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Measuring seasonal productivity is difficult in multi-brooded species without labour-
intensive ringing studies. Individual-based (IB) models have been used to estimate sea-
sonal productivity with no direct knowledge of number of nesting attempts, but they are
often based on simplified re-nesting probability (φR) step-functions instead of observed
or more biologically plausible ones. We present a new, open-source IB seasonal produc-
tivity model parameterized from studies of Black Redstart Phoenicurus ochruros and Yel-
lowhammer Emberiza citrinella. We examined how the φR function shape (empirical
versus simplified) influenced (1) model performance, (2) re-nesting compensation and
(3) population-level predictions of a simulated management intervention. Population-
level predictions were made only for Yellowhammer as we had more detailed demo-
graphic data, such as survival rates, available. Pattern-oriented modelling revealed that IB
models produced realistic within-population distributions of breeding parameters, and
those specified with an observed or empirically derived φR function generally outper-
formed those specified with simpler step functions. Strength of re-nesting compensation
differed depending on the φR function used. For Yellowhammers, type of φR function in
IB models marginally influenced population-level predictions of a simulated management
intervention (potential population growth rate increased between 23% and 29% relative
to no management intervention). In contrast, a simple deterministic productivity model,
which did not simulate re-nesting compensation, predicted a 41% increase in potential
population growth. At a population level, choice of φR function may have less influence
on IB model predictions, but choice of model itself (IB versus deterministic) may have
substantial impact. We discuss how more biologically plausible φR functions might either
be observed directly, derived from nest data, or estimated from proxy information such
as moult or brood patch changes.

Keywords: agent-based modelling, Black Redstart, individual-based modelling, multi-brooded,
passerine, pattern-oriented modelling, repeat clutch, simulation, Yellowhammer.

The demographic parameters of productivity, sur-
vival and dispersal ultimately determine local avian
population trends (Newton 1998). Their measure-
ment is essential in bird conservation, for diagnosing
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proximate causes of population declines (Robinson
et al. 2004) and for testing responses to manage-
ment (Bolton et al. 2007). When considering pro-
ductivity, it is ultimately the productivity per
female per season that is required for demographic
simulation or quantification of individual fitness
(Green 2004) (or per male in polyandrous species).
Many bird species have a long breeding season rela-
tive to the length of one nesting cycle and often
attempt to produce multiple broods each season
(Newton 1998, Green 2004, Weggler 2006). Direct
measurement of individual seasonal productivity
can be time-intensive and error-prone (Ricklefs &
Bloom 1977). Monitoring individually marked
females through a whole season is possible (e.g.
Browne & Aebischer 2004, Kershner et al. 2004)
but labour-intensive, particularly where potential
nest-sites are abundant (Green 2004). For many
researchers, such methods may be logistically
impossible (Cornulier et al. 2009, Etterson
et al. 2011). Unfortunately output per attempt and
other indices may correlate poorly with seasonal
productivity (Anders & Marshall 2005).

Instead, researchers have often used modelling to
estimate seasonal productivity from incomplete data
(Etterson et al. 2011). Various time-explicit models
that dynamically link separate breeding parameters
have been used (reviewed by Etterson et al. 2011).
These include individual-based stochastic simula-
tion (Powell et al. 1999), partial differential equa-
tions (Pease & Grzybowski 1995) and Markov
chains (Etterson et al. 2009). Such dynamic models
can be superior to deterministic models (that esti-
mate productivity from estimates of output per
attempt and the average number of attempts made)
for at least three reasons. First, there is an acknowl-
edged paucity of accurate data on number of
attempts for many bird species (Siriwardena & Rob-
inson 2002, Anders & Marshall 2005) and many
nest studies are likely to underestimate this parame-
ter (Pease & Grzybowski 1995, though see Cornu-
lier et al. 2009 for an advance in indirect
measurement). Secondly, they can be time-explicit,
allowing consideration of intra-seasonal temporal
variation in breeding parameters. Thirdly, they are
capable of simulating ‘re-nesting compensation’,
which occurs because failed attempts ‘use’ fewer of
the limited number of breeding season days avail-
able than successful attempts. Birds that fail may be
able to make more attempts than those that are suc-
cessful (Pease & Grzybowski 1995). Re-nesting
compensation is expected to dampen the effect of

inter-individual or inter-population variation in nest
success on seasonal productivity (Nagy &
Holmes 2004) and means that assuming a fixed
number of attempts is ultimately biased (Pease &
Grzybowski 1995). Dynamic models can address
the lack of information on number of attempts by
constraining it individually and indirectly via a distri-
bution of ‘quitting dates’ (Pease & Grzybowski 1995,
Mattsson & Cooper 2007, Etterson et al. 2009).

Quitting of breeding within a season is an active
process (i.e. it is not solely defined by the cessation
of nesting), as can be seen by post-breeding moult
activity whereby females begin a moult during/
after post-fledging care of their final brood, con-
straining further energetic investment in breeding
(Newton 1999). Quitting dates can vary widely
between individuals. For example, Black Redstarts
Phoenicurus ochruros made as few as one failed
attempt or as many as three successful attempts
(Weggler 2006) and post-breeding moult in Eur-
asian Bullfinches Pyrrhula pyrrhula, which begins
soon after their last attempt, varied across 7–
11 weeks per season (Newton 1999). The comple-
ment to unity of the probability of a bird quitting
the season (φQ) after an attempt is the re-nesting
probability (φR; i.e. φQ + φR = 1).

Dynamic seasonal productivity models have pre-
viously used relatively simplistic assumptions about
φR (or equivalently φQ) that may not reflect its natu-
ral variation. For example, Pease and Grzybow-
ski (1995) used a function assuming φR = 1 until
the point when 50% of birds would cease to re-nest,
then stepping to 0. Mattsson and Cooper (2007)
used a function assuming a fixed mean φR until the
last known laying date observed from the population
then stepping to 0. As recognized by the authors,
neither approach seems biologically intuitive. Pease
and Grzybowski’s (1995) approach does allow for a
time-variable φR function but they used a simplified
version in acknowledgement that such data are
rarely available, and Mattsson and Cooper (2007)
suggested a time-variable φR as a future develop-
ment. In study species where data are available on
the propensity to re-nest following a given number
of nesting attempts, attempt-variable φR functions
(i.e. φR depends on if the subsequent attempt would
be the second, third, etc.) have been used in sea-
sonal productivity models: for Wood Thrushes Hylo-
cichla mustelina and American Redstarts Setophaga
ruticilla in Powell and Knutson (2006), and for
Ring-necked Pheasants Phasianus colchicus in Mat-
thews et al. (2012). However, the problem remains
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that such data are rarely available to investigators for
many study species.

Beintema and Muskens (1987) predicted that
φR would be 1 early in the season and must fall to
0 at the end of the season, but suggested that the
shape of the function is hard to estimate. A
method that can estimate this shape, without the
need for resource-intensive monitoring of marked
birds through a whole season (e.g. Weggler 2006),
would make such functions more widely available.
As a result, models including empirically derived
time-variable φR functions have the potential to
widen the functionality of seasonal productivity
models by improving how they account for indi-
vidual variation in quitting dates.

In this study, we present an open-source
individual-based seasonal productivity model that
can include a time-variable φR function. Using two
relatively data-rich study populations (Black Red-
starts and Yellowhammers Emberiza citrinella) we
obtained or constructed empirical re-nesting proba-
bility functions, and from those generated two com-
parable simpler step functions similar to those used
in previous individual-based productivity model
studies. We then ran the model for each species and
φR function combination, with three principal aims:
(1) to use pattern-oriented modelling to assess the
impact of the φR function on model performance
against real data; (2) to examine the impact of the
φR function on how the model simulates re-nesting
compensation; and (3) for Yellowhammers only (for
which other demographic data were available), to
assess the impact of the φR function on population-
level predictions of a simulated management inter-
vention. For the latter, we also compare the
individual-based model to a simpler deterministic
seasonal productivity model for reference. Finally,
we discuss how researchers might extract more bio-
logically realistic re-nesting functions from popula-
tions to improve the functionality of seasonal
productivity models, and we provide some exam-
ples. The overall aim is to provide ornithologists
with a greater range of tools for simulating re-
nesting behaviour and so providing potentially more
accurate estimates of seasonal productivity.

METHODS

Study populations

To assess the impact of choosing different φR func-
tions, we used data from two intensive studies of

bird reproduction: one involving individually
colour-ringed Black Redstarts (Passeriformes, Mus-
cicapidae) in a small rural community in Wallis,
Switzerland (Weggler 2006), and the other on Yel-
lowhammers (Passeriformes, Emberizidae) on
three close-proximity lowland farms in Leicester-
shire, UK (White et al. 2014). Both species are
typically monogamous, with males establishing
breeding territories, and can be described as
‘multi-brooded’ (i.e. a species that has the ability
to have multiple broods in a season, even if not
every individual does so; Snow & Perrins 1997).

There are very few datasets where individually
marked individuals of a multi-brooded species
have been followed through their entire breeding
season such that the actual φR function can be
observed. Indeed, even where females are radio-
tagged, logistical constraints mean that it can be
difficult to locate second attempts (Kirby
et al. 2019). However, Weggler (2006) colour-
ringed 157 female Black Redstarts during 1994–
2004, combining this with intensive nest finding
(379 nests), such that there was high confidence
that most nesting attempts, even early failed ones,
were located.

The study of Yellowhammers took place
between 1995 and 2007 as part of a larger study
looking at the impacts of agricultural and game
management on wild bird populations (Stoate
et al. 2015). Adults were not individually marked,
although territory-mapping was carried out in
some years. A total of 732 nests were located and
monitored; it was never intended that these would
represent all nesting attempts made, but rather
they would be a representative sample.

The Black Redstart study was selected to pri-
marily assess the impact of the φR function on
model performance, as we had detailed data about
breeding parameters recorded directly and inde-
pendently of the modelling. Such data were not
directly available for the Yellowhammer popula-
tion as it was not intensively monitored using col-
our ringing.

The Yellowhammer study was, on the other
hand, primarily selected to assess the consequences
of φR function on population-level predictions, as
Yellowhammers are an extremely well-studied spe-
cies on UK lowland farmland, in part in response
to large-scale declines linked to agricultural intensi-
fication (Bradbury et al. 2000). As such, for Yel-
lowhammers it was easier to parameterize a
population model with demographic parameters
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specific to Great Britain. To our knowledge, no
such data were available for Black Redstarts on
mainland Europe. In addition, while other nest
datasets could potentially be used for this type of
assessment (such as from the British Trust for
Ornithology’s Nest Record Scheme), 732 nests of
a single species within a very restricted geographi-
cal area represented a large sample size from a
population experiencing similar local environmen-
tal conditions. Furthermore, for this Yellowham-
mer population we had some territory mapping
data, which allowed us to assess our approach to
estimating φR functions for the population, dis-
cussed below.

An individual-based re-nesting model

The model is based on, and follows a similar
approach to, previous dynamic re-nesting models
(Beintema & Muskens 1987, Powell et al. 1999,
Mattsson & Cooper 2007). The model was origi-
nally generated and tested (validation, extreme
conditions and sensitivity analysis) in Microsoft
Excel (White 2009), then moved to NetLogo
(Wilensky 1999) for ease of use and enhanced
adaptability to other species/functions by other
researchers. A link to the model itself, which also
contains a detailed model description and example
datasets, is given at the end of this article.
NetLogo is a multi-agent programmable modelling
environment that is free to download (https://ccl.
northwestern.edu/netlogo/index.shtml).

Briefly, the model is individual-based and simu-
lates the breeding season of a female, with each
female time-limited by stochastic selection of (1) a
start-date from a specified normal distribution of
initial first-egg dates and (2) a quitting date, which
was determined by, at the end each attempt, refer-
ring to a vector of re-nesting probabilities (φR; spe-
cific to day-in-season), which would decide
whether the female either ceased breeding or
made a subsequent attempt. Within that season,
there are various other stochastic processes based
on empirical probabilities and distributions, such
as clutch size, daily survival probability of a nest
(separately for egg and nestling stages), the propor-
tion of eggs laid that hatch if hatching is reached,
and the proportion of hatched chicks that fledge if
fledging is reached. In addition, there are some
constants such as duration of nest building, dura-
tion of laying and incubation, duration of provi-
sioning, and inter-attempt intervals. The constants

have the potential to be varied, but sensitivity
analysis suggests that they do not impact model
outputs substantially (White 2009).

Developing re-nesting probability
functions

To achieve aims (1), (2) and (3) we compared
simple φR functions of the type that have been
used in previous models (in the absence of a more
biologically plausible function) to empirical φR

functions that were more representative of real
populations.

For the Black Redstart, whose population was
intensively colour-ringed and monitored, we in fact
had a true re-nesting probability (φR) function (fig.
2 in Weggler 2006), which we then used within
the individual-based re-nesting model. As this is
not typically available to investigators, we also
reduced it to two simpler step functions analogous
to those of Pease and Grzybowski (1995) (assum-
ing φR = 1 until the point when 50% of birds
would cease to re-nest, then stepping to 0), which
for brevity we call the ‘high step’ function, and of
Mattsson and Cooper (2007) (assuming a fixed
mean φR until the last known laying date observed
from the population then stepping to 0), which
we call the ‘low step’ function. The three Black
Redstart φR functions are shown in Figure 1a.

Because our Yellowhammer population was not
colour-marked, nor as intensively studied, we took
a novel alternative approach to obtaining the three
different φR functions. We first estimated an empir-
ically derived φR function as closely as feasible
representing the real re-nesting probability function
of the population. This involved use of encounter
histories of nest initiations in assumed breeding ter-
ritories and adaptation of a mark–recapture model-
ling approach (see Supporting Online Information,
Appendices S1 and S2 for details). From this
empirically derived φR function, we also then
derived simpler high step and low step functions,
as for Black Redstart (see Supporting Online Infor-
mation, Appendix S1). The three Yellowhammer
φR functions are shown in Figure 1b.

Analyses

The framework for our analysis is outlined in
Figure 2 to aid understanding. Capital letters in
subheadings below match to those in the ‘Ana-
lyses’ column in Figure 2.

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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[A] Using pattern-oriented modelling to assess
performance of the re-nesting model
For an individual-based re-nesting model to be
useful for researchers it needs to be able to simu-
late the nesting season of a population and pro-
duce realistic outputs in terms of seasonal

productivity (chicks produced per female per sea-
son). Pattern-oriented modelling (POM) is a strat-
egy for comparing models with empirical patterns.
It can be used to balance a model’s level of com-
plexity and help to capture the processes in the
system necessary for addressing the purpose of that

(a)

(b)

Figure 1. Re-nesting probability functions tested in this study for (a) Black Redstarts and (b) Yellowhammers. We compared the
impacts of three different potential re-nesting probability functions on model performance of a stochastic simulation model (see text).
Ordinal day indicates day in year where 1 = 1 January, ignoring leap years.

Figure 2. Framework of study to assess the impact of choice of re-nesting probability function on the performance of individual-
based seasonal productivity models. Letters in square brackets indicate the Methods/Results sections that describe those analyses.
Bird symbols indicate study populations used for model parameterization and validation/assessment: black/dark represents Black
Redstarts in Switzerland, yellow/light represents Yellowhammers in Great Britain. Yellowhammers are shown in parentheses for anal-
ysis A because they were only subjected to a smaller pattern-oriented modelling procedure.

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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model (Gallagher et al. 2021). Patterns can be
drawn from different levels of the ecological hier-
archy (Gallagher et al. 2021): because the re-
nesting model used here is a single-species system
with no direct environmental/abiotic processes, we
drew patterns from the ‘individual’ and ‘popula-
tion’ levels. POM was primarily carried out on the
Black Redstart system because the author of Weg-
gler (2006) provided us with the study’s raw
dataset.

We used the raw datasets to both parameterize
our model and derive individual/population pat-
terns, but we avoided circular logic by using dif-
ferent parameters in model parameterization to
those in the POM exercise. Input parameters
used in the model (constants or distributions) are
given in Supporting Online Information,
Appendix S3. In contrast, patterns used in POM
were emergent effects from the system/model
that were independent of those input parameters
and for which equivalent data from the study
population were available for comparison. For
Black Redstarts these were: (1) distribution of
nest initiations over time, separated by attempt
(first attempt, second attempt, etc.); (2) clutch
initiation period (time span between 10th and
90th centiles of clutch initiation dates across all
attempts); (3) mean number of attempts; (4) rel-
ative frequency of number of attempts (percent-
age of birds making one attempt, two attempts,
etc.); and (5) mean seasonal productivity (fledg-
lings per female per season). For the less inten-
sively studied Yellowhammer, we were only able
to compare (1) the distribution of nest initiations
over time (but not separated by attempt, as this
was unknown in the study population) and (2)
clutch initiation period.

Between-female variation in output parameters
is a key feature of an individual-based model
because we know that there can be a large varia-
tion between females in real breeding populations
(discussed above), and this variation between
females allows emergent effects such as re-nesting
compensation. As such, we also compared mea-
sures of variation (quantified by the standard devi-
ation, sd) between the observed and simulated
parameters, above. For seasonal productivity and
number of attempts, we used the simple sd from
all female-seasons. Because clutch initiation period
is specific to simulated population not to female-
season, there is a single value per simulation. So,
to estimate a measure of variation of clutch

initiation period we carried out 10 000 bootstrap
samples with replacement and estimated its sd.
For relative frequency of number of attempts, the
distribution is multinomial (percentage of one, two
or three attempts, respectively) so instead of sd we
estimated its multinomial standard error (se). This
was estimated from the observed Black Redstart
population only (n = 226 female seasons) because
for the simulation data the se would be influenced
by sample size, and we show below with other
outputs that se would tend to zero with increasing
sample size.

For POM and subsequent analyses discussed
below, each simulation was run for 10 000
female-seasons. This value was selected initially as
an arbitrarily large number that would not take
too much processing time in NetLogo. However,
we carried out an assessment to check that 10 000
runs were sufficient to offer high precision in
model outputs, which is described in detail in the
Supporting Online Information, Appendix S4.
This assessment showed that for multiple indepen-
dent simulations specified with the same input
parameters, key model outputs (mean of seasonal
productivity) and emergent distributions (sd of
seasonal productivity, and relative frequency of
number of attempts per female) reached constant
values with high precision after 10 000 runs. The
analysis also demonstrated what would be pre-
dicted arithmetically, that since se has sample size
as a denominator, then as the number of female-
seasons in a simulation increases, the se of the esti-
mated mean will tend to zero. Indeed, at 10 000
female-seasons the se of seasonal productivity was
just 0.03 chicks per female per season (c. 0.5% of
the mean). In contrast, the sd of seasonal produc-
tivity remains consistent as the number of simu-
lated female-seasons increases after several
thousand. As such, outputs such as mean and sd
of seasonal productivity and number of attempts
from simulations with 10 000 runs can be consid-
ered as expected values from the model, given the
input.

For this POM approach, most patterns were
compared qualitatively/visually (a recognized
approach in POM: Gallagher et al. 2021) as only
one value was available for the actual population
and for each of the three simulations per species.
However, for distributions of first egg dates, as
well as a visual comparison, we also conducted a
Kolmogorov–Smirnoff test, with the null hypothe-
sis that the cumulative distributions were drawn

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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from the same pattern. This test has the benefit
that it can be used where the two distributions
have different resolutions (for Black Redstart nest
initiations were only available in 10-day windows,
and for Yellowhammers in 5-day windows,
whereas for both species the model outputs cate-
gorized nest initiations per ordinal day, i.e. where
1 January is day 1 etc.). Summary statistics and
the Kolmogorov–Smirnoff tests were carried out in
R (R Core Team 2015).

[B] How does the re-nesting probability function
influence re-nesting compensation?
Because re-nesting compensation is an emergent
property of the fact that failed attempts take, on
average, less time than successful attempts and
females have the ability to re-nest following fail-
ure, we would hypothesize that the form of the
φR function used (which influences when females
finish nesting for a season) would in turn influence
how a model simulates re-nesting compensation.
Re-nesting compensation can be observed within a
simulated model by running the model across a
range of values of nest success and viewing the
effect on mean numbers of attempts made per
female. If re-nesting compensation is operating,
then we would expect a negative relationship (as
plotted in Flint et al. 1998). The strength and form
of this relationship is also important, as it would
determine the extent to which a model simulates
the ‘dampening’ effect of re-nesting compensation
on variation in nest success and may have knock-
on impacts for population modelling.

To view re-nesting compensation, we ran each
of the three Black Redstart and three Yellowham-
mer models for 10 000 females 10 times, where
each time nest success was fixed at values within
10% and 100% inclusive, in 10% intervals. In prac-
tice, this had to be done by assuming constant daily
survival probability between egg and chick stages
and then varying those constants to achieve those
nest success values, as the model assesses nest sur-
vival probability at the scale of the day-within-nest
cycle rather than the nest cycle. For each nest suc-
cess value, we extracted the mean number of
attempts across the 10 000 females and plotted
these against nest success, as per Flint et al. (1998).

[C] What is the knock-on effect when population
modelling?
If individual-based models simulate re-nesting
compensation as an emergent effect, then it should

dampen the effect of any variation in nest success
on seasonal productivity, and potentially then on
population growth, depending on presence of
density-dependent processes. In turn, if the re-
nesting probability function itself modifies the
strength or shape of re-nesting compensation of a
model, then the function used could influence pre-
dicted demographic effects of any changes in nest
success. This might be important when predicting,
for example, the effect of an anthropogenic impact
on nest success at a population level, such as the
impact of invasive rat control on Mauritius Olive
White-eyes Zosterops chloronothos, which was pre-
dicted to improve nest success and potential popu-
lation growth rate (Maggs et al. 2015). To
investigate to what extent the use of a stochastic
individual-based productivity model (and further
what re-nesting probability function that model
used) influenced population-level predictions in a
real-world management scenario, we used the Yel-
lowhammer study system. The Yellowhammer sys-
tem was used because it was easier to obtain other
demographic parameters based on the same spe-
cies in the same country, because Yellowhammers
have been widely studied in the UK. This was not
the case for Black Redstarts in Switzerland. The
management scenario involved the impact of pred-
ator removal on Yellowhammer nest success
(White 2009, White et al. 2014). Lethal reduction
of known nest predators of Ring-necked Pheasant
using legal means had been carried out for some
years at one site and not at all at two others, and
the effects on breeding parameters such as nest
success (separately for egg and chick stages of the
nest cycle) had been estimated (described in
White 2009).

Density-dependent effects will depend on spe-
cific circumstances. To investigate the impact of
the form of the re-nesting probability function on
population change, we used an equation of dis-
crete population growth rate λ using parameters
for the Yellowhammer population:

λ ¼ pþ lαb (1)

where p is the adult annual survival rate, lα is the
survival rate from fledging to age at first reproduc-
tion, and b is the number of female chicks fledged
per female per season.

Yellowhammer demographic parameters entered
into the model are given in Table 1. For p, we took
the mean of adult survival rates associated with

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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declining and increasing population trends for Yel-
lowhammer populations (Siriwardena & Robin-
son 2002). For lα we also took the mean for first-
year survival for declining and increasing popula-
tions of Yellowhammer, but we then multiplied
this by an estimate of post-fledging survival (i.e.
survival from fledging to independence). Empirical
estimates of post-fledging survival for British farm-
land passerines are few – we only found explicit
estimates for Song Thrush Turdus philomelos of
0.798 over 14 days (Robinson et al. 2004). For
populations of six Nearctic species, post-fledging
survival ranged from 0.29 to 0.75 (Anders & Mar-
shall 2005), for Starling Sturnus vulgaris in North
America from 0.39 to 0.62 (Krementz et al. 1989),
and for an urban Blackbird Turdus merula popula-
tion, it was 0.57 (Magrath 1991). As a compromise,
we took the mean value of these estimates, 0.51,
which was congruous with the 0.45–0.55 range
simulated by Bradbury et al. (2000) for declining
and pre-decline Yellowhammer populations.

The number of female chicks fledged per
female per season b was taken from two types of
seasonal productivity models: (1) a simple deter-
ministic model that effectively took the product of
a mean number of attempts made, a mean number
of chicks per successful nest, and estimates of nest
success, and (2) the individual-based model,
parameterized with each of the three possible
re-nesting probability functions (Fig. 1b). In both

cases we assumed a 1:1 sex-ratio of chicks
(Pagliani et al. 1999).

For the deterministic model we adapted a
model from Paradis et al. (2000):

b ¼ 0:5Φη DSPEð ÞE DSPNð ÞN (2)

where Φ is the chicks fledged per successful nest,
η is the mean number of nesting attempts per
female per season, E is the typical egg period of a
nest that survives from the first egg to hatching,
inclusive of laying (days), N is the typical nestling
period of a nest that survives from hatching to
fledging (days), and DSPE and DSPN are daily sur-
vival probability estimates from those periods,
respectively.

For the three individual-based models specified
with each re-nesting probability function, we took
the main output from the models, mean fledglings
per female per season, and halved it so it would
represent mean fledglings per adult per season,
assuming a 1:1 sex ratio in the breeding popula-
tion given the species is monogamous (Sund-
berg 1994). The predator removal study had
found a significant positive effect of predator
removal on Yellowhammer DSPE but no signifi-
cant effect on DSPN (Table 1). Overall mean nest
success (taken as DSPEð ÞE DSPNð ÞN from Equation
2) was predicted as 22% when predators were not
removed, and 43% when predators were removed,

Table 1. Parameters used to compare the predicted population consequences of different seasonal productivity models for Yellow-
hammer for a scenario where no predators were removed versus with predator removal (see text).

Parameter Scenario Value Units

Model included in. . .

Deterministic Individual-based

Daily survival egg stage DSPE No predator removal 2.876 � 0.121 logits X X
Predator removal 4.386 � 0.273 logits X X

Daily survival chick stage DSPN 2.920 � 0.138 logits X X
Chicks per successful nest Φ 2.76 chicks X
Mean no. of attempts η 2.52 attempts X
Clutch size 1.233 � 0.050 ln(eggs) X
Proportion of eggs laid that hatch 1.599 � 0.113 logits X
Proportion of chicks hatched that fledge 1.575 � 0.151 logits X
Re-nesting function Empirical See Figure 1b probability X

Low step See Figure 1b probability X
High step See Figure 1b probability X

First-year survival lα 0.481 probability X X
Adult survival p 0.503 probability X X

Predator removal had an impact on daily survival probability at the egg stage but not at the chick stage. All other parameters were the
same for each scenario. The re-nesting model was run for three different re-nesting probability functions (see Fig. 1b). Overall, four sea-
sonal productivity models were run: a deterministic model, and the individual-based model specified once with each of the three re-
nesting probability functions. The population model was then run for each predator removal scenario, making eight runs in total.

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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a 95% relative increase (White 2009). We there-
fore calculated eight values of chicks fledged per
female per season by running each of the four
model types (deterministic, and IB parameterized
with each of the three different φR functions in
Fig. 1b) for each of the two values of DSPE (with
predator removal, without predator removal).
These were then used to estimate λ via Equation 1.
Estimates of λ represent the potential for popula-
tion growth in the absence of density-dependent
effects. We then compared how the use of each
type or specification of seasonal productivity
model influenced the predicted population-level
effect of predator removal on Yellowhammers.

RESULTS

For clarity, sections are lettered (A, B, C) to match
the Methods section and their place in the frame-
work in Figure 1.

[A] Using pattern-oriented modelling to
assess the re-nesting model

Comparing across a range of reproductive patterns,
POM revealed a relatively close match between

observed and simulated populations (Table 2,
Fig. 3). The simulations tended to underestimate
the number of attempts and the season productiv-
ity (compared for Black Redstart only), the latter
by 0.4–0.8 fledglings per female per season. Simu-
lations also had slightly lower measures of
between-female variation (as measured by sd
values) in number of attempts and seasonal pro-
ductivity but still showed substantial variation in
expected populations. A pattern seen across the
POM assessment was that mean or sd values from
simulations using the empirical φR function tended
to be intermediate between those of the high step
and low step φR functions, as was the case in
almost every value (mean or sd) compared.

When comparing distributions of initial first-egg
dates between observed and simulated populations
(Fig. 3), for Black Redstart there was a good visual
match between the simulation and observed data
using both the empirical and low step φR func-
tions, showing a stepped pattern of decreasing fre-
quency from initiations of first, to second, to third
attempts, and each distribution looking approxi-
mately normally distributed (at least for first and
second attempts). The Kolmogorov–Smirnoff tests
indicated that these two simulated distributions

Table 2. Pattern-oriented modelling table for comparing observed and simulated Black Redstart and Yellowhammer breeding sea-
sons using an individual-based model.

Species Pattern Observed

Simulated with re-nesting
function

Empirical
High
step

Low
step

Black Redstart Clutch initiation period (day) Mean 60.7 62.9 55.3 65.2
sd 0.7 0.3 0.4 0.4

Number of attempts Mean 1.68 1.56 1.58 1.47
sd 0.64 0.54 0.50 0.55

Relative frequency of number of attempts (%) �
multinomial se

1 41.6 � 3.3 46.6 42.6 55.6
2 49.1 � 3.3 51.2 57.0 41.5
3 9.3 � 1.9 2.2 0.4 2.9

Seasonal productivity Mean 6.0 5.5 5.6 5.2
sd 3.5 2.7 2.5 2.8
Range 0–16 0–15 0–10 0–15

Yellowhammer Clutch initiation period (days) Mean 58.1 61.8 50.1 73.6
sd 2.0 0.4 0.3 0.6

Black Redstart data are from a marked, intensively studied population (Weggler 2006) so accurate attempt and seasonal productivity
data are available, alongside frequency of initiations over time per attempt, whereas Yellowhammer data are from an unmarked pop-
ulation so only distribution of nest initiations (attempt number unknown) over time is available. Clutch initiation time represents time-
span between 10th and 90th centiles of clutch initiation dates. Note clutch initiation period mean and standard deviations (sd) are
from 10 000 bootstrap samples with replacement, whereas for seasonal productivity and number of attempts they are from the origi-
nal 10 000 runs. Samples sizes are: 226 observed Black Redstart female-seasons, 732 observed Yellowhammer nesting attempts,
or 10 000 simulated female-seasons. se, standard error.

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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were not significantly different to the observed
distribution (Kolmogorov–Smirnoff statistics dis-
played on plots). For the high step function, in
contrast, the distribution of initiations of second
attempts (and third attempts although this is less
clear owing to low sample size) had a higher peak
(i.e. more second attempts initiated) but was then
clearly truncated at the point where the re-nesting
probability changed from 1 to 0 (compare with
Fig. 2a), meaning that the pattern looked very dif-
ferent to that of the observed population. This was
reflected in the Kolmogorov–Smirnoff test result
indicating a significant difference to the observed
distribution.

Although the Yellowhammer initial first-egg dis-
tribution data were not separated by attempt, as
with the Black Redstarts, the similarity in distribu-
tions of the observed and simulated populations
appeared better for simulations using the empirical
and low step φR functions, in having a large initial
peak and then a decay in initiations as the season
progressed. There were some apparent differences

between the distributions; for example, the simu-
lation with the empirical φR function showed a
clearer second peak which probably partially rep-
resents a wave of initiations of second attempts,
which was not as apparent in the observed data or
low step simulation. Nevertheless, the
Kolmogorov–Smirnoff test showed that the simula-
tion with the empirical φR function was the only
simulation to not significantly differ in terms of
initial first-egg distribution from the observed data.
As with Black Redstart, for Yellowhammer the
high step function resulted in a sudden cessation
of nest initiations at a time in the season when
these continued in the real population. Concurring
with the apparent better visual match in first-egg
date distributions for simulations with the empiri-
cal φR function, clutch initiation period (a measure
of season length that removes the effect of out-
liers) was most similar to the observed data for
both species, relative to the high step and low step
functions, which tended to underestimate and
overestimate season length respectively (Table 2).

Figure 3. Pattern-oriented modelling comparison between observed (first column) and simulated distributions of initial first-egg dates
for Black Redstart (top row) and Yellowhammer (bottom row). Simulations differ only by the re-nesting probability function used (see
Fig. 1). For Black Redstart we knew the identity of each attempt (first, second or third) so these are separated by colour, but for Yel-
lowhammer this was not known so they are combined. All simulations are from 10 000 female-seasons whereas observed samples
sizes are: Black Restart 226 female-seasons, Yellowhammer 732 nesting attempts. D and P respectively refer to the test statistic
and P value of Kolmogorov–Smirnov tests of that particular simulated distribution against the observed distribution (note the part of
the distribution compared was only from the peak to where the observed population reached zero attempts, thus avoiding inflated
similarity – see main text).

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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[B] How does the re-nesting probability
function influence re-nesting
compensation?

The emergent property of re-nesting compensation
behaved differently between φR functions in both
species. The predicted negative relationship
between nest success and number of attempts dif-
fered between functions for both Black Redstarts
(Fig. 4a) and Yellowhammers (Fig. 4b). In each
case the relationship was weakest for the low step
function. In Black Redstarts the relationship was
strongest for the high step function and intermedi-
ate for the observed function (Fig. 4a), whereas in
Yellowhammers (Fig. 4b) the high step and empir-
ical functions showed similar strength relation-
ships. At high levels of nest success, a similar
number of attempts per female was simulated
regardless of function used, but at lower values of
nest success, the number of attempts predicted
from models depended more strongly on the φR

function used.

[C] What is the knock-on effect in a
population model?

For the scenario where Yellowhammer nest suc-
cess increased from 0.22 to 0.43 (a 95% increase)
in response to predator control, as observed in
White (2009), there were clear differences
between predictions of the deterministic produc-
tivity model and the individual-based model
(Fig. 5). Because the deterministic model does not
modify the estimate of attempts made in response
to variation in nest success (i.e. it does not

simulate re-nesting compensation), there is a com-
mensurate 97% increase in seasonal productivity
per female. In consequence the predicted relative
increase (41%) in population growth rate is larger
than in the individual-based models (23–29%,
depending on φR function), where re-nesting com-
pensation is an emergent property and ‘dampens’
variation in nest success by modifying the number
of attempts. The resultant dampened change in
seasonal productivity leads to lower estimated rela-
tive changes in population growth. Furthermore,
within the individual-based model, the selection of
different φR functions, which influences the extent
to which the model simulated re-nesting compen-
sation (Fig. 4), in turn influences the modification
in number of attempts made, the dampening
effect this has on change in seasonal productivity,
and ultimately the resultant estimate of relative
change in population growth rate. The empirical
φR function gave an intermediate population
growth increase estimate (26%) between the low
step (29%) and high step (23%) functions.

(a) (b)

Figure 4. Relationship between nest success and number of
attempts made in an individual-based model for (a) Black Red-
starts and (b) Yellowhammers when parameterized with
observed/empirical, high step and low step re-nesting probabil-
ity functions (see Fig. 1).

Figure 5. The predicted population growth consequences of a
95% relative increase in nest success in Yellowhammer (from
22% to 43%) as seen in response to predator control during a
study in England, for an individual-based seasonal productivity
model (parameterized with three re-nesting probability func-
tions, see key and Fig. 1b) versus a deterministic seasonal
productivity model. The plot should be read from left to right.
Because in the deterministic model the number of attempts is
fixed, seasonal productivity increases proportionately to nest
success, and predicted population growth rate increases sub-
stantially. In the individual-based model, however, regardless
of the φR function used, the increased nest success leads to
fewer attempts (due to re-nesting compensation, see Fig. 4b),
and thus reduced increases in both seasonal productivity and
predicted change in population growth rate. Values in this plot
are given in the Supporting Information Online, Appendix S5.

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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DISCUSSION

What do individual-based re-nesting
models offer?

Deterministic models of seasonal productivity miss
two important processes seen or predicted in natu-
ral breeding populations: (1) that there is wide
variation in the number of attempts made per
female (e.g. Weggler 2006), and (2) that nest suc-
cess and number of attempts are not independent
of each other in space and time, meaning re-
nesting compensation may occur (Nagy &
Holmes 2004). Individual-based re-nesting models
address these constraints by allowing the number
of attempts made per simulated female not to be a
fixed parameter, but rather an emergent effect of
(ideally) empirical probability distributions, which
determine (1) when each female starts breeding,
(2) how long each attempt lasts and (3) when
each female quits breeding. We demonstrated this
by showing that our individual-based re-nesting
model generated realistic between-female variation
in number of attempts made, and realistic phenol-
ogy of those attempts (as demonstrated via
pattern-oriented modelling and comparison to a
marked and intensively studied population; analy-
sis A), which allowed the model to simulate re-
nesting compensation (analysis B), a process that
then ‘dampened’ the predicted increase in seasonal
productivity and hence the population-level
impact of a predator removal management inter-
vention via a reduction in the mean number of
attempts made (analysis C).

In contrast to the individual-based model, the
deterministic model could not account for re-
nesting compensation as it used a fixed estimate of
number of attempts, and so produced a higher
estimated impact of the management intervention
(predator removal) on seasonal productivity and
resultant predicted population growth rate. In the-
ory, one could try to account for re-nesting com-
pensation in deterministic models by adjusting
number of attempts as well as data on the success
of each attempt, but the problem remains that the
mean number of attempts made is rarely known
(see Cornulier et al. 2009), nor is the precise rela-
tionship between nest success and number of
attempts. The benefit of an individual-based sto-
chastic re-nesting model is that number of
attempts (and variation in attempts between
females) is an emergent effect of the model.

Because re-nesting compensation has not been
studied extensively (to our knowledge), compari-
sons of this relationship to real populations are
limited. However, the observed pattern of re-
nesting compensation for both species, of a non-
linear negative slope with gradient decreasing with
increasing nest success, closely matched that seen
in a re-nesting model by Flint et al. (1998) for a
population of Northern Pintails Anas acuta, which
is the only such plot of nesting success versus
number of attempts that we know to be in the
literature.

There are areas where the individual-based re-
nesting model could potentially be improved. For
example, the modelling process was simplified by
assuming that all successful attempts have an equal
likelihood of contributing to the next generation.
However, temporal variability in both the output
of successful attempts, and subsequent recruitment
from these, is likely. In Yellowhammer, for exam-
ple, clutch size (Parkhurst & Lack 1946) and nest
success (Barkow 2005) can vary across the season,
and in other passerines there is evidence that later
fledged chicks have lower post-fledging survival
(Krementz et al. 1989) and lower recruitment into
the breeding population (Mallord et al. 2008).
This aspect could be coded into the model, for
example by specifying distributions of breeding
parameters according to time in season, or giving
productivity outputs as a function of date, rather
than as a final value per female. Powell
et al. (1999) suggest that models that do not
include a measure of female survival during the
breeding season may overestimate productivity,
and this could be accounted for as well (although
see discussion in Supporting Online Information
Appendix S2 on re-nesting probability functions).
Our model assumed that every female was subject
to the same probability functions with respect to
breeding parameters, but number of attempts
made and numbers of young fledged can be influ-
enced by adult age (Weggler 2006, Hatch & West-
neat 2007); future models could be run for age-
classes of birds parameterized separately from
empirical observations, and then a weighted aver-
age taken of outputs. As Beintema and Musk-
ens (1987) noted, re-nesting may be influenced by
external factors other than date, and this could be
explored.

Some of these assumptions and simplifications
might explain why the individual-based re-nesting
models did not perfectly replicate patterns seen in

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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the observed populations. For example, for Black
Redstart, seasonal productivity and the number of
attempts (and variation in these values) were
slightly lower in the simulations than the real data,
and fewer females had third attempts (c. 2%) than
in the real population (c. 9%). It could be that
within the Black Redstart population, there were
processes or population structures not captured in
the input parameters we used, such as temporal
variation in breeding output per attempt or inter-
attempt intervals, or else age/stage-based variation
in breeding output. Weggler (2006) did find that
1-year-old females had significantly fewer attempts
than 2- or 3-year-olds; such a pattern could be
captured by incorporating age-based φR functions
but we did not have those available. The
individual-based model we developed is open-
source and could be adapted to consider such tem-
poral or stage-based processes or patterns where
empirical data are available to parameterize them.
We do not think, however, that these differences
modify the key finding of this study, which is that
choice of seasonal productivity model (determinis-
tic versus individual-based) and, for the latter,
specification of re-nesting probability function,
influences whether re-nesting compensation occurs
and its strength. This, in turn, has implications for
population-level predictions, as well as influencing
the extent of between-female variation in breeding
parameters.

Does the shape of the re-nesting
probability function matter?

We demonstrated here that individual seasonal-
productivity models of the type used in earlier
studies (e.g. Pease & Grzybowski 1995, Powell
et al. 1999) can produce relatively accurate esti-
mates of seasonal productivity, as well as simulate
important internal patterns and processes, such as
the distribution of attempts in a season and re-
nesting compensation. But a second important
investigation was the extent to which the re-
nesting probability function itself, which deter-
mines the distribution of when females quit the
breeding season, influenced model behaviour and
output. Previous models had used simplified step
functions that appeared biologically unrealistic.
That is not to say that such simplifications were
wrong (and in such cases an empirical re-nesting
function was not available) nor gave inaccurate
results. For example, Grzybowski and Pease (2005)

showed that a high step parameterization pro-
duced accurate productivity estimates compared
with observed data. Rather, using a biologically
more realistic function might not only improve
accuracy but also modify how models behave with
respect to variation between females and to
population-level consequences of variation in nest
success. Comparing three models each specified
with a different re-nesting function (two simplified
functions and the observed function), a clear result
was that simulations specified with the empirical
φR function tended to produce key output param-
eters and distributions that were intermediate
between those of high step and low step functions
and, in the case of distribution of initial first-egg
dates and duration of breeding season (as mea-
sured by clutch initiation period), were closer to
those of the observed population.

As re-nesting compensation works through
failed females’ ability to re-nest, whereas successful
females are still ‘investing’ time in an active
attempt, it follows that the parameter that drives
the probability of re-nesting would influence this
process. Consistently across both species, the
weakest relationship between nest success proba-
bility and mean number of attempts in our trials
came when the model was specified with the low
step function. This makes sense in that the low
step function has a lower probability of re-nesting
in the first half of the season, and the first half of
the season contains proportionally more attempts.
Hence, there is less chance of simulated females
re-nesting following early failures when this func-
tion is used. The reverse of this effect holds for
the high step function, which specifies that in the
first half of the season an early-failing female will
always re-nest. This generated predicted popula-
tion consequences for Yellowhammer, but not of
great apparent magnitude, with impact on growth
rate of predator control (relative to no predator
removal) varying only between 23% with the high
step function and 29% with the low step function.

As a result, we cannot say for certain that the
shape of the re-nesting function matters defini-
tively and in all cases when running an individual-
based seasonal productivity model, particularly if
the objective is simply to obtain some kind of sin-
gle estimate of mean seasonal productivity. How-
ever, if future iterations of such a model include
parameters that vary across the season (as dis-
cussed above), it may matter more, and we find
that varying the re-nesting probability function

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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does vary model outputs, particularly the degree
of variation (as measured by sd) between females.
Thus, trying a range of re-nesting probability func-
tions for an individual-based productivity model
may broaden a model’s functionality. In addition,
it could be that variation in this function is
included in sensitivity analyses of future models
(i.e. researchers see how sensitive their model out-
puts of interest are to this function), or that model
outputs themselves are used to calibrate the opti-
mal function for a given study population
(Rykiel 1996). The comparison with simple step
functions was carried out because such functions
may be all that is available to researchers wanting
to use individual-based seasonal productivity
models for their study population.

How to obtain a biologically more
realistic re-nesting function

If researchers wish to use a range of re-nesting
probability functions, there needs to be a way to
obtain these. As Beintema and Muskens (1987)
predicted for species that commonly lay replace-
ment clutches, a re-nesting function must be close
to 1 at the beginning of the season and then
decline, but more research was needed to quantify
its shape. We demonstrate here two ways whereby
researchers may arrive at a more biologically realis-
tic re-nesting function. The first, using data from
an intensively studied marked population of Black
Redstarts, is likely to be challenging since few such
datasets seem to be available. The second involves
a novel method of using incomplete nest records
of unmarked populations, coupled with informa-
tion on the proximity of temporally separate
attempts that have a high likelihood of being from
the same female (Supporting Online Information,
Appendix S1). Although this approach makes sev-
eral assumptions (discussed in more detail in the
Supporting Online Information, Appendix S2), it
produced a reverse-sigmoid shape broadly similar
to that directly observed in Black Redstarts, and
simulated a closer match of the distribution of
first-egg dates to the observed population than
simpler step functions. Newton (1999) and New-
ton and Rothery (2005) observed via adult post-
breeding moult in Eurasian Bullfinches and Euro-
pean Greenfinches Chloris chloris that the dates of
final nesting attempts were approximately nor-
mally distributed in most years. A reverse-sigmoid
can represent the inverse of a cumulative

(� skewed) normal distribution, so concurs
with this.

Other indirect means of approximating a re-
nesting probability exist. For example, Newton
and Rothery (2005) examined the relationship
between breeding and morphological characteris-
tics such as extent of post-breeding moult and
presence of a brood patch in European Green-
finches (their data are reproduced with permission
in Supporting Online Information, Appendix S7).
As the post-breeding moult begins during or
shortly after the final breeding attempt, and as the
female brood patch regresses after incubation of
the final attempt, such information may serve as a
proxy for a re-nesting probability function, or at
least to estimate its approximate shape. The
approach is not perfect, because Newton and
Rothery (2005) found considerable overlap
between moult onset and the final breeding
attempt.

CONCLUSIONS

Despite many advances, modelling of seasonal pro-
ductivity is still a developing field (Cornulier
et al. 2009, Etterson et al. 2011). Useful and
adaptable dynamic models have been built that
have the functionality for variable re-nesting func-
tions to determine quitting dates (e.g. Pease &
Grzybowski 1995, Mattsson & Cooper 2007) but
simplified step functions have been used in the
absence of empirical data on function shape. Here
we show that where empirically based functions
are available, which more closely match a real re-
nesting probability distribution, they modify the
outputs and behaviour of such models. We also
present a novel method for estimating the shape
of such functions in populations of unmarked
birds. Being less resource-intensive than the moni-
toring of marked individual birds through a whole
season, this may make estimating such functions
easier for researchers. Other potential indirect
methods involve the observation of female post-
breeding moult or brood patch presence. Alterna-
tively, researchers implementing dynamic seasonal
productivity models could try a range of reverse-
sigmoid-type functions (potentially drawn from
data on moult or brood patches) and select the
best fitting curve via model calibration. Impor-
tantly, regardless of how they are derived, we have
shown that time-variable re-nesting functions can
widen the functionality of seasonal productivity

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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models in terms of specification of inter-female
variation in breeding parameters and simulation of
re-nesting compensation. Our demographic predic-
tions demonstrate that, when investigating
population-level consequences of drivers that
impact nest success, the choice of model matters.
Individual-based models that simulate re-nesting
compensation make substantial changes to popula-
tion growth predictions, which may influence our
understanding of drivers of declines in multi-
brooded bird species, or the probable impact of
conservation interventions to assist them.
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Appendix S1.

Appendix S3. Input parameters used in the
base individual-based models for Black Redstart
and Yellowhammer.
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model outputs.
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level predictions.

Appendix S6. Example NetLogo outputs.
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