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Spatial Channel Degrees of Freedom for
Optimum Antenna Arrays
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Abstract— One of the ultimate goals of future wireless
networks is to maximize data rates to accommodate bandwidth-
hungry services and applications. Thus, extracting the maximum
amount of information bits for given spatial constraints when
designing wireless systems will be of great importance. In this
paper, we present antenna array topologies that maximize the
communication channel capacity for given number of array
elements while occupying minimum space. Capacity is maximized
via the development of an advanced particle swarm optimization
(PSO) algorithm devising optimum standardized and arbitrarily-
shaped antenna array topologies. Number of array elements and
occupied space are informed by novel heuristic spatial degrees of
freedom (SDoF) formulations which rigorously generalize existing
SDoF formulas. Our generalized SDoF formulations rely on the
differential entropy of three-dimensional (3D) angle of arrival
(AOA) distributions and can associate the number of array
elements and occupied space for any AOA distribution. The pro-
posed analysis departs from novel closed-form spatial correlation
functions (SCFs) of arbitrarily-positioned array elements for all
classes of 3D multipath propagation channels, namely, isotropic,
omnidirectional, and directional. Extensive simulation runs and
comparisons with existing trivial solutions verify correctness of
our SDoF formulations resulting in optimum antenna array
topologies with maximum capacity performance and minimum
space occupancy.

Index Terms— Antenna arrays, channel capacity, spatial
correlation function, spatial degrees of freedom.

I. INTRODUCTION

ANTENNA arrays play a dominant role on the enhance-
ment of achievable data rates and received signal qual-

ity in 5G and beyond 5G (B5G) wireless communication
networks [1]. In multi-input, multi-output (MIMO) wireless
systems, spatially separated antennas are employed at both
the transmitter (Tx) and/or receiver (Rx) exploiting spatial
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diversity, thus improving channel capacity and ensuring data
reliability [2]. Therefore, exploiting the spatial characteristics
of wireless propagation channels is of paramount importance
for future MIMO system designs. Deriving spatial correlation
enables accurate performance analysis of MIMO wireless
systems [3]. In particular, spatial correlation has significant
impacts on MIMO channel capacity performance [4]. In this
paper, we realize optimum antenna array topologies by max-
imizing the ergodic MIMO channel capacity. With the aid
of analytical spatial degrees of freedom (SDoF) formulations,
such antenna arrays occupy minimum space. The SDoF indi-
cates the number of independent spatial transmission modes
incurred by the wireless propagation environment according
to [5]. The signal-to-noise ratio (SNR) has to be sufficiently
high in order the MIMO system and accordingly the ergodic
MIMO channel capacity to be degrees of freedom (DoF)
limited rather than power limited [6]. The presented findings
can constitute a roadmap for future antenna array designs
towards implementing 6G wireless systems with volumetric
spectral efficiency [7] and adopting 3D antenna arrays in
3GPP standardization efforts [8]. In following sub-sections,
we review the literature on the major technical challenges of
the presented work, namely, closed-form spatial correlation
functions (SCFs), antenna array optimization, and SDoF for-
mulations.

A. Spatial Correlation and Antenna Arrays
The SCF depends on the antenna array geometry, antenna

element spacing, and wireless propagation AOA characteris-
tics [9]. To avoid complicated numerical integrations, deriving
closed-form SCFs has attracted great interests for years [3],
[9], [10], [11], [12], [13], [14]. Uniform [9], [10], [11],
[12] and Gaussian [13], [14] have been among the most
widely adopted AOA distributions to account for wireless
propagation and scattering. In uniform distributions, closed-
form SCFs were determined for uniform linear array (ULA),
uniform circular array (UCA), and uniform rectangular array
(URA) based on the Jacobi-Anger expansion (JAE) approxi-
mation [9]. Using the same approach, closed-form SCFs were
derived in [10] applicable to arbitrarily-positioned antenna
array elements, however, the results were actually demon-
strated for circular arrays. As presented in [9] and [10], the
JAE provides a straightforward implementation in evaluating
the SCF. By using an alternative approach based on the
spherical harmonic expansion of plane-waves, closed-form
SCFs were obtained in [11] being adaptable to standardized
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three-dimensional (3D) arrays, and in [12] being independent
of array geometries. In Gaussian distributions, various approx-
imation methodologies were also developed for closed-form
SCF solutions [13], [14]. The JAE-based method was adopted
in [13] for two-dimensional (2D) arrays, while a Gaussian
closed-form (GC) approximation was considered in [14] being
valid for small AOA ranges. Moreover, [14] proposed a Gauss-
Hermite quadrature (GHQ)-based method approximating the
SCF under 2D propagation scenarios. It was concluded in [14]
that the GHQ-based approximation outperforms the JAE-
based and GC approaches with lower computation and higher
accuracy.

Inherently, 3D arrays are more condensed compared with
linear and circular ones to achieve similar performance [15].
Compared with customized 3D array topologies such as cylin-
drical [3], polyhedral [11], and spherical [16], an arbitrary 3D
array could potentially occupy less space by letting the ele-
ments be located randomly and not just on the surface. It is an
objective of this work to investigate such potential. Arbitrary
array positioning constitutes a very challenging problem, e.g.,
see [17] for arbitrary ULA positioning via mechanical rotation
or electronic selection and [18] for arbitrary element position-
ing in rectangular arrays. Accordingly, we derive generalized
closed-form SCFs suitable for any class of 3D arrays including
customized and arbitrarily-shaped. We consider 3D spherical
array topologies and devise arbitrarily-shaped 3D arrays by
releasing the limitation of letting the elements be located on
the spherical surface. However, simulation results demonstrate
that the elements of optimized arbitrarily-shaped 3D arrays
tend to be located on the spherical surface. Adapting the
generalized SCFs into 2D array topologies, we find that
ULAs and UCAs have almost identical performance with their
optimized counterparts. Such findings can be very important to
guide future research towards designing uniform/symmetrized
3D arrays with identical performance with respect to their
optimized arbitrarily-shaped counterparts.

In this paper, 3D directional, 3D isotropic, and 3D omni-
directional propagation scenarios [19], [20], [21], [22] are
considered for holistically analyzing both standardized and
arbitrarily-shaped antenna array topologies. The directional
scenarios are modeled via 3D restricted uniform and 3D
Gaussian AOA distributions. A 3D restricted uniform AOA
has unlimited flexibility to theoretically model any propagation
scenario, as arbitrary scattering can be modeled by the sum-
mation of weighted uniformly distributed elementary solid-
angle contributions [12], [19], whereas a 3D Gaussian AOA
is a very classical model for directional propagation [21].
3D omnidirectional scenarios, accounting for propagation
in urban environments, include the pairs uniform-restricted
uniform [19] and uniform-Gaussian [20], [22] AOA distri-
butions on azimuth-elevation planes, respectively. By lever-
aging the JAE-based approach, we derive a closed-form
SCF for 3D restricted uniform scenarios similar to the one
in [10] employing the 3D AOA model of [19]. Extending the
GHQ-based method presented in [14], which applies in 2D
scenarios, we derive a novel closed-form SCF for 3D direc-
tional Gaussian scenarios. A novel closed-form SCF for the
3D omnidirectional scenario with Gaussian in elevation and

uniform in azimuth AOA is also derived by combining the
JAE- and GHQ-based techniques.

B. Antenna Array Optimization Techniques

Given space limitations, finding the optimum topologies to
minimize spatial correlation and maximize channel capacity
constitutes a major challenge in antenna array designs. Intelli-
gent methodologies, such as applying evolutionary metaheuris-
tic optimization algorithms, have been validated and resulted
in antenna arrays that considerably outperform conventional
ones with half a wavelength spacing [23]. Previous works [10],
[24], [25], and [26] have demonstrated the effectiveness of
employing optimization algorithms to realize antenna arrays
with maximum channel capacity. The particle swarm optimiza-
tion (PSO) [10], [25] and genetic algorithm (GA) [24] were
employed producing optimized 2D arrays such as linear and
circular ones. The differential evolution (DE) algorithm was
adopted in [26] to optimize cubical arrays but without maxi-
mizing channel capacity. In [16], optimum design of spherical,
cubical, and half-elliptic arrays was demonstrated by using
GA. The design of optimum spherical and arbitrarily-shaped
3D arrays with maximum capacity has been insufficiently
addressed in these works. None of the above-mentioned works
have considered the required space occupancy of antenna
arrays with given numbers of elements and in any class of
propagation scenario.

In this paper, we adopt the PSO algorithm to solve the
previously described capacity maximization problem for the
following reasons. The design of optimum antenna arrays
is well known to be a highly nonlinear and nonconvex
programming problem [27]. PSO can solve complex and
multidimensional problems without restricting the solution
domain and does not need to consider convexity. Such features
make PSO a perfect candidate for nonconvex problems [28].
Besides that, compared with other evolutional optimization
algorithms, PSO has fewer operators to deal with, leading to
computational cost reduction and simpler implementation [29].
The work in [30] verified that within the same computation
time, PSO outperforms the DE, invasive weed optimization
and GA with respect to the achieved fitness. Also in [25], the
PSO outperformed the GA with respect to convergence speed
and accuracy. Moreover, PSO shows flexibility in controlling
the balance between local and global explorations [28] and
can easily obtain a rapid convergence speed by applying a
time varying inertia weight [29]. An advanced PSO algorithm
namely PSO with velocity mutation (PSOvm) was introduced
in [30]. The PSOvm induces the mutation on the particle’s
velocity to improve the particle’s position at the first few
iterations and thus further boosts the overall algorithm perfor-
mance compared with the conventional PSO [30]. Therefore,
the PSOvm is selected as the state-of-art PSO technique to
realize antenna array topologies with maximum capacity.

C. Spatial Degrees of Freedom

The minimum required space to achieve maximum capacity
will be informed by the SDoF determined in all 3D propaga-
tion scenarios. Analytically derived SDoF formulations and
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minimum occupied space will be rigorously associated. The
work in [31] associated SDoF to MIMO antennas where the
channel capacity was limited by SDoF. A sufficiently high
SNR is required in order the channel capacity to be DoF
limited rather than power limited [6]. The works in [32]
and [33] estimated the DoF via the rank of the channel
correlation matrix but without relating it to actual AOA distri-
butions. A more accurate DoF estimation can be determined
by evaluating the eigenvalues of spatial correlation matrices
as in [34] and [35], showing reduction of significant eigen-
values after a certain bound dictated by the DoF. The DoF
formulations derived in [15] as the product of the AOA solid
angle range, i.e., the SDoF, and array aperture size, rigorously
determined the maximum number of antenna elements leading
to optimum capacity. Inversely, the minimum occupied space
can be determined by the SDoF with given the number
of antenna elements. An emerging question, not addressed
in [15], is how we can locate the elements in space for achiev-
ing maximum ergodic MIMO channel capacity. The PSOvm
technique, as was previously justified, addresses this issue. The
AOA solid angle range considered in [15] cannot incorporate
the intrinsic AOA characteristics of propagation environments.
Such consideration is just valid for 3D uniform AOA scenarios
as will be demonstrated and verified in Sections IV and VI.

In this paper, we heuristically derive the SDoF by adapting
the information theory metric of differential entropy [36] into
3D AOA distributions. We show that the SDoF outcome
in [15], i.e., the AOA solid angle range, is equivalent to
our SDoF formulations for 3D uniform AOA distributions.
In other words, assigning a uniform distribution in the des-
ignated 3D AOA range results in equal SDoF as the ones
in [15]. We leverage such finding by extending it to any
other AOA distribution and we confirm correctness by demon-
strating ergodic MIMO channel capacity performance com-
pliance when the DoF in different AOA scenarios are equal.
3D Gaussian AOA distributions are selected as case studies
to demonstrate performance compliance with the 3D uniform
ones. However, our SDoF formulations are generic that can
be readily extended to more complex wireless propagation
scenarios, such as multi-clustered ones [19] modeled via multi-
modal restricted uniform or Gaussian distributions. Exploiting
the SDoF formulation methodology described previously is
sufficient to determine the minimum occupied space with
given numbers of array elements. By running the optimiza-
tion algorithm, this work results in optimum antenna array
topologies with maximum capacity and minimum occupied
space.

D. Contributions

Building on our very primitive simulation results published
in a conference paper [37], the main contributions of this
work are summarized as follows. 1) To mitigate numerical
integration complexities, novel closed-form SCFs are derived
based on a generic system modeling for arbitrary positioning
of antenna array elements [10], [19]. Note that SCFs are nec-
essary for MIMO channel capacity calculations. Thus, closed-
form SCFs can also mitigate the complexity of ergodic MIMO

channel capacity calculations ending up with simpler, but
still correct, PSOvm implementations, as long as the closed-
form SCFs comply with the accurate numerically-determined
integration solutions. The JAE-based approach is leveraged to
derive a closed-form SCF in 3D restricted uniform scenarios.
We derive a novel closed-form SCF in 3D Gaussian scenarios
extending the GHQ-based approach presented in [14]. Com-
bining the GHQ- and JAE-based approaches, we further derive
a novel closed-form SCF in 3D omnidirectional scenarios
with uniform in azimuth and Gaussian in elevation AOA.
All closed-form SCFs show outstanding agreement with their
respective numerically determined SCFs. 2) The SDoF sub-
tended by the wireless propagation scenario, through its AOA
characteristics, are heuristically and generically derived for any
such scenario, i.e., isotropic, directional, omnidirectional. Such
SDoF formulations, relying on the differential entropy of 3D
AOA distributions, are validated through performance analyses
of antenna array topologies with known SDoF outcomes, i.e.,
linear, circular, and spherical [15]. Our SDoF formulations
can be applicable to any 3D AOA distribution and not just
uniform ones as in [15]. 3) Optimized antenna array topologies
informed by the information theory concepts of AOA differ-
ential entropy and SDoF are presented. The SDoF metric is
explicitly associated to the minimum space occupied by the
antenna array for achieving maximum ergodic MIMO channel
capacity. The optimized linear and circular topologies show
almost identical performance with the standardized uniform
topologies in all 3D propagation scenarios. Thus, knowledge
of SDoF is sufficient to realize customized uniform linear and
circular arrays without running time and resource consuming
optimizations. The optimization outcomes also demonstrate
that arbitrarily-shaped 3D arrays occupy the same space as
spherical ones achieving maximum ergodic MIMO channel
capacity. Employing the SDoF formulations informs the real-
ization of such 3D arrays occupying minimum space.

E. Paper Outline and Notations

The rest of the paper is organized as follows. Section II
presents the MIMO channel model and its ergodic channel
capacity evaluation (II.A), followed by the antenna array
model that can accommodate arbitrarily-positioned elements
(II.B). Then, different wireless propagation AOA scenarios
including 3D isotropic, 3D directional, and 3D omnidirectional
ones are presented (II.C). In Section III, we derive closed-form
SCFs for each scenario as classified in Section II.C. The SDoF
formulas in [15] for linear, circular, and spherical arrays are
reviewed in Section IV, followed by the derivations of gen-
eralized heuristic SDoF formulations applicable in any prop-
agation scenario. Section V introduces the adopted PSOvm
algorithm. In Section VI, we demonstrate the feasibility and
correctness of the presented analysis and methodology, i.e.,
closed-form SCFs and SDoF formulations, towards devising
optimum antenna array topologies via extensive simulation
runs and comparisons. Finally, the paper is concluded in
Section VII.

Main notations used in the paper are summarized in
the following. We assume a MIMO wireless channel with
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a transmit antenna array of Nt elements and a receive array of
Nr elements. H and Hω denote the Nr ×Nt MIMO channel
matrix of a Rayleigh fading channel and the Nr×Nt stochastic
matrix comprised of independent identically distributed (i.i.d.)
complex Gaussian entries with zero mean and unit variance,
respectively. Rrx and Rtx are the Nr × Nr and Nt × Nt

spatial correlation matrices of antenna arrays at the Rx and
Tx, respectively, while Rs(m, n) denotes the (m, n) entry of
Rrx/Rtx, i.e., the spatial correlation between the m-th and
n-th array elements. Ia denotes an a×a identity matrix. P/σ2

n

is the SNR, with P the total transmitted power and σ2
n the

noise variance. We denote θ ∈ [−π/2, π/2], φ ∈ [−π, π] as
the elevation and azimuth AOA, respectively. λ is the carrier
wavelength. We denote Ω as the solid angle, |Ω| the SDoF, i.e.,
a metric characterizing the spatial diversity of the wireless
propagation channel, and X the DoF arisen by the SDoF
multiplied by the antenna aperture size [15].

II. SYSTEM MODEL

A. MIMO Channel Model and Ergodic Capacity

The complex signal vector received at the Rx side is given
by [38]

y = Hs + n (1)

where s denotes the transmitted signal vector, and n is the
received additive white Gaussian noise vector consisting of
i.i.d. entries with zero mean and unit variance. We adopt
the Kronecker model to evaluate the MIMO channel matrix
incurring independent correlation analyses at the Tx and Rx
antennas [39]. H can thus be written as [39]

H = (Rrx)1/2Hω(Rtx)1/2. (2)

Using the Kronecker model, we focus on the spatial correlation
and array design at one side, i.e., the Rx side, by assuming
the array elements at the Tx side to be uncorrelated, i.e.,
Rtx = INt in (2). Such assumption enables the DoF behavior
to incorporate the wireless propagation environment (through
its AOA characteristics) and antenna array space in accordance
with [15].

Assuming that the channel state information (CSI) is
unknown to the transmitter while being fully known to the
receiver, the ergodic MIMO channel capacity in bits/s/Hz is
given by [40]

C = E

{
log2

[
det
(
INr +

P

σ2
nNt

HHH

)]}
(3)

where the superscript “H” denotes the complex conjugate
transpose, and “det” denotes the determinant operation.
We define H as the set of channel realizations H, thus, the
expectation in (3) operates on the instantaneous capacities
evaluated in each channel realization H ∈ H. Note that,
we compute the ergodic MIMO channel capacity using (3)
with the aid of (2), instead of considering full CSI at the
transmitter and receiver as in [15]. This is because full CSI
informing power allocation for each sub-channel is more
complex and hardly feasible. However, the DoF outcome

Fig. 1. Incident multipath component on two arbitrarily-located antenna array
elements in 3D space.

of [15] can be readily characterized by adopting (3) with
performance behavior indicated by 3D uniform AOA distri-
butions as will be demonstrated in Section VI. The presented
analysis can consider other MIMO channel models including
the one in [41] formed by the single side (Tx and Rx) spatial
correlation matrices.

B. Antenna Array Element Positioning

The spatial correlation is characterized by the array element
position and AOA distribution. We focus on the single side
spatial correlation matrix Rrx at the Rx by assuming that
i.i.d. array elements are equipped at the Tx. Our analysis
is conducted by adopting a generic array model that can
accommodate any 3D AOA distribution [19] with arbitrary
positioning of antenna array elements [10]. For illustration,
Fig. 1 shows the AOAs (θ, φ) of multipath components
impinging on the Rx antenna array in a 3D (X ′, Y ′, Z ′)
coordinate system, in which, the origin is the phase reference
point. Let the m-th element of an antenna array be located at
(xm, ym, zm) and the corresponding position vector defined
as rm = (xm, ym, zm)T . Based on Fig. 1, the wave vector is
expressed by [42]

k(θ, φ) =
2π

λ

⎡
⎣cos(θ) cos(φ)

cos(θ) sin(φ)
sin(θ)

⎤
⎦ . (4)

The phase delay of a multipath component with AOAs (θ, φ)
impinging onto the m-th element, i.e., the m-th input of the
steering vector, is given by [42]

vm(θ, φ) = exp {−j [rm · k(θ, φ)]} = exp {−j(2π/λ)
[xm cos(θ) cos(φ) + ym cos(θ) sin(φ) + zm sin(θ)]} (5)

where j =
√−1, and “·” denotes the inner product.

Since the spatial correlation between the m-th and the n-th
array elements is the expectation of their phase difference
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(see eqs. (5), (12)) [12], the calculation incurs the position
difference vector that can be evaluated by (see Fig. 1)

dm,n = rn − rm

=

⎡
⎣xn

yn

zn

⎤
⎦−

⎡
⎣xm

ym

zm

⎤
⎦ =

⎡
⎣rm,n cos(βm,n) cos(αm,n)

rm,n cos(βm,n) sin(αm,n)
rm,n sin(βm,n)

⎤
⎦

(6)

where rm,n =
√

(xn − xm)2 + (yn − ym)2 + (zn − zm)2,
βm,n denotes the angle between the X ′Y ′-plane and dm,n,
and αm,n is the angle between the X ′-axis and the orthogonal
projection of dm,n on the X ′Y ′-plane.

C. Wireless Propagation Scenarios

We classify wireless propagation scenarios into three
categories, namely, 3D isotropic, 3D directional and 3D
omnidirectional scenarios. Such classification accommodates
any potential propagation scenario and modeling takes place
through their specific AOA characteristics. In this paper,
we will consider uniform and Gaussian AOA distributions as
sufficient models for each propagation scenario, also due to
their wide adoption in the published literature [9], [19], [20],
[21], [22]. In accordance with eq. (2) above, such scenarios
account for diffuse (rich) multipath scattering.

1) 3D Directional Scenarios: In 3D directional propagation
scenarios, we consider both restricted uniform and Gaussian
distributions for the azimuth and elevation AOAs. Restricted
uniform AOAs can heuristically model directional propagation
and can be easily generalized to multi-clustered propaga-
tion [19]. Gaussian AOAs constitute a widely adopted and
realistic modeling approach for directional propagation scenar-
ios due to the concentricity of the Gaussian distribution [21].

Considering that the elevation and azimuth AOAs are inde-
pendent to each other, the joint AOA distribution P (θ, φ) can
be written as P (θ, φ) = P (θ)P (φ), where P (θ) and P (φ)
are the marginal distributions for the elevation and azimuth
AOAs, respectively [19]. Hence, the joint AOA distribution
for 3D restricted uniform scenarios is expressed as [11]

Pu(θ, φ) = Pu(θ)Pu(φ) = 1/(4Δφ cos θ0 sin Δθ) (7)

where θ ∈ [θ0 − Δθ, θ0 + Δθ] ⊆ [−π/2, π/2], φ ∈
[φ0 − Δφ, φ0 + Δφ] ⊆ [−π, π], Pu(θ) = 1/(2 cos θ0 sinΔθ)
and Pu(φ) = 1/(2Δφ) are the marginal uniform distributions
for elevation and azimuth AOAs, θ0 and φ0 denote the mean
elevation and azimuth AOAs, Δθ and Δφ determine the range
of scattering sectors in elevation and azimuth, respectively.
Note that by definition

∫
θ
Pu(θ) cos θdθ = 1,

∫
φ

Pu(φ)dφ = 1.
The joint AOA distribution for 3D Gaussian scenarios,

with θ ∈ [−π/2, π/2], φ ∈ [−π/2 + φ0, π/2 + φ0], can be
expressed as [21]

PGau(θ, φ) = PGau(θ)PGau(φ)

=
A1√
2πσθ

exp
[
− (θ − θ0)2

2σ2
θ

]
A2√
2πσφ

× exp

[
− (φ − φ0)2

2σ2
φ

]
(8)

where PGau(θ), PGau(φ) are the marginal Gaussian distribu-
tions for the elevation and azimuth AOAs, respectively, and σθ ,
σφ are parameters related to the variance of each AOA distri-
bution. In (8), A1 and A2 are normalization factors [22] such
that by definition

∫
θ PGau(θ) cos θdθ = 1,

∫
φ PGau(φ)dφ = 1.

2) 3D Isotropic Scenario: As an ideal case, the 3D isotropic
scattering scenario can be modeled by the 3D restricted
uniform scenario. The joint distribution for the 3D isotropic
scenario arises from (7) by defining Δθ = π/2, Δφ = π,
θ0 = 0, having

Pu(θ, φ) = 1/(4π). (9)

3) 3D Omnidirectional Scenarios: In omnidirectional prop-
agation scenarios, multipath power is uniformly distributed on
the azimuth plane and directionally on elevation [20], [22].
It naturally lies between the directional and isotropic scenarios,
completing wireless propagation classification. The azimuth
AOA distribution is the uniform one, i.e., Pu(φ) = 1/(2π).
We consider two cases for the elevation AOA in this paper,
i.e., a restricted uniform and a Gaussian elevation AOA.

The joint distribution for the scenario with restricted uni-
form elevation AOA will be derived from (7) by defining
Δφ = π as

Pomni_1(θ, φ) =
1

4π cos θ0 sinΔθ
. (10)

The joint distribution for the omnidirectional scenario with
Gaussian elevation AOA can be derived from (8) by con-
sidering a uniform azimuth AOA i.e., Pu(φ) = 1/(2π),
as follows [20]

Pomni_2(θ, φ) = PGau(θ)Pu(φ)

=
A1

2π
√

2πσθ

exp
[
− (θ − θ0)2

2σ2
θ

]
. (11)

III. DERIVATION OF CLOSED-FORM SPATIAL

CORRELATION FUNCTIONS

The spatial correlation between the m-th and the n-th array
elements is given by [9]

Rs(m, n) = E {vm(θ, φ)vn(θ, φ)∗}
=
∫

θ

∫
φ

vm(θ, φ)vn(θ, φ)∗P (θ, φ) cos(θ)dφdθ

(12)

where (.)∗ denotes the conjugate transpose with P (θ, φ) being
the joint AOA distribution defined previously. To avoid the
complicated numerical integrations in (12), we will use the
JAE- and GHQ-based approximations to derive closed-form
SCFs for antenna array topologies in 3D restricted uniform,
Gaussian, and omnidirectional scenarios. The validity of the
closed-form SCFs will be demonstrated in Section VI.

A. SCF for 3D Restricted Uniform Scenarios

For antenna arrays in 3D restricted uniform scenarios,
we use (7) for P (θ, φ) in eq. (12). A JAE-based approxima-
tion [10] is applied in this paper to derive the closed-form SCF
(see Appendix A). Based on our system model as in Fig. 1, the
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closed-form SCF for arbitrary numbers and positions of array
elements in 3D restricted uniform scenarios is expressed as

Rs(m, n) ≈ 1
Q cos(θ0)sinc(Δθ)
×{[0.5f0(Θ0) + f0(Θ1) + . . . + f0(ΘQ−1)
+ 0.5f0(ΘQ)]

+ 2
G∑

g=1

(jg cos[g(φ0 − αm,n)]sinc(gΔφ)

× [0.5fg(Θ0) + fg(Θ1)
+ . . . + fg(ΘQ−1) + 0.5fg(ΘQ)])} (13)

where f0(Θ) and fg(Θ) are defined in Appendix A, ΘQ

denotes the Q-th partition of the interval [θ0 − Δθ, θ0 + Δθ]
based on the Trapezoidal rule, and G is the summation term
of JAE.

For antenna arrays in the 3D isotropic scenario, i.e.,
Pu(θ, φ) = 1/(4π), the SCF can be analytically determined
as [12]

Rs(m, n) = sinc(2πrm,n/λ). (14)

B. SCF for 3D Gaussian Scenarios

For antenna arrays in 3D Gaussian scenarios, we use (8)
for P (θ, φ) in eq. (12) and apply a GHQ-based approximation
approach to compute the double integrals of (12). The formula
of GHQ rule can be found in [43] and expressed as∫ ∞

−∞
e−x2

f(x)dx =
B∑

b=1

ωbf(xb) (15)

where xb, b = 1, 2, . . . , B, are the zeros of the B-th order
Hermite polynomial HB(x). The associated weight ωb is given
by [43]

ωb =
2B−1B!

√
π

B2[HB−1(xb)]2
. (16)

Employing the GHQ-based approximation approach as in [14],
a novel closed-form SCF for arbitrary numbers and positions
of antenna array elements in 3D Gaussian scenarios is derived
in Appendix B as follows

Rs(m, n) ≈ A

π

M∑
q=1

{
ωq exp

[
j
2π

λ
rm,n sin(

√
2σθxq + θ0)

× sin(βm,n)] × cos(
√

2σθxq + θ0)

×
N∑

p=1

(
ωp exp

[
j
2π

λ
rm,n cos(βm,n)

× cos(
√

2σθxq + θ0)

× cos(αm,n −
√

2σφxp − φ0)
])}

(17)

where A = A1 × A2, and M , N are the summation terms
of Hermite polynomials. The abscissas xp, p = 1, 2, . . . , N ,
are the zeros of the N -th order Hermite polynomial, and xq ,
q = 1, 2, . . . , M , are the zeros of the M -th order Hermite
polynomial, respectively.

Considering PGau(θ) = δ(θ) in (8) [20] and substituting
βm,n = 0 and

√
2σθxq + θ0 = 0 into (17) yields the

SCF for 2D arrays in 2D Gaussian scenarios as was derived
in [14, eq. (15)].

C. SCF for 3D Omnidirectional Scenarios

For antenna arrays in 3D omnidirectional scenarios with
restricted uniform elevation AOA, we use (10) for P (θ, φ) in
eq. (12). The SCF in (13) still holds by defining Δφ = π. For
antenna arrays in the omnidirectional scenario with Gaussian
elevation AOA, we use (11) for P (θ, φ) in eq. (12). Combining
the JAE and GHQ approaches, the closed-form SCF in this
scenario is derived in Appendix C as follows

Rs(m, n) ≈ A1√
π

M∑
q=1

{
ωq exp

[
j2πrm,n sin(

√
2σθxq + θ0)

× sin(βm,n)/λ] cos(
√

2σθxq + θ0)
× J0 (j2πrm,n

× cos(
√

2σθxq + θ0) cos(βm,n)/λ
)}

. (18)

IV. SPATIAL DEGREES OF FREEDOM ANALYSIS

The DoF, being the product of the AOA solid angle range,
i.e, the SDoF, and array aperture size, determine the maxi-
mum number of antenna array elements to be employed at a
single side, i.e., the Rx, for optimum channel capacity [15].
Inversely, with given numbers of elements, knowledge of
SDoF is sufficient to determine the minimum occupied space
for antenna arrays and this will be demonstrated in Section VI.
The SDoF outcome in [15] is actually valid for uniform AOA
distributions, i.e., when assigning a uniform AOA distribution
in the designated AOA range. We will generalize such SDoF
outcome by extending it to any AOA distribution. Correctness
will be confirmed in Section VI by demonstrating performance
compliance of different AOA scenarios with equal DoF.

A. SDoF Formulas [15]

For a linear array with 2L (in λ) length placed along the
Z ′-axis and centered at the origin, the DoF can be evaluated by

X = 2L |Ωθ| + 1 (19)

where |Ωθ| denotes the range of cos θ and can be expressed as

|Ωθ| =
∫ θ0+Δθ

θ0−Δθ

cos θdθ = 2 cos θ0 sin Δθ. (20)

For a circular array located on the X ′Y ′-plane and centered at
the origin with radius R (in λ), the DoF can be expressed as

X = 2R |Φ| (21)

in which |Φ| is the range of φ and expressed as

|Φ| =
∫ φ0+Δφ

φ0−Δφ

dφ = 2Δφ. (22)

Compared with linear and circular arrays, spherical arrays
capture all SDoF of the 3D spatial propagation channel and
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thus provide higher capacity. For a spherical array centered at
the origin with radius R (in λ), the DoF is

X = πR2 |Ω| (23)

where |Ω| is the range of Ω denoting the SDoF. An alternative
interpretation of |Ω| is that it denotes the DoF captured by a
spherical array of unit aperture πR2, i.e., the SDoF are the
DoF per unit array aperture. Thus, if we know |Ω| as the
spatial resolution of the propagation channel and we wish
to use X antenna elements, we can alternatively calculate
the required radius R of the spherical array to accommodate
these X elements for optimum channel capacity. Therefore, for
spherical arrays, the SDoF when Ω occupies a single scattering
sector will be the product of (20) and (22) as

|Ω| = |Ωθ| |Φ| =
∫

θ

∫
φ

cos θdφdθ = 4Δφ cos θ0 sin Δθ.

(24)

B. Generalized SDoF Formulas

We heuristically derive generalized SDoF formulas applica-
ble to any AOA distribution, without just considering the range
of Ω as in [15]. This is done with the aid of the differential
entropy and the validity of our heuristic formulations will be
demonstrated in Section VI. The proposed formulation can be
adaptable to any wireless propagation scenario characterized
by its AOA distribution.

In information theory, the differential entropy H(Y ) of
a continuous random variable Y shows the uncertainty of
the variable, i.e., the amount of information contained in the
variable, and is defined as [36]

H(Y ) = −
∫

S

P (y) log2 P (y)dy (25)

where P (y) is the distribution of Y , S is the support set of the
random variable Y , and the volume of S is expressed as 2H(Y ).
In fact, 2H(Y ) characterizes the independent dimensions, i.e.,
the DoF, subtended by the random variable Y with distribution
P (y). We apply this concept to find the SDoF subtended by the
AOA distribution in the 3D space. Considering the AOA dis-
tribution P (Ω) with respect to the solid angle Ω, we can define
the differential entropy of the AOA distribution similarly
to (25) as H(Ω) = − ∫

Ω
P (Ω) log2 P (Ω)dΩ. Based on the

theorem of the change of variable [44, Appendix B], under
the mapping Ω → θ, φ, with P (Ω)dΩ = cos θP (θ, φ)dφdθ,
the differential entropy of the joint AOA distribution can be
expressed as

H(θ, φ) = −
∫

θ

∫
φ

cos θP (θ, φ) log2 P (θ, φ)dφdθ. (26)

We can thus heuristically determine the SDoF as |Ω| = 2H(θ,φ)

for any AOA distribution.
For the restricted uniform AOA, the SDoF for spherical

arrays are derived in Appendix D as

|Ω| = 2Hu(θ,φ) = 4Δφ cos θ0 sin Δθ (27)

which coincides with (24). Thus, just considering the AOA
range as in [15] is equivalent to assigning a restricted uni-
form distribution within that AOA range. If the propagation
channel contains more than one scattering region, i.e., multi-
clustered wireless propagation (see [19]), then |Ω| will arise
by summing contributions similar to (27) for each scattering
region. The SDoF for linear and circular arrays are given by
(see Appendix D)

|Ωθ| = 2Hu(θ) = 2 cos θ0 sin Δθ (28)

|Φ| = 2Hu(φ) = 2Δφ (29)

respectively. (28) and (29) are identical to (20) and (22),
respectively. From (27), the SDoF for the 3D isotropic prop-
agation scenario, i.e., θ0 = 0, Δθ = π/2, Δφ = π, becomes
|Ω| = 4π, equal to the full range of solid angle in the 3D
space.

Using (26) in 3D Gaussian scenarios, the SDoF for spherical
arrays can be heuristically determined as (see Appendix D)

|Ω|Gau = 2HGau(θ,φ)

=
2πσθσφ

A1A2
exp

{
σ2

φVGau(θ) + σ2
θVGau(φ)

2σ2
θσ2

φ

}
(30)

where VGau(θ) and VGau(φ) are the variances of θ and φ,
respectively, defined as

VGau(θ) =
∫

θ

(θ − θ0)2PGau(θ) cos θdθ (31)

VGau(φ) =
∫

φ

(φ − φ0)2PGau(φ)dφ. (32)

The SDoF for linear and circular arrays in 3D Gaussian
scenarios are given by

|Ωθ|Gau = 2HGau(θ) =
√

2πσθ

A1
exp

[
VGau(θ)

2σ2
θ

]
(33)

|Φ|Gau = 2HGau(φ) =
√

2πσφ

A2
exp

[
VGau(φ)

2σ2
φ

]
(34)

respectively (see Appendix D). Such results are brand-new,
extending [15], and the whole analysis can be applied to any
AOA distribution. Validity will be demonstrated in Section VI.

In 3D omnidirectional scenarios for the cases of uniform
and Gaussian elevation AOA, the SDoF for spherical arrays
can be heuristically determined as

|Ω|omni_1 = |Ωθ| |Φ| = 4π cos θ0 sin Δθ (35)

|Ω|omni_2 = |Ωθ|Gau |Φ|

=
2π

√
2πσθ

A1
exp

[
VGau(θ)

2σ2
θ

]
(36)

respectively, where we used (28), (33), and |Φ| = 2π, as the
azimuth AOA is uniformly distributed in [−π, π].

V. PSOVM ALGORITHM IMPLEMENTATION

A. PSOvm Fundamentals

We present the implementation of PSOvm in finding opti-
mum antenna array topologies with maximum MIMO capaci-
ties. Basic theory of PSO has been comprehensively presented
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in [45]. The descriptive terms of PSO can be found in
[45, Table I] and the updates of velocity vi and position
xi for the i-th (i = 1, 2, . . . , n) particle at each moment t
(t = 0, 1, 2, . . . , T ) are given by

vi(t + 1) = k {ωvi(t) + c1r1[pi(t) − xi(t)]
+ c2r2[g(t) − xi(t)]} (37)

xi(t + 1) = xi(t) + vi(t + 1) (38)

where k is the constriction factor, pi(t) and g(t) are the
personal best (pbest) and the global best (gbest) position found
by the i-th particle and the swarm at moment t, respectively.
c1 and c2 are acceleration coefficients, r1 and r2 are random
numbers in (0, 1). To keep particles unaffected from pulling
of pbest and gbest results, the inertial weight ω ∼ (0, 1) is
linearly decreased from cstart = 0.9 to cend = 0.4 as [45]

ω = cstart −
[
cstart − cend

T

]
× t. (39)

However, the recent study [30] proposed a PSOvm technique
that outperforms the classic PSO as it helps to improve the
particles’ positions at the first few iterations for a better
fitness, and thus improves the overall algorithm performance.
Its velocity update can be developed from (37) as

vi(t + 1) = k {Flvi(t) + c1r1[pi(t) − xi(t)]
+ c2r2[g(t) − xi(t)]} (40)

where Fl is the mutation factor given by [30]

Fl = (0.1l + 0.6)(2r − 1), l = 1, . . . , 6 (41)

where r is a random number in (0, 1). We will use (40)
and (41) in the beginning to update the velocity for six
times, for the purpose of acceptable convergence speed as was
verified in [30]. The remaining velocity updates will carry
on with (37). The position updates will follow (38) for the
whole searching. Before starting the optimization, we define
the searching space as√

x2
mo + y2

mo + z2
mo ≤ Dmax (42)

where Dmax denotes the radius of a spherical searching space
centered at the origin and (xmo, ymo, zmo) is the obtained
optimum position of the m-th antenna array element. Based
on the PSOvm flowchart as plotted in Fig. 2, the maximization
of ergodic MIMO channel capacity (fitness) in (3) by finding
optimum positions of antenna array elements in a constrained
space is summarized step-by-step in the following sub-section.

B. Optimization Process

1) Initialization of Particles and Swarms: We set the parti-
cle number to n = 20 as the study in [46] demonstrated
that 20 particles are effective enough for most engineer-
ing problems, and the time limit to T = 500 being large
enough for a reasonable computation time [10]. The
work in [47] found that vmax is best set to 10%−20% of
the width of searching space, we thus select the median
one as vmax = 0.15Dmax. We select the standard choice

Fig. 2. PSOvm algorithm flowchart.

k = 0.73 as was suggested in [45], and the optimal
choices c1 = 2.8, c2 = 1.3 as were validated in [46].

2) Initialization of Algorithm: We randomly locate the
initial pbest position pi(1) of the i-th particle and the
initial gbest position g(1) of the swarm in the searching
space, i = 1, 2, . . . , 20, such that none of the particles
know where the gbest position is located yet. The initial
velocity vi(1), i = 1, 2, . . . , 20 is random in both its
direction and magnitude. Both the initial pbest fitness
Cpbest(i) for the i-th particle and the initial gbest fitness
Cgbest for the swarm are set to zero to realize the correct
capacity in the following searching process.

3) Fitness Evaluation: At each moment t, t = 0,
1, 2, . . . , 500, each particle randomly flies through the
searching space and computes the fitness at their posi-
tions xi(t), i = 1, 2, . . . , 20. Comparing the obtained
fitness C with the pbest fitness Cpbest(i), if C >
Cpbest(i), replace Cpbest(i) with the current C and pi(t)
with the current position xi(t). Similarly, comparing C
with the gbest fitness Cgbest, set Cgbest to C and g(t)
to xi(t) if C > Cgbest.

4) Update the mutated velocity vi with (40), (41) and
the position xi with (38) for each particle. Any of
the particles flying beyond the searching space will be
hauled back to the boundary when the condition in (42)
is applied.

5) Set t = t + 1, and repeat the process in 3) and 4) if
t ≤ 6. Otherwise, move to the next step.
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TABLE I

AOA PARAMETERS IN EACH PROPAGATION SCENARIO

6) Update the velocity vi with (37) and the position xi

with (38) for each particle. The condition in (42) is still
applied.

7) Set t = t + 1, repeat the process in 3) and carry on
the position and velocity updating with 6) if t ≤ 500.
Otherwise, terminate the optimization process.

VI. SIMULATIONS AND RESULTS

In this section, we demonstrate and verify the validity of our
methodology in realizing optimum antenna array topologies
with maximum capacity performance occupying minimum
space. Simulations and results for the wireless propagation sce-
narios discussed in Section I-E are comprehensively presented.
Empowered by the existence of analytical SDoF formulas in
Section IV, we focus on linear, circular, and spherical array
topologies.

Based on the wireless propagation scenarios discussed in
Section I-E, the AOA parameters for each of the scenarios are
defined and listed in Table I. For the 3D restricted uniform
scenario (see (7)), we assume θ0 = φ0 = 0, Δθ = Δφ = π/6.
The variances for the uniform elevation and azimuth AOAs,
Vu(θ) and Vu(φ), respectively, are determined as

Vu(θ) =
∫ θ0+Δθ

θ0−Δθ

(θ − θ0)2Pu(θ) cos θdθ

= Δθ2 +
2Δθ cosΔθ

sin Δθ
− 2 (43)

Vu(φ) =
∫ φ0+Δφ

φ0−Δφ

(φ − φ0)2Pu(φ)dφ =
Δφ2

3
(44)

where, (43) arises by using the definition for Pu(θ) (see
below eq. (7)) and after some algebraic manipulations with
the aid of [48, eqs. 2633-5, 6]. By using the definition for
Pu(φ) (see below eq. (7)) and after some elementary algebraic
manipulations, (44) arises. For 3D isotropic scenarios, we just
assign θ0 = φ0 = 0, Δθ = π/2, Δφ = π (see (9)).

For fair comparison between 3D restricted uniform and 3D
Gaussian scenarios, we assume θ0 = φ0 = 0, and σθ , σφ to
be defined via two different ways, i.e., equating the variances
or the differential entropies of both distributions. First, we can
consider the Gaussian variances of (31) and (32) being equal to
the uniform variances of (43) and (44), respectively. Then, we

use (8) to solve both equations numerically resulting in σθ =
0.3123, σφ = 0.3023. Besides that, we can define σθ and
σφ by equating the Gaussian entropies of (33) and (34) to
the uniform entropies of (28) and (29), respectively. Then,
we use (8), (31) and (32) to solve both equations numerically
resulting in σθ = 0.2588, σφ = 0.2533. The notes of
‘variance’ and ‘entropy’ in figures and tables refer to the
3D Gaussian scenarios by determining σθ , σφ via these two
different ways.

For the 3D omnidirectional scenario Pomni_1(θ, φ) with
restricted uniform elevation AOA (see (10)), the angular para-
meters are defined as θ0 = φ0 = 0, Δθ = π/6, Δφ = π. For
the 3D omnidirectional scenario Pomni_2(θ, φ) with Gaussian
elevation AOA (see (11)), the angular parameters are defined
as θ0 = φ0 = 0, σθ = 0.3123, Δφ = π.

We calculate the ergodic capacity by averaging over
3, 000 realizations of MIMO channels. All distances/lengths
are normalized by λ. We set the SNR P/σ2

n = 10 dB as
in [15], being sufficiently high in order the ergodic MIMO
channel capacity to be DoF limited rather than power lim-
ited [6]. As was verified in [14], JAE and GHQ have sim-
ilar approximation performance when G = 20 (see (13)),
M = N = 10 (see (17)), respectively. However, to achieve
an approximation accuracy up to six decimal places when
comparing the closed-form SCF with its respective numerical
computation, we select G = 50 in (13) for the JAE in all
scenarios. For GHQ, we increase the terms of M, N in (17),
(18) from 20 (for 2×2 MIMO) to 140 (for 35×35 MIMO) for
a similar approximation performance compared with the JAE.
The number of the Trapezoidal subintervals in (13) is set to
Q = 1000. In this paper, we only consider the correlation
at the Rx side in MIMO systems (Nr = Nt) applying the
Kronecker model, i.e., the Tx antennas are assumed to be
separated sufficiently apart such that Rtx = INt . However, the
adopted methodology can be readily extended to account for
correlation at both sides leveraging the uncoupled correlation
formulation of the MIMO Kronecker model. The theoretical
i.i.d. capacity is obtained by assuming Rtx = INt , Rrx = INr

and using (2), (3).

A. Validation of the Closed-Form SCFs of (13), (17), (18)

To verify the derived closed-form SCFs for each of the sce-
narios, comparisons with the numerical and theoretical SCFs
in a 2×2 MIMO channel will be considered first. As the spatial
correlation depends on the distance between two antenna
elements (see (12)), considering a 2×2 case is sufficient for the
verification of the closed-form solutions [9]. We assume that
two Rx antennas are located at P1 (−D/4,−D/4,

√
2D/4)

and P2 (D/4, D/4,−√
2D/4), the spacing between them

can thus be quantified by D. We use (13) to compute the
spatial correlations for the 3D isotropic, restricted uniform,
and omnidirectional scenario with restricted uniform elevation
AOA, (17) for the two 3D Gaussian scenarios (variance and
entropy), and (18) for the 3D omnidirectional scenario with
Gaussian elevation AOA. The numerical SCFs calculated by
the integrations of (12) for each of the scenarios and the
analytical SCF of (14) for the 3D isotropic scenario will
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TABLE II

PSOVM PERFORMANCE FOR 2 × 2 MIMO CAPACITY MAXIMIZATION IN EACH PROPAGATION SCENARIO

Fig. 3. SCF between two receive antennas in each propagation scenario.

be included for comparisons. Fig. 3 depicts the absolute
SCFs between elements (1, 2) against the spacing D for the
various 3D scenarios and the closed-form SCFs show excellent
agreements with the numerical SCFs. Besides that, the closed-
form SCF of (13) is identical to the analytical formula of (14)
for the 3D isotropic scenario. Fig. 3 also shows that the SCFs
of the two 3D omnidirectional scenarios lie between the 3D
isotropic and 3D directional scenarios being very close to the
3D isotropic one. The results validate the 3D closed-form
SCFs of (13), (17), and (18) derived in Section III adopting
the JAE- and GHQ-based approximation techniques.

We also verify the PSOvm algorithm presented in Section V
by comparing the achieved ergodic channel capacity with the
theoretical maximum of the i.i.d. case in a 2 × 2 MIMO
channel. Table II shows that in all AOA scenarios, the PSOvm
finds the maximum ergodic MIMO channel capacity being
equal to the theoretical maximum, assigning optimum Rx
element spacing and consuming only a few iterations. Such
optimum spacing leading to maximum ergodic MIMO channel
capacity complies with the SCF behaviors depicted in Fig. 3,
i.e., the optimum spacing derived in Table II complies with
the spacing around the first zero of the respective SCF in
Fig. 3. Such outcomes verify the adopted PSOvm technique
and demonstrate its efficiency in solving the ergodic MIMO
channel capacity maximization problem. Note that the number
of iterations required for convergence shows some variations in
different AOA scenarios. This can be attributed to the random
initial positions of particles finding the best solution near to
where they were initially located. Another reason can be the
different computational complexity of the closed-form SCF in

each scenario. In all 3D propagation scenarios of Table II, the
iteration time consumption with numerical SCF evaluation is
considerably larger than the respective with closed-form SCF.
Such observation further justifies the necessity of deriving
closed-form SCFs. Once the closed-form SCFs and PSOvm are
verified, we can proceed in verifying the SDoF formulations
presented in Section IV.

B. Verification of the SDoF Formulations

To verify the SDoF formulations presented in Section IV,
we will derive capacity performance with respect to the num-
ber of antenna array elements for linear, circular, and spherical
topologies. Starting with the 3D restricted uniform scenario,
we assume that the maximum antenna numbers in (19), (21)
and (23) for linear, circular and spherical arrays are X = 10.
Using (28), (29), (27) for the 3D restricted uniform scenario
into the corresponding DoF formulas (19), (21), (23), the
physical dimensions of linear, circular, and spherical arrays are
obtained and listed in Table III. Allowing the PSO particles to
search on the array boundaries only and running the algorithm,
the maximized capacities along with the increasing numbers of
array elements are plotted in Fig. 4. Fig. 4 shows that in the 3D
restricted uniform scenario, when we have X = 10 elements
in all array topologies, the ergodic MIMO channel capacity
follows the i.i.d case and starts deviating after that value.
Similar observations are reported for the 3D omnidirectional
and isotropic scenarios. Such results, holding for 3D uniform
AOA scenarios, interpret the DoF outcomes derived in [15].

Next, we consider 3D Gaussian scenarios to demonstrate
the correctness of our heuristic SDoF formulations. We use
the SDoF of (33), (34), (30) for the 3D Gaussian scenarios
into the respective DoF formulas (19), (21), (23). The physical
dimensions of linear, circular, and spherical arrays can be
found in Table III. The maximized capacities versus antenna
numbers are plotted in Fig. 4. Again, packing more than
X = 10 elements cannot achieve the i.i.d. capacity as shown
in Fig. 4. It thus validates our heuristic SDoF formulations
can be applied in any wireless propagation scenario, i.e.,
3D Gaussian in this paper, having performance compliance
with the (validated from [15]) 3D uniform ones. Additionally,
Fig. 4 shows that the capacity performances of the Gaussian
(variance) and Gaussian (entropy) cases are identical to each
other, which confirms both methods in defining the Gaussian
AOA parameters. Table III also demonstrates that antenna
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TABLE III

PHYSICAL SPACE CONSTRAINTS OF STANDARDIZED ARRAY TOPOLOGIES IN EACH PROPAGATION SCENARIO

Fig. 4. Capacity versus number of array elements in each propagation scenario (with X = 10).

arrays occupy less space in the 3D Gaussian (variance) sce-
nario compared with the 3D Gaussian (entropy) for achieving
the same capacity performance. We will consider the 3D
Gaussian (variance) scenario for the remainder of the paper.

In 3D omnidirectional scenarios, we will just consider 3D
antenna array topologies, as capacity performance of linear and
circular ones depends exclusively on the elevation and azimuth
AOA distributions, respectively. But such analysis has been
already conducted previously in the various directional and
isotropic scenarios. Using (35) and (36) into (23), we derive
the radius R of the spherical array topology space for each
omnidirectional scenario (see Table III). The capacity behavior
for both 3D omnidirectional scenarios in Fig. 4(c) demon-
strates that X = 10 is the maximum number of elements to
achieve the i.i.d. capacity.

In all propagation scenarios, we have also included the
capacities for ULAs and UCAs in Figs. 4(a) and 4(b), respec-
tively. Capacity performance of such standardized topologies
is almost identical to the optimized ones in all scenarios. It is
thus revealed that good antenna array design is possible by
just knowing the SDoF, without running time and resource
consuming optimizations. Results in Fig. 4 and Table III show
that for linear increase in the ergodic MIMO channel capacity,
the element number is indeed 10 in each array topology and all

wireless propagation scenarios. Further insight into the results
of Fig. 3 and Table III reveals the (rational) behavior that
in similar scenarios classified either as 3D uniform or 3D
Gaussian, the greater the SDoF, the lower the SCFs are. More
specifically, the 3D isotropic, omnidirectional-1, and restricted
uniform AOA scenarios are classified in descending order in
terms of SDoF, but in ascending order in terms of SCFs.
Same applies for the 3D Gaussian (variance) and Gaussian
(entropy) scenarios. In the 3D restricted uniform and 3D
Gaussian (entropy) scenarios, their SCFs are not the same,
although their SDoF are equal. This can be attributed to the
chosen orientation of the two elements used to compute the
SCFs shown in Fig. 3. In the following, we will focus on
optimizing spherical arrays as they cannot demonstrate a sole
uniform topology.

Furthermore, the ergodic MIMO channel capacity for
X = 15 is presented in Fig. 5. Again, Fig. 5 demonstrates
that for linear increase in the ergodic MIMO channel capacity
the element number is 15 in spherical array topologies and
all wireless propagation scenarios. Similar observations are
reported in linear and circular cases. Note that, the required
minimum spaces for X = 15 are different from the ones for
X = 10 and can be determined by the SDoF in a similar
way as was done in the X = 10 case. With such limitation of
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Fig. 5. Capacity versus number of array elements in each propagation
scenario (with X = 15).

Fig. 6. Eigenvalues of the 50 × 50 Rrx in each propagation scenario.

X = 15, we also evaluate the eigenvalues of Rrx considering
a 50 × 50 spatial correlation matrix for different wireless
propagation scenarios as depicted in Fig. 6. Fig. 6 reveals a
similar eigenvalue behavior trend in all 3D AOA scenarios,
with eigenvalues tending to zero after the value 15. As the
eigenvalue behavior of the spatial correlation matrix consti-
tutes another interpretation of the DoF according to [34], [35],
such result further verifies our SDoF formulations. Apart
from confirming the proposed SDoF formulations, such results
can constitute a pathway for antenna array design given
the propagation channel characteristics. More specifically, the
critical factor for devising antenna arrays occupying minimum
space is the AOA entropy and not the AOA distribution itself.
Furthermore, should we just know the descriptive statistics
(i.e., mean and variance) of the AOA distribution from a
given wireless propagation channel measurement campaign,
we can safely assume these are achieved by a 3D restricted
uniform scenario and design the array topology accordingly.
This is because the 3D restricted uniform scenario requires
more antenna array space, hence, analysis will cover the 3D
Gaussian scenario too.

C. Design of Optimized Antenna Array Topologies

We further devise optimized antenna array topologies
achieving maximum capacity and occupying minimum space
for a given number of array elements and AOA distribution
using the PSOvm algorithm. We focus on spherical arrays,

Fig. 7. Optimized spherical array topology in the 3D Gaussian (variance)
scenario.

TABLE IV

MAXIMUM CAPACITIES IN EACH PROPAGATION SCENARIO

as linear and circular topologies can be optimum too should we
know the subtended SDoF and occupied space, see Figs. 4, 5.
We consider a 10 × 10 MIMO system, i.e., having equal to
X = 10 elements at both the transmitter and receiver sides.
The array space limits for all propagation scenarios are seen in
Table III. We let the PSO particles search on the space bound-
aries of spherical arrays and running the PSOvm algorithm
we find the element positions for spherical array topologies
in each propagation scenario. As an example, in Fig. 7,
we demonstrate such optimum topology for the 3D Gaussian
(variance) scenario. The achieved maximum capacities in each
propagation scenario are listed in Table IV. We observe that the
achieved capacities of all spherical array topologies are almost
equal to the theoretical maximum one. Similar observations
are reported in Table IV when applying the optimization
algorithm to linear and circular array topologies. Using the
array density metric as the number or array elements per unit
area, i.e., DA = NA/S [16], with NA = 10 elements and
S the occupied area, we obtain DA = 0.37 elements/λ2,
DA = 0.20 elements/λ2 for the spherical (Fig. 7) and circular
(see Table III) arrays, respectively. Thus, in the 3D Gaussian
(variance) scenario, the spherical array of Fig. 7 is more space
efficient than the circular one by 85%, i.e., it has 85% more
elements in the same area.
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Fig. 8. Optimized arbitrarily-shaped array topology in the 3D Gaussian
(variance) scenario.

In an attempt to further minimize the occupied space of
antenna arrays, we release the limitation of letting the particles
to search on the boundaries only. We run the algorithm by
arbitrarily positioning the array elements. Thus, we let the
particles search inside the spherical space considering the same
limits as in previous spherical topologies (see Table III). In all
propagation scenarios, most array elements tend to stay on the
boundary of the spherical topology and such antenna arrays
approach the maximum theoretical capacity (see Table IV).
This seems a natural selection in order the array elements
to occupy positions in space achieving such inter-element
distancing that minimizes the spatial correlation between them
and eventually maximizes the ergodic MIMO channel capacity.
It thus validates that the space constraint determined by our
SDoF formulation is the minimum occupied space. In other
words, the particles of the algorithm can be directly set to
search on the array boundary instead of searching inside the
whole space. As an example, we demonstrate the optimum
topology in Fig. 8 for the 3D Gaussian (variance) scenario.
In both Figs. 7, 8, the optimum array topologies are non-
uniform as a result of directional 3D AOA distributions.

VII. CONCLUSION

We generalized the SDoF formulations for linear, circular,
and spherical arrays in all classes of propagation scenarios,
namely, isotropic, directional, and omnidirectional, by using
the differential entropy of 3D AOA distributions. Such SDoF
formulations can be used to either determine the maximum
number of array elements for a given spatial constraint
(as in [15]), or limit the array space to allocate a cer-
tain amount of elements ensuring optimum ergodic MIMO
channel capacity performance. An advanced PSOvm algo-
rithm was employed to maximize capacity incorporating novel
closed-form SCFs. Such SCFs rely on a generic system
model applicable to any antenna array topology including
arbitrarily-shaped topologies. The proposed SDoF informed
the design of optimized antenna array topologies achieving
maximum capacity while occupying minimum space. The
presented SDoF formulations can be readily extended to any
AOA distribution, including distributions for more complex
multi-clustered propagation. Extension to wireless environ-
ments incorporating diffuse (rich) scattering and specular
components would require a different mathematical treatise

as the AOA distribution would comprise of a mixture of
continuous and discrete functions. The presented sequential
approach, i.e., closed-form SCF derivation, SDoF formu-
lation, and ergodic MIMO channel capacity maximization,
can constitute a roadmap for future antenna array designs
towards implementing 6G wireless systems with volumetric
spectral efficiency [7] and adopting 3D antenna arrays in 3GPP
standardization efforts [8]. It can further inspire information
theorists attempting to associate their work with wireless
propagation [5].

APPENDIX A
PROOF OF (13)

Substituting (5) into (12), using (6) and (7), letting
φ̃ = φ − αm,n, the SCF of (12) can be written after some
algebraic manipulations as

Rs(m, n) =
1

4Δφ cos θ0 sin Δθ
×
∫ θ0+Δθ

θ0−Δθ

× exp
{

j
2π

λ
rm,n sin(θ) sin(βm,n)

}
cos(θ)dθ

×
∫ φ0+Δφ−αm,n

φ0−Δφ−αm,n

exp
{

j
2π

λ
rm,n cos(θ) cos(βm,n) cos(φ̃)

}
dφ̃.

(45)

Following the Jacobi-Anger expansion rule [43], we have

ejz cos(X) = J0(z) + 2
∞∑

g=1

jgJg(z) cos(gX). (46)

Using (46) for the second integration of (45), we have after
some manipulations∫ φ0+Δφ−αm,n

φ0−Δφ−αm,n

exp
{

j2πrm,n cos(θ) cos(βm,n) cos(φ̃)/λ
}

dφ̃

= 2ΔφJ0(j2πrm,n cos(θ) cos(βm,n)/λ)

+ 4Δφ

∞∑
g=1

{jgJg (j2πrm,n cos(θ) cos(βm,n)/λ)

× cos (g(φ0 − αm,n)) sinc(gΔφ)} (47)

in which sinc(gΔφ) = sin(gΔφ)/(gΔφ). Substituting (47)
into (45) yields

Rs(m, n) =
1

2 cos θ0 sinΔθ
×
∫ θ0+Δθ

θ0−Δθ

exp {j2πrm,n sin(θ) sin(βm,n)/λ} cos(θ)
× J0 (j2πrm,n cos(θ) cos(βm,n)/λ) dθ

+ 2
∞∑

g=1

∫ θ0+Δθ

θ0−Δθ

exp {j2πrm,n sin(θ) sin(βm,n)/λ} cos(θ)
× Jg (j2πrm,n cos(θ) cos(βm,n)/λ)
× jg cos (g(φ0 − αm,n)) sinc(gΔφ)dθ. (48)
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The trapezoidal rule [10] provides

∫ b

a

f(Z)dZ ≈ b − a

Q

× [0.5f(Z0) + f(Z1) + . . . + f(ZQ−1) + 0.5f(ZQ)]
(49)

where ZQ denotes the Q-th partition of the integration interval
in Trapezoidal rule. In (48), we let

f0(Θ) = exp [j2πrm,n sin(βm,n) sin(Θ)/λ] cos(Θ)
× J0 (2πrm,n cos(βm,n) cos(Θ)/λ) (50)

fg(Θ) = exp [j2πrm,n sin(βm,n) sin(Θ)/λ] cos(Θ)
× Jg (2πrm,n cos(βm,n) cos(Θ)/λ) (51)

where J0(.) and Jg(.), g = 1, 2, . . . , G, are the zero-order
and the g-order Bessel functions of the first kind, respectively.
Substituting (49), (50) and (51) into (48), we obtain (13).

APPENDIX B
PROOF OF (17)

Let A = A1 ×A2. Substituting (5) into (12) and using (6),
(8), after some manipulations, the SCF of (12) can be
expressed as

Rs(m, n) =
A

2πσθσφ
×
∫

θ

∫
φ

exp

[
−
(

θ − θ0√
2σθ

)2
]

× exp

⎡
⎣−

(
φ − φ0√

2σφ

)2
⎤
⎦

× exp {j2πrm,n cos(θ) cos(βm,n)
× cos(αm,n − φ)/λ}
× exp {j2πrm,n sin(θ) sin(βm,n)/λ}
× cos(θ)dφdθ (52)

where θ ∈ [−π/2, π/2], φ ∈ [−π/2 + φ0, π/2 + φ0].
Letting xq = (θ − θ0)/(

√
2σθ), xp = (φ − φ0)/(

√
2σφ),

we have θ =
√

2σθxq + θ0, φ =
√

2σφxp + φ0, and after
some manipulations, the SCF in (52) can be approximated
as [14], [49]

Rs(m, n) ≈ A

π
×
∫

xq

e−x2
q

× exp
{
j2πrm,n sin(

√
2σθxq

+ θ0) sin(βm,n)/λ}
× cos(

√
2σθxq + θ0)

∫
xp

e−x2
p

× exp
{
j2πrm,n cos(

√
2σθxq + θ0)×cos(βm,n)

× cos(αm,n −
√

2σφxp − φ0)/λ
}

dxpdxq.

(53)

Using (15) in (53) yields (17).

APPENDIX C
PROOF OF (18)

Substituting (5) into (12), and using (6), (11), (47) with
φ0 = 0, Δφ = π, the SCF of (12) can be expressed after
some manipulations as

Rs(m, n) =
A1

2π
√

2πσθ

∫
θ

exp
{

j
2π

λ
rm,n sin(θ) sin(βm.n)

}

× exp

[
−
(

θ − θ0

2σ2
θ

)2
]

cos(θ)

× 2πJ0

(
j
2π

λ
rm,n cos(θ) cos(βm,n)

)
dθ. (54)

By letting θ =
√

2σθxq + θ0, (54) can be approximated
as [14], [49]

Rs(m, n) ≈ A1√
π

×
∫

xq

e−x2
q exp

{
j
2π

λ
rm,n sin(

√
2σθxq + θ0) sin(βm,n)

}

× cos(
√

2σθxq + θ0)

× J0

(
j2πrm,n cos(

√
2σθxq + θ0) cos(βm,n)/λ

)
dxq.

(55)

Using (15) in (55) yields (18).

APPENDIX D
PROOF OF (27), (28), (29) AND (30), (33), (34)

A. SDoF for 3D Restricted Uniform Scenarios

Substituting (7) into (26), we obtain after some
manipulations

Hu(θ, φ) = log2(4Δφ cos θ0 sin Δθ). (56)

Substituting (56) into 2Hu(θ,φ) results in (27).
After some manipulations, (27) can be written as follows

Hu(θ, φ) = Hu(θ) + Hu(φ) (57)

where Hu(θ) and Hu(φ) are defined as

Hu(θ) = −
∫

θ

cos θPu(θ) log2 Pu(θ)dθ, (58)

Hu(φ) = −
∫

φ

Pu(φ) log2 Pu(φ)dφ. (59)

Using Pu(θ) and Pu(φ) (see below (7)) in (58) and (59),
respectively, we have

Hu(θ) = log2(2 cos θ0 sinΔθ), (60)

Hu(φ) = log2(2Δφ). (61)

Substituting (60), (61) into 2Hu(θ), 2Hu(φ), respectively,
we obtain (28), (29).
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B. SDoF for 3D Gaussian Scenarios

Substituting (8) into (26), we obtain after some
manipulations

HGau(θ, φ)

= log2

(√
2πσθ

A1

)∫
θ

cos θPGau(θ)dθ

∫
φ

PGau(φ)dφ

+
log2 e

2σ2
θ

∫
θ

cos θPGau(θ)(θ − θ0)2dθ

∫
φ

PGau(φ)dφ

+ log2

(√
2πσφ

A2

)∫
θ

cos θPGau(θ)dθ

∫
φ

PGau(φ)dφ

+
log2 e

2σ2
φ

∫
θ

cos θPGau(θ)dθ

∫
φ

PGau(φ)(φ − φ0)2dφ.

(62)

Using
∫

φ PGau(φ)dφ = 1,
∫

θ cos θPGau(θ)dθ = 1 and substi-
tuting (31), (32) into (62), we obtain after some manipulations

HGau(θ, φ)

= log2

2πσθσφ

A1A2
+ log2 exp

[
σ2

φVGau(θ) + σ2
θVGau(φ)

2σ2
θσ2

φ

]
.

(63)

Substituting (63) into 2HGau(θ,φ) results in (30).
After some manipulations, (26) can be written as follows

HGau(θ, φ) = HGau(θ) + HGau(φ) (64)

where HGau(θ) and HGau(φ) can be defined as

HGau(θ) = −
∫

θ

cos θPGau(θ) log2 PGau(θ)dθ, (65)

HGau(φ) = −
∫

φ

PGau(φ) log2 PGau(φ)dφ. (66)

After some manipulations, (65) and (66) can be written as
follows

HGau(θ) = log2

{√
2πσθ

A1
exp

[
VGau(θ)

2σ2
θ

]}
, (67)

HGau(φ) = log2

{√
2πσφ

A2
exp

[
VGau(φ)

2σ2
φ

]}
. (68)

Substituting (67), (68) into 2HGau(θ), 2HGau(φ), respectively,
we obtain (33), (34).
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