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Abstract: In this study, two novel algorithms are developed: the quasi oppositional smell agent 
optimization (QOBL-SAO) and its levy flight variation (LFQOBL-SAO), and their 
performance is compared to that of the conventional smell agent optimization (SAO). Two 
investigations were carried out. First, the capabilities of the novel algorithms were tested in 
solving ten benchmarked functions and five CEC2020 real world optimization problems. 
Second, they are applied to optimize the hybrid photovoltaic (PV)/wind/battery, PV/battery 
and wind/battery  power system for a healthcare centre in a Nigerian village. Load demand, PV 
and wind profiles of the aforementioned location were used to developed the hybrid system. 
All simulations were carried out in MATLAB software and the results show that the novel 
algorithms are capable of solving both the benchmarked functions and the CEC2020 real world 
constrained optimization competition. In particular, the performance of the QOBL and the LF-
QOBL are as good as the top performing functions like the IUDE, 𝜖MAgES and the iLSHADε 
algorithms. However, in terms of convergence time, lowest cost of energy (LCE), and total 
annualized cost (TAC), the novel algorithms outperformed the SAO for the PV/wind/battery 
optimization application. The hybrid PV/wind/battery system is the most cost-effective when 
using LFQOBL-SAO and QOBL-SAO, with a TAC value of $15100. Furthermore, the results 
demonstrate that the LFQOBL-SAO method is accurate and outperforms the QOBL-SAO and 
SAO algorithms. 
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1. Introduction 
 

Greenhouse gas (GHG) emissions have attracted the attention of this generation, which is increasingly focused on 

harnessing renewable energy sources (RES) as a result of technological advancement, population growth, and 

compelling evidence of the global warming phenomenon. [1][2]. RES has been identified as a viable power supply 

solution in isolated and remote locations where the utility grid is unavailable [3,4]. RES includes wind, solar, 

biomass, geothermal, and other natural resources. These energy sources are considered the most plentiful because 

they can be found almost anywhere on the planet and may never run out, but, they are also the most unpredictable 

[5][6]. In contrast to fossil fuels, most RES are intermittent and are influenced by the weather, negatively affecting 

energy production. In order to address this issue, RES can be combined with other conventional sources and an 

energy storage system to provide a more reliable source of energy. Unexpected increases in load demand within 

the system can also be accommodated by combining these RES in a hybrid form [7][8]. 

Hybrid RES (HRES) have been the subject of several research investigations throughout the years in many regions 

of the world [9–18]. Specifically, Zhang et al.  [9] utilized the hybrid optimization model for electric renewables 

(HOMER), to develop a unique optimum configuration of an HRES to fulfil the necessary electrical power demand 

of a medium-size workshop in an industrial district of Ardabil, Iran. The result showed that a storage bank 

consisting of a 1 kW photovoltaic (PV) array, 6.13 kW converter, 27 strings of 1 kW batteries, 13 kW diesel 

generator (DG) and two 3 kW wind turbines is the optimal option for obtaining a levelized cost of Energy (LCE) 

of 0.462 $/kWh in the Ardabil region. However, the work was characterized by high excess energy and GHG 

emissions due to a DG in the system. In another study, Izadyar et al.  [19] utilized HOMER to evaluate the techno-

economics of deploying HRES to identify the most promising sources and regions for deployment in Malaysia. 

With a  net present cost (NPC) of  $696,083, the results show that Langkawi was suitable for deploying solar or 

wind power stations, while Tioman is more suitable for HRES installations. With regards to an HRES optimization 

using artificial intelligence, a more recent work by  Bhimaraju et al. [17], optimized a hybrid PV/wind//battery 

system using the teaching learning based optimization (TLBO) algorithm. The hybrid system minimized energy 

and Loss of Power Supply Probability (LPSP) costs in Kanyakumari, India, for optimal sizing scheme. The results 

showed that the TLBO, with LCE of 0.2104 $/kWh and LPSP of 0.0498, provided the best hybrid system 

configuration and converged more quickly than the other algorithms. Additionally, Fu et.al [18] developed an 

improved PSO to adjust the PSO parameters based on the differential evolutionary algorithm. All simulations were 

performed in MATLAB, and the results showed that the PSO method required 400kWh of battery capacity for a 
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system with 100kW PV and 100kW wind generation, but this improved technique only requires 330kWh. 

Generally, most of the recent optimization techniques for hybrid RE systems are based on improving an existing 

algorithm with very little improvement in some cases which might not have any economic impact. 

Nigeria, on the other hand, is one country which has an abundance of underutilized RES. The country lies between 

3° and 14° east of Greenwich and 4° and 14° north of the equator[20].  The year-round climate is favourable for 

wind and solar energy generation which offers the best solutions for meeting current and future power system 

developments in rural communities [21]. However, hydropower is the only RES currently being used and 

connected to the grid [22]. Based on the report from the International Energy Agency, electricity is accessible to 

only 10% of rural communities and approximately 30% of Nigeria's total population do not have access to 

electricity [23]. Inadequate infrastructure and insufficient pricing structure to support the economics of power 

generation, transmission, and distribution are the main obstacles to Nigeria’s safe and efficient electricity supply. 

The government has planned to include RES in its future power generation options. According to Nigeria's 

renewable energy master plan, renewable electricity generation is expected to reach 36% by 2030. Few studies 

carried out a feasibility study on the application of HRES for some locations in Nigeria. Olatomiwa et al. [24] used 

HOMER to analyse various power generation configurations in different locations across Nigeria's six geo-

political zones.The PV/diesel/battery scheme was the best, with the lowest cost, less fuel consumption and low 

CO2 emission. Babatunde et al. [25] presented an optimal HRES for rural healthcare in Nigeria. Across all locations 

studied, the PV/diesel/battery system appears to be the best option, with the NPC and renewable fraction ranging 

from $12,779 to $13,646 and 70% to 80%, respectively. The LCE is within the range of $0.507-0.542 /kWh. Most 

of the research for off-grid renewable energy systems concentrates on PV/diesel only system. While previous 

research has identified good locations for wind power generation in Nigeria [26], HRES that take advantage of 

both solar and wind power have received comparatively little attention. Also, little or no research has been done 

to develop an HRES comprising PV and wind for a healthcare facility in the northwestern region of Nigeria, an 

area known for its high solar and wind energy resources.  

Recently, Salawuddeen et al. [27] developed a novel smell agent optimization (SAO) for engineering problems 

related to the HRES. The SAO can provide a cost-effective scheme as compared to other algorithms. In this 

study, two modified versions of the SAO were developed, and the results  were compared with the conventional 

SAO. The two modified versions are Quasi-oppositional based learning (QOBL-SAO) and the levy flight quasi-

oppositional-based learning (LFQOBL-SAO). The techno-economic design of a HRES for power generation 
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considering a healthcare facility in Jibia, Nigeria, will be investigated. The aforementioned location was chosen 

because of its high wind and solar energy potentials.  

The outline for the paper is as follows: Section 1 introduces the research while Section 2 presents the 

methodology employed in achieving the research objectives. In Section 3, the implementation of the optimum 

HRES based on the QOBL-SAO and LFQOBL-SAO are presented. Subsequently, Section 4 presents the 

evaluation criteria for the QOBL-SAO and LFQOBL-SAO. Section 5 shows the analysis of the benchmarked 

functions, Section 6 is the results and analysis section  and  Section 7 concludes the paper. 

2.0 Methodology  

This section describes the study's methodology. The wind, solar and temperature profiles of a given location are 

required to evaluate which energy system option is technically and economically viable. In order to calculate the 

appropriate size of the energy system and its cost implications, the average power demand of the community is 

also required.  

2.1 Site location and the load profile 

The healthcare centre under study, was established in 1997. It is situated in Jibia, Nigeria with coordinates 

13.0931°N, 7.2248°E. It’s electrical consumption comprises a number of components including heating, air 

conditioning, biomedical equipment and kitchen utensils. Figure 1 shows the average daily load profile of the 

centre. The data was obtained from Nigeria's power holding company and is based on the location's average annual 

energy consumption over a three-year period (see Figure 2) [28]. Due to the high energy demand of the cooling 

units, the summer seasons have the highest electricity demand. It can be observed that, on average, the highest 

load consumption is around 22 kW at 19:00 hrs. This is due to the hospital's regular activities in the clinical and 

administrative  blocks. 
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Figure 1: The mean daily load profile of the Hospital. 

 

            Figure 2: Three-year load profile of the healthcare centre (2015-2018). 

2.2 Wind and solar resource assessment  

The monthly solar irradiation of Jibia town, where the health care facility was located, is depicted in Figure 3 [29]. 

The months with the highest and lowest mean solar radiation values are March (312 W/m2) and August (235 

W/m2), respectively. The ambient temperature of the location under study is critical in determining the actual 

power production of the solar PV panels. Figure 4 depicts the monthly average of Jibia's ambient temperature. In 

addition, the highest and lowest ambient temperatures appear in May and August, respectively. It can be inferred 

that ambient temperature does have a negative impact on solar PV efficiency. Jibia has a mean wind speed of 6.3 

m/s, which is considered sufficient for power generation. Throughout the year, the average monthly wind speed 
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ranges between 4-9 m/s. The average wind speed in August is 4.65 m/s, while the average wind speed in January 

is 8.5 m/s.. The wind speed profile for Jibia is shown in Figure 5. 

 

                                       Figure 3: Jibia's monthly solar radiation pattern   

                

                                         Figure 4: Monthly ambient temperature for Jibia. 

     
                                   Figure 5: Jibia’s Wind Speed Data 
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2.2 Formulation of the PV/Wind/Battery Scheme 

In this study, the HRES comprises a battery storage system, wind turbine generator and a PV. Figure 6 is a 

schematic diagram of the HRES, and Table 1 shows the technical specifications of the components. 

 

                                       Figure 6: Schematic diagram of the HRES for Jibia 

 

    Table 1: Components of the hybrid renewable energy schemes and their specifications 

Component Parameters Specifications 
Wind Turbine Capital cost $1250/kW 

Lifetime 15 years 
Replacement cost $1250/kW 

Cut-out speed 25 m/s 
Hub height 20 m 

Operation and maintenance cost $50/year 
Model Venturi 1 kW  

Cut-in speed 2 m/s 
PV Capital cost $240/kW 

PV efficiency 15.7% 
Model Generic flat plate PV  

Replacement cost $240/kW 
Lifetime 25 years 

Operation and maintenance cost $15/year 
Converter Capital cost $2000 

Lifetime 15 years 
Replacement cost $2000 

Operation and maintenance cost of the converter $15/year 
Batteries Nominal capacity 2.4 kWh 

Model Lead acid 
Battery depth of discharge 0.8 
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Capital cost $350 
Replacement cost $350 
Nominal voltage 12V 

Operating and maintenance cost $25/year 

2.2.1  PV array 

The performance of the HRES is evaluated using a recursive procedure that terminates when the optimal 

configuration is achieved. The area of the PV module is determined using Equation (1)[30]: 

𝐴!" =
#!

$"($%)×&'%×&($""×&)*+%×'"),
                                                                                                                       (1) 

where 𝐴!" is the PV modules area required to meet the load demand, 𝐸(= Estimated daily energy demand, 𝐻)(+,)= 

mean global solar radiation of the area, 𝜂.,= PV efficiency, 𝜂/+))=Battery efficiency, 𝜂012,= Converter efficiency 

and 𝐴)03=Temperature correction factor. 

The estimated solar energy required for the load demand can be determined by calculating the amount of PV 

module required using Equation (2): 

 𝜂., =
!-.
4-

                                                                                                                                                             (2) 

where  𝑆!=peak power of the chosen PV module based on the manufacturer's dataset, 𝑃!" is the PV module’s 

output power. 

2.2.2 Wind turbine power 

The instantaneous wind speed, v,  as a function of the available wind generator output power is described in 

Equation (3)[31]: 

𝑃5627 =

⎩
⎪
⎨

⎪
⎧

0																												𝑣 < 𝑣06
𝑝8 1

,/9,)0
/

,1/9,)0
/ 2 , 	 𝑣06 < 𝑣 < 𝑣8

								𝑝8																													𝑣8 < 𝑣 < 𝑣01
0																														𝑣 > 𝑣01

																																																																																																																(3) 

	

where 𝑣06 is the cut-in wind speed, 𝑃8 is the rated electrical power, 𝑣01 is the cut-out wind speed and 𝑣8 is the rated 

wind speed. The following equation (4) can be used to determine the size of the wind turbines[31]: 

𝑁5) =
!!	×4;
!2"

                                                                                                                                                          (4) 
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where: SF is the safety factor, usually 120%, 𝑃5)	𝑖𝑠	𝑡ℎ𝑒	output power of the wind and 𝑃( is the consumers load 

demand. 

 

2.2.3 Battery bank model 

The battery stores energy and balance the electrical power between the supply and the demand [32][33]. The 

battery system's required Ampere-hour (Ah) is calculated  using Equation (5) [34]. 

𝑀!"## =
𝐴𝑑	×𝐸𝑙

𝜂𝑏𝑎𝑡𝑡	×	𝜂𝑖𝑛𝑣×𝐷𝑜𝐷×𝑉𝑆
                                                                                                                    (5) 

where 𝐴𝑑 denotes the autonomous days of the battery, 𝐸𝑙 is the unceasing energy that never has to be recharged 

by a power source, 𝐷𝑜𝐷 stands for the maximum allowable depth of discharge and 𝑉4 is the voltage of the battery. 

Equation 6 can be used to determine the number of batteries required by the system. 

𝜂/+)) =
<($""
<30+

                                                                                                                                                           (6) 

where Msin is the battery’s storage capacity in Ah.  

2.2.3.1 The Battery state of charge 

The battery’s current state of charge is expressed as SOC(t), where t is the battery’s charge level at a specified 

time t. It is constrained by SOCmin ≤SOC(t) ≤ SOCmax, where SOCmin  and SOCmax are the minimum and maximum 

charge level of the battery storage system respectively. It depends on the DoD; i.e. SOCmin = (1-DoD). CB. At the 

peak charge, SOC(t) = SOCmax – CB [34]. CB is the battery’s norminal capacity. 

The battery’s average energy capacity can be calculated using Equations (7) and (8) [35]. 

𝑃/+)) = 𝐸= − 𝑃(1+7                                                                                                                                                     (7) 

𝐴# = 𝐴#> − ∑
!($""
"($""

)?
)@                                                                                                                                             (8) 

where: 𝑃/+))= Power flow in and out of the battery, 𝐸== Generated power from PV and Wind,𝑃(1+7= Load power, 

𝐴# 	= average energy capacity, 𝐴#> = initial state of the battery and 𝑉/+)) = Battery voltage. 

2.3  The Smell Agent Optimization  

The SAO belongs to the class of swarm intelligence paradigm [27]. The optimization procedures of SAO are 

inspired by the conception that an agent has the aptitude to trail part of a smell molecule using the chemosensory 
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receptors of the olfactory organ. This aptitude is modelled into three distinctive phases: sniffing, random and 

trailing modes. The idea that the smell molecules must spread in the direction of the agent according to the 

hydrostatic gas theory inspired the sniffing mode [36]. Detail description of the three phases of the SAO is 

highlighted as follows: 

2.3.1 Sniffing mode 

The SAO heavily relies on smell molecules evaporating toward an agent's fixed location. This evaporation is 

initiated by randomly creating an initial population of smell molecules. Assuming that initialization of population 

(nPop) is the number of nominee solutions of smell molecules, and the problem dimension (nVar) denotes the 

control variables in the optimization hyperspace, then the current population of smell molecules can be formulated 

using Equation (9). 

𝑛6
()) =

⎣
⎢
⎢
⎢
⎢
⎡

𝑛(@,@) ⋯ 𝑛(@,B) 𝑛(@,2"+89@) 𝑛(@,2"+8)
𝑛(?,@) ⋯ 𝑛(?,B) ⋯ 𝑛(?,2"+8)
⋯ ⋯ 𝑛(6,B) ⋯ ⋯
⋮ ⋮ ⋮ ⋮ ⋮

𝑛(2!1.9@,@) ⋯ 𝑛(2!1.9@,B) ⋯ 𝑛(2!1.9@,2"+8)
𝑛(2!1.,@) ⋯ 𝑛(2!1.,B) 𝑛(2!1.,2"+89@) 𝑛(2!1.,2"+8) ⎦

⎥
⎥
⎥
⎥
⎤

                                     (9) 

 

where, 𝑛6
()) denote a set of current solutions. This position vector can be generated using the lower and upper 

boundary conditions defined for the control variable in Equation (10):  

𝑛6,B
()) = 𝑟@ × M𝑢𝑏B − 𝑙𝑏BP + 𝑙𝑏B                                 (10) 

where r1 is a random integer produced within the range [0, 1] and ub and lb are the upper and lower bounds for 

the control variables, respectively. The nominee solution (nPop) is subjectively assigned since there is no exact 

rule available for its estimation. The smell molecules diffused through Brownian motion towards the agent. For 

this diffusion, each molecule is assigned a velocity as in Equation (11) 

𝑤.
(#) =

⎣
⎢
⎢
⎢
⎢
⎡

𝑤(1,1) ⋯ 𝑤(1,3) 𝑤(1,45"671) 𝑤(1,45"6)
𝑤(8,1) ⋯ 𝑤(8,3) ⋯ 𝑤(8,45"6)
⋯ ⋯ 𝑤(.,3) ⋯ ⋯
⋮ ⋮ ⋮ ⋮ ⋮

𝑤(49:;71,1) ⋯ 𝑤(49:;71,3) ⋯ 𝑤(49:;71,45"6)
𝑤(49:;,1) ⋯ 𝑤(49:;,3) 𝑤(49:;,45"671) 𝑤(49:;,45"6) ⎦

⎥
⎥
⎥
⎥
⎤

                          (11)

    

The molecules employ the velocity vector in Equation (11) to update their initial position, as depicted in Equation 

(12) 
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𝑛6
()C@) = 𝑛6

()) +𝑤6
())                                                        (12) 

Each molecule updates its location in the hyperspace according to Equation (13) continuously  until it reaches the 

agent's static position: 

𝑛6
()C@) = 𝑛6

()) + 𝑛6
()C@)                                                 (13) 

where 𝑤6
()C@) is the velocity update equation given by Equation (14) 

𝑤6
()C@) = 𝑤6

()) + 𝑟? ×S
DEF
G

                                                            (14) 

where k denotes the Boltzmann’s constant, also refers to as the smell constant, m and T stands for the mass and 

temperature of smell molecules, respectively, while r2 is a random value that penalizes the impact of the molecular 

characteristics on the smell velocity. 

The updated molecules position given in Equation (15), represents the sniffing mode of the SAO algorithm. The 

fitness of this mode is evaluated, and the molecules with the best nominee solution is elected as the agent donated 

by  𝑛+=H2)
()) .  In the same manner, the molecule with the worst sniffing fitness is determined, and this molecule is 

represented as		𝑛518I)
())  . 

2.3.2 Trailing Mode 

All the molecules in Equation (9) have a unique chance of becoming a smelling agent, depending on their initial 

positions. While searching the hyperspace, the assemblage of smell molecules may become higher than the current 

nominee position of the agent. When this happens, the agent adopts this new position using its position (𝑛+=H2)
()) ) 

and the position of molecules with the worst fitness (𝑛518I)
()) ) is derived from the sniffing mode. This movement 

is achieved using Equation (15): 

𝑛6
()C@) = 𝑛6

()) + 𝑟D × 𝑜𝑙𝑓 × (𝑛+=H2)
()) − 𝑛6

())) − 𝑟J × 𝑜𝑙𝑓 × (𝑛518I)
()) − 𝑛6

()))                                                         (15) 

where 𝑟D  and		𝑟J  are numbers generated randomly in the range of [0,1] to penalize the effect of olfaction capacity  

(𝑜𝑙𝑓)  on  (𝑛+=H2)
()) )  and (𝑛518I)

()) )  respectively. It is important to note that the 𝑛6
())  in Equation (15)  is the position 

of the updated molecule obtained from the sniffing mode. Realistically, the agent should be able to sniff the smell 

molecules and intuitively follow these molecules confidentially until it is identified. This usually bemuses the 
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agent due to variation in mass and temperature of smell molecules and variation in the olf. To mitigate this 

limitation, the agent adopts a random search strategy called the random mode. 

2.3.3 The Random mode 

If the trailing mode fails to achieve the global solution, the agent will use the random mode to escape being caught 

in local minima. The random mode is implemented using Equation (16). 

𝑛6
()C@) = 𝑛6

()) + 𝑟K × 𝑠𝑡𝑒𝑝                                                                                          (16) 

 

where step  is a constant step size assigned arbitrarily,  𝑟K denotes the random number within the range (0,1] and 

𝑛6
())	is the molecule's position obtained from trailing mode. The influence of the random mode becomes significant 

if the sniffing and the trailing modes fail to attain global fitness. If this happens, the agent takes a constant step 

movement in the hyperspace using the random mode. Three major assumptions necessary to implement the SAO 

are given in the literature [27]. Figure 7 is a flowchart of the standard SAO. The process starts with the 

initialization and then the sniffing mode and gradually switches to other modes based on comparison and updating 

the fitness, agents and worst molecules until the optimal solution is found. The SAO program is created and 

simulated in MATLAB/SIMULINK. 
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Figure 7: SAO (FE=number of function evaluations, SM = smell molecules, Itr=Iteration, 
Itrmax=maximum iteration) 

2.4 Optimal sizing of the HRES using the SAO 

Three HRESs, i.e. wind/battery, PV/wind/battery, and PV/battery scheme, were taken into account in this study, 

and the two novel algorithms (i.e QOBL-SAO and the LFQOBL-SAO) will be utilized to find the best possible 

mix of RES that meets the energy demand. The following are the objective system formulation and constraints 

utilized in the design of HRES. 
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2.4.1 Objective system formulation 

The goal of this study is to minimize the Excess Energy (EE), LPSP and LCE generated through a tri-objective 

optimization problem. The individual objective functions can be expressed in Equations (17)-(19): 

𝐿𝐶𝐸 = L4_"*"$6
#"*"$6

                                                                                                                                                      (17) 

𝐿𝑃𝑆𝑃 =
∑ !!*$79!'%9!20+79!89:;
<
9

∑ !!*$7<
9

                                                                                                                        (18) 

𝐸𝐸 = ∑ !!*$79!'%9!20+7
∑ !!*$7<
9

F
N                                                                                                                                       (19) 

where 𝐶𝐴_𝑡𝑜𝑡	 represents the total cost of the HRES, 𝐸𝑡𝑜𝑡𝑎𝑙 represents the total cost of energy generation, 	𝑃4>L; 

shows the amount of power discharged by the battery storage system and T represents the total time. The equations 

for determining 𝑃𝑝𝑣		and	𝑃𝑤𝑖𝑛𝑑	 can be found in the literature[37][38]. 

 The total annualized cost (TAC) given in Equation (20) must also be minimized to achieve the tri-objective. 

𝑇𝐴𝐶 = ∑ 𝐴𝑀𝐶 +∑ 𝐴𝐶𝐶O
6P@

O
6P@                                                                                                                              (20) 

where N stands for the overall number of hours considered, ACC for annualized capital cost, and AMC for the 

annual maintenance. The AMC is calculated using Equation (21):  

𝐴𝑀𝐶 = 𝑛.,𝑃., +	𝑛5)𝑃5)					                                                                                                                                (21) 

The ACC, on the other hand, is calculated using Equation (22) as follows:  

𝐴𝐶𝐶 = 𝐶𝐹𝑅	 ×	 `𝑛.,𝐶., + 𝑛5)𝐶5) + 𝑛Q+)𝐶Q+) + 𝑛R2,𝐶R2,a                                                                              (22) 

where npv , nwt, nBat , nInv represents the number of PV, wind turbine, batteries and converter respectively, while 

Cpv, Cwt, CBat and CInv denote the unit costs of the PV, wind turbine, batteries and converter, respectively. CRF is 

the Capital Recovery Factor. 

In this study, it is intended to design three schemes for a healthcare facility at Jibia, i.e. Wind/Battery, 

PV/Wind/Battery and PV/Battery. To obtain the AMC for the PV/battery systems (AMCPV), equations (21) and 

(22) are modified to become equation (23): 

𝐴𝑀𝐶., =	𝑛.,𝑃.,                                                                                                                                                   (23) 
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whereas the total capital cost for the PV/battery (ACCPV) is calculated  using Equation (24):  

𝐴𝐶𝐶!" = 𝐶𝐹𝑅	 ×	`𝑛.,𝐶., + 𝑛Q+)𝐶Q+) + 𝑛R2,𝐶R2,a                                                                                                 (24) 

Similarly, the AMC  for the wind/battery system (AMCwt) is shown in equation (25):  

𝐴𝑀𝐶5) =	𝑛5)𝑃5)                                                                                                              (25)                                                                                                                                                   
        

Whereas the total capital cost for the wind/battery system (ACCwt) is calculated using Equation (26)  

𝐴𝐶𝐶 = 𝐶𝐹𝑅	 ×	 [𝑛5)𝐶5) + 𝑛Q+)𝐶Q+) + 𝑛R2,𝐶R2,]                                                                                               (26)                                                                               

The number of each hybrid component is chosen as a decision variable in all three configurations based on the 

boundary constraints of Equations (27)-(29):  

𝑛.,9G+S ≤ 𝑛., ≤ 𝑛.,9G62                                                                                                                                    (27) 

𝑛5)9G+S ≤ 𝑛5) ≤ 𝑛5)9G62                                                                                                                                    (28) 

𝑛Q+)9G+S ≤ 𝑛Q+) ≤ 𝑛Q+)9G62                                                                                                                                (29) 

where	𝑛.,9G+S and 𝑛.,9G62			are the maximum and minimum number of PV panels. Similary the minimum and 

maximum number of wind turbines and batteries is given in Equations (28) and (29). For PV/Wind/Battery and the 

other two configurations, the number of inverters is set to four and three, respectively.  

To achieve a reliable power supply, the system must satisfy the reliability constraint, which is given by Equation 

(30): 

  𝐿𝑃𝑆𝑃 ≤ 𝛽𝑔                                                                                                                                                           (30)  

where 𝛽𝑔  is the system tolerance limit reliability. This strategy ensures that the battery is never completely depleted 

or overcharged. Equation (31) expresses the constraints.  

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥                                                                                                                                        (31)  

3.0 Implementation of the optimum HRES based on the SAO 

The steps involved in implementing the SAO is according to the flowchart in Figure 7, as follows:  

1)  The initial velocity (V), nPop, nVar, T, m, olf and the Itr parameters are defined. The problem 

dimension, in this case, are selected as 3, 2, and 1 depending on the hybrid configurations. 3 represents 

PV/wind/battery system, while 2 and 1 represent PV/battery and wind/battery systems, respectively. 
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2) Randomly generating an initial solution for the hybrid systems decision variables and allocating initial 

velocity to each solution.   

3) Evaluating the fitness of each solution and determining the agent  

4) Updating the velocity using the sniffing mode velocity.  

5)  Evaluating the fitness of the sniffing mode and updating the agent's position.  
 

6) Determining the position of the molecules with the worst sniffing fitness and performing the trailing 

mode behavior. 

7) Evaluating the fitness of the trailing mode described in step 6 above   
 

8) Comparing the fitness of the trailing mode with the fitness obtained during the sniffing 

mode. 

9) If the trailing mode fitness was better than that of the sniffing mode, then terminate the 

program. 

The parameters of the QOBL-SAO and LFQOBL-SAO used to develop the HRES  is given in Table 2. 

 

Table 2: Simulation Parameters for the SAO 

 

3.1 Improvements of the SAO algorithms 

In this study, two improved versions of the SAO have been developed, i.e. the Quasi oppositional based learning 

SAO (QOBL-SAO) and the levy flight-SAO (LFQOBL-SAO) and their results compared to the standard  SAO. 

The QOBL-SAO utilizes quasi-opposition-based initialization and generation jumping [39]. In this case, by using 

the opposite points, improved initial conditions are obtained, referred to as the opposite population , even when 

no prior knowledge about the solutions exists. In reality, the QOBL-SAO tries to create the opposite of the initial 

population of smell agents in order to expand the parameters in the search space. To implement the QOBL-SAO, 

a function is created in MATLAB with the QOBL-SAO pseudocode, as shown in Algorithm 1. Out of the three 

S/No  Parameter  Symbol  Value  
1  Number of Population  nPop  50  
2  Number of the Decision variable  nVar  3  
3  Temperature  T  3  
4  Mass  m  2.4  
5  Step Length   SL  2.5  
6  Boltzmann’s Constant  k  1.38x10-23  
7  Maximum Iteration  Itr  100  
8  Lower Bound  lb  [0,0,0]  
9  Upper Bound  ub  [100, 100, 50]  
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characteristics of the SAO, the random mode has a weak concept. The random mode just adds a random number 

to the initial population, and it does not help the algorithm converges faster. To overcome this problem, the 

LFQOBL-SAO is introduced to improve the weak nature of the random mode. The LFQOBL-SAO improves the 

performance and the search space[40]. Care has to be taken in implementing the LFQOBL-SAO because if the 

step is outsized, the improved solution could definitely exceed the true solution; However, if the step size is small, 

the convergence rate may decrease, resulting in an underperformance of the algorithm. In the LFQOBL-SAO 

algorithm, the random code is replaced by the levy flight function. The LFQOBL-SAO algorithm is shown in 

Algorithm 2. 

ALGORITHM 1:PSEUDOCODE FOR THE QOBL-SAO 
 Inputs: N, d, preliminary population (x), L, U  

 Output:  
1 for 𝑖 = 1:𝑁 
2  for 𝑗 = 1: 𝑑 
3   𝑥6,B1 = 𝐿B +𝑈B − 𝑥6,B % creating the reverse of the present population 
4   𝐷6,B = (𝐿B +𝑈B)/2 
5   if (𝑥6,B < 𝐷6,B) % generating quasi opposite of 𝑥 
6    𝑥6,B

T1 = 𝐷6,B + (𝑥6,B1 −𝐷6,B) × 𝑟𝑎𝑛𝑑 
7   else 
8    𝑥6,B

T1 = 𝐷6,B + (𝐷6,B − 𝑥6,B1 ) × 𝑟𝑎𝑛𝑑 
9   end 
10  end  
11 End 

[ N= number of molecules, d= variables dimension, L and U are the settings for the minimum and maximum value 
of the initial population] 
 
ALGORITHM 2: PSEUDOCODE OF THE LFQOBL-SAO 
 Input: min 𝑓(𝑥),  𝜏, β	𝑎𝑛𝑑 𝜎U 
 Output:  
1 Select the population 𝑥6 to modify the position. 
2 Compute  update (from Equation 32) 
3 while  (𝜏 <∈)   do 
4  Compute step_size (from equation 33) 
5  Generate New Solution 𝑥′6 (from equation 34) 
6  Compute 𝑓(𝑥′6) 
7   if 𝑓(𝑥6) > 𝑓(𝑥6′) then  
8   𝑥6 = 𝑥6V 
9  end if 
10 end while 
[ τ= is the step size]	 
 
Equations (32-34) are used to compute the respective parameters of the LFQOBL-SAO pseudocode. 

 

𝜎U = u
WXY(=>? )Z(@C[)

?(
>@A
? )[Z(AB>? )

v                                                                                                                       (32) 

Step_size (τ)= s(τ) x 0.01;                                                                                                              (33) 

hs
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𝑥6V(𝜏 + 1) = 𝑥6V(𝜏) + Step_size (τ) x U(0,1)                                                                                  (34) 

4.0 The evaluation criteria for the QOBL-SAO and LFQOBL-SAO 

In this section,  improved versions of the SAO, i.e. the QOBL-SAO and the LFQOBL-SAO were evaluated using 

certain CEC benchmark functions. Before any new optimization approach is applied, some benchmark functions 

can be utilized to evaluate its performance. In this study, 10 of these functions with diverse features were chosen 

and categorized into three as follow;  unimodal and separable functions (USF), multimodal and non-separable 

functions (NS), unimodal and nonseparable functions (NSF). One global optimum exists for unimodal functions, 

which aids in evaluating their exploitation potential of the SAO. Multimodal functions often have more than one 

local optimal point, which is useful for analyzing SAO's exploration potential. There is a single global optimum 

for unimodal functions, which is important for assessing the exploitation potential of the QOBL-SAO and 

LFQOBL-SAO. It is easier to investigate the exploratory potential of modified version of the SAO when dealing 

with multimodal functions because they have two or more local optimal points. These clusters are shown in further 

detail in Tables 3, 4, and 5. Table 3 provides benchmark functions in two dimensions from (A1) to (A5), Table 4 

is the benchmark function in five dimension, i.e. (A6) and Table 5 shows the benchmark functions in thirty 

dimensions i.e  (A7) to (A10) [41][42]. 

Table 3: The benchmark test functions for two dimensions 

 

Table 4: The benchmark functions for five dimensions 

 
 

 
 

FNo Name D Formula C Range Fmin 
A1 Bohachevsky1 2 𝑓(𝑥) = 2𝑥?? + 𝑥@? − 0.3cos(3𝜋𝑥@)

− 0.4cos(4𝜋𝑥?) + 0.7 
NS, 
NSF 

[-100, 100] 0 

A2 Bukin F6 2 
𝑓(𝑥) = 0.01|𝑥@ + 10| + 100S|𝑥? − 0.01𝑥@?| 

NS, 
NSF 

[-15, -3; -
3,3] 

0 

A3 Matyas 2 𝑓(𝑥) = −0.48𝑥@𝑥? + 0.26(𝑥@? + 𝑥??) NS, 
USF 

[-10,10] 0 

A4 Schaffer 2 
𝑓(𝑥) =�{[sin50(𝑥6? + 𝑥6C@? )N.@]?

DN

6P@
+ 1}(𝑥6? + 𝑥6C@? )N.?K 

NS, 
NSF 

[-100, 100] 0 

A5 Styblinski-
Tang 

2 
𝑓(𝑥) =

1
2�

(5𝑥6 + 𝑥6J − 16𝑥6?)
2

6P@

 
NS, 
NSF 

[-5, 5] -78.332 

FNo Name D Formula C Range Fmin 
A6 Michalewicz 5 

𝑓(𝑥) = −�(sin(𝑖𝑥6?/𝜋)
?

6P@

)?Nsin(𝑥6) 
NS, 
NSF 

[0,	𝜋] -
4.6877 
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Table 5: The benchmark test functions for Thirty-dimensions 
 

 

5.0 Analysis of Benchmark Functions Results 

The accuracy of the LFQOBL-SAO and QOBL-SAO to the benchmark functions is covered in the first part, and 

the convergence analysis of the techniques is covered in the subsequent section 

5.1 Solution Accuracy Study for CEC benchmarked functions 

The statistical outcomes produced for each algorithm across 30 separate runs are reported based on the tests 

performed on the benchmark functions in Tables 3, 4 and 5. Table 6 displays the results for the 2D benchmark 

functions. Table 7 display the results for the 5D  benchmark function, while Table 8 show the results for the 30D 

benchmark functions. Each algorithm's best, average, standard deviation and rank are displayed for each 

benchmark function. The LFQOBL-SAO and QOBL-SAO’s performance is evaluated using the best values of 

the benchmark functions. The mean value or standard deviation is used to break ties when more than one algorithm 

yields the best result. If all g algorithms get the same best result in any of the benchmark functions, the top-

performing algorithm after g is ranked g+1. The results from Tables 6,7 and 8 imply that the novel algorithms, 

i.e.  QOBL-SAO and LFQOBL-SAO, are as good or better than the standard  SAO algorithm. The convergence 

plots for the novel algorithms and the SAO are shown in Figure 8, based on some selected functions. The results 

shows that either of the the novel algorithms has lower fitness value than the SAO in all the functions considered. 

 

FNo Name D Formula C Range Fmin 

A7 Ackley 30 

𝑓(𝑥) = −20exp[−
1
5
�
1
𝑛�𝑥6? +

]

6P@

20

+ −exp[
1
𝑛�cos(2𝜋𝑥6

]

6P@

)] + 𝑒 

NS, 
NSF 

[−32,32] 0 

A8 Ellipsoid 30 
𝑓(𝑥) =�𝑥6?

2

6P@

. 𝑖 
NS, 
USF 

[-5.12,5.12] 0 

A9 Rastrigin 30 
𝑓(𝑥) =�[𝑥6? − 10 cos(2𝜋𝑥6)]

2

6P@

+ 10𝑛 
NS, 
NSF 

[−5.12,5.12] 0 

A10 Salomon 30 

𝑓(𝑥) = +0.1��𝑥6?
DN

6P@

+ 1 − cos(2𝜋��𝑥6?
DN

6P@

) 

NS, 
NSF 

[ −100,100] 0 
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Table 6: Comparison results for 5 2D Benchmark functions 

Functions Performance metric SAO QOBL-SAO LFQOBL-SAO 
A1 Average 6.45527 0.0012285 0.0107181 

Best 0.05489 2.61 x 10-13 1.67064 x 10-8 
Standard deviation 44.5398 0.008686 0.0587 

Rank 3 1 2 
A2 Average 5.1049 3.6529 2.2018 

Best 5.097 3.6126 2.130956 
Standard deviation 0.0577 0.24396 0.38817 

Rank 3 2 1 
A3 Average 0.0030462 3.62 x 10-12 7.6385 

Best 7.416 x 10-6 5.219 x 10-16 1.595 x 10-12 
Standard deviation 0.0212 2.529 0.0041837 

Rank 3 1 2 
A4 Average 3.54 x 10-4 7.4066 x 10-7 2.58316 x 10-4 

Best 4.0118 x 10-12 1.85 x 10-14 6.4192 x 10-11 
Standard deviation 0.00252744 5.23 x 10-96 0.001414 

Rank 2 1 3 
A5 Average -78.1365 -78.33 -78.1249 

Best -78.3318 -78.1166 -78.3323 
Standard deviation 1.37988 1.5239 1.1352 

Rank 2 3 1 
 

 
Table 7:  Results in 5D 

 
Functions Performance metric SAO QOBL-SAO LFQOBL-SAO 

A6 Average -4.9997 -4.9997 -4.9988 
Best -4.999 -4.999 -4.999 

Standard deviation 0.00142 0.001598 0.00613783 
Rank 1 2 3 

 

Table 8: Comparison of 30D Benchmark Functions 

 

Functions  SAO QOBL-SAO LFQOBL-SAO 
A7 Average 0.127655 0.0058 0.0038 

Best 0.014448 9.28 x 10-8 5.19 x 10-5 
Standard deviation 0.5738 0.00474 0.02049 

Rank 3 1 2 
A8 Average 4.4760 1.7887 x 10-5 1.2366 x 10-5 

Best 2.6697 x 10-12 1.6423 x 10-18 1.198 x 10-12 
Standard deviation 0.003165 1.264 x 10-6 6.7734 x 10-5 

Rank 3 1 2 
A9 Average 6.0433 x 10-4 1.065 x 10-13 3.364 x 10-9 

Best 0.05729 2.716 x 10-5 0.0409 
Standard deviation 0.3027 1.92 x 10-4 0.22397 

Rank 3 1 2 
A10 Average 0.013523 1.05453 x 10-7 6.157 x 10-6 

Best 0.04978 4.88 x 10-5 0.00939 
Standard deviation 0.10179 3.442 x 10-4 0.0512 

Rank 3 1 2 
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Figure 8: Convergence plots (Minimum fitness values) for the SAO, QOBL-SAO and LFQOBL-SAO based on 
some selected CEC benchmarked functions a) A10 b) A9 c) A8 d) A6  e) A7  f) A5 g) A4  h) A3 i) A2 and j) A1 
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5.2 Solution Accuracy Study for CEC2020 Real world constrained optimization 

competition 

To better understand the robustness of the proposed LFQOBL-SAO and QOBL-SAO, they are applied to solve  

the CEC2020 real world constrained optimization competition problems and their results are compared to top 

performing algorithms such as the IUDE, MAgES, and iLSHADε. The selected optimization problems of the 

CEC2020, are described below 

5.2.1 Process synthesis problem: 

This problem contains no linear variables, either real or binary. The goal of this problem is to find the minimum 

value of the following function using Equation (35): 

𝑓(𝑚�) = (1 −𝑚J)? + (1 −𝑚K)? + (1 −𝑚^)? − ln(1 +𝑚_) + (1 −𝑚@)? + (2 −𝑚?)? + (3 −𝑚D)?           (35) 

subject to certain constraints and bounds[43]. 

5.2.2 Weight minimization of a speed reducer: 

In this case, the creation of a speed reducer for a small aircraft engine is involved. The optimization problem takes 

the form of equation (36): 

𝑓(𝑚)����� = 0.7854𝑚?
?𝑚@(14.9334𝑚D − 43.0934 + 3.333333𝑚D

?) + 0.7854(𝑚K𝑚_
? +𝑚J𝑚^

?) − 1.508𝑚@(𝑚_
? +

𝑚^
?) + 7.477(𝑚_

D +𝑚^
D)                                                                                                                                        (36) 

subject to certain constraints and bounds[44] 

5.2.3 Tension/compression spring design: 

The weight of a tension or compression spring must be optimized as the main goal of this problem. The definition 

of the problem is provided in Equation (37): 

𝑓(𝑚)����� = 𝑚@
? +𝑚?(2 +𝑚D)                                                                                                                              (37) 

subject to certain constraints and bounds [45]. 
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5.2.4 Three-bar trust design problem: 

This optimization problem, which has an accidental space constraint, is taken from civil engineering, with the 

goal of reducing the weight of the bar structures. The stress constraints of each bar serve as the basis for this 

problem's constraints. Three non-linear constraints and a linear objective function characterize the resulting 

problem. Its mathematical description is given in Equation (38): 

𝑓(𝑚�) = (𝑚? + 2√2𝑚@)                                                                                                                                  (38) 

subject to certain constraints and bounds[46] 

5.2.5 Design of gear train: 

The main goal of this problem is to reduce the gear ratio needed to arrange the compound gear train. The ratio of 

the angular velocities of the output and input shafts is used to describe the gear train ratio. The problem aims to 

minimize the following function presented in Equation (39): 

𝑓(𝑥̅) = � @
^.`D@

− GAG?
G/GC

�                                                                                                                                 (39) 

Subject to certain constraints and bounds[47] 

Table 9 compared the performance of the LFQOBL-SAO, QOBL-SAO and SAO with some top performing 

CECE2020 algorithms. It is obvious the LFQOBL-SAO and QOBL-SAO are capable of solving real time 

engineering problems. When compared with the best known feasible objective function value in the literature 

[48], the results of the the LFQOBL-SAO and QOBL-SAO are very much closer to the possible solutions and are 

as good as the IUDE, 𝜖MAgES, and iLSHADε algorithms[48]. 

6.0 Results Obtained Using the SAO and its modified versions 

The results of the three scenarios, wind/battery, PV/wind/battery, and PV/battery, evaluated using the SAO, 

QOBL-SAO, and LFQOBL-SAO, are presented and compared in this section. For each configuration, a total of 

thirty independent runs were conducted.  
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Table 9: Comparison of CEC2020 Benchmark Functions 

Functions Performance metric SAO QOBL-SAO LFQOBL-SAO IUDE 𝜖MAgES iLSHADε 
Process sysnthesis 

problem 
 
 

Average 1.43 1.9698 1.8919 2.00 1.99 2.00 
Best 1.59 2.0184 2.00087 2.00  2.00 2.00 
worst 1.29 1.611 1.433 2.00 1.29 2.00 

Standard deviation 0.073125 0.10237 0.1948 6.41 x 10-17 0.152 0 
Weight minimization 

of a speed reducer 
Average 3.11 x 103 3.03 x 103 3.13 x 103 2.99 x 103 2.99 x 103 2.99 x 103 

Best 3.034 x 103 3 x 103 3.069x 103 2.99 x 103 2.99 x 103 2.99 x 103 
worst 3.1925 x 103 3.069x 103 3.21 x 103 2.99 x 103 2.99 x 103 2.99 x 103 

Standard deviation 43 14.98 37 4.64 x 10-13 4.64 x 10-13 4.64 x 10-13 
Tension/compression 

spring problem 
Average 0.02126 0.01396 0.097027 0.0127 0.0127 0.013 

Best 0.01329 0.0129 0.013244 0.0127 0.0127 0.0127 
worst 0.0339 0.0255 0.054476 0.0127 0.0137 0.0178 

Standard deviation 0.00616 0.002606 0.1288 1.08 x 105 2.16 x 10-4 1.06 x 10-3 
Three bar trust 
design problem 

Average 2.63 x 102 2.639 x 102 2.6395 x 102 2.64 x 102 2.65 x 102 2.64 x 102 
Best 2.63 x 102 2.638 x 102 2.64 x 102 2.64 x 102 2.64 x 102 2.64 x 102 
worst 2.64 x 102 2.639 x 102 2.639 x 102 2.64 x 102 2.74 x 102 2.64 x 102 

Standard deviation 0.0434 0.003974 0.04345 0 2.88 1.99 
Design of gear train Average 5.088 x 10-8 1.82 x 10-9 1.599 x 10-7 4.55 x10-16 0 5.56 x10-17 

Best 3.0675 x 10-10 2.7 x 10-12 3.299 x 10-9 0 0 0 
worst 4.755 x 10-7 8.7 x 10-9 5.193 x 10-7 8.41 x 10-15 0 3.91 x 10-16 

Standard deviation 9.744 x 10-8 2.2 x 10-9 1.996 x 10-7 1.66 x 10-15 0 1.17 x 10-16 
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6.1 Optimisation convergence for SAO, QOBL-SAO and LFQOBL-SAO 

This section discusses the outcomes of the optimization of the PV/battery, PV/wind/battery and Wind/battery 

systems for Jibia, Nigeria, using the SAO, QOBL-SAO, and LFQOBL-SAO optimization. In Figure 9, the 

convergence rates of SAO and its variants are compared for three different schemes, i.e. wind/battery, 

PV/wind/battery, and PV/battery schemes. The convergence rates show the iterations point at which the value of 

the objective function (i.e. TAC) does not vary. The SAO converged faster than the others for the wind/battery 

system and PV/wind/battery system, with approximately 44 and 15 runs, respectively. The SAO is faster in 

convergence because of its less complexity compared to the others and the fact that PV/wind/battery and the 

wind/battery are more complex systems to analyze than the PV/wind battery. This is most likely due to the variable 

nature of wind speed as well as the high cost of wind turbines. The LFQOBL-SAO has shown faster convergence 

in the PV/battery system. The LFQOBL-SAO has the lowest TAC for the PV/wind/battery scheme, whereas the 

QOBL-SAO has the lowest TAC for the PV/wind system. Although the SAO shows faster convergence, generally, 

it is not having the lowest TAC in all the three RE schemes. 
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Figure 9: Convergence of characteristics of SAO, QOBL-SAO and LFQOBL-SAO for a) PV/wind/battery 

system b) PV/battery system and c) Wind/battery system. 

6.2 Results analysis of HRES 

The results of sizing HRES are provided and evaluated in this section. The HRES was designed using the 

parameters shown in Table 2. Each decision variable's lower and upper bounds (npv, nwt, and nbat) were set to 1 

and 100, except the battery which has an upper bound of 50. The performance of the hybrid system results for the 
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three different renewable resource combinations is shown in Table 10. In the first instance, PV/Wind/Battery 

system is taken into consideration; in the second, battery and PV system (PV/battery) is considered. On the other 

hand, the third combination analyzes the Wind/battery system. The hybrid system would considerably reduce the 

possibility of no wind or solar output, making the system more dependable.  

According to Table 10, the PV/Wind/Battery scheme is the most cost-effective way to meet the load demand 

requirements, using the QOBL-SAO and LFQOBL-SAO based approaches. The SAO and QOBL-SAO recorded 

TACs of  $20120 and $15120, respectively, but the TAC of the PV/Wind/Battery system obtained by LFQOBL-

SAO is $15100. LFQOBL-SAO's optimal sizing for each scenario is as follows: PV/Wind/Battery: npv = 51, nwt = 

33, nbatt = 20, nconv = 4; PV/Battery: npv = 50, nwt = 0; nbatt = 25, nconv = 3; Wind/Battery: npv = 0, nwt = 42; nbatt = 

24, nconv = 3. The results imply that increasing the search space in the LFQOBL-SAO leads to a lower TAC of the 

three hybrid schemes. However, for the PV/battery and the wind/battery schemes, the LFQOBL-SAO has the 

lowest TAC, although SAO is slightly higher. In order to evaluate each algorithm's performance precisely, the 

average, best and standard deviation of each algorithm are provided in Table 11. For the SAO and LFQOBL-

SAO, the TAC has been very consistent over several runs, which is not the case for the QOBL-SAO. The results 

imply that SAO and LFQOBL-SAO are more reliable algorithms for different combinations of RE schemes. 

To determine the economic feasibility and adoption potential of the proposed hybrid systems, the LPSP and LCE 

for each hybrid system combination is determined (Table 12). The LPSP assists in determining when the energy 

produced will not be sufficient enough to satisfy the consumer demand. Any hybrid system will perform better if 

the LPSP is as close as possible to zero. To aid in the recovery of the hybrid system's cost over its lifetime, the 

LCE is used to calculate the average revenue per unit of the energy generated. In terms of LCE output, the QOBL-

SAO technique appears to be the most cost-effective for all three hybrid schemes, though the LFQOBL-SAO 

technique is also cost-effective for the PV/battery scheme. The LPSP also shows that for all three schemes, the 

LFQOBL-SAO and QOBL-SAO provided more stable energy. The average excess energy/deficit for each 

technique also revealed that for all hybrid RE configurations, all sizing procedures yielded either excess energy 

or unmet energy. The excess energy in the hybrid schemes might be regarded as an undesirable scenario since it 

is wasted. The usage of a dump load might be an option for reducing the waste. The SAO has more excess energy 

than the others, while there exists unmet energy for the LFQOBL-SAO or QOBL-SAO schemes. Unmet energy 

is still acceptable for a certain period of the day. The cost implication of deploying any of the hybrid schemes 

with the three SAO algorithms is shown in Figures 10–12. Wind/Battery, PV/Wind/Battery, and PV/Battery 

systems' average component costs are denoted by the letters a, b, and c, respectively. The results provided in this 
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study will assist policymakers in determining the most cost-effective system for the healthcare facility at Jibia, 

Nigeria. 

Table 10: Summary of results obtained by the three algorithms 

Configurations Sizing results SAO QOBL-SAO LFQOBL-SAO 
PV/Wind/battery 

system 
NPV 100 33 51 
NWT 54 35 33 
NBAT 35 26 20 

CONV/INV 4 4 4 
PV cost ($) 3.202 x103 1.56 x103 1.633 x 103 
WT cost ($) 7.489 x 103 4.854 x103 4.57 x 103 

Battery cost ($) 8.69 x 102 6.456 x102 4.966 x102 

Converter/Inverter Cost ($) 5.676 x102 5.67 x102 5.676 x102 
Total cost  ($) 2.012 x104 1.512 x 104 1.51 x 104 

PV/Battery NPV 100 60 50 
NWT 0 0 0 
NBAT 19 26 25 

NINV/CONV 3 3 3 
PV cost ($) 3.202 x 103 1.9217 x 103 1.6 x 103 
WT cost($) 0 0 0 

Battery cost($) 4.718 x 102 6.4566 x 102 6.208 x 102 
Converter/Inverter Cost($) 4.257 x 102 4.257 x 102 4.25 x 102 

Total cost($) 1.01 x 104 8.99 x 103 8.647 x 103 
Wind/ Battery NPV 0 0 0 

NWT 100 46 42 
NBAT 20 23 24 

NINV/CONV 3 3 3 
PV cost ($) 0 0 0 
WT cost($) 1.3869 x 104 6.379 x 103 5.825 x 103 

Battery cost($) 4.966 x 102 5.711 x 102 5.96 x 102 
Converter/Inverter Cost($) 4.25 x 102 4.257 x 102 4.257 x 102 

Total cost($) 2.079 x 104 1.3376 x 104 1.284 x 104 
 

Table 11: The average, standard deviation, best performances of the algorithm 

Renewable 
system 

Index SAO ($) QOBL-SAO ($) LFQOBL-
SAO($) 

PV/wind/battery  Best 2.012 x104 1.512 x 104 1.51 x 104 
Average 1.775 x 102 2.7711 x105 1.5274 x104 

Standard deviation 1.4699 x 10-11 2.378 x105 1.2862 x 10-11 
PV/battery  Best 1.01 x 104 8.99 x 103 8.647 x 103 

Average 1.01 x 104 1.2573 x 105 8.64 x 103 
Standard deviation 1.102 x 10-11 6.68 x 104 9.187 x 10-12 

Wind/battery  Best 2.079 x 104 1.3376 x 104 1.284 x 104 
Average 2.078 x 104 -1.95 x 105 1.284 x 104 

Standard deviation 1.1024 x 10-11 1.5077 x 105 0 
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Table 12: Reliability and Economic Analysis of Hybrid System 

Renewable system Index SAO QOBL-SAO LFQOBL-SAO 
PV/wind/battery  LCE ($/kWh) 0.0395 1.75 x10-4 0.0025 

LPSP 0.04106 4.32 x10-5 4.038 x 10-5 
Excess Energy(kW) 1.775 x 102 2.5428 1.8835 

PV/battery  LCE ($/kWh) 0.0332 0 0 
LPSP 0.0416 8.188 x 10-5 8.188 x 10-5 

Excess Energy(kW) 1.35 x 102 8.99 8.96 
Wind/battery  LCE ($/kWh) 0.01717 3.74 x 10-4 0.003251 

LPSP 0.04106 5.925 x 10-5 1.284 x 104 
Excess Energy(kW) 76 6.17 4.85 

 

 

Figure 10: Percentage cost contribution for each component of the PV/Wind/battery system a) SAO b) 

QOBL-SAO c) LFQOBL-SAO 

 

Figure 11: Percentage cost contribution for each component of the PV/Battery system a) SAO b) QOBL-

SAO c) LFQOBL-SAO 

 

Figure 12: Percentage cost contribution for each component of the Wind/Battery system a) SAO b) 

QOBL-SAO c) LFQOBL-SAO 
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7.0 Conclusion: 

This paper proposed two novel optimization techniques, i.e. QOBL-SAO and LFQOBL-SAO algorithms. First, 

they were  evaluated on specific benchmarked functions and  the CEC2020 real world optimization competition 

and the results compared with the SAO. Second, they are applied to find the optimum design of PV/wind/battery, 

PV/battery, and wind/battery systems. The results show that they have a global minimum on most of the CEC 

functions considered and are capable of solving the CEC2020 real world optimization competition. They can also 

optimize the hybrid scheme effectively. The LFQOBL-SAO algorithm has higher convergence and minimum 

TAC as compared to the QOBL-SAO and the SAO. This is because of more search space for the algorithm to 

converge in the LFQOBL-SAO. However, for the 25-year project lifetime, as demonstrated by the LCE, the 

QOBL-SAO appears to be the most economical. The LPSP also demonstrated that the LFQOBL-SAO and QOBL-

SAO delivered a reliable energy for all three schemes. The LFQOBL-SAO and QOBL-SAO have shown less 

excess energy than the conventional SAO. Furthermore, the PV/wind/battery scheme is the most cost-effective 

scheme when the LFQOBL-SAO and QOBL-SAO are used. Generally, the results show that the proposed 

algorithms outperformed the standard SAO scheme. 

Future work will focus on improving and refining the LFQOBL-SAO and QOBL-SAO algorithms through the 

use of additional optimization techniques, hybrid approaches, or integrating machine learning algorithms to 

improve their performance and efficiency. The scalability of the LFQOBL-SAO and QOBL-SAO algorithms for 

larger-scale HRES and other engineering optimization problems can also be investigated. Their convergence 

behaviour can also be studied as the system size and complexity increases, taking into account various factors 

such as multiple renewable sources, diverse load profiles, and dynamic operating conditions. Other areas of future 

studies include carrying out the sensitivity analysis of the QOBL-SAO and LFQOBL-SAO to evaluate their 

robustness to changes in input parameters, system configurations, and optimization objectives. This analysis can 

provide insights into the algorithms' performance under different scenarios and help identify the critical factors 

affecting their effectiveness. One possible limitation of the present study is the lack of validation  of the LFQOBL-

SAO and QOBL-SAO algorithms using real-world data and case studies from existing HRES. There is also need 

to conduct economic and policy analysis to assess the financial viability and policy implications of implementing 

optimized HRES. Certain factors, such as government incentives, tariff structures, market dynamics, and 
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regulatory frameworks, should be considered to provide a comprehensive assessment of the scheme's practical 

implications, and they can provide better managerial insights to practically implementing the scheme. 
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