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a b s t r a c t

The number of Internet of Things (IoT) devices has increased considerably in the past few years, which
resulted in an exponential growth of cyber attacks on IoT infrastructure. As a consequence, the prompt
detection of attacks in IoT environments through the use of Intrusion Detection Systems (IDS) has
become essential. This article proposes a novel approach to intrusion detection in IoT based on a
stacking ensemble of deep learning (DL) models. This approach is named Deep Integrated Stacking
for the IoT (DIS-IoT) and it combines four different DL models into a fully connected DL layer,
creating a standalone ensemble model. DIS-IoT is evaluated on three open-source datasets, namely
ToN_IoT, CICIDS2017 and SWaT, in binary and multi-class classification and compared results with
other standard DL methods. Experiments demonstrate that DIS-IoT is capable of a high-level accuracy
with a very low False Positive rate (FPR) in all datasets. Results were also compared against other
state-of-the-art works available in the literature, which used similar methods on the same ToN_IoT
dataset. DIS-IoT achieves comparable performance with others in binary classification and outperforms
them in multi-class classification.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The Internet of Things (IoT) paradigm has pushed modern,
nterconnected networks to change rapidly with new, small and
onnection-ready devices being developed everyday. Industry 4.0,
mart Transportation, Smart Homes, and machine-to-machine
ommunication are just some of the areas in which massive
mounts of devices are being connected, making traffic running
n the Internet much more diverse and heterogeneous [1,2]. The
xponential increase of devices has also allowed for an equally
arge increase of network attack surface, that malicious hack-
rs could potentially exploit. Hence, detecting intrusions in IoT
nvironments has become ever more paramount. As part of a
ayered defence approach, Network Intrusion Detection Systems
NIDS) have an essential role in identifying attacks before they do
ny damage. Intrusion detection can be categorized according to
ts detection methods: signature-based and anomaly-based [3].
ignature-based detection uses traffic signatures to recognize
ttacks. For this type of technology to work well an up-to-date
atabase of signatures is essential. On the other hand, anomaly-
ased detection attempts to identify attacks by initially esti-
ating typical traffic and recognizing anomalies whenever the
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ttps://doi.org/10.1016/j.knosys.2023.110941
950-7051/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
deviation between the monitored traffic and the estimated traffic
exceeds a predefined threshold [4]. Signature-based detection
works very well for known attacks, but it is not capable to detect
new types of attacks until a signature exists in the database.
Anomaly-based detection does well at detecting unknown attacks
but suffers from large numbers of false positives - i.e. benign
traffic being classified as anomalous.

Anomaly-based detection uses many techniques to identify
attacks. These can be based on mathematical models and Machine
Learning (ML). The latter has become a widely used engine for
anomaly-based IDS. Different approaches of ML can be used:
supervised learning, semi-supervised learning and unsupervised
learning. In supervised learning input data to the classifier is
labelled. In other words, the classifier has knowledge of the type
of class each sample of the data belongs to. In semi-supervised
learning, input data is only partially labelled, while unsupervised
learning works on unlabelled data and attempts to make sense
of it by identifying similar patterns [5,6]. Deep Learning (DL) is
a branch of machine learning that has become widely popular
in many fields, including science, finance, medicine and engi-
neering [7]. DL for cybersecurity and particularly for intrusion
detection has also become increasingly popular as it allows for
a more sophisticated analysis of network traffic and more precise
detection of anomalies compared to traditional ML methods [8].

A common paradigm in ML is the use of ensemble methods.
he concept behind an ensemble method is to combine multiple
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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odels to tackle the same problem. Instead of relying on a single
odel to analyse the data, the ensemble focuses on using a set
f models and combining the outcomes. Research has demon-
trated that using an ensemble of models gives superior accuracy
ompared to a single model [9]. Several ensemble methods exist,
ith the most common aggregators being Bagging, Boosting and
tacking [10].
Bagging or Bootstrapping aggregating is a technique that ag-

regates outcomes from the classification of different samples
f data by multiple learners [11]. Boosting is a family of algo-
ithms that aim at improving predictions by training the classifier
equentially. The idea is to have later models correcting wrong
redictions obtained by earlier weak models [12].
In this article, we present a novel approach based on stacking

o detect intrusions in IoT environment. We call this method Deep
ntegrated Stacking for the IoT or DIS-IoT. Our ensemble model
ombines four DL algorithms into a further, fully connected, layer
f neurons to reach a final classification of the input data. In order
o examine the efficacy of our proposed ensemble model, we have
valuated DIS-IoT against other common DL algorithms. Further-
ore, we compare DIS-IoT against state of art IDS models based
n similar approaches, recently published in the literature on the
ame datasets. The experiments show that DIS-IoT outperforms
he other DL models as well as offering results on par with other
esearch work in the area.

Key contributions of this work can be summarized as follows:

• We propose a novel method for the detection of attacks
in IoT network environments which is based on a stacking
ensemble. The ensemble model, named DIS-IoT, uses four
DL models, a shallow Multilayer Perceptron (MLP), a Deep
Neural Network (DNN), and a CNN-based and an LSTM-
based models. The primary objective is the detection and
classification of attacks in IoT environment.

• We evaluate the model on three open source datasets,
namely ToN_IoT, CICIDS2017 and SWaT, offering high level
of accuracy with a low False Positive rate (FP) in all scenar-
ios.

• Our method is evaluated on binary and multi-class classifi-
cation with ToN_IoT and CICIDS2017 and binary for SWaT
showing excellent performance in all types of classification.

• We compare results from our experiments on the ToN_IoT
dataset against other published work using the same dataset,
showing that performance from DIS-IoT is at least on par
with other similar models.

he remainder of this article is organized as follows: Section 2
rovides a review of the related work in the area of IDS in
oT environment using DL and ensemble learning. In Section 3
e propose our DIS-IoT method for intrusion detection in IoT
nvironments. Datasets and methodology for experiments are
xplained in Section 4. Results are discussed in Section 5. The
onclusion is drawn in Section 6

. Literature review

In this section, we present a review of recent work. Emphasis
s given to research that used DL and ensemble learning as a
ethod to detect attacks in IoT environment.

.1. Deep learning in IoT intrusion detection

Intrusion detection is a hot topic within the cybersecurity
ndustry [13–16]. In recent years, research work in this area has
ocused increasingly on DL learning solutions. Many examples of
his, have been proposed in several IT domains, such as cloud
2

computing [17,18] but particularly in computer networking [19–
26]. Since IoT devices are becoming an integral part of our daily
lives, much of the recent IDS research has also proposed DL
solutions in this domain. For instance, Latif et al. [27] proposed
a novel lightweight solution based on a Dense Random Neu-
ral Network (DnRaNN) to detect intrusions in IoT networks. To
evaluate their approach, the authors conducted meticulous ex-
periments against the ToN_IoT dataset in binary and multi-class
classification scenarios with excellent results. The same dataset
is used by Kumar et al. [28] for studying their DL-driven cy-
ber threat modelling framework. The framework is designed to
automate the detection and extraction of cyber threats in IoT-
enabled Maritime Transportation Systems (MTS). Similar to the
previous work they evaluated the solution in both binary and
multi-class classification, also achieving promising results. An
approach to intrusion detection based on an Adaptive Particle
Swarm Optimization Convolutional Neural Network (APSO-CNN)
is proposed in [29]. The approach is to use the APSO algorithm
to automatically adjust hyper parameters of the one-dimensional
CNN. They evaluated the solution on the N-BaIoT [30] dataset
and compared results against three other models. The solution
provided the highest scores in all metrics. Other studies involve
CNN-based solutions. Although CNN was originally designed to
solve problems in computer vision applications (e.g. facial or
shape recognition), it has become a popular and effective solution
for NIDS as demonstrated by research work [31–34]. Shallow DL
methods have also been proposed for IDS in IoT. For instance, an
approach based on a shallow ANN has been proposed by [35]
on the UNSW-15 dataset [36], while [37] proposed a similar
approach, defined as a Multi-layer Perceptron (MLP), to detect
Denial of Service (DoS) attacks in IoT environments on their
own test-bed for experiments. Another approach based on a
combination of shallow and deep ANN is proposed by [38].

Models based on Recurrent Neural Networks (RNN) are also
a popular solution. Long-Short Term Memory or LSTM is part
of the RNN-based family of algorithms. This is a class of ANN
where neurons maintain a hidden state, obtained from the output
of the previous layer. This can be seen as a way to memorize
information helping the model generate an output based on a
previous state. Because of the ability to store previous states,
RNN works well with data that involves sequences, where some
data point depends on the previous one. Examples of applications
where RNN typically finds its use are speech recognition and
text generation. However, its use is also common in IoT intrusion
detection. Azumah et al. [39] have proposed an LSTM-based ap-
proach for intrusion detection in Smart Home networks achieving
very high accuracy. LSTM is also used in [40] to detect attacks
in Fog computing. The authors used the ISCX2012 dataset [41]
and another dataset based on traffic from an 802.11 network.
While the results seem positive, they compared them only against
another approach based on logistic regression (LR). A more in-
depth comparison with more advanced DL solutions would have
provided a better evaluation of their work. The automobile en-
vironment is another area of testing for LSTM as in [42], where
a manually generated dataset based on traffic from a Controller
Area Network (CAN) is used as a test-bed for their approach.
They have achieved excellent results on data from a real car and
confirmed them using an open-source CAN dataset.

2.2. Ensemble methods in IoT intrusion detection

As the focus of this research work is ensemble stacking, we
have reviewed several publications using various types of stack-
ing approaches in IoT intrusion detection. Stacked Generalization,
often described as Stacking, was first introduced by Wolpert in
1992 [43]. Stacking has the main objective of putting together
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he outcomes from the classification of data by base learners and
hen utilizing a meta-learner to process this data to achieve a final
utcome. One of the key advantages of stacked generalization is
he ability to use heterogeneous models as base learners to form
n ensemble. The outcome from this can then be combined using
different classifier, trained using outputs from members in the
nsemble and leading to a stacking model [44].
Several solutions for intrusion detection in IoT, using stacked

eneralization with DL and/or ML, have been proposed in recent
ears. For instance, an approach using a stacked ResNet model is
roposed in [45]. The model stacks together five ResNet blocks
hich train data independently. The output is then concatenated
sing two fully connected layers of neurons. The approach is
valuated on two open-source datasets in binary classification
nd compared with other similar approaches. The stacked ResNet
odel is shown to be more accurate than all others and offers

eal-time detection.
Another approach based on a stacking ensemble technique

s proposed by [46]. The method uses multiple layers of RNN
ith the objective of detecting anomalies in highly imbalanced
ata from a smart home network. The work is applied on the
oT-IoT dataset [47], evaluating the model on binary, 5-class and
1-class classification. While they offer an excellent evaluation
f that approach, the work would have benefited from a further
alidation on a different dataset.
A stacking ensemble model to detect attacks in IoT environ-

ents was proposed by [48]. The method offers an interesting
olution combining several ML models in the ensemble. They per-
ormed experiments by changing the algorithms of base learners
nd of the meta learner according to the type of data they fed
nto the model. Three different datasets are used with promising
esults: NDL-KDD [49], UNSW-NB15 and the Credit Card Fraud
etection [50].
Another study that proposes a stacking ensemble approach to

oT anomaly detection is [51]. The work proposes an interest-
ng IoT malware detection model based on an ensemble learner
uilt using a combination of CNN and RNN. They evaluated the
odel on a dataset built by combining malware samples from
arious sources with normal samples from images of routers
f various brands. While their work offered the advantage of
sing realistic data, it used a relatively small dataset that may
ot offer enough heterogeneity to provide an adequate train-
ng platform for their model. Evaluating the model on a larger,
ultidimensional dataset, could have benefited the work.
An interesting stacking approach is offered by [52]. The work

ses a combination of boosting and stacking ensemble tech-
iques. The approach is termed B-Stacking as it uses ML al-
orithms, K-Nearest Neighbour (kNN) and Random Forest (RF)
ogether with XGBoost as base learners. The idea is to use the
oosting approach to reduce bias and variance of the dataset
ed into the level-1 model. While research work is directed at
oT, they use two datasets based purely on networking data. The
esults are promising, but they may not provide an indication of
he performance of the model in IoT environments.

Kumar et al. [53] designed a stacking ensemble method based
n a fog-cloud architecture tailored at the Internet of Medical
hings (IoMT). Their method aggregates outcomes from three
ased learners, Decision Tree (DT), RF and Naive Bayes (NB), with
meta-learner based on XGBoost. The approach was tested on

he ToN_IoT network dataset achieving excellent results. How-
ver, using an additional dataset to test their method could have
ffered an additional validation of their results.
Khan et al. [54] have offered a solution based on a stacking

nsemble of LSTM models. They used DT as the method for aggre-
ation. Their work is also based on the ToN_IoT network dataset

nd it is applied to the IoMT using the Fog cloud paradigm.

3

While results are positive, their work is also limited to binary
classification and to the use of a single dataset.

Alotaibi and Ilyas [55] proposed an ensemble method also
based on stacking. They have used RF, DT, LR and kNN as the base
learner and LR as the meta-learner. Their approach offers promis-
ing results. However, it is only tested in binary classification and
on the ToN_IoT telemetry data. Multi-class classification and the
use of an additional dataset could have considerably improved
their work.

Two more approaches for IoT IDS, based on stacked general-
ization are [56,57].

Different types of ensemble approaches have also been pro-
posed in the literature. An example of this is the ensemble learn-
ing approach used by [58] to detect botnet attacks in IoT net-
works. The system, named ELBA-IoT reached a detection rate of
99.6% on the N-BaIoT dataset. The approach used a combination
of three Decision Tree- based models, namely AdaBoosted DT,
RUSboosted DT and bagged DT.

A method based on XGBoost is proposed by Gad et al. [59].
Their approach uses the ToN_IoT dataset in binary and multi-class
classification. They tested their method with three of the four
versions of the ToN_IoT: network data, Linux and Windows with
considerable success.

Several ensemble techniques are presented by [60]. Their work
applies XGBoost, Adaboost, Bagging, RF and Extra Trees on intru-
sion detection in Industrial IoT (IIoT) using the ToN_IoT Telemetry
datasets. XGBoost performs better than the rest in both binary
and multi-class classification. While their results are positive
overall, they indicate that their approach does not cope well with
highly imbalanced data. Additional testing on other types of data
could have provided more insight into this issue. Additionally,
they tested their methods with each separate ToN_IoT telemetry
dataset. These, taken on their own are quite small, increasing
the likelihood of overfitting especially when proposing complex
ensemble models.

Detection of attacks in SCADA using an ensemble method is
presented in [61]. The work developed a framework using an
ensemble of Deep Belief Networks achieving promising results on
a SCADA dataset.

Other ensemble techniques for IoT IDS have been presented
in [62–65]. A summary table comparing methods for IoT intrusion
detection is given in Table 1

3. Proposed deep integrated stacking model

Stacking is an ensemble technique where a set of models
are used as base learners to classify given input data. The out-
comes of the classification from the base learners, or level-0
learners, are used as input to the meta learner or level-1. Stacking
allows for the use of heterogeneous learners. In other words,
different types of algorithms can be used as base learners to
classify data independently. The advantage of this approach is
the ability to classify data in drastically different methods, thus
improving the capability of analysing highly diverse data. Our
stacking ensemble approach uses four different models to build
the ensemble. These are a simple Multi-layer Perceptron (MLP),
a Deep Neural Network (DNN), a Convolutional Neural Network
(CNN) and a Long-Short Term Memory (LSTM). The base learn-
ers are then integrated, through the meta-learner, into a larger
neural network making the stacking ensemble to be treated as a
single large model. Data is fed independently into the models and
each is trained until their optimal parameters are found. These
parameters are then saved for each model and loaded later to
create the full DIS-IoT model. The overall framework of DIS-IoT is
illustrated in Fig. 1, while each base learner and the meta learner
are described in the sub-sections that follow.
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Table 1
Comparison of methods for IoT intrusion detection.
Work Year Ensemble

method
Dataset Pros Cons

[45] 2020 Stacked ResNet Power system High accuracy Binary detection only
N-BaIoT Real-time detection

[46] 2021 Stacked RNN BoT-IoT Multiple multi-class scenarios Tested with one dataset
High performance in highly
imbalanced data

[48]
2022 NDL-KDD Stacking tested with many

models
Accuracy is not particularly
high.

Stacked ML
models

UNSW-NB15 Three types of dataset used Outdated datasets used.

Credit card
fraud detection

[51] 2020 Stacked CNN &
RNN

Proprietary Dataset created from real
samples

Tested with one dataset

Cross-architecture malware
samples

Dataset not validated by
others.

[52] 2022 B-Stacking Lightweight algorithm. Not using data based on IoT

[53] 2021 Stacked ML
models &
XGBoost

ToN_IoT Good method for IoMT Tested with one dataset only

Binary classification only

[54] 2023 Stacked LSTM
& DT

ToN_IoT Good method for IoMT Tested with one dataset only

Binary classification only

[55] 2023 Stacked ML
models

ToN_IoT Tested with both Stacking and
Voting

Tested with one dataset only

Binary classification only

[58]
2022 ELBA-IoT N-BaIoT High performance Tested with one dataset only

Multiple models tested
Multiple multi-class scenarios

[59] 2022 XGBoost ToN_IoT Distributed method for
network & host IDS

Tested with one dataset only

[60]
2023 Bagging; RF ToN_IoT Multiple ensemble models

tested
Tested only with telemetry
datasets

XGBoost; ET
Adaboost

[61] 2018 Ensemble DBN SCADA Data from real devices Tested with one dataset only
High performance
Fig. 1. Deep integrated stacking model.
4

3.1. Base learners

As mentioned, four models were used to build DIS-IoT. The
choice of the base learners was made with the objective of using
DL models with different characteristics and capabilities. Each
model used provides a different method of classification ensuring
heterogeneity during data analysis. However, each model uses the
same loss and activation functions, which are selected following
an empirical approach. The activation function is the Rectified
Linear Unit or ReLU, while the loss function changes according
to the type of classification. We use Binary cross-entropy or Cat-
egorical cross-entropy depending on whether we conduct binary
or multi-class classification. Similarly, the activation function of
the output layer changes accordingly. We use sigmoid for binary
classification or softmax for multi-class classification.

3.1.1. Multi layer perceptron
The MLP model is designed to be a simple, but computationally

efficient, neural network where layers are fully connected among
each other. Tensorflow defines these types of layers as dense. The
model is made of only three layers (input, hidden and output)
making it, by definition, a shallow ANN. Fig. 2, illustrates the
MLP Base Learner as one of the four sub-models. The four boxes
represent its input data plus the three layers. The input data is
shown as a two-dimensional tuple (None, 43). The term None
represents the samples in the data and it is used as a generic
term to allow for input flexibility (e.g. batching). The number 43
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epresents the number of features used in the ToN_IoT dataset.
he MLP represents the simpler of the models used and offers
ood performance without a notable need for high resources.

.1.2. Deep Neural Network
The Deep Neural Network model or DNN differs from the MLP

n the extra number of layers that it uses. It ensures a more in-
epth analysis of the data, requiring more processing power. DNN
s composed of four fully connected layers. Moreover, to reduce
hances of overfitting, Dropout and Batch Normalization are used
n the hidden layers. DNN is also illustrated in Fig. 2. Note that the
nput data, Batch Normalization and Dropout are all represented
s extra layers.

.1.3. CNN
A Convolutional Neural Network (CNN) is also used as part of

he ensemble. CNN was chosen as it offers a well-known method
apable of processing large amounts of data, often combined with
ccurate predictions. On the downside, it does require higher
esources and longer processing time during training compared
o the other models used. The CNN model built for DIS-IoT makes
se of two one-dimensional (1D) convolutional layers. These can
e applied to two-dimensional data such as the type of data used
n this project. The choice of a 1D Convolutional layer is due to en-
ure that the computational complexity of the model is reduced,
ence that it does not require special hardware setup, making it
ore suitable for applications such as intrusion detection in all
orts of devices [66]. Our model is made of two 1D convolutional
ayers, connected to another dense layer before the output layer.
ig. 2 show that CNN is the most complex of all models used. As
requirement for CNN, the input data is reshaped to add an extra
imension. Max Pooling and Dropout are all represented as extra
ayers.

.1.4. LSTM
LSTM is used to create the fourth model of the ensemble.

he reasoning behind its choice is the fact that LSTM offers an
mproved ability to analyse sequential data [67] when compared
o the other methods. Network traffic, from typical TCP/IP proto-
ols, is normally sequential. The use of LSTM enables DiS-IoT to
odel this type of data more efficiently. The model contains two
STM layers, connected to another hidden dense layer. Lastly, the
utput layer returns the predictions. Dropout is also used as part
f the LSTM model as illustrated in Fig. 2

.2. Meta learner

Rather than using a separate model as the meta-learner, we
roposed an integrated neural network layer to combine predic-
ions from the base learners. Its architecture is described next.

.2.1. Architecture
The meta learner for DIS-IoT is a fully connected neural net-

ork layer that combines the predictions of each sub-model and
erforms an additional training step to reach the final outcome.
his makes DIS-IoT a standalone model that integrates four in-
ependent sub-models, an additional fully connected layer and a
ast output layer to produce a final prediction on the given data.
s each sub-model uses a different method of classification, the
im is to take advantage of their combination to enable DIS-IoT
o model the different characteristics in the data more efficiently.
ig. 2 illustrates the full process. The output layer shows one
utput class as it represents the outcome from the binary clas-
ification of the CICIDS2017 dataset. This changes depending on
he type of classification and the dataset. Binary has just one
utcome, while the multi-class classification would have multiple

utput classes.

5

3.2.2. The DIS-IoT algorithm
With each base-learner trained and their parameters saved,

DIS-IoT is built by loading these into the ensemble model with
their layers set as not trainable. This is because their weights and
biases have already been adjusted previously and do not require
further updates. A separate copy of the data is inputted to each
sub-learner model. Their outputs are then concatenated as input
to the meta learner which is trained to provide a final prediction
on the data. A detailed step-by-step procedure of the DIS-IoT
model is illustrated in Fig. 2. Furthermore, the pseudo-code of the
DIS-IoT model is given in Algorithm 1.

Algorithm 1 The DIS-IoT Algorithm

1: Input Data: D = {Xn, Yn}

2: Base Learners: M1 = MLP; M2 = DNN; M3 = CNN; M4 = LSTM
3: Base Learner Predictions: ŶMi
4: Meta Learner: ML

5: Final Predictions: Ŷ

6: Step 1: Classify D with Base Learners (M1 to M4)
7: for i = 1 to 4 do
8: ŶMi = Mi{D}
9: Return ŶMi

10: end for
11: Concatenate Data: D′ = {(ŶM1, ŶM2, ŶM3, ŶM4), Yn}

12: Step 2: Train Meta-Learner ML

13: Ŷ = ML{D′}
14: Return Ŷ

The input data D is fed into each of the sub-models M1 to M4.
ach model classifies the data to obtain predictions (i.e. ŶM1 to

ŶM4), which are then concatenated with the actual class labels Yn
to form data D′. This is the input data to the meta-learner ML,
which after training returns the final predictions Ŷ .

4. Datasets, experiments process and performance metrics

The experiment’s setup is a workstation running on an Intel©
Core™ i7-5960X CPU with 32 GB of main memory and an NVIDIA
GeForce RTX 2060 GPU. Linux Mint 20.3 Cinnamon is the work-
station operating system (OS). The model training and testing
are completed using a Docker container running Python 3.8.10
with Tensorflow 2.7.0, Scikit-Learn 1.0.2 and Pandas 1.4.1. The
process work follows a typical data science process where data is
imported, pre-processed and then trained and tested. Each step
is described in the next sections.

4.1. Datasets

The experiments are completed using three open-source
datasets: ToN_IoT, CICIDS2017 and SWaT. The first contains data
obtained from large IoT networks. The second is purely based on
a typical network environment. Lastly the third contains traffic
from a water treatment plant. The reasoning behind their choice
is to ensure that the DIS-IoT model is capable of performing
efficiently in different network environments. Each dataset is
briefly described in the next sub-sections.

4.1.1. ToN_IoT dataset
The ToN_IoT dataset [68] was collected using a large-scale

network created by the University of New South Wales (UNSW)
at the Australian Defence Force Academy (ADFA). This network
included physical systems, virtual devices, cloud platforms and
IoT sensors offering a large number of heterogeneous sources.
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Table 2
ToN_IoT traffic type.
Numerical ID Traffic type No of samples

0 Backdoor 20000
1 DDoS 20000
2 DoS 20000
3 Injection 20000
4 MITM 1043
5 Normal 300000
6 Password 20000
7 Ransomware 20000
8 Scanning 20000
9 XSS 20000

The data includes several captures from devices with different
perspectives of the network: IoT/IIoT, Network, Linux and Win-
dows. For this set of experiments, the network data was used for
the model training. Preference was given to the train_test_network
ata as it provides a sample of the network data, as a single file
n CSV format, specifically created with the intent of evaluating
he efficiency of machine learning applications. The data contains
3 features in total and includes a large sample of normal traffic
lus nine different types of attacks. These are listed in Table 2.
he Numerical ID represents the value used by the algorithm to

classify the samples during multi-class classification.

4.1.2. CICIDS2017 dataset
The CICIDS2017 [69] was created by the Canadian Institute

for Cybersecurity (CIC) and was specifically designed to help
develop solutions for anomaly detection. The dataset contains
traffic generated from a network captured over several days and
includes a diverse range of attack scenarios. This is a larger
dataset compared to the ToN_IoT in numbers of samples, features
and classes. The diversity of data is one of the reasoning behind
its choice as it offers a more complex environment for network
traffic analysis. In total, the dataset contains 79 features with each
data sample labelled as either normal or as a specific attack type.
A list of all classes is presented in Table 3.

4.1.3. SWaT dataset
The SWat dataset [70] was created by the Singapore University

of Technology, and contains traffic obtained from a modern water
treatment plant. The data contains 51 features labelled as either
normal or attack.
6

Table 3
CICIDS2017 traffic type.
Numerical ID Traffic type Number of samples

0 Benign 2273097
1 Bot 1966
2 DDoS 128027
3 DoS GoldenEye 10293
4 DoS Hulk 230124
5 DoS slowhttptest 5499
6 DoS slowloris 5796
7 FTP-Patator 7938
8 Heartbleed 11
9 Infiltrator 36
10 PortScan 158930
11 SSH-Patator 5897
12 Web Attacks - Brute Force 1507
13 Web attack - SQL Inj 21
14 Web attack XSS 652

4.2. Data pre-processing

The data, in csv format, is loaded for model training using the
Pandas library. Before training, the data was pre-processed using
the Scikit-learn library. The process involves several steps. Firstly
the data is checked for null values. The rows containing these are
removed as they represent an insignificant portion of the data in
both datasets. Categorical objects are also identified and encoded
into numerical form to ensure data could be inputted into the DL
models. The next step is to ensure that the data is normalized
(i.e. values scaled between 0 and 1). This is an important step
to ensure that no outliers exist in the data that could otherwise
bias the outcome of the model training. Again, the Scikit-learn
library with its MinMaxScaler class is used to complete this task.
Mathematically, normalization is carried out by Eq. (1).

xi =
x − xmin

xmax − xmin
(1)

To conclude the pre-processing of the data, the dataset is
divided into train and test data using a 3:10 ratio, where 30%
of the data is kept aside for testing the model with previously
unseen data. This is a standard process for ML, as it allows to
validate results obtained from training using previously unseen
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Fig. 3. Illustration of Kfold cross validation.

ata. This step ensures that ML models used in operational envi-
onments, with live data, can achieve similar results as to their
erformance during training. Stratified KFold cross-validation is
lso used in training the other 70% of the data. This process
s used to reduce the chance of the model overfitting or being
nfluenced by selection bias [71]. In KFold Cross validation the data
is divided into n subsets. In turn, each subset, or fold, is kept for
testing while the rest of the data is used for training. This implies
that training is performed on the data n times - i.e. the number
of folds created beforehand. While this works well on balanced
data, where each label is distributed evenly, it may not be the best
solution for data that contains an unbalanced distribution of their
classes. The reason for this is that KFold CV splits the data without
taking into account the class ratio. Therefore, a fold could have
a large proportion of a type of class compared to others, while
another fold could only contain a small amount of the same class.
As the data used in this project is unbalanced, standard Kfold CV
is not suitable and Stratified KFold CV is used instead. Stratified
KFold CV maintains the same class ratio as in the source data for
each of the folds created. In short by using Stratified KFold CV,
the class ratio is preserved in all subsets of the data. Hence, for
each fold, similar results are expected.

4.3. Model training and testing

For this experiment, a 5 fold stratified CV is used. The train set
is split into 5 subsets, each maintaining the same ratio of classes
in them. Out of the 5 subsets, one is kept in turn for testing while
the other four are used for training the models. Effectively, the
training process is repeated 5 times - i.e. one for each fold. Fig. 3
illustrates this process.

Once this process is completed, the remaining 30% of the data
is used as test data for a further run. This ensures validation of
the models with previously unseen data.

4.4. Performance metrics

Evaluation of ML and DL models for classification problems
such as the one presented in this work is mostly based on metrics
obtained from a confusion matrix (CM). This is a cross table that
reports how often a model is capable of correctly classifying a
data sample with its real label. The model attempts to discover
the correct type of data sample. This prediction is recorded and
compared against the real type. The CM is used to calculate
the number of occurrences the model correctly or incorrectly
classifies data. In the context of anomaly or intrusion detection, a
CM can be used to verify the rate at which a model manages to:
7

Fig. 4. Confusion matrix.

• detect anomalies or attacks correctly - i.e. True Positives (TP)
• detect normal traffic correctly - i.e. True Negatives (TN)
• confuse normal traffic as anomalous - i.e. False Positives (FP)
• confuse anomalous traffic as normal - i.e. False Negatives

(FN)

A CM is often displayed in a tabular format similar to Fig. 4.
n the right side, the numbers indicate the matching colour code
e.g. Dark Blue indicates numbers in the order 80K).

An ideal model would identify all TP and TN correctly and
ever confuse one class of traffic for the other. Of course, this
s not realistically achievable. However, the rates of FP and FN
hould be kept to a minimum. A CM allows for certain important
etrics to be calculated. These are:

• Accuracy - This is the ratio of correctly classified instances
among the total number and it is obtained by Eq. (2).

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

• FPR - False Positive Rate or FPR, is the ratio between normal
instances detected as anomalies and the overall number of
normal instances. It can be obtained by Eq. (3)

FPR =
FP

FP + TN
(3)

• Precision - This provides the rate of elements that have
been classified as positive and that are actually positive. It is
obtained by dividing correctly classified anomalies (TP), by
the total number of positive instances (FP +TP) as shown in
Eq. (4).

Precision =
TP

FP + TP
(4)

• Recall - Also defined as True Positive Rate (TPR), recall is
obtained from the correctly classified attacks (TP) divided
by the total number of attacks (TP) + (FN) and measures the
model’s ability to identify all positive instances (i.e. attacks)
in the data. Recall is calculated by Eq. (5).

Recall =
TP

TP + FN
(5)

• F1-Score - This uses both Precision and Recall to calculate
their harmonic mean as shown in Eq. (6). The higher the
score the better the model.

F1-Score = 2 ∗
Recall ∗ Precision
Recall + Precision

(6)

In addition to the metrics above, we plot the Receiver Oper-
ating Characteristic (ROC) curve for each of the tested models.
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Table 4
Performances of binary classification on ToN_IoT dataset.
Model Accuracy Precision FPR Recall F1-score AUC

MLP 0.984 0.972 0.014 0981 0.977 0.999
DNN 0.985 0.977 0.012 0.982 0.979 0.999
CNN 0.995 0.994 0.002 0.991 0.993 1.000
LSTM 0.988 0.989 0.005 0.976 0.983 0.999
DIS-IoT 0.996 0.994 0.002 0.994 0.994 1.000

This provides a visual representation of the ability of the model
to distinguish between classes. The area visible below the ROC
curve is defined as the Area Under the Curve or AUC and it
provides a measure of performance of the ability of the model to
distinguish between normal and anomalous instances. The higher
the AUC score, the more efficient the model. We present FPR, AUC
score and the ROC curve only for binary classification to identify
the rate of normal traffic being classified as anomalous. All of
the other metrics are calculated for both binary and multi-class
classification. However, in the latter, as we are dealing with a CM
that contains multiple class results, it is necessary, as explained
by [72], to use an averaging technique to obtain an overall score
for each metric. Specifically, a weighted averaging score will be
used in a multi-class classification where class imbalance is con-
sidered according to the number of samples of each class in the
data.

5. Results and discussions

In this section, we present results from the experiments on
ToN_IoT, CICIDS2017 and the SWaT datasets using DIS-IoT. To
evaluate the performance of DIS-IoT four common DL models are
used for comparison. Classification of ToN_IoT and CICIDS2017
is presented for both binary and multi-class classification. In
binary classification, all classes of attacks are put together as a
single group of anomalies with the same label ID. On the other
hand, only binary classification was completed on SWaT as its
data is only labelled as either normal or attack. Moreover, the
results from the experiments on the ToN_IoT dataset are validated
further by comparing them against other recent work using the
same data. Results are presented in tabular format and evaluated
using the metrics described in the previous section.

5.1. Binary classification

Binary classification aims at identifying anomalies in network
traffic without attempting to discover the specific type of attack
that the anomaly relates to. Consequently, the problem in itself
is simpler than a multi-class classification problem for any DL
algorithm. This section presents results obtained from the binary
classification on the ToN_IoT, CICIDS2017 and SWaT datasets.

5.1.1. Binary classification of the ToN_IoT dataset
To begin with, Table 4 presents the scores obtained by each

model during the binary classification of ToN_IoT.
Results show that all algorithms perform extremely well in

detecting anomalies with very high accuracy rate and low FPR
rates. However, DIS-IoT offers a clear improvement over the other
models. The stacking ensemble manages to perform better than
any other algorithms in terms of accuracy, recall and F1-Score,
with CNN being the only one matching DIS-IoT results in Precision
and FPR. The AUC value is extremely high for all models as shown
in Table 4 and Fig. 5
8

Table 5
Performances of binary classification on CICIDS2017 dataset.
Model Accuracy Precision FPR Recall F1-score AUC

MLP 0.984 0.949 0.012 0.972 0.961 0.999
DNN 0.981 0.927 0.018 0.984 0.955 0.998
CNN 0.985 0.939 0.015 0.987 0.962 0.998
LSTM 0.983 0.956 0.010 0.959 0.957 0.999
DIS-IoT 0.987 0.959 0.010 0.976 0.967 0.999

Table 6
Performances of binary classification on SWaT dataset.
Model Accuracy Precision FPR Recall F1-score AUC

MLP 0.990 0.991 0.008 0.999 0.995 0.983
DNN 0.992 0.992 0.007 0.999 0.996 0.995
CNN 0.993 0.993 0.006 0.999 0.996 0.997
LSTM 0.996 0.996 0.003 0.999 0.998 0.998
DIS-IoT 0.996 0.997 0.002 0.999 0.998 0.999

Table 7
Performances of multi-class classification on ToN_IoT dataset.
Model Accuracy Precision Recall F1-score

MLP 0.994 0.994 0.994 0.994
DNN 0.992 0.992 0.992 0.992
CNN 0.991 0.991 0.991 0.991
LSTM 0.990 0.990 0.990 0.990
DIS-IoT 0.997 0.997 0.997 0.997

5.1.2. Binary classification of the CICIDS2017 dataset
A similar trend in the results is obtained from the binary

classification on the CICIDS2017 data. The models perform not so
high as with the previous data. Nonetheless, this is an expected
outcome given that the CICIDS2017 dataset contains more sam-
ples and has a higher diversity. The similarities with the previous
experiments is in the fact that the DIS-IoT improves performance
compared to the other models, with higher scores in all metrics.
This is shown in Table 5 and Fig. 6.

5.1.3. Binary classification of the SWaT dataset
Classification of the SWaT dataset resulted in an excellent

outcome from DIS-IoT. The base models perform well, but again
the ensemble model achieves higher results than the rest. Results
from these experiments are given in Table 6 and Fig. 7.

5.2. Multi-class classification

Multi-class classification aims at mapping classes of data to
their target labels. Specifically, in the case of network intrusion
detection, the aim is to identify attacks and classify them cor-
rectly. In other words, rather that just identifying anomalies as
with binary classification, here the challenge is to identify the
type of anomaly that is hidden in the data.

5.2.1. Multi-class classification of the ToN_IoT dataset
The ToN_IoT Dataset contains ten different classes of data.

Nine of them are attacks, while the remaining class indicates
normal traffic. These are described in Table 2, which shows the
type of attacks that exist in the data and their corresponding
number that is used in the multi-class classification. A CM of the
classification results obtained by DIS-IoT is given in Fig. 8. Table 7
shows the metrics used in multi-class classification.

Results show that DIS-IoT performs extremely well in multi-
class classification too, achieving extremely high scores in all
metrics. Furthermore, it can be seen that the other models are
outperformed in this type of classification too. The confusion
matrix in Fig. 8, shows that DIS-IoT tends to have small rates of
FP and FN, making the label prediction extremely accurate.
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Fig. 5. ROC curves of DIS-IoT and the other methods on ToN_IoT dataset.
Fig. 6. ROC curves of DIS-IoT and the other methods on CICIDS2017 dataset.
Table 8
Performance of multi-class classification on CICIDS2017 dataset.
Model Accuracy Precision Recall F1-score

MLP 0.982 0.984 0.982 0.982
DNN 0.980 0.981 0.980 0.980
CNN 0.980 0.980 0.980 0.980
LSTM 0.985 0.984 0.985 0.984
DIS-IoT 0.987 0.987 0.987 0.986

5.2.2. Multi-class classification of the CICIDS2017 dataset
As shown in Table 3, CICIDS2017 contains 15 classes of data,

aking a more complex scenario than ToN_IoT dataset. A confu-
ion matrix for the outcome of the experiments is shown in Fig. 9.
etrics from the multi-class classification of the CICIDS2017
ataset are given in Table 8.
9

Given the higher complexity of the experiments, DIS-IoT
achieves lower scores than previously. However, it still offers an
excellent performance and outperforms all the other models.

5.3. Comparison with other works

As a final evaluation of the results offered above, we compare
DIS-IoT with other similar State-of-the-Art approaches [27,28,53,
54,59], all of which are described in Section 2. One of the main
reasoning for the use of this approach in comparison to ours
is that all of these methods use the ToN_IoT network dataset,
which is the same data used in this work. Some of them also
propose ensemble stacking solutions, offering another important
characteristic for comparison. Tables 9 and 10 compare results
from binary and multi-class classification respectively. Several of
these approaches have been evaluated only on binary classifica-
tion. Hence, the reason for the missing values in Table 10. From

the metrics given, it can be seen that, while DIS-IoT outperforms
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Fig. 7. ROC curves of DIS-IoT and other methods on the SWaT dataset.
Table 9
Comparison with recent State-of-the-Art IDS binary classification on ToN_IoT dataset.
Authors Method Ensemble (yes/no) Accuracy Precision Recall F1-score

Kumar et al. [28] DLTIF No 0.999 0.999 0.999 0.999
Latif et al. [27] DnRaNN No 0.985 0.990 0.991 0.990
Kumar et al. [53] Stacking Yes 0.963 0.905 0.999 0.950
Khan et al. [54] Stacking Yes 0.985 0.947 0.998 0.973
Gad et al. [59] XGBoost Yes 0.991 0.984 0.991 0.987
Our model DIS-IoT Yes 0.996 0.994 0.994 0.994
Fig. 8. Multi-class confusion matrix for DIS-IoT on the ToN_IoT dataset.

most of the other approaches in both binary and multi-class
classification. Only DLTIF [28] offers slightly improved metrics in
binary classification.
10
6. Conclusions

Detection of anomalies and malicious attacks in IoT has gained
paramount importance in recent years. With the number of at-
tacks increasing, it is important to create tools capable of de-
tecting anomalies swiftly and accurately. In this article, a novel
method, called DIS-IoT, was introduced. DIS-IoT is capable of
detecting attacks in an IoT environment while maintaining a
low FP and FN rate. DIS-IoT combines four different DL models,
namely MLP, DNN, CNN and LSTM, to take advantage of the
different classification characteristics each sub-model is able to
offer. The work is evaluated on two open source datasets, ToN_IoT
and CICIDS2017 in binary and multi-class classification and on the
SWaT dataset in binary classification only. Results are compared
against models used for the ensemble. Moreover, results are
compared with previous work published that used the ToN_IoT
network dataset.

Experiments showed that DIS-IoT is capable of achieving ex-
cellent scores in accuracy, precision, recall and F1-Score in both
binary and multi-class classification and on both datasets. DIS-IoT
outperforms all the other models in all metrics. Comparison with
other work also shows that our approach outperforms most of the
other works using the ToN_IoT dataset in both binary and multi-
class classification. Only in binary classification, DIS-IoT achieved
lower scores by a small margin compared to DLTIF [28]. However,
this seems to be marginal and could be due to a variety of reasons,
which cannot be immediately evident from the outcome of met-

rics used. Instead, it is crucial to notice that our proposed method,
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Fig. 9. Multi-class confusion matrix for DIS-IoT on the CICIDS2017 dataset.
Table 10
Comparison with recent State-of-the-Art IDS using ToN_IoT - Multi-class scenario approaches.
Authors Method name Ensemble (yes/no) Accuracy Precision Recall F1-score

Kumar et al. [28] DLTIF No 0.993 0.994 0.972 0.985
Latif et al. [27] DnRaNN No 0.989 0.993 0.994 0.993
Kumar et al. [53] Stacking Yes – – – –
Khan et al. [54] Stacking Yes – – – –
Gad et al. [59] XGBoost Yes 0.983 0.945 0.953 0.949
Our model DIS-IoT Yes 0.997 0.997 0.997 0.997
performs consistently well with different datasets, making it a
sound solution for intrusion detection in IoT.

In conclusion, our work of combining different models into
n integrated stacking ensemble offers an excellent solution as
n IDS, demonstrating the ability to detect the vast majority of
ttacks while maintaining particularly low rates of FP and FN.
In future work, it is recommended to investigate the use of

IS-IoT with real IoT devices. This would allow for the evaluation
f the model’s computational overhead and real-time perfor-
ance with live data. Given that DIS-IoT is an ensemble of four
ifferent models, it is expected to require significant resources.
herefore it would be more appropriate to experiment with DIS-
oT in a topology based on edge networking rather than running
t directly on low-power IoT devices.
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