
increases.

Create a standard profile for a highly dynamic
the computer system is difficult.

TABLE I: Methods for IoT network Intrusion Detection techniques [8], [9].

• This work presents a new approach, namely the
FFNN, LSTM and RandNN to detect and classify
intrusions in IoT networks.

• The efficacy of the proposed scheme is assessed
through extensive experimentation on the CIC IoT
2022 dataset, which belongs to the latest generation
of IoT datasets.

• Design an Intrusion Detection System framework
and identifying the dataset characteristics for IoT
networks.

• The RandNN, FFNN, and LSTM efficacy is as-
sessed in binary and multiclass using evaluation
metrics.

• This work provides a comprehensive evaluation
of the proposed approach compared to established
Machine Learning (ML) and Deep Learning (DL)
algorithms.

The subsequent sections of this article are structured
in the following manner. Section II discusses a
literature survey to provide an overview of IoT

security challenges and Deep Learning applications
in security. Section III encompasses the research
methodology, which provides a framework for intrusion
detection in IoT networks using Deep Learning. It
also delineates the implementation platform, dataset
description, simulations and discourse of outcomes.
Section IV includes a complete explanation of the
proposed Intrusion detection models and an in-depth
analysis of mathematical modeling and architectures.
For comparison, the theoretical concepts of machine
learning are also discussed. Section V provides
evaluation metrics and experimental setup to analyze
binary and multiclass classification results for DL-based
IDS. Moreover, a comparative analysis of proposed DL
models is provided with traditional ML models and
state-of-the-art IDS, emphasizing its applicability and
usefulness for IoT systems to identify cyber threats.
The paper concludes in Section VI.
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II. LITERATURE SURVEY

This section presents an in-depth review of the
importance of cyber security in IoT infrastructure
by reviewing previous studies and exploring the
progress made by applying ML and DL techniques.
This highlight the importance of IoT security and its
challenges faced due to absence of IDS and emphasis on
the need of IDS in IoT networks. The section examines
existing research on deep learning-based IDS for IoT
applications, focusing on identifying research gap in
this area. Many research challenges must be updated
to stop cyber attacks and make security solutions
for light weight IoT networks. Applications like
automobile, health monitoring, autonomous machinery,
and smart homes generate a lot of data that requires
new security measures. There needs to be more work
done on intrusion detection for IoT, even though several
academic and industrial researchers have utilized ML
and DL techniques to build and deploy Intrusion
Detection Systems (IDS) for IoTs during the past years.

A. IoT Security Challenges

IoT aims to improve the quality of life by providing a
scope of smart, interconnected devices and applications
across multiple domains. The critical challenges faced
by IoT devices related to security threats lead to
exploring advanced techniques such as DL to increase
IoT security. A study in [21] introduced a Convolutional
Neural Network (CNN) to enhance the efficiency
and security of IoT networks by implementing an
anomaly-based IDS. The model can identify intrusion
and detect anomalies in traffic using the NID and
BoT-IoT datasets, resulting in an accuracy of 99.51
% and 92.85 %, respectively. Even with the current
progress in the IoT industry, a critical requirement exists
for extensive research to enhance the threat detection
rate of IoT systems. Thus, identifying anomalies in IoT
devices is crucial in mitigating attacks and improving
security measures.

Researchers faced challenges in detecting malicious
attacks against IoT devices due to insufficient feature
extraction accuracy from raw network traffic data. To
tackle this issue, [22] employed a CNN for automated
feature extraction and introduced the IoTFECNN (IoT
Features Extraction Convolutional Neural Network). An
optimized version of the Capuchin Search Algorithm
(CSA) was devised to perform binary multi-objective
feature selection with enhanced efficiency. The hybrid
methodology known as CNN-BMECapSA-RF was
evaluated on TON-IoT and NSL-KDD datasets. The
evaluated approach has demonstrated an accuracy of
99.99 % and 99.85 % detecting 27 % and 44 % of the

features characteristics. Furthermore, it was compared
with newer methods and proved to perform better due to
its robust classification, effective feature selection, and
feature extraction. It evaluates various metrics, including
energy consumption, computing overhead costs, and
detection delays, within a semi-realistic scenario but
does not include anomaly and attack-type detection in
IoT.

In recent times, there has been a significant
increase in the amount of data transmitted through
communication infrastructures due to advancements in
technology. Attackers have increased efforts to make
networks vulnerable. In [23], an IDS framework was
implemented with several Recurrent Neural Networks
(RNNs) approaches as LSTM, Simple RNN, and GRU
RNNs with an XGBoost feature selection for NSL KDD
and UNSW NB15 datasets. The findings indicate that
the XGBoost LSTM model shows higher performance,
achieving a (Traffic Acquisition Costs) TAC of 88.13 %,
and XGBoost GRU has a TAC of 86.93 % when applied
to the NSL KDD dataset for binary and multiclass
classification. Moreover, the study showed that the
XGBoost Simple RNN achieved a shorter training time.
Therefore, the Simple-RNN would be the best option
with minimal resources.

The optimization of IoT network security requires a
focus on lightweight, efficient, and flexible solutions. In
[24] a lightweight Random Neural Network is proposed
to detect intrusions in the IoT. This methodology is
suitable for IoT networks with limited resources due to
its improved flexibility and distributed framework. The
framework’s performance was analyzed on individual
classes within the datasets and the enhancement
of model performance on minority classes are not
addressed. The efficacy of the proposed DnRaNN
was evaluated through various metrics, which resulted
in attack detection with an accuracy of 99.14 % for
binary and an accuracy of 99.05 % for multiclass. This
model was tested on the ToN IoT dataset only for IoT
security. A field programmable gate array (FPGA)-based
accelerator with DnRaNN was used to optimize the
effectiveness of the cyberattack detection algorithm in
hardware.

B. Intrusion Detection Systems in IoT

The IoT has a lot of potential across multiple
sectors. However, techniques for detecting and avoiding
security incidents must be developed to implement IoT
in various businesses effectively. Several researchers
use datasets produced by different organizations to
support the development of ML models to predict
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intrusions. Due to this, not all classes of datasets have
the same sample sizes, which is a common issue with
datasets. Techniques like random undersampling and
oversampling could be more effective in producing
reliable results. Researchers in [25] tackle the problem
of data imbalance in intrusion detection within the
IoT by implementing a specialized loss function.
The purpose of this function is to automatically
focus on more complex negative cases over simple
ones to lower the assigned weights. The effective
training of ML models is facilitated by enabling
changes in dynamically scaled gradients. This research
demonstrates the effectiveness of a DL-based intrusion
detection approach utilizing focal loss to analyze three
datasets derived from three distinct IoT domains. The
FNN Focal technique performed better than the baseline
model across the Bot-IoT dataset, achieving 91.55 %
accuracy. Whereas CNN Focal approach achieved a 24
% increase in accuracy compared to the cross-entropy
loss function. The scope is however limited to the Focal
loss, thereby highlighting the necessity for developing
efficient intrusion detection systems.

Using imbalance datasets in intrusion detection poses
a significant challenge in developing effective and
reliable intrusion detection and classification systems.
An ensemble learning methodology has been suggested
as a potential solution to solve the class imbalance
problem in intrusion detection datasets that employ
a Deep Neural Network (DNN)-based IDS [26]. The
objective was to address the problem of imbalanced
class distribution in intrusion detection datasets while
simultaneously obtaining high adaptability. A bagging
classifier with a DNN base estimator used class weights
to equalize the Deep Neural Network training subsets.
This technique is evaluated using four distinct intrusion
detection datasets NSL-KDD, UNSW-NB-15, CIC-IDS-
2017, and BoT-IoT. This process is statistically analyzed
using the Wilcoxon signed-rank test and achieved an
accuracy of 98.99 % with the BoT-IoT dataset. This
research did not use bagging-based ensemble learning
to derive an ideal value for the base estimator for
improving the efficiency of IDS.

The vulnerability of IoT networks to unauthorized
access and manipulation has increased. Hence,
establishing IDS is essential in safeguarding IIoT
networks. In [27], three deep learning models, namely
CNN, LSTM, and a combination of CNN and LSTM,
were introduced to detect security vulnerabilities in
Industrial Internet of Things (IIoT) networks. The hybrid
CNN+LSTM model demonstrated high performance
on UNSW-NB15 and X-IIoTID datasets for intrusion
detection. The CNN + LSTM architecture achieved

an accuracy of 93.21 % for binary and 92.91 % for
multiclass on the UNSW-NB15 dataset. In contrast,
the accuracy was 99.84 % for binary and 99.80 % for
multiclass classification on the X-IIoTID dataset. The
efficacy of the proposed framework may be augmented
through synthetic data production to retrain networks,
thereby increasing the accuracy of relevant models for
diverse forms of attacks present within the datasets.
Researchers have proposed integrating smart frameworks
and innovative IDS with AI to address privacy and
security issues. The study in [20] analyzed the efficacy
of ML and DL methods for protecting the IoT. SVM and
RF have been used due to their accuracy in detecting
patterns. The techniques, including RNN and extreme
gradient boosting (XGBoost), also performed better. The
authors in [10] aims to develop an intrusion detection
framework for machine learning (IDFML) for IoT
networks. This framework utilizes supervised learning
techniques. The IDFML has successfully attained a
98.68 % accuracy in detecting attacks using a Random
Forest classifier.

C. Deep Learning Applications in Security

The IoT network comprises several IoT nodes
that transmit and receive large amounts of data, thus
facilitating advanced intrusion detection techniques.
The Attacks in IoTs go undetected for a long, resulting
in service disruptions, financial loss, and identity theft.
For IoT-enabled services to be reliable, secure, and
profitable, IoT devices must be equipped with real-
time intrusion detection. A fully connected four-layer
network architecture (FCFFN) is presented in [28] to
identify malicious traffic that targets connected IoT
devices. In the FCFFN architecture, a deep neural
network consisting of six layers are fine-tuned to detect
intrusion accurately. The proposed deep learning-based
IDS quickly identifies attacks on IoT networks like
Blackhole, Distributed Denial of Service, Opportunistic
Service, Sinkhole, and Workhole. The results show that
the system is robust and can automatically identify
attacks, with a detection rate of 93.21 %, thus improving
the safety of IoT networks. This IDS was however been
trained using the dataset generated by the experimental
system and includes only five types of intrusion.

Many traffic analyses utilize deep learning techniques
to classify single flows, which can lead to misclassifying
irrelevant flows. Therefore, the utilization of flow
sequences is essential for the purpose to carry out
traffic analysis. A novel flow-based traffic classifier
is presented using the flow transformer technique for
anonymity, encrypted and attack traffic for IIoT [29].
The model employs the multi-head attention mechanism
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to discuss the importance of the flow sequence and
uses a feature extraction layer to fully capture the flow
sequence’s characteristics, achieving an accuracy of
98.5 % using the CIC-IoT2022 dataset. The RF-based
feature selection method is developed to identify the
ideal combination of features, preventing irrelevant
features. It aims to select optimal features to mitigate
any potential negative impact on classifier performance.

IoT networks enable massive data flows between
many devices. Attackers can now compromise the
CIA traits of IoT devices and networks. IoT devices
generates vast amounts of data that are difficult to
analyze in real time, thus making IDS a challenge to
build. A Deep Ensemble-based IDS was presented in
[30] using a multi-classifier system known as Lambda
architecture that identifies cyber-attacks using LSTM,
CNN, and ANN classifiers to maximize batch layer
training. The batch layer trains the model, whereas the
speed layer of the Lambda architecture makes decisions
to improves the ability to make real-time evaluations.
LSTM exceeds ANN and CNN-based classifiers in
accuracy for Binary Class. Hybrid Ensemble achieves
99.93 % accuracy outperforming individual classifiers
in multiclass by reducing processing time. The results
indicate that the ensemble methodology shows higher
detection accuracy than the direct approach.

Data collection from diverse IoT sensors and the
delays faced within the IoT system pose a more
complex challenge in identifying abnormal behavior and
compromised nodes than in conventional Information
Technology (IT) networks. In [31] an approach for
detecting anomalies by deep learning by employing a
denoising autoencoder to obtain characteristics suitable
for the large IoT environment using the DS2OS
traffic traces dataset proposed. The classifier utilized
the features to differentiate between vulnerable and
authentic IoT data. Using denoising autoencoders
enables the efficient extraction of features that exhibit
strength against noisy characteristics in IoT systems.
The study demonstrated that integrating deep learning-
based anomaly detection in IoT effectively identifies
and mitigates fake data. IoT growth has increased cyber-
attack risk, making intrusion detection on IoT networks
more plausible due to the potential for unwanted
access to many interconnected services. An approach
[32] has introduced MFO-RELM, which combines the
Mayfly optimization (MFO) with regularised extreme
learning machine (RELM) to address the issue of
cybersecurity threat identification and categorization
in IoT environment. The MFO-RELM methodology
demonstrates high efficacy in detecting and assessing
cybersecurity vulnerabilities. The MFO-RELM model

was applied to the N-BaIoT dataset for testing purposes
can identify cybersecurity threats within the Internet of
Things (IoT) ecosystem.

D. Related Work on Deep Learning-Based IDS for IoT

The growing of IoT devices and malicious software,
as well as the wide use of encryption technology
in IoT communication, has increased the amount of
encrypted suspicious traffic between devices, posing
a significant threat to IoT cybersecurity. Currently,
many traffic detection techniques employed in the
IoT need more dataset processing, suboptimal feature
extraction, imbalanced data, and limited accuracy
in multiclass classification. The vulnerability of IoT
networks to threats was addressed by developing a
bidirectional CNN-BiLSTM DDoS detection model, as
proposed in [33]. The model was evaluated using the
CICIDS2017 dataset and included three deep learning
algorithms: RNN, LSTM-RNN, and CNN. This research
builds a model responsive to different DDoS attacks
and can distinguish between malicious and normal
traffic to prevent false alarms. The CNN-BiLSTM
model has an accuracy of 99.76 %. This model
examined the architecture of IoT networks and provided
possible causes for their security flaws. The model
demonstrated its compatibility with the existing IoT
network infrastructure. The lack of a genuine testing
platform was the primary limitation of this study, which
limited the testing’s reliability.

The interconnected nature of devices and sensors
in the IIoT leads to massive amounts of dynamic
and unreliable data. Analyzing and protecting Big
data volumes is challenging. The IIoT will increase
the vulnerability of industrial systems to cyber
attacks, making cyber threat detection more difficult.
Anomaly detection has decreased due to cyberattack
diversity. According to [34], an ensemble deep LSTM-
AE anomaly detection model is utilized to detect
irregularities in the IIoT and detect cyber threat.
The model is trained on balanced data obtained
from unbalanced datasets on two real IIoT datasets.
This model outperformed existing ML classifiers and
achieved 99.7 % accuracy. To safeguard IoT networks
from diverse attacks, a study in [35] introduced an
innovative IDS that utilizes a filter-based Deep Neural
Network (DNN) model. Using Generative Adversarial
Networks (GAN), they addressed the issue of class
imbalance in the dataset by increasing the number
of packets in minority class attack categories in IoT
networks. The classifier achieved an accuracy of
85.0 % in multiclass for the UNSW-NB15 dataset.
However, when using GANs, the classifier achieved a
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higher accuracy rate of 91.0 %. The attained outcomes
hold considerable importance within the field of
cybersecurity. It can improve accuracy further and
minimize errors in false negatives and false positives.

IoT has extensively been employed in automated
network systems, significantly influencing various
industries recently. IoT comprises many nodes that
acquire, retain, and analyze personal data, making
them highly vulnerable to attacks from malicious
entities. IoT requires assistance to enhance operational
efficiency and distinguish subcategories of cyber attacks.
The research in [36] proposes a Deep Convolutional
Neural Network (DCNN) model that comprises of a
convolutional layer, pooling layer, and a fully connected
layer designed to detect malicious attacks in IoT
networks. The model aims to enhance performance
and minimize computational requirements, which can
benefit low-power IoT devices. Using the IoTID20
dataset to conduct performance analysis for multiclass
subcategories, an accuracy of 77.55 % was achieved.
Adam, AdaMax, and Nadam optimization techniques
were applied in which Nadam optimizer performance
was best with all batch sizes. Experiment results show
that the proposed method outperformed among existing
DL-based algorithms and is more stable.

Any data storage or processing model faces the
same problem of fog and cloud security. Once an
attack has occurred, it will have destructive impacts
on the expansion of the IoT, the Fog, and the cloud.
As a result, numerous Fog data protection models
have been developed. An intrusion detection system
for Fog computing security is presented in [37], which
is fully automated using AI to mitigate cyber-attacks.
The model was examined using multi-layered Recurrent
Neural Networks (RNN) designed to implement Fog
computing security near end-users and IoT devices.
The tested model has a 98.27 % accuracy in detecting
Denial-of-Service (DoS) attacks while maintaining a
processing overhead of the NSL-KDD dataset.

The increasing number of novel cyber-attacks poses
a continual threat to modern IoT networks, requiring
the development of advanced defense mechanisms to
mitigate zero-day attacks effectively. The limitations of
IoT devices are computing power and lack of endurance.
Moreover, the diverse cyber-attacks poses a detection
challenge that requires continuous defense mechanisms.
Researchers has proposed dynamic and distributed
frameworks based on DL to detect cyberattacks [38].
The NSL-KDD and BoT-IoT datasets evaluate the
performance of the LSTM and FFNN models within the
framework. The framework was devised to safeguard

IoT networks by utilizing fog layers to detect cyber-
attacks. In order to boost detection and classification
accuracy while reducing latency, fog layers evaluate data
near the edge layer. The proposed distributed system
detects cyberattacks by achieving an accuracy of 99.95
%. The results indicate that FFNN exhibits a higher
performance for the distributed NSL-KDD dataset.
The proposed methodology has improved cyber-attack
detection in IoT networks that utilize constrained end
devices. This research is limited to sufficient data when
the number of fog nodes in the framework grows.

E. Problem Formulation

In the future, advancements in anomaly detection
within the system will enhance data processing and
analyze security, thereby mitigating the risk of major
failures in IoT networks. From the above review, it is
clear that numerous methods have been proposed for
enhancing the security of IoT devices. Multiple research
has investigated IoT security and privacy concerns in
cybersecurity. Complex models require tremendous
resources, whereas lighter models are better suited for
deployment on edge devices [39]. Current research
has shown that DL needs to be enhanced because
it produces misleading results that lead to inefficient
procedures and overfits. Based on the above discussion,
implementing advanced learning strategies can improve
the performance of IDS [40]. Implementing security
protocols for both the internal and external components
of IoT devices is essential due to the importance of IoT
networks. Attackers may launch destructive impacts
on IoT-based critical applications. Implementing deep
learning models for a better understanding of the
decision-making process increases trust in the IDS
and assists researchers in understanding and evaluating
detections.

In recent years, academic and industrial researchers
have used ML and DL techniques to develop and
implement IDS for IoT devices. Despite a lot of work
done, it is critical to continue developing new and
efficient DL algorithms. Therefore, improving security
by creating adaptable intrusion detection systems is
a challenge. Deep learning-based IDS is a potential
solution for detecting patterns of cyber attacks in large
volumes of data in IoT networks. This research gap
will help build robust DL-based IDS for IoT to detect
intrusions. The research aims to develop three DL neural
networks capable of detecting intrusion in IoT networks
and providing better protection against cyber threats
with reduced complexity and classification time in
order to enhance accuracy and effectiveness. Therefore,
improving IDS in the IoT will improve reliability,
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efficiency, and credibility. However, additional research
is needed to improve intrusion detection efficiently.
The motivation for performing this research is to
counter cyber threats and overcome IDS limitations
by implementing robust security measures within IoT
networks.

III. PROPOSED INTRUSION DETECTION SYSTEMS

This section presents a framework for deep learning-
based intrusion detection to identify and classify
potential vulnerabilities and attacks within IoT networks.
The proposed framework is presented for three DL
models, followed by a comprehensive evaluation of
the tasks performed at each stage and a thorough
analysis of the significant contributions of each step.
The subsequent discussion comprehensively explains
the intrusion detection dataset, hardware, software and
libraries employed in this research.

A. Proposed Framework

The proposed system has been designed to retrieve
packets from the data produced by the underlying
IoT infrastructure and identify intrusions following
sufficient training. The proposed framework entails
employing a traffic capture mechanism from an IoT
Network, as proposed in [41], to collect the traffic flow
of IoT devices. This data is then utilized to emulate
the operations of an IoT-enabled Smart Home. The
proposed framework involves utilizing a deep neural
network trained on a dataset, CIC IoT 2022, consisting
of network packets. The CICFlowMeter 4.0 is utilized
as a feature extractor to extract relevant features from
the packets transmitted through IoT networks [42].
The proposed framework illustrated in Figures 4 and 5
is a newly developed Intrusion Detection System that
employs deep learning techniques to identify anomalies
in the IoT networks. The training workflow of the
proposed framework depicted in Figure 4 comprises
of five stages: feature extraction, data preprocessing,
data balancing, feature selection, and data splitting.
The application of a model for training follows
these stages. Figure 5 illustrates integrating Intrusion
Detection Systems (IDS) with IoT Networks to identify
and predict intrusions before the IoT network. After
assessing the effectiveness of various models, the
optimal model will be selected for deployment to detect
anomalies within IoT network.

Anomaly detection encompasses a range of
techniques, such as packet dropping, vulnerability
scanning, IP address blocking, physical inspections,
and user notification. The model under consideration

streamlines the process of choosing algorithms for
limited resources of IoT devices by considering actual
performance and cost metrics, including accuracy
and time cost. Tailored solutions address the distinct
requirements of individual users are of paramount
importance within the framework of anomaly detection
systems for the IoT security. The dataset is subjected
to training through various DL models to identify
anomalies. Thus, it can be deduced from the results of
the model that has been trained. The system can run
an algorithm to identify the existence of any malicious
packets and conduct a thorough examination of the IoT
devices. Hence, the proposed model aims to provide
an best solution catering diverse user types, including
large firms with abundant resources seeking maximum
accuracy and startups prioritizing cost efficiency.

B. Workflow Description of the Proposed Framework

The process consists of the following stages
including data preprocessing which have importance in
data analysis, as it involves cleaning, encoding, feature
scaling and extracting the dataset. Data augmentation
techniques is used to achieve class balancing and feature
selection to identify the most appropriate features. The
feature preprocessing encompasses the initial step of
dividing the dataset, which is proceeded by the training,
validation and testing of DL models.

Data Preprocessing: Initially, the network analyzer
tool is employed to gather raw network traffic of
IoT devices and extract packet features [41]. Features
extraction can be done using CIC Flow Meter 4.0
[42] and convert PCAP (Packet Capture) files into
CSV (comma-separated values) files. The dataset
comprises 84 features, including 78 numerical values,
five categorical values, and one label. The dataset
features are subject to cleaning, feature scaling and
encoding techniques before given to the DL models.

1) Data Cleaning: Data cleaning involves the
process of identifying and addressing errors, inadequate
structure, duplication, or missing values within the
dataset. There are various ways through which data
duplication or incorrect classification might occur
during the integration of different data sources [43].
The lack of a widely accepted methodology for defining
each stage of the data cleaning process may lead to
anomalies in datasets. The reliability of results and
algorithms can be compromised by the presence of
inaccurate data, despite achieving accuracy. Establishing
a standardized framework for data cleaning process is
imperative to ensure accuracy and consistency across
all iterations. The CIC IOT 2022 dataset used in this
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Fig. 4: Workflow of the proposed Intrusion Detection System for IoT Network using DL.
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Fig. 5: Workflow of the proposed Intrusion Detection System for Inference in IoT Network using DL.

research is cleaned by dropping redundant packets and
removing missing and infinite values.

2) Categorical Encoding: Converting categorical data
into numerical data is commonly called label encoding,
a widely used technique in DL. It involves assigning
a numerical value to each distinct categorical variable
for efficient data processing by algorithms. For example,
a dataset absolute features values derived from the set
are ‘HTTPFlood’, ‘UDPFlood’, ‘TCPFlood’. This step
utilize label encoding to assign numerical values to
the features correspondingly. Another method for trans-
forming categorical data into numerical data is One-Hot
encoding that is used to represent categorical variables as
binary vectors [44]. As mentioned above, this approach
generates a binary vector for every category within the
variable. The vector comprises zeros for all values except
for the index value assigned as one for corresponding
class. It allows categorical variables to be used in math-
ematical algorithms that require numerical input.

• Consider a discrete categorical random variable,
denoted as x, with n distinct values x1, x2, . . . , xn.
The One-Hot encoding process involves a specific
value xi as a vector v, where each element of v is
zero except for the ith element, which is assigned

a value of 1.

vij =

{
1 if xi = xj ,

0 otherwise.
(1)

• Let x be a random variable defined over a set
S = {a, b, c, d, e, f, g, h}. We can denote the vari-
ables x1, x2, x3, x4, x5, x6, x7, and x8 as a, b,
c, d, e, f , g, and h, respectively. The One-Hot
encoding representation for x comprises of eight
binary vectors:

v =





(1, 0, 0, 0, 0, 0, 0, 0),
(0, 1, 0, 0, 0, 0, 0, 0),
(0, 0, 1, 0, 0, 0, 0, 0),
(0, 0, 0, 1, 0, 0, 0, 0),
(0, 0, 0, 0, 1, 0, 0, 0),
(0, 0, 0, 0, 0, 1, 0, 0),
(0, 0, 0, 0, 0, 0, 1, 0),
(0, 0, 0, 0, 0, 0, 0, 1).





(2)

Label encoding and One-Hot encoding techniques
are used to convert categorical attributes into numeric
values. The features namely ‘Flow ID’, ‘Src IP’, ‘Dst
IP’, ‘Time Stamp’, and ‘FIN Flag Cnt’ are subjected
to label encoding which result into integer values of
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202163, 876, 2138, 85714 and 8, respectively. The
One-Hot encoding approach is employed in neural
networks to handle categorical variables efficiently.
This implementation is determined by the number of
unique levels observed in the variables. In this work,
the column ‘Label’ is transformed into eight columns
of normal and attack categories and eliminate label
column from the dataset, as shown in Equation 2.

3) Feature Scaling: Feature scaling is a technique
that involves modifying the range of values within a
set of features according to a specified range. This
method must be used when a feature has a big value but
does not affect any other features [45]. This includes
standardization and normalization [46]. Normalization
is a necessary step to mitigate the issue of significant
variances during the merging process. It is achieved
by scaling all features to a standard range, thereby
enabling optimization. Min-Max normalization is used
with a selected range of [0,1] to normalize the values of
columns, thereby enabling them to be represented on a
uniform scale.

xnorm =
x−min(x)

max(x)−min(x)
× (b− a) + a, (3)

where,

x is the original value to be normalized.
min(x) is the smallest column feature value.
max(x) is the largest column feature value.
xnorm is the normalized value.
a is the lower bound of desired normalization.
b is the upper bound of desired normalization.

Data Augmentation and Balancing: The problem of
imbalanced data occurs when the distribution of samples
across different classes is uneven. It leads to a skewed
dataset, where one class is imbalanced and may result in
a biased model. The training data generally undergoes
re-sampling before classification, which augments the
number of samples belonging to the minority class, and
under-sampling, which reduces the number of samples
from the majority class. Imbalanced classification issues
are frequently encountered in various datasets because
the minority class usually has insufficient data. One
approach to rectifying class imbalance is the synthesis of
additional data from the minority class, thus mitigating
the issue of limited data availability.

Synthetic Minority Oversampling Technique
(SMOTE) is a widely used approach for generating
additional samples in the dataset. The methodology
relies on developing data packets that connect a given
point with its K-nearest neighbouring points [47].

The SMOTE technique generates new samples from
the existing dataset to attain a balanced dataset. It
is employed to increase the number of instances of
the minority categories. Furthermore, an analysis is
conducted to evaluate the impact of various factors,
including dimensionality reduction, size of the training
set, and the number of neighbours (K) on the accuracy
of the system. Additionally, a qualitative analysis
assesses the variables that affect the results. Following
are the steps used to perform SMOTE analysis in this
research.

• The techniques involve identifying the samples that
pertain to the minority class within the imbalanced
dataset. The term ”minority class” denotes the
category with fewer instances than the ”majority
class.”

• The SMOTE algorithm selects a sample from
the minority class within the dataset. The chosen
sample is denoted as X .

• Upon obtaining the designated sample X , it is
imperative to identify its k nearest neighbours
originating from the minority class. The parameter
k holds a significant value in determining the
count of neighbours to be considered. The set of k
nearest neighbors is denoted as NN .

• Synthetic samples NN are produced for each
neighbor n by interpolating between the minority
sample X , and its neighbor n. A point is randomly
selected on the line segment that links X and n
to create an artificial specimen. The α parameter,
known as the synthetic sample ratio, governs a
numerical parameter that takes values within the
interval [0, 1]. The value of 0 corresponds to the
variable X , while 1 corresponds to the variable n.

• The generation of synthetic sample is given by
Equation 4.

s = X + α(n−X) (4)

• Interpolation is performed on a per-feature basis
for every attribute of both X and n.

• The oversampling of a minority sample involves
iteratively selecting a model, identifying its closest
neighbours, and generating synthetic illustrations.
This process is repeated until the dataset is
balanced.



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Given the imbalanced nature of the dataset, a
resampling technique is employed before classification
to mitigate the potential issues arising from class
imbalance. The dataset is balanced by using the
undersampling of the majority class and oversampling
of the minority class. The dataset underwent SMOTE
analysis, producing resampled data for the X and
y variables. The experiment was limited to eight
categories, including three Normal classes (Power, Idle,
and Interaction) and five Benign classes (HTTP Flood,
UDP Flood, TCP Flood, RSTP, and Brute Force). The
dataset yielded 476111 packets that underwent SMOTE
analysis, encompassing binary and multiclass categories.

Feature Selection: Feature selection is a technique
that is used to retain features from data by reducing its
dimensionality. It helps to enhance storage efficiency
and decrease computational complexity. Due to power
limitation of IoT devices, process of designing Intrusion
Detection Systems (IDS) classifiers require low-
dimensional features in both binary and multiclass
classification. Empirical data has demonstrated that
this approach has yielded exceptional outcomes. In
this research, Principal Component Analysis (PCA)
is used to convert the initial dataset onto a lower-
dimensional subspace while preserving the fundamental
characteristics of the original data by selecting and
extracting relevant features.

Principal Component Analysis (PCA) is a statistical
technique that aims to reduce the number of features in a
dataset by using orthogonal combinations of the original
parameters that shows high variance [48]. The principal
components are independent of one another, eliminating
correlated features that contribute insignificantly to
decision-making processes. The main steps in PCA are
computing the mean, standard deviation, covariance,
cumulative proportion, eigen-vectors, and eigen-values
[49]. The selection of these combinations is based on the
significance of the dataset. The principal components
is obtained as a linear combinations of the original
variables which can capture the highest degree of
variance in the dataset. Following are the main steps of
PCA:

• Consider the matrix X, which has dimensions mxn
and represents our dataset. Each row of X corre-
sponds to a distinct data point, while each column
corresponds to a unique feature. The computation
of the mean vector, represented by µ, is shown by
Equation 5.

µ =
1

m

m∑

i=1

Xi. (5)

• For obtaining the mean-centered data matrix, de-
noted by Xi, the mean vector from each data point
is subtracted.

Xc = Xi − µ. (6)

• The covariance matrix C is calculated by determin-
ing the covariance among the characteristics of the
data centered around the mean.

C =
1

m

(
XT

c ·Xc

)
. (7)

• An eigenvalue decomposition of the covariance
matrix is performed to derive the eigenvectors and
eigenvalues. The matrix containing the eigenvectors
is referred to as V , while the eigenvalue matrix is
denoted as λ.

C = V λV T . (8)

• The matrix v is of size nxn and comprises eigenvec-
tors, representing each column. Additionally, λ is a
diagonal matrix with eigenvalues on the diagonal.
To construct the matrix, choose the k eigenvectors
corresponding to the vk largest eigenvalues. The
vector P contains k elements, denoted as v1 through
vk.

P = [v1, v2, . . . , vk]. (9)

• It can be observed that each column denoted by
vi signifies a principal component. A procedure is
carried out wherein the mean-centered data is pro-
jected onto the k principal components to decrease
the dimensionality of the data.

Xpca = XcP. (10)

The dependency among the variables in the dataset
can be determined through correlation analysis.
A correlation map is generated to identify highly
correlated features, and those with values greater than
the threshold are removed. When creating a model,
features with a high degree of correlation that exceeds
a threshold value of 0.95 are selected. The Xresampled

data is transformed into Xpca by dimensionality
reduction derived from Equation 10, where each row
represents a data point, and each column represents
the principal component. There are 83 features in the
original dataset, however PCA retained only 65 binary
and 67 multiclass components.

Feature Pre-processing: During the feature pre-
processing stage, the processed data is divided into
three categories which are training, validation, and
testing. The processed data for binary classification has
65 dimensions and the multiclass classification data
has 67 dimensions. Both normal and attack types are
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represented by the labels included in these sets.

Training Validation and Testing: Evaluating
the performance of a model is done by dividing the
dataset into training, validation, and testing sets, with
proportions of 60 %, 20 %, and 20 %, respectively.
The processed data is used to train three DL models,
including FFNN, LSTM and RandNN. These models
are then evaluated using the validation datasets. The
accuracy attained through each model is assessed
using the test set. The model is designed to categorize
a ‘Normal’ and ‘Attack’ class for both binary and
multiclass classification problems.

C. Description of the Dataset

In this work, the CIC IOT 2022 dataset has been
used for intrusion detection. The dataset and testbed
arrangement as discussed in [50] can be used for
profiling, behavioural analysis, and vulnerability
assessment of IoT devices using various protocols. The
dataset was captured using network traffic of IoT devices
across distinct domains. Audio, Camera, and Home
automation devices were used by Canadian Institute
for Cybersecurity (CIC) laboratory. Generation of the
dataset involved profiling 60 IoT devices connected
to the IoT network. The dataset consist of packet
headers that were collected from each device during
various states, including when it was powered on,
idle, active, and during interactions through number of
experiments of IoT traffic capture recording in 30 days.
Low Orbit Ion Cannon (LOIC) tool was used to launch
a denial-of-service (DoS) attack using HTTP, UDP,
and TCP Flooding on IoT devices. Hydra and Nmap
tools were used for bruteforce and Camera Real Time
Streaming Protocol (RTSP) URL attacks for evaluating
IoT devices behavious.

Conversion of Dataset: The CIC IOT 2022 dataset
was stored in pcap files. In this research, all collected
data of pcap files are converted into csv files to extract
features using the CICFlowMeter 4.0 on the Windows 10
operating system. The CICFlowMeter is an open-source
software that produces bidirectional flows by analyzing
pcap files and extracting relevant characteristics from
these flows [51]. It converts network traffic flow into
statistical features of the dataset. The CICFlowmeter 4.0
has the ability to select features from a wireshark packets
and includes a number of important features and flow
timeout [42], [52]. This method assigns an arbitrary flow
timeout value, such as 60 seconds for both TCP and
UDP packets. Therefore, UDP flows end when a flow
timeout occurs while TCP flows end when a connection

is broken.

The dataset consists of camera, audio and home
automation devices categorized into four distinct normal
classes; Power, Idle, Active, and Interaction and five
attack classes; HTTP Flood, TCP Flood, UDP Flood,
RSTP, and Brute Force. The dataset comprises 84
distinct features and a label that denotes a normal
or an attack class. The active class is excluded from
this research due to overlap with the idle class. The
Idle class is subject to under-sampling by randomly
selecting packets for a duration of three days. The
dataset comprises 476111 records, of which 243746
classify under the Normal label, and 232365 belong to
various attack classes. Figures 6 presents the distribution
of the dataset of each class.

D. Hardware, Software, and Libraries

This work was conducted on Jupyter Notebook
application which an interactive Python-based IDE
within the Anaconda distribution for executing and
evaluating the proposed methodology [53]. The study
utilized Keras, a Python-based deep learning [54].
The hardware used is a Core i7-9700 CPU @3.00
Ghz (8 CPUs) processor with a 32 GB RAM. Python
3.10.4 programming language is used alongwith the
open-source module pandas-profiling 3.6.6 for data
analysis [55]. Several other factors affect the results of
the Deep Learning (DL) algorithm such as batch size,
learning rate, and the type of optimizer employed for
minimizing the loss function. Optimization helps to
minimize the cost function while reducing the resources
and effort. After thoroughly evaluating the available
alternatives, the ADAM optimizer was selected due to
its ability to maximize the categorical cross-entropy
loss for multiple classes [56].

IV. EXPERIMENTAL CONFIGURATION OF INTRUSION
DETECTION MODELS

This section describes three proposed Deep
Learning (DL) models for detecting intrusion and
furnishes comprehensive specifications. The following
section delineates the mathematics of these models
and architectural design of binary and multiclass
classification for intrusion detection. The theoretical
concepts of the traditional Machine Learning (ML)
models will be discussed for comparison with proposed
models.

A. Proposed Model 1 : Feed Forward Neural Network

The first model used in this work to detect intrusion
is the Feed Forward Neural Network (FFNN). FFNN
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Fig. 6: Dataset’s statistical analysis shows packet distribution across various categories

has been sucessfully model used in the number of
applications encompasses classification and recognition
[57]. FFNN architecture presents the hyperparameter
optimization by implementing Scikit learns,
RandomizedSearchCV, and KerasClassifier wrapper
for the Keras library. Hyperparameter optimization is
used to identify the best set of hyperparameters for the
given dataset. Four hyperparameters are selected for
specifying the neural network’s design, which includes
the number of hidden layers in the neural network, the
number of neurons in each hidden layer, the dropout
rate to prevent overfitting and the L2 regularization
coefficient. The model is fine-tuned using a suitable set
of hyperparameters to enhance classification accuracy
and mitigate the risk of overfitting [58]. Dropout
regularization technique is used after every hidden
layer to mitigate overfitting. The choices for selecting
hyperparameter includes a variety of configurations as
mentioned below:

Number of hidden layers: [1, 2, 3]

Number of neurons: [64, 128, 256, 512]

Dropout regularization rate: [0.1, 0.2, 0.3, 0.4, 0.5]

L2 regularization rate: [0.001, 0.01, 0.1, 1]

Mathematical Modeling: The mathematical
representation of proposed FFNN is derived in the
following steps:

• For a given dataset, x be the input vector, the output
of the initial hidden layer can be represented as:

h1 = ReLU(W1 · x+ b1), (11)

where W1 denotes the weight matrix that connects
the input layer to the first hidden layer, b1 is the
bias vector, and ReLU is the activation function
that implements the rectified linear unit. The output
h1 computes the output of the first hidden layer.

• The output of the subsequent hidden layers of the
neural network is represented by Equation 12:

hi = ReLU(Wi · hi−1 + bi), (12)

where i denotes the index of the layer.

• The output layer can be mathematically expressed
as:

y = softmax(Wo · hnum hidden layers + bo), (13)

whereas Wo and bo denote the weight matrix and
bias vector that connects the final hidden layer and
the output layer, respectively.

• The dropout technique involves a process of mask-
ing in which a portion of input units is set to
zero during the training phase. The masking process
for each layer can be represented as Mi, a binary
mask that has the same shape as the output of the
corresponding layer. Each output layer is obtained
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Fig. 7: Architecture of FFNN for binary classification.

through element-wise multiplication with the corre-
sponding mask in the training phase as expressed
by Equation 14:

hi =Mi · ReLU(Wi · hi−1 + bi). (14)

• L2 regularization loss function is used to enhance
weight minimization. Each layer’s weight matrices
are modified according to the loss function. In
Equation 15, the L2 regularization is determined as
0.5 multiplied by the L2 regularization coefficient.

L2reg = 0.5 · l2reg ·
(
∥W1∥2

+ ∥W2∥2 + . . .+ ∥Wo∥2
)
.

(15)

whereas the coefficient l2reg is used as the L2
regularization term, and |Wi| denotes the sum of
the Frobenius norms of the weight matrices Wi.

Model Architecture: The input layer consist of 65
features for binary class and 67 features for multiclass
classification. The algorithm performs a randomized
search over the hyperparameters to determine the best
combination to detect intrusions in the dataset. A
cross-validation approach using three folds and ten
number of iterations was conducted to evaluate the
model performance. The model systematically iterates
through various configuration of hyperparameters and
identify the best combination that maximizes the
performance using the RandomizedSearchCV in less
processing time using training and validation sets. The
automated optimization of the model’s architecture and
regularization parameters eliminates the need of manual
tuning, thereby saving time and effort. A different
hyperparameter combinations were tried out during the
search process for each layer. After completing the

Fig. 8: Architecture of FFNN for multiclass classifica-
tion.

search process, the best configuration of the model
hyperparameter is selected.

Figure 7 and 8 shows the proposed FFNN architecture
for binary and multiclass classification. The model
comprises three densely connected hidden layers of
512 neurons for multiclass. The model output layer
comprises of eight neurons, reflecting various number
of categories within the dataset. The model has two
hidden layers for binary class, consist of 64 densely
connected neurons to the output layer of 2 neurons
for each category. The ReLU activation function is
used for hidden layers. The Softmax activation function
is used in the final layer, which is a widely adopted
approach for addressing multiclass problems. The FFNN
model uses the Adam optimizer and the categorical
cross-entropy loss function to facilitate weight update
for training. The model is fine-tuned by implementing
the L2 regularization technique, a weight loss of 0.001
and a dropout rate of 0.1 for both binary and multiclass
classification. The model’s training process involved 100
epochs with 32, 64, and 128 batch sizes. Additionally,
various configurations of hidden layers and neurons
within each layer were explored.

B. Proposed Model 2 : Long Short-Term Memory

The Long Short Term Memory (LSTM) algorithm
tackles the data preprocessing requirements for tasks
including time series, prediction and classification. The
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proposed LSTM model analyzes complex and large
datasets to detect cyber attacks. The model uses LSTMs
and dense layers in a sequential structure. LSTM
layers collect input data on temporal relationships and
long-term trends. The proposed model consists of three
LSTM layers, each with different combinations of
LSTM units which consist of 16-16-16, 32-32-32, 64-
64-64, 128-128-128 for binary class and 128-128-128,
256-128-128, 256-256-128, 256-256-256 for multiclass
classification. The LSTM layers are presented with a
random normal distribution having a mean of 0.0 and
a standard deviation of 1.0 through an initializer. This
kind of randomization enhances parameter diversity,
which boosts the model’s ability to learn complex
patterns. A noise initializer has been introduced to
improve the learning capabilities of the model and
manage data uncertainties efficiently . When LSTM
layers are set up, patterns are built up so that sequential
data can be sent from one layer to the next. The
recurrence and bias initializers have been configured to
use the initializer technique to make sure that weight
initialization is identical.

Mathematical Modeling: For representing
mathematical modeling of the proposed LSTM
model, consider an example of the LSTM layer having
256 units at time step t which includes:

• The forget gate at time step t is given by Equation
16:

ft = σ(Wf · [ht−1, xt] + bf ), (16)

where,

Wf ∈ R256×256,

bf ∈ R256.

• The input gate at time step t is computed as follows:

it = σ(Wi · [ht−1, xt] + bi), (17)

where,

Wi ∈ R256×256,

bi ∈ R256.

• The candidate hidden state at time step t is com-
puted as:

Ct ∼ tanh(Wc · [ht−1, xt] + bc), (18)

where,

Wc ∈ R256×256,

bc ∈ R256.

• The cell state at time step t is given as:

Ct = ft ⊙ Ct−1 + it ⊙ C̃t. (19)

• The output gate at time step t is expressed as:

ot = σ(Wo · [ht−1, xt] + bo), (20)

where,

Wo ∈ R256×256,

bo ∈ R256.

• The hidden state at time step t is calculated using
Equation 21:

ht = ot ⊙ tanh(Ct), (21)

where,

σ represents sigmoid activation fun
⊙ represents multiplication.

Wf ,Wi,Wc,Wo are weight matrices. of each gate
bf , bi, bc, bo are bias vectors of each state.

ht−1 represents the previous hidden st
xt represents the current input.

• For consideration, the first Dense Layer will take
256 units. The weighted sum at time step t of the
first dense layer zt is expressed as:

zt =Wz · ht−1 + bz, (22)

where,

Wz ∈ R128×256,

bz ∈ R128.

Wz are weight matrics.
bz are bias vector.

• The ReLU activation function at is applied to the
weighted sum as follows:

at = max(0, zt). (23)

• A dropout layer dt is used after every dense layer
with a rate of 0.2 by applying the regularization
technique to the activation values at.

dt = dropout(at, 0.2). (24)

Model Architecture: The model architecture
comprises of three LSTM layers and three dense layers.
The number of units in each layer is mentioned in
the architecture of LSTM model, illustrated in Figure
9 and 10 for binary and multiclass classification.
The model has the ability to capture complex non-
linear relationships within the data by activating the
dense layers using the Rectified Linear Unit (ReLU)
function. Moreover, the dense layer is subject to
kernel regularization with a coefficient of 0.001 and a
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Fig. 9: Architecture of LSTM for binary classification.

Fig. 10: Architecture of LSTM for multiclass classifica-
tion.

dropout rate of 0.2 to address overfitting. The ADAM
optimization algorithm is utilized for hyperparameter
optimization, while categorical cross-entropy function
is employed to calculate the loss [59].During the
training phase, the model is provided with input
sequences and their corresponding labels. The best
architecture consist of 128 units of three LSTM and
fully connected dense layers for binary classification and
256 units of three LSTM layers and 128 units of three
fully connected dense layers for multiclass classification.

The model input, denoted as xt, exhibits a
dimensionality of 65 for binary and 67 for multiclass,
whereas the previous hidden state, represented by ht−1,
possesses a dimension of 256 units. The dimensions of
the Wf ,Wi,Wc,Wo weight matrices can be determined
from the number of units in the LSTM layers which
is 256. The sum of the dimensions of ht−1 and xt are
321 for binary and 323 for multiclass. Moreover, the
dimensions of these matrics would be (256, 321) and
(256, 323). The bias vectors bf , bi, bc, bo must have
the same dimensions 256 as the number of units to
maintain consistency. The weight matrices Wz of the
dense layers would possess dimensions of (128, 256) to
establish a connection between the current layer and the
previous hidden state. Additionally, the bias vectors bz
has a dimension of 128 corresponding to the number of
units. The dropout layer is used after every dense layer,
with a dropout rate of 0.2. The training procedure is
executed for 100 epochs, utilizing batch sizes of 32,64,
and 128.

C. Proposed Model 3 : Random Neural Network

The Random Neural Network (RandNN) is an Artifi-
cial Neural Network (ANN) that employs the random
allocation of connection weights among the neurons.
Unlike conventional neural networks with fixed con-
figurations, RandNN has a randomly generated archi-
tecture, which provides a unique feature that allows
for exploring a large range of network structures. The
RandNN comprises interconnected neurons organized
into input, hidden, and output layers. The neurons in
the RandNN are interconnected via random connections,
allowing for data transfer across the network efficiently.
RandNN aims to understand the complexities of neuron
connections and activation function within a network.
The random initialization of weights in RandNN enables
applications such as generating random patterns, investi-
gating neural network characteristics, and examining net-
work performance under complex situations. Although
random neural networks do not possess the capacity to
acquire knowledge from data in the same manner as
conventional neural networks, they can still demonstrate
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exciting behaviors and interactions. A neuron’s signal
count can be changed using RandNN with positive
or negative signals and zero signs. A neuron ”fires”
when its potential is positive, delivering random positive
or negative signals to other neurons. Negative signals
establish limitations, while positive signals promote ac-
tivation [60]. The model has abilities to boost due to the
implementation of probability constraints and simplify
complex calculations. Because the algorithm is fully
distributed, it is perfect for deployment in hardware and
IoT devices with minimal resources.

Mathematical Modeling: The mathematical
representation of the proposed model makes it easier
to understand the intricate random patterns displayed
by neurons. The model assumes that there is a system
consisting of N neurons, where each individual neuron
is exposed to both excitatory and inhibitory signals
that originate from external sources. At a given time, a
neuron’s excitation level is represented by its internal
state, denoted as sn(t). A mathematical model for a
RandNN is explained in the following section.

1) Network Description: Let us consider a RandNN
model comprising N neurons, where each individual
neuron is exposed to both excitatory and inhibitory
signals that originate from external sources which
may include sensors or other cells. The rate at which
excitatory and inhibitory signal received for a given
neuron n represented by the symbols ψ+n and ψ−n,
respectively where n is an element of the set 1, ..., N .

The representation of the internal state of neuron n at
time t ≥ 0 is denoted by sn(t). When the value of sn(t)
is greater than zero, the occurrence of an inhibitory
signal directed towards neuron n during time t results
in a decrease of one unit in its internal state, expressed
as sn(t+) = sn(t) − 1. In cases where sn(t) = 0, the
occurrence of an inhibitory signal does not exert any
effect. The increment of sn(t) by +1 is a consequence
of an excitatory signal. A neuron n is said to be in an
excited state if its internal state, represented by sn(t),
is greater than zero. The device is capable of releasing
a signal with a probability of Rn∆t within the time
interval [t, t +∆t]. Rn > 0 denotes the firing rate of a
given neuron, while R−1

n represents the average firing
delay of the excited nth neuron.

2) Neuronal Interactions: Neuronal interactions can
occur through various mechanisms that include:

• When neuron α is excited, as shown by sa(t) > 0,

its internal state decreases by one.

sα(t
+) = sα(t)− 1. (25)

• Neuron α can send an excitatory signal to neuron
β with probability ϕ+(α, β), resulting in:

sα(t
+) =

{
sα(t)− 1

sα(t) + 1
(26)

• Neuron α can transmit an inhibitory signal to neu-
ron β, which occurs with a probability of ϕ−(α, β),
which is leads to:

sα(t
+) =

{
sα(t)− 1, if sα(t) > 0

0, if sα(t) = 0
(27)

• Neuron α can activate neuron β with a probability
of ϕ(α, β). This activation function decreases the
value of sα(t) by 1, given that sα(t) is greater than
0. Therefore,

sα(t
+) =

{
sα(t)− 1, if sα(t) > 0

sα(t)− 1, otherwise,
(28)

If the trigger is activated, there are two possible
outcomes:

• Neurons α and β have potential to increase the
state of neuron n by +1 while decreasing their
own states by −1 with a probability of δ(β, n),
simultaneously.

• The transition to neuron n is triggered with a
probability of σ(β,n) and the above process is
repeated.

3) Activation Probability: The probability of activa-
tion for neuron n, indicated by γn, can be calculated as
follows:

γn = ε+nRn + ε−n , (29)

where,

ε+n = ψ+
n +

N∑

β=1,β ̸=n

Rβγβϕ
+(β, n)

+
∑

m

µnR
β=1,m−1
α1

γαβ
ϕ(αβ , αβ+1)γnδ(αβ+1, n)

ε−n = ψ−
n +

N∑

β=1,β ̸=n

Rβγβϕ
−(β, n)

+
∑

m

µnR
β=1,m−1
α1

γαβ
ϕ(αβ , αβ+1)γnσ(αβ+1, n)

The activation threshold ε+n and ε−n for neuron n is
calculated, including their firing rates and probability
with various interactions. The thresholds affect neuron
excitation and RandNN dynamics.
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Fig. 11: Architecture of Random Neural Network.

4) Activation Function: The activation function ξ(η)
is a important component in RandNN, where η represent
the input. This is the summation of the product of the
input values ηn, and their weights γn.

Ξ(η) =
∑

n

γnηn. (30)

The activation function integrates the activation
probabilities and external input to compute the overall
activation of the network.

Model Architecture: The architecture consists
of input and output neurons and the positive and
negative weight associated with each neuron. The model
integrates clusters, which represent extremely connected

cells. Each cluster possesses a unique group of neurons
and can receive inhibitory input from cell units outside
the cluster. Figure 11 shows the RandNN architecture
which consist of input, hidden and output layers. The
proposed model determine the activation probability for
a single cell inside a cluster considering excitatory and
inhibitory inputs. It depend on firing rates, connection
weights, and input values. Backpropagation through
time (BPTT) was used to implement the algorithms,
which defined unique features and initialization weights
techniques using the input neurons, connection matrices,
learning rate and number of epochs. The algorithm
helps in storing and retrieving weights, the computation
of neuron firing rates and determine loss or accuracy.
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The SequentialRNN model is used with a modification
in rnnsim library for training a RandNN to detect
intrusion [60]. The architecture comprises of a dual-
layered structure with 4 and 6 hidden layers for
binary and multiclass classification. The model uses a
learning rate of 1.0, 0.1, and 0.01 with 100 number of
epochs. The input X , represent the dimension of 65
for binary and 67 for multiclass. The predictive output
is determined through recurrent updates of the firing
rates of neurons, which is determine by the connectivity
and weight matrices. The model considers the neurons
interaction, firing rates, internal states, excitatory and
inhibitory signal and activation probabilities.

D. Theoretical Concepts of ML Models

For comparison with the proposed Neural Networks,
the theoretical concepts of the Naive Bayes, Decision
Tree, K Nearest Neighbour, and Random Forest models
are presented. The models also explore its architecture
with mathematical equations.

Naive Bayes: Naive text classification uses Bayes
due to its simplicity. Naive Bayes (NB) assumes that the
features are independent and normally distributed and
calculates the probability of a data point belonging to a
particular class on the Bayes theorem [61]. Using NB for
IDS may be challenging due to the feature independence
assumption. It evaluates each attribute independently,
which may result in inaccurate classifications. Despite
its simplicity, the NB analyzes attribute patterns to
identify potential threats. This model yields significant
data but may fail to capture complex attack patterns.
It may overlook characteristic correlations. NB simplify
the likelihood by assuming feature independence as:

P (X|C = c) = P (x1|C = c) · P (x2|C = c)

· . . . · ·P (xn|C = c).

where,
• x1–xn are instance’s properties.
• Observing feature Xi for class c is P (Xi|C = c).
• A new instance is classified by the class with the

highest posterior likelihood.

NB assumes feature independence, which may not
be true in real life. When characteristics are interact,
this assumption may lead to inaccurate predictions.
Since, it calculates probabilities using training data,
NB is vulnerable to lack of data and imbalanced class
distributions.

Decision Tree: The Decision Tree (DT) model
employs a hierarchical approach to partition the data

and enable accurate predictions of dataset [62]. This
supervised learning technique can solve classification
and regression problems. The DT model creates a
hierarchical structure with nodes and class labels
representing leaf node properties. The decision tree’s
main purpose is:

• Identify the optimal property and allocate it to the
root node of the tree.

• Create subsets of the training data consisting of data
with identical attribute values for each subset.

• Repeat the above steps until a final node is reached.

In dataset analysis, selecting the best attribute to
serve as the root node of a decision tree is a crucial
task. Information gain is used for categorical categories,
while the Gini index is better for continuous attributes.
Entropy or Gini impurity can be used to calculate
information gain define by Equation 31:

Information Gain = Entropy(p)− 1

N

N∑

i=1

pi ·Entropy(ci)

(31)
where,

• N is the number of children.
• pi is the percentage of occurrences in child i.
• Entropy(p) and Entropy(ci) are the entropies of

the parent and child nodes.

The decision rule is essential for determining each
node’s attribute and threshold used for data partitioning.
The equation for the decision rule that compares the
attribute value of a given instance to a certain threshold
and assigns the sample to the left or right child node is
as follows:

if, attribute value ≤ threshold

If the condition is met, go to the left child node;
otherwise, go to the right. In binary classification, the
determination of the class label can be achieved by
assigning the majority class. So,the class label is chosen
by selecting the majority class present in the leaf node.
The diversity of decision trees is dependent on the
implementation criteria used for evaluating and dividing
nodes.

Random Forest: Random Forest (RF) is a supervised
learning algorithm for classification tasks. The ensemble
model uses a variety of trees to predict a certain target
variable. [63]. The algorithm receives a set of n samples
as input and generates many decision trees using a
subset of the available input features. Following that, a
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majority voting technique is performed on the results of
each tree to generate the forecast for the target variable.
The RF operating mechanism is as follows:

• Choose k features at random from a list of m
features in the data, where k is significantly less
than m.

• This algorithm finds the best division for a given
collection of k attributes.

• Divide the node into its child nodes using the most
effective split.

• Continue iterating the above process until an end
node is reached.

• A forest of trees can be made by repeating the above
steps.

To derive the mathematical representation, consider a
dataset D with n instances of m features using Equation
32, where X represents the feature and y represents class
labels.

D = (X1, y1), (X2, y2), . . . , (Xn, yn). (32)

The RF approach employs bootstrapping to construct
several decision trees by randomly picking subsets from
the dataset. Construction of decision trees includes se-
lecting a random subset of features, b, from B decision
trees (where b = 1, 2, . . . , B). The act of voting consists
of each decision tree b contributing a prediction for the
class label of a new instance Xtest. The predicted class
label for tree b can be denoted as:

ŷb(Xtest). (33)

The RF method combines the predictions of multiple
decision trees to reduce overfitting. The ensemble of
decision trees is randomised by training each tree on a
different bootstrap dataset and a subset of features. The
RF predict class label via majority voting, in which the
individual decision tree predictions are evaluated collec-
tively. The final prediction is determined by selecting the
class label with the most votes, formulated as:

ŷrf(Xtest) = argmax
i

∑

u

[ŷb(Xtest) = i] (34)

where i = 1, 2, . . . ,K denotes the number of class
labels in the dataset.

K-Nearest Neighbor: The K-Nearest Neighbor
(KNN) algorithm is an ML technique that is based on
the principles of supervised learning [64]. The KNN
algorithm classifies a new data point based on its
similarity to the existing data points. The algorithm
optimizes the new data points by choosing the most
similar category efficiently. This algorithm is considered
non-parametric because it makes no assumptions about
the analyzed data. The ”lazy learner” algorithm delays

training set learning until classification is achieved. The
KNN algorithm holds the dataset during training. After
that, the algorithm classifies new data into the closest
category.

Consider a scenario involving the detection of
credit card fraud. The KNN algorithm compared the
attributes of a novel transaction to those of previously
classified malicious and normal transactions. The model
determines whether a transaction is illegitimate or
legitimate by calculating the similarity between it and
its nearest neighbors. If the majority of the transaction’s
nearest neighbors are identified as illegitimate the KNN
algorithm labels the transaction as malicious. This
approach enables the KNN algorithm to recognize
patterns in credit card transactions, resulting in the
detection of fraud. KNN uses d to discover Xtest for k
closest neighbors in the dataset D. Xtest is projected
class label shown by Equation 35 where i = 1, 2, . . . ,K
is the dataset’s class label count.

C(Xtest) = argmax
i

∑

r

[C(Xr) = i]. (35)

This algorithm involves the computation of distances
between the new instance and all instances in the
dataset, resulting in a computationally intensive
process. Inaccurate values of k can result in either
overfitting or underfitting. Specific attributes have
greater significance than others in practical scenarios
like intrusion detection. However, the KNN algorithm
assumes that all features possess equal importance.
The KNN algorithm generates distances based on
feature magnitude, making it dependent on feature size.
Significant features may impact the computation of
distance. When using this algorithm, the challenge is
handling datasets with imbalanced class distributions. If
the percentage of the majority class is too high, it can
compromise the accuracy of predictions.

V. EXPERIMENTAL SETUP AND RESULTS

In this section, a number of experimental results are
presented to evaluate the three proposed DL models
discussed in Section IV to assess their capacity for
generalization. . The efficacy of the proposed DL models
is determined by extracting the metrics to evaluate the
classification performance. Furthermore, a comparison
with ML and other proven approaches described in the
existing literature is also presented.

A. Evaluation Metrics

The proposed models are evaluated through
assessment metrics, such as accuracy, precision,
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recall, and F1 score, commonly employed in various
domains, including threat detection. The following
sections describes each metric, followed by formulas
and mathematical justifications.

Accuracy: The term ”accuracy” refers to the degree
of correctness displayed by a model’s predictions. The
accuracy rate is the proportion of correctly classified
instances (including true positives and negatives) to
the total number of instances. It is calculated using
Equation 36:

Accuracy =
TP + TN

TP + TN + FP + FN
, (36)

where,
• True Positive (TP): The count of correctly identified

instances as positive (i.e., threats).
• True Negative (TN): The count of correctly identi-

fied instances as negative (i.e., non-threats).
• False Positive (FP): The count of instances incor-

rectly classified as positive (i.e., non-threats mis-
classified as threats).

• False Negative (FN): The count of instances that
are incorrectly classified as negative (i.e., threats
misclassified as non-threats).

Precision: The concept of precision refers to the
degree of accuracy of positive predictions. The true
positive rate is the proportion of accurately predicted
positive instances relative to the total number of positive
instances predicted, including both true and false
positives. The formula for precision is given as:

Precision =
TP

TP + FP
. (37)

Recall: Recall, also known as sensitivity or true
positive rate, measures the number of accurately
predicted positive instances (true positives) relative
to all true positive instances (true positives and false
negatives). The mathematical expression is given by
Equation 38:

Recall =
TP

TP + FN
. (38)

F1 Score: The F1 score is a metric that combines
precision and recall. As a result, achieving an
equilibrium between the two measurements. The
average of precision and recall helps when precision
and recall have uneven choices. It is frequently used in
ML and statistical analysis to evaluate the performance
of a classification model. The mathematical expression
is shown by Equation 39:

F1 Score =
2 · (Precision · Recall)

Precision + Recall
. (39)

The F1 score provides an unique value that highlights
the combined performance of precision and recall.

B. Result Analysis of Feed Forward Neural Network

Results of FFNN for binary and multiclass
classification problems framework demonstrate the
impact of various parameters on its performance. The
best binary classification configuration is achieved using
64 neurons in the two hidden layers, a dropout rate of
0.1 and a regularization rate of 0.001. With a batch
size of 128, the FFNN achieved the maximum accuracy
of 99.93 %, precision of 99.93 %, recall of 99.93 %,
and F1-score of 99.93 %. The best configuration for
multiclass is achieved using 512 neurons in three hidden
layers, a dropout rate of 0.1 and a regularization rate
of 0.001. With a batch size of 128, the FFNN achieved
the maximum accuracy of 98.72 %, precision of 98.73
%, recall of 98.72 %, and F1-score of 98.72 %. The
results highlight the importance of modifying these
parameters to enhance the FFNN’s efficiency in binary
and multiclass, increasing its potential for adaptation
and predictions. The specifications of the FFNN are
summarized in Table II, and the metrics outcomes are
evaluated in Table III and IV. Figures 12a and 12b
depict the accuracy and loss plots for various batch
sizes for binary and multiclass, respectively.

C. Result Analysis of Long Short-Term Memory

This research shows that different configurations
have a significant impact when using LSTM layers
for binary and multiclass classification tasks. Table
V displays the LSTM model’s specifications. Various
configurations for the binary class were evaluated on
16-16-16, 32-32-32, 64-64-64, and 128-128-128 with
32,64 and 128 batch sizes. LSTM 16-16-16 achieved
an accuracy of 99.78 % with a 32 batch size, LSTM
128-128-128 attained an accuracy of 99.89 % with a 64
batch size, and LSTM 16-16-16 achieved an accuracy
of 99.85 % with a 128 batch size, respectively. Among
all tested configurations, the LSTM 128-128-128 with
64 batch size configuration demonstrated the highest
accuracy. Increasing the number of LSTM layers allows
for a more comprehensive description of temporal
inter dependencies in data. Adding additional layers
to the LSTM model facilitates the detection of more
complex patterns and prolonged dependencies, resulting
in enhanced efficiency and accuracy. The LSTM model
results for all four configurations with 32, 64, and 128
batch sizes for binary classification are shown in Table
VI. Furthermore, the accuracy and loss plots of the
four LSTM models are shown in Figures 13a, 13b,
14a and 14b. The proposed LSTM model demonstrates
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(a) Batch Size 32 (b) Batch Size 64 (c) Batch Size 128

(a) FFNN model plots for binary classification.

Loss

Accuracy

(a) Batch Size 32 (b) Batch Size 64 (c) Batch Size 128

(b) FFNN model plots for multiclass classification.

Fig. 12: Feed Forward Neural Network plots of different Batch sizes for binary and multiclass classification.
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Hidden
Layer

Dropout
Layer

Output
Layer

Model Binary
Class

Multi
Class

Input
Layer Size Neuron Size Activation

Function Size Activation
Function

FFNN ✓ 65 2 64 0.1 ReLU 2 Softmax
FFNN ✓ 67 3 512 0.1 ReLU 8 Softmax

TABLE II: Specifications of Feed Forward Neural Network model layers.

Model Batch
Size

Training
Accuracy

Testing
Accuracy

Training
Time

Testing
Time Precision Recall F1

Score

FFNN 128 0.9984 0.9993 530.89 2.8 0.9993 0.9993 0.9993

FFNN 64 0.9981 0.9989 850.78 2.89 0.9989 0.9989 0.9989

FFNN 32 0.9976 0.9990 1500.21 2.95 0.9990 0.9990 0.9990

TABLE III: Evaluation metrics of Feed Forward Neural Network model for binary classification.

Model Batch
Size

Training
Accuracy

Testing
Accuracy

Training
Time

Testing
Accuracy Precision Recall F1

Score

FFNN 128 0.9797 0.9872 10708.47 30.32 0.9873 0.9872 0.9872

FFNN 64 0.9748 0.9810 18045.39 30.96 0.9814 0.9810 0.9809

FFNN 32 0.9733 0.9697 35280.79 30.21 0.9708 0.9697 0.9698

TABLE IV: Evaluation metrics of Feed Forward Neural Network model for multiclass classification.

an increased ability to handle various data uncertainty
patterns.

The LSTM configurations used in the multiclass
are 128-128-128, 256-128-128, 256-256-128, and
256-256-256. The results showed that the 256-256-256
LSTM model achieved 98.19 % accuracy with a batch
size of 32, while the 256-128-128 LSTM models
attained 98.19 % accuracy with a batch size of 64.
Furthermore, the 256-256-256 LSTM models achieved
an accuracy of 98.60 % with batch sizes of 128. As
a result, the configuration of 256-256-256 showed
maximum accuracy. The results of the LSTM model in
various configurations for multiclass are presented in
Table VII. Furthermore, Figures 15a, 15b, 16a and 16b
show the accuracy and loss plots for the four LSTM
models for various batch sizes. The analysis predicts
that different LSTM layer configurations has improved
model efficiency.

D. Result Analysis of Random Neural Network

Random connections in RandNN have hidden
potential to capture complex dependencies. Experiment
were conducted to examine the effect of changing
the number of hidden layers and learning rates in
the RandNN architecture. The sizes of the hidden
layers determine the connectivity between neurons,
which facilitates the smooth access of data throughout
the network. The framework provides techniques for
incorporating additional layers into the model and
integrating layer-to-layer connections. It also has the
ability for added functionality to save and load weights.
The specifications of the RandNN model are presented
in Table VIII. Four and six hidden layers are used
to evaluate the model’s performance for binary and
multiclass classification. Table IX shows the results of
the RandNN model for binary classification with 1.0,
0.1, and 0.01 learning rates (LR). The model attained
the highest accuracy of 96.42 %, precision of 96.42
%, recall of 96.42 %, and F1-score of 96.42 % for
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(a) Batch Size 32 (b) Batch Size 64 (c) Batch Size 128

(a) LSTM 16-16-16 model plots for binary classification.

Loss

Accuracy

(a) Batch Size 32 (b) Batch Size 64 (c) Batch Size 128

(b) LSTM 32-32-32 model plots for binary classification.

Fig. 13: Long Short-Term Memory plots of different batch sizes for binary classification.
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(a) Batch Size 32 (b) Batch Size 64 (c) Batch Size 128

(a) LSTM 64-64-64 model plots for binary classification.

Loss

Accuracy

(a) Batch Size 32 (b) Batch Size 64 (c) Batch Size 128

(b) LSTM 128-128-128 model plots for binary classification.

Fig. 14: Long Short-Term Memory plots of different batch sizes for binary classification.
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(a) Batch Size 32 (b) Batch Size 64 (c) Batch Size 128

(a) LSTM 128-128-128 model plots for multiclass classification.

Loss

Accuracy

(a) Batch Size 32 (b) Batch Size 64 (c) Batch Size 128

(b) LSTM 256-128-128 model plots for multiclass classification.

Fig. 15: Long Short-Term Memory plots of different batch sizes for multiclass classification.
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(a) Batch Size 32 (b) Batch Size 64 (c) Batch Size 128

(a) LSTM 256-256-128 model plots for multiclass classification.

Loss

Accuracy

(a) Batch Size 32 (b) Batch Size 64 (c) Batch Size 128

(b) LSTM 256-256-256 model plots for multiclass classification.

Fig. 16: Long Short-Term Memory plots of different batch sizes for multiclass classification.
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LSTM
Layer

Dense
Layer

Dropout
Layer

Output
Layer

Model Binary
Class

Multi
Class

Input
Layer Size Units Size Units Size Activation

Function Size Activation
Function

LSTM ✓ 65 3 16-16-16 3 16 0.2 ReLU 2 Softmax
LSTM ✓ 65 3 32-32-32 3 32 0.2 ReLU 2 Softmax
LSTM ✓ 65 3 64-64-64 3 64 0.2 ReLU 2 Softmax
LSTM ✓ 65 3 128-128-128 3 128 0.2 ReLU 2 Softmax
LSTM ✓ 67 3 128-128-128 3 128 0.2 ReLU 8 Softmax
LSTM ✓ 67 3 256-128-128 3 128 0.2 ReLU 8 Softmax
LSTM ✓ 67 3 256-256-128 3 128 0.2 ReLU 8 Softmax
LSTM ✓ 67 3 256-256-256 3 128 0.2 ReLU 8 Softmax

TABLE V: Specifications of Long Short-Term Memory model layers.

Model Batch
Size

Training
Accuracy

Testing
Accuracy

Training
Time

Testing
Time Precision Recall F1

Score

LSTM 16-16-16 32 0.9965 0.9978 3944.10 4.74 0.9978 0.9978 0.9978

LSTM 32-32-32 32 0.9965 0.9967 3521.66 4.61 0.9967 0.9967 0.9967

LSTM 64-64-64 32 0.9961 0.9976 3960.71 5.18 0.9976 0.9976 0.9976

LSTM 128-128-128 32 0.9962 0.9968 21337.72 27.43 0.9968 0.9968 0.9968

LSTM 16-16-16 64 0.9969 0.9949 1767.96 4.28 0.9949 0.9949 0.9949

LSTM 32-32-32 64 0.9967 0.9963 1915.67 4.63 0.9963 0.9963 0.9963

LSTM 64-64-64 64 0.9970 0.9979 2750.24 5.26 0.9979 0.9979 0.9979

LSTM 128-128-128 64 0.9978 0.9989 8714.29 12.72 0.9989 0.9989 0.9989

LSTM 16-16-16 128 0.9971 0.9985 1212.13 4.49 0.9985 0.9985 0.9985

LSTM 32-32-32 128 0.9969 0.9981 1140.05 4.90 0.9981 0.9981 0.9981

LSTM 64-64-64 128 0.9972 0.9975 1781.01 5.94 0.9976 0.9975 0.9975

LSTM 128-128-128 128 0.9975 0.9974 5287.01 12.43 0.9974 0.9974 0.9974

TABLE VI: Evaluation metrics of Long Short-Term Memory model for binary classification.

binary classification with 0.1 LR after 100 epochs.
Using four hidden layers and a LR of 0.1 improved
the model’s performance by capturing more complex
patterns. Table X displays the multiclass classification
evaluation metrics of the RandNN model under various
LR. For multiclass, the model has achieved an accuracy
of 92.89 %, precision of 89.07 %, recall of 92.89 %,
and F1-score of 90.82 % with a 1.0 LR. Figures 17a
and 17b show accuracy and loss plots for binary and
multiclass problems with varying LR. These findings

demonstrate the effect of LR on the performance of
RandNN.

E. Comparison of Proposed models with ML algorithms
and DL based state-of-the-art IDS

In this section, results of the proposed DL models are
compared with traditional ML models and a number of
state-of-the-art IDS models. Tables XII and XIII show
classification results of the proposed DL models and
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Model Batch
Size

Training
Accuracy

Testing
Accuracy

Training
Time

Testing
Time Precision Recall F1

Score

LSTM 128-128-128 32 0.9746 0.9808 20269.04 20.57 0.9808 0.9807 0.9808

LSTM 256-128-128 32 0.9750 0.9814 26422.93 26.94 0.9813 0.9814 0.9813

LSTM 256-256-128 32 0.9737 0.9711 41768.47 35.68 0.9813 0.9811 0.9809

LSTM 256-256-256 32 0.9749 0.9819 55464.11 40.05 0.9819 0.9819 0.9818

LSTM 128-128-128 64 0.9771 0.9779 16800.93 27.04 0.9783 0.9779 0.9776

LSTM 256-128-128 64 0.9776 0.9819 15124.16 27.85 0.9822 0.9819 0.9818

LSTM 256-256-128 64 0.9776 0.9817 26894.90 40.65 0.9819 0.9817 0.9818

LSTM 256-256-256 64 0.9765 0.9814 30606.32 43.20 0.9815 0.9814 0.9813

LSTM 128-128-128 128 0.9798 0.9765 5775.76 20.74 0.9769 0.9765 0.9764

LSTM 256-128-128 128 0.9801 0.9835 8341.94 28.32 0.9837 0.9835 0.9834

LSTM 256-256-128 128 0.9795 0.9825 12584.59 34.44 0.9828 0.9825 0.9824

LSTM 256-256-256 128 0.9812 0.9860 18724.71 45.14 0.9860 0.9860 0.9859

TABLE VII: Evaluation metrics of Long Short-Term Memory model for multiclass classification.

Hidden
Layer

Output
Layer

Model Binary
Class

Multi
Class

Input
Neuron Size Learning

Rate

Weight
Initialization Size Firing

Rate
RandNN ✓ 65 4 1.0 0.2 2 0.1
RandNN ✓ 65 4 0.1 0.2 2 0.1
RandNN ✓ 65 4 0.01 0.2 2 0.1
RandNN ✓ 67 6 1.0 0.2 8 0.1
RandNN ✓ 67 6 0.1 0.2 8 0.1
RandNN ✓ 67 6 0.01 0.2 8 0.1

TABLE VIII: Specifications of Random Neural Network model layers.

Model LR Training
Accuracy

Testing
Accuracy

Training
Time

Testing
Time Precision Recall F1

Score

RandNN 1.0 0.9548 0.9588 459092.01 509.16 0.9588 0.9588 0.9588

RandNN 0.1 0.9631 0.9642 461375.44 509.04 0.9642 0.9642 0.9642

RandNN 0.01 0.9538 0.9566 514495.55 591.12 0.9567 0.9566 0.9566

TABLE IX: Evaluation metrics of Random Neural Network model for binary classification.
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(a) Learning Rate 1.0 (b) Learning Rate 0.1 (c) Learning Rate 0.01

(a) RandNN model plots for binary classification.

Loss

Accuracy

(a) Learning Rate 1.0 (b) Learning Rate 0.1 (c) Learning Rate 0.01

(b) RandNN model plots for multiclass classification.

Fig. 17: Random Neural Network plots of different learning rates for binary and multiclass classification.
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Model LR Training
Accuracy

Testing
Accuracy

Training
Time

Testing
Time Precision Recall F1

Score

RandNN 1.0 0.9306 0.9289 922337.77 628.72 0.8907 0.9289 0.9082

RandNN 0.1 0.9262 0.9261 938497.95 634.95 0.9167 0.9261 0.9054

RandNN 0.01 0.9301 0.9280 925653.00 624.96 0.8899 0.9280 0.9073

TABLE X: Evaluation metrics of Random Neural Network model for multiclass classification.

their comparison with traditional ML techniques; such as
Naive Bayes (NB), Decision Tree (DT), Random Forest
(RF), and K Nearest Neighbour (KNN) algorithms. For
binary and multiclass cases, the proposed FFNN model
outperformed the ML models and the two proposed
LSTM and RandNN models. As compared to LSTM
and RandNN models, FFNN model boosts performance
and learns complex non-linear correlations between
the input features and output classes by adjusting
hyperparameters. All ML models are evaluated using
5-fold cross-validation for training and assessing the
model yield evaluation metrics presented in Table XIV
and XV, respectively. Although the accuracy of NB
is only 69.67 % for binary class and 58.26 % for
multiclass, it is known for its ease of use, speed, and
effectiveness with high-dimensional data. However, it
makes the simplified assumption of features becoming
independent, which may require improvement with
interdependent features. The NB model has the lowest
accuracy. The DT technique achieved 99.76 % accuracy
for binary classification and 98.33 % for multiclass
classification. However, it is subject to overfitting and
needs assistance interpreting complex interconnections.

RF improved prediction and accuracy to 99.87 % for
binary and 98.52 % for multiclass by combining several
DT but at the cost of increased computation complexity
and reduce ability to interpreted. Despite its simplicity
and high accuracy of 99.75 % for binary and 97.51 %
for multiclass, KNN is highly sensitive to computation
costs, neighbor selection, and dimensionality. The NB
approach is a scalable and computationally effective
solution for high-dimensional datasets, whereas DT
algorithms have overfitting issues. The RF approach
reduced overfitting and enhanced model adaptability.
The KNN technique performs exceptionally well in
clustering-based classification applications. The issues
of overfitting, dimensionality, and hyperparameter
sensitivity can potentially lead to challenges. Although
the RF achieves greater accuracy, execution takes a long
time. As mentioned above, the limitations of the ML

algorithms include the need for high quality training
data, the risk of overfitting, the lack of interoperability
and the dynamic adjustment of hyperparameters.
Considering data privacy, algorithm reliability, and
potential biases is critical while using these models.

Various architectures of Deep Neural Networks
(DNN) are constructed with varying dense hidden
layers, and neuron counts in each layer to enhance
accuracy. The FFNN model is capable of estimating
a wide variety of complex functions and nonlinear
relationship between inputs and outputs features.
Integrating FFNN improves performance and allows it
to learn complex relationships using hyperparameter
configurations. The optimization of the FFNN was
achieved through the selection of neurons, hidden
layers, and regularization strength. As compared to
FFNN, LSTM layers performs better in handling
sequential data due to the ability to simulate long-term
dependencies and accurately capture complex temporal
dynamics in IoTs. The weights initialization allow
LSTM for a more adaptive and exploratory approach
to model such relationships. Random connections
in RandNN allow for a creative approach, revealing
the network’s hidden potential to capture complex
dependencies that other network topologies might miss.
The RandNN architecture achieves the best outcome,
incorporating the number of hidden layers with
different learning rates. Random weight initialization
enables a more flexible approach to analyzing complex
relationships. The results showed that the accuracy
acquired from the CIC IoT 2022 dataset for detecting
intrusions in the IoT network, are greater than those
obtained from other datasets. Therefore, the CIC IoT
2022 dataset possesses a clearly defined architecture
suited for complex IoT networks.

The comparative analysis of proposed models with
state-of-the-art DL-based IDS models is shown in Table
XI. To demonstrate the effectiveness of our proposed
approach, we examined state-of-the-art DL models from
recent years of literature. In [25], a trained neural net-
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Reference Classifier Dataset Accuracy Precision Recall F1
Score

FNN-Focal 0.9326 0.9524 0.737 0.8011
CNN-Focal WUSTL-IIoT-2021 0.9308 0.9423 0.734 0.7963
FNN-Focal 0.9895 0.7722 0.641 0.6848
CNN-Focal WUSTL-EHMS-2020 0.9821 0.8854 0.665 0.705
FNN-Focal 0.9155 0.5559 0.638 0.5784

[25]

CNN-Focal Bot-IoT 0.8677 0.6165 0.633 0.5853
[27] CNN + LSTM UNSW-NB15 0.929 - - -
[24] RaNN ToN IoT 0.9905 - - -

DNN 0.84 0.83 0.834 0.83[35] GAN-DNN UNSW-NB15 0.91 0.918 0.91 0.912
NSL-KDD 0.989 0.999 0.987 0.9931

UNSW-NB15 0.967 0.989 0.987 0.9878
CIC -IDS-2017 0.9874 0.9977 1.0 0.9986[26] DNN

BOT-IOT 0.9899 0.989 0.913 0.9495
RNN 0.9958 0.987 0.983 0.985

CNN-BiLSTM 0.9976 0.989 0.992 0.991
LSTM 0.9973 0.911 0.935 0.991[33]

CNN

CICIDS2017

0.9882 0.977 0.983 0.98
[31] DNN DS2OS Traffic 0.949 - - -

FFNN 0.9867 0.983 0.992 -
LSTM NSL-KDD 0.9644 0.9574 0.977 -
FFNN 0.9997 0.9995 1.0 -[38]

LSTM BoT-IoT 0.9995 0.999 1.0 -
[37] RNN NSL-KDD 0.9218 0.9023 - 0.9029

RF 0.9868 - - -
XGB 0.9867 - - -[10]
ET

IoTID20
0.9845 - - -
0.9812 0.9713 0.978 0.9746[36] DCNN IoTID20 0.7755 0.7876 0.734 0.76

[28] FCFFN IoT 0.9374 0.9371 0.938 0.9347
Ensemble 0.996 - - -

ANN 0.969 - - -
CNN 0.97 - - -[30]

LSTM

IoT-23

0.982 - - -
DT XGBOOST 0.9085 - - -

ANN XGBOOST 0.8439 - - -
LR XGBOOST 0.7764 - - -

KNN XGBOOST 0.8446 - - -
[43]

SVM XGBOOST

UNSW-NB15

0.6089 - - -
DAE + DNN NSL-KDD 0.8333 0.8602 0.833 0.8333[46] DAE-DNN CSE-CIC-ID2018 0.9579 0.9538 0.958 0.9511

SJTU-AN21 0.86 0.868 - 0.855
ISCXVPN2016 0.952 0.953 - 0.952[29] Flow Transformer
CIC-IoT2022 0.985 0.985 - 0.984

FFNN 0.9993 0.9993 0.9993 0.9993
LSTM 0.9989 0.9989 0.9989 0.9989Proposed

RandNN
CIC-IoT2022

0.9642 0.9642 0.9642 0.9642

TABLE XI: Comparison of the proposed Deep Learning models with state-of-the-art IDS.
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work intrusion detection system with main focus on the
loss function uses three datasets. Although the accuracy
was 98.95 %, but the F1 score was 68.48 % using
WUSTL-IIoT-2021 dataset. After training, the model did
well in one class but not with other. In [29], a multi-
head attention mechanism and feature extraction layer
help Flow Transformer to evaluate complex traffic. The
authors experimental results show that CNN, LSTM,
or Autoencoder to Flow Transformer do not improve
classifier performance. Traditional ML algorithms have
limited performance with Flow Transformer when used
for complicated network data. Using ensemble learning,
[26] addresses the class imbalance problem in ML. The
bagging classifier utilizes a DNN as its base estima-
tor. The proposed IDS performs better with ensemble
bagging learning and balanced distribution with class
weights. The proposed strategy outperforms class im-
balance strategies in four historical intrusion detection
datasets.

The widespread adoption of deep learning models
can be attributed to their capacity to acquire complex
patterns. In [27], CNN+LSTM based IDS is trained
on the UNSW-NB15 dataset and obtained an accuracy
of 93.21 %.The author shows that an IIoT network
achieved high detection accuracy but significant loss
during training, validation, and testing. The author in
[28] proposed a system performed by keeping RNNs
in the right position in the network, thus reducing loss
and training time. A DL-IDS for IoT devices covered
five types of intrusion only and achieved an accuracy
of only 93.74 %. For the model to be network-adaptive,
training of deep IDS is required before deployment.
Therefore, each IoT network must be trained using a
large dataset from existing IoT networks and adopt
feature engineering to employ the model properly.
The comparative analysis shows that the proposed
FFNN outperformed well in terms of Accuracy,
Precision, Recall and F1 score. In contrast to FFNN,
LSTM architectures are recognized for their efficacy
in sequential data processing. Moreover, RandNN
possesses a randomized architecture because of the
ability to handle nonlinear relationships and interactions
between features effectively. However, acquiring large
amounts of labelled data and computational resources
is sometimes necessary. Conventional ML models
are efficient, scalable, and easy to interpret, but only
in certain circumstances. Researchers can benefit
from an extensive review of DL and traditional ML
tradeoffs. Researchers can use the study findings to
understand better which framework will work best for
their specific needs, data and available computing power.

VI. CONCLUSION AND FUTURE WORK

This paper demonstrates the efficacy of deep learning-
based IDS employing FFNN, LSTM, and RandNN
models in countering cyber threats in IoT environments.
The RandNN model exhibits its potential due to random
connections, thus facilitating a more exploratory
approach, enabling an IoT network to capture intricate
dependencies and uncovering insights that might not be
apparent in other architectures. The LSTM model shows
strong suitability in addressing prolonged dependencies
and effectively capturing temporal dynamics within the
IoT data. Finally, the FFNN model has demonstrated
superior results when compared with the proposed
RandNN and LSTM models, and other state-of-the-art
IDS techniques. Moreover, it has the ability to enhance
the overall performance of an IDS by learning complex
associations between input characteristics and output
classifications. The proposed IDS framework enables
the extraction and classification of features in a versatile
manner, thereby facilitating the efficient identification
of diverse cyber threats in IoT environments. The
models can adjust to an IoT network’s ever-changing
and dynamic characteristics, thereby contributing to
proactive mitigation of cyber threats. The results in this
paper reflects compelling insights into the performance
of various classifiers in effectively identifying a wide
range of cyber-attacks. The challenges associated with
research in this field encompass several key aspects.
These include the need for extensive and diverse
datasets to ensure the optimal training of models and
the requirement for computational resources capable of
effectively managing the complexity of IoT data.

With the increase in security challenges encountered
by IoT, there could be numerous areas for future research
that can augment the security of IoT ecosystems. One
prospective avenue for future investigation involves
exploring the utilization of DL methodologies in the
development of more resilient and sophisticated IDS
for IoT. This can help to detect and prevent advanced
intrusion attempts with increased precision and
effectiveness through the utilization of DL algorithms,
such as Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), and Transformers.
Moreover, incorporating federated learning techniques,
which enable collaborative and privacy-preserving
training of models on IoT devices can enhance intrusion
detection capabilities by incorporating scalability and
diversity. Ensemble techniques and hybrid architectures
can be studied for better intrusion detection and
advanced cyber threats. In addition, it is imperative to
investigate adversarial defense mechanisms to safeguard
DL-based IDS against emerging attack vectors.
Exploring these areas could lead to a substantial
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Model NB DT RF KNN FFNN LSTM RandNN
Accuracy 0.6967 0.9976 0.9987 0.9975 0.9993 0.9989 0.9642
Precision 0.7574 0.9976 0.9987 0.9975 0.9993 0.9989 0.9642

Recall 0.6967 0.9975 0.9987 0.9975 0.9993 0.9989 0.9642
F1 Score 0.6778 0.9975 0.9987 0.9975 0.9993 0.9989 0.9642

TABLE XII: Comparison of the proposed DL models with ML algorithms for binary classification.

Model NB DT RF KNN FFNN LSTM RandNN
Accuracy 0.5826 0.9833 0.9852 0.9751 0.9872 0.9860 0.9289
Precision 0.6362 0.9833 0.9851 0.9751 0.9873 0.9860 0.8907

Recall 0.5826 0.9833 0.9851 0.9751 0.9872 0.9860 0.9289
F1 Score 0.5763 0.9832 0.9850 0.9751 0.9872 0.9860 0.9082

TABLE XIII: Comparison of the proposed DL models with ML algorithms for multiclass classification.

Cross
Validation

Evaluation
Metrics Naive Bayes Decision Tree Random Forest K Nearest Neighbour

Accuracy 0.6881 0.9970 0.9985 0.9972
Precision 0.7454 0.9971 0.9984 0.9972

Recall 0.6881 0.9970 0.9985 0.9972Fold 1

F1 Score 0.6687 0.9970 0.9984 0.9972
Accuracy 0.6876 0.9978 0.9989 0.9975
Precision 0.7450 0.9979 0.9989 0.9975

Recall 0.6876 0.9980 0.9989 0.9975Fold 2

F1 Score 0.6681 0.9979 0.9989 0.9974
Accuracy 0.6888 0.9972 0.9985 0.9976
Precision 0.7514 0.9972 0.9985 0.9976

Recall 0.6888 0.9972 0.9985 0.9976Fold 3

F1 Score 0.6680 0.9972 0.9985 0.9976
Accuracy 0.6988 0.9971 0.9982 0.9978
Precision 0.7514 0.9972 0.9981 0.9978

Recall 0.6888 0.9972 0.9982 0.9978Fold 4

F1 Score 0.6680 0.9972 0.9981 0.9978
Accuracy 0.6990 0.9875 0.9987 0.9975
Precision 0.7630 0.9975 0.9987 0.9975

Recall 0.6890 0.9975 0.9987 0.9975Fold 5

F1 Score 0.6679 0.9974 0.9987 0.9975

TABLE XIV: Cross Validation of Machine Learning algorithms for binary classification.



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Cross
Validation

Evaluation
Metrics Naive Byes Decision Tree Random Forest K Nearest Neighbors

Accuracy 0.5813 0.9833 0.9848 0.9749
Precision 0.6347 0.9830 0.9847 0.9748

Recall 0.5813 0.9833 0.9847 0.9749Fold 1

F1 Score 0.5754 0.9832 0.9847 0.9748
Accuracy 0.5824 0.9835 0.9850 0.9754
Precision 0.6355 0.9834 0.9850 0.9753

Recall 0.5824 0.9834 0.9849 0.9754Fold 2

F1 Score 0.5757 0.9833 0.9850 0.9753
Accuracy 0.5803 0.9832 0.9852 0.9751
Precision 0.5745 0.9833 0.9852 0.9751

Recall 0.5826 0.9833 0.9851 0.9751Fold 3

F1 Score 0.6360 0.9833 0.9852 0.9750
Accuracy 0.5826 0.9833 0.9852 0.9753
Precision 0.6360 0.9834 0.9851 0.9753

Recall 0.5826 0.9835 0.9852 0.9753Fold 4

F1 Score 0.5763 0.9832 0.9850 0.9753
Accuracy 0.5866 0.9833 0.9854 0.9750
Precision 0.6394 0.9834 0.9854 0.9750

Recall 0.5866 0.9833 0.9854 0.9750Fold 5

F1 Score 0.5798 0.9833 0.9854 0.9750

TABLE XV: Cross Validation of Machine Learning algorithms for multiclass classification.

contribution to achieve IoT security and enhancing
the overall reliability of IoT implementations in the
foreseeable future.
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