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Abstract 13 

This paper presents a machine learning model for load-level estimation for shear-critical reinforced 14 

concrete (RC) beams and slabs using multifractal features of their characteristic crack patterns to 15 

automate and provide well-informed decisions for RC damage assessment. Multifractal analysis 16 

was conducted on a database of 508 images, of which critical features were extracted from the 17 

singularity and generalized dimension spectra. These features are used as predictors for the load-18 

level estimation model. The extreme gradient boosting algorithm yielded the best performance 19 

among the four machine learning models considered. The mean of the predicted-to-true ratio for 20 

the developed model was 1.04 with a coefficient of variation of 0.27. Upon applying Shapley 21 

additive explanations, the fractal dimension, information dimension, correlation dimension and the 22 

area under the left branch of the singularity spectrum were the critical features influencing load-23 

level estimation. The proposed model can be useful to RC building inspectors.  24 

Keywords: Multifractal analysis; load-level assessment; beams and slabs; machine learning; score 25 

analysis 26 

1. Introduction 27 

The performance characteristics of many civil engineering infrastructure systems play a dominant 28 

role in structural safety evaluation [1], as well as public safety [2]. In practice, evaluating the 29 

service performance of such systems is typically facilitated by non-destructive techniques. Visual 30 

inspection techniques remain one of the most widely used approaches for the non-destructive 31 

evaluation of such systems [3]. They are used in many contexts, including but not limited to 32 

structural condition monitoring and damage assessment. The results from such techniques usually 33 

give a firsthand insight into whether the infrastructure should be repaired or replaced, or an 34 

estimate of the remaining life of the system at both local and global levels. For reinforced concrete 35 

(RC) structures, the available visual inspection techniques heavily rely on patterns in concrete 36 

cracking and propagation (width, length and orientation), spanning a significant period of 37 

deterioration. This methodology has been fairly justified since characteristic crack patterns of RC 38 

structures can be used as a proxy to ascertain the stress and strain levels induced in the system 39 

during deterioration. In other words, they become a valuable piece of information during load-40 
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level assessment of reinforced concrete structures. Typically, the damage assessment and structural 41 

condition monitoring phase of RC structures as done by visual inspectors is conducted in three 42 

stages; (1) using crack detection equipment such as lidars to determine their locations; (2) 43 

documenting the damage by capturing images of the cracked regions [4,5] and (3) and determining 44 

the internal load levels  and damage states of inspected elements.  One notable and conventional 45 

way to assess the damage of RC structures has been to augment data from crack pattern 46 

characterization and analysis, with condition rating systems[6–8]. Nevertheless, with regards to 47 

either estimating the residual strength of an RC member/structure (load-level assessment) or 48 

categorizing the extent of structural damage (damage assessment), condition rating systems 49 

oftentimes result in a qualitative assessment and hence do not necessarily provide building 50 

inspectors with the necessary information [7,9]. In particular, guidelines on condition rating of 51 

civil infrastructure systems allows for engineering judgment to be used in damage evaluation, 52 

hence subjective and highly reliant on the experience of the inspector[1]. With regards to 53 

documentation during the assessment phase, visual inspectors do take a considerable amount of 54 

time to complete such tasks, and therefore can causes delays. A case in point is the bridge collapse 55 

at the Florida International University [10], where although damage documentation was 56 

conducted, results were not accessible in a timely manner to aid in collapse prevention and 57 

mitigation.  Hence, a major drawback of the application of this visual inspection approach has been 58 

it’s time-consuming nature (damage documentation) amidst subjectivity in making well-informed 59 

decisions. To this end, the relevance of developing automated infrastructure inspection methods 60 

for load-level and damage assessment of RC structures has presented itself an interesting area of 61 

research. 62 

Structural design and industrial guidelines such as ACI [11] , IAEA [6] and AASHTO [12] make 63 

available procedures for load-level and damage evaluation of RC components via crack analysis. 64 

A real-world application of how crack patterns can be used to predict the strength and stiffness 65 

characteristics of RC shear walls that were damaged during an earthquake was conducted by 66 

Madani and Dolatshahi [13]. A significant number of research efforts [5,14–22] have been 67 

conducted on crack detection and measurement, which is one of the key stages in crack analysis. 68 

Nonetheless, the task of using information (width, length, orientation and number of cracks) 69 

obtained from crack analysis to correlate the level of damage still remains a challenge with 70 

research efforts still at an early stage.  In recent times, artificial intelligence-based data-driven 71 

techniques keep transforming the field of structural engineering. To this end, automated computer-72 

aided visual inspection approaches have been developed for the identification and characterization 73 

of structural damage of RC structures through crack assessment [4,5,20,21,23–27]. These 74 

approaches are heavily reliant on two fields: machine learning and computer vision. The 75 

fundamental problem of image segmentation (automatically retrieving cracks from images), 76 

coming from the computer vision perspective, for RC members has been studied extensively in 77 

recent times [28–30].  This has made it possible to extend machine learning algorithms to 78 

quantitatively predict the level of damage of many RC structural components. For instance, 79 

Ebrahimkhanlou [25] developed a probabilistic graphical model (Bayesian Belief Network) that 80 

could visually evaluate the extent of damage of an RC shear wall and also prognosticate the most 81 

likely mode of failure for such members. Fatigue life evaluation of bridge deck was presented 82 

Fathalla [31] by using an artificial neural network. Davoudi et al. [2,32] employed computer-83 
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3 

vision-based inspection methodologies for quantitative damage and load estimation of RC beams 84 

and slabs.   85 

The theory of fractals has been extensively applied in the field of structural engineering for 86 

performance evaluation and damage assessment of RC components. Farhidzadeh et al.[33]  87 

reported that the extent of structural damage of an RC shear wall under reverse-cyclic loading can 88 

be quantified from the fractal characteristic of their crack patterns. Experimental validation of how 89 

fractal characteristics of surface cracks of RC members can be utilized in damage classification 90 

was investigated by Carrillo et al. [34]. Athanasiou et al. [1] and Liu et al [35] have recently 91 

developed data-driven machine learning models for damage classification of RC shells using 92 

multifractal and fractal analysis respectively. 93 

The present work seeks to extend the application of multifractal analysis of crack patterns in 94 

damage evaluation of shear-critical monotonically-loaded simply-supported RC beams and one-95 

way slabs. In order to facilitate this, a database of segmented images of shear-critical RC beams 96 

and slabs as compiled by Davoudi et al. [2] is utilized. In particular, this study builds on the work 97 

done by Athanasiou et al. [1] that explored the utilization of multifractal features for damage 98 

evaluation of RC shells. The singularity spectrum (a parabolic curve, concave in nature) remains 99 

the most dominant output of any multifractal analysis. As shown in Athanasiou et al., [1]  100 

geometric features of the singularity spectrum can be extracted and utilized as inputs in a machine 101 

learning-based damage classification model of RC shells, with significant accuracy. Although four 102 

candidate multifractal features (peak, width, and the area under the left and right branch of the 103 

singularity spectrum) were used in their approach, which was seemly motivated by trying to reduce 104 

the dimensionality of the model, the authors could not exhaust all potential features that can be 105 

obtained from the multifractal analysis, which could equally impact the damage evaluation process 106 

positively. The primary distinction in the present study is on the identification of the critical 107 

multifractal features relating to both geometry and dimensionality of the basic output of 108 

multifractal analysis. The secondary distinction is the proposition of a machine learning regression 109 

model that utilizes multifractal features for damage evaluation (structural load estimation) of 110 

shear-critical simply-supported RC beams and slabs with a monotonic loading protocol, as 111 

opposed to the load estimation models developed by Davoudi et al. [2,32] using machine vision. 112 

The overall goal motivating this study is to provide an automated model that takes in captured 113 

images of RC beams and slabs and can provide a fairly quick estimation of the extent of damage 114 

before sophisticated and computationally expensive assessment techniques can be utilized for 115 

rigorous cracking assessment of RC structural components.   116 

 117 

2. Overview of Fractal Analysis 118 

Fractal theory [36] since its inception in the 1970s has been successful applied in many fields 119 

including astrophysics [37], financial engineering[38], structural engineering[33,34,39,40], 120 

medicine [41,42] and manufacturing [43].  The theory seeks to characterize the geometry of 121 

irregular and complex objects occurring in nature that the classical Euclidean geometry may seem 122 

non-applicable. As  noted by Mandelbrot [36], ‘clouds are not spheres, mountains are not cones, 123 

nor does lightning travel in a straight line. There are two main facets of fractal theory; 124 
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dimensionality and self-similarity. The dimensionality concept hinges on the fractal geometry of 125 

the object. As popularly known in literature, Euclidean geometry reveals that the topological 126 

dimension of a point, straight line and plane is 0, 1 and 2 respectively, without any intermediate 127 

values. However, fractal geometry permits the use of fractional or fractal dimensions. To illustrate 128 

this, consider the crack pattern of an RC beam in Fig. 1 which has an estimated fractal dimension 129 

of 1.4. 130 

 131 

 132 

Fig. 1 Typical crack pattern of an RC beam with fractal characteristics 133 

The self-similarity property of many fractal objects is related to an observation about how the 134 

method of construction of such objects at both local and global scales appear to be identical. Crack 135 

patterns of many reinforced concrete structures under both cyclic and monotonic loading have 136 

been shown to exhibit this self-similar behavior. An illustrative example is the crack surface of a 137 

prestressed RC girder as shown in Fig. 2 [40]. It possesses fractal behavior since the crack patterns 138 

contain replicas of itself at microscopical and macroscopical scales. In order words, if one zooms 139 

in or out the crack surfaces (Fig. 2), the geometrical shape has similar appearance. If there exist 140 

more than one replica of this self-similarity charateristics, the considered crack pattern is 141 

categorized as a multifractal crack pattern. Other technical background for categorizing a digital 142 

image as either having monofractal or multifractal characterisitics is discussed below.  143 

Nevertheless, for this particular example, since there exists some form of self-similarity at more 144 

than one location, there is reason to believe that the crack patterns have multifractal characteristics.  145 

 146 

Fig. 2 Self-similarity of RC cracks 147 

 148 

2.1 Monofractal Analysis 149 

Several implementation procedures exist for conducting  monofractal analysis of images, for 150 

fractal dimension determination [44–46]. The box-counting algorithm being the most popular is 151 

used in this study. In its abstract form, the fractal analysis seeks to establish the relation between 152 

two quantities; the scaling factor,  , and the number of coverings, ( )N   of the fractal set, for 153 
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instance, a digital image profile. Eq. 1 provides the power law relationship that exists between 154 

these two quantities. 155 

( ) DN                                                                                     (1)  156 

where D  denotes the fractal dimension. However, for the box-counting algorithm, the scaling 157 

factor,  , is approximated with the size of the box ( a ) used in discretizing the image pattern. The 158 

number of boxes that contains at least an active pixel ( ( )N a ) is also used as a proxy for the number 159 

of coverings ( ( )N  ).  Linearizing the power law from Eq. 1, the fractal dimension, D  , as per the 160 

box-counting algorithm, can be computed as: 161 

0

log( ( ))
lim

log(1 / )a

N a
D

a
                                                            (2) 162 

Alternatively, D can be estimated from the gradient between the number of boxes that contains at 163 

least an active pixel, ( )N a , and the inverse of the box size, a , in the logarithmic space. Fractal 164 

dimension, D  , depicts the global behavior of fractal sets or digital images  through the scaling 165 

law presented in Eq. 1, and is the primary output of any monofractal analysis. Monofractal analysis 166 

typically do not provide the necessary information for quantifying local fractal characterization.  167 

There is a possibility that different images with varying levels of complexities, irregularities and 168 

roughness, will yield the same fractal dimension,  D , when a monofractal anlysis is conducted 169 

[43,47]. In such situation, the utilization of a generalized fractal analysis, known as multifractal 170 

analysis could be employed to gain much more insight.  171 

2.2 Multfractal Analysis 172 

Multifractal analysis seeks to provide a detailed local description of the fractal characteristics of a 173 

digital image profile. The local pixel density of a particular box, ( )iP a , in the digital image is first 174 

computed as given in Eq. 3.  175 

( )

( )
( )

( )

i
i N a

ii

N a
P a

N a



                                                       (3) 176 

where ( )iN a  is the number of pixels in the ith box. In the special case where the image in question 177 

is a crack pattern of an RC element, ( )iP a denotes the crack density. As an illustrative example, 178 

consider the crack pattern of a beam shown in Fig. 1. 179 

 180 

Using four candidate boxes, the spatial distribution of the pixel intensities (crack density ( )iP a ) 181 

for the above RC beam is presented in Fig. 3. Evidently, the spatial crack density distribution 182 

seems to converge to the original crack pattern of the beam when the size of the box decreases. 183 
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 184 

Fig. 3 Spatial distribution of pixel intensities for the crack pattern of an RC beam (color printed) 185 

 186 

It turns out that, a similar power law exists between how the pixel density ( )iP a  scales, and size 187 

of the box a  (see Eq. 4).  188 

( ) i

iP a a


                                                               (4) 189 

where 
i is the singularity exponent, depicting the local scaling/fractal behaviour for the ith box. 190 

In other words, each box characterized by ( )iP a  will have its own singularity exponent 
i . For an 191 

infinitesimally small difference  , the number of boxes ( )N   for which their singularity 192 

exponents fall within the closed interval [ ,    ] is obtained, and follows a power law with 193 

the box size (a), similar to that of Eq. 1. 194 

( )( ) fN a                                                                        (5) 195 

where ( )f  is the fractal dimension of the boxes with the same local scaling  .  An ( )f 196 

plot is commonly called the singularity spectrum is typically used to summarize the output of any 197 

multifractal analysis study. The ( )f  can be computed from Eq. 6 as: 198 

0

log( ( ))
( ) lim

log(1 / )a

N
f

a





                                                          (6) 199 

Traditionally, Legendre Transformation as suggested by Hasley et al.  [48] is used to estimate200 

( )f  . Nevertheless, a direct numerical approach developed by Chhabra and Jensen  [49] is used 201 

in this study. It begins with obtaining distorted versions of the spatial distribution of the pixels 202 

using the following exponential mapping: 203 

( ) ( )q

i iP a P a                                                                      (7) 204 

( )iP a( )iP a

( )iP a( )iP a
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where q it is typically known as the distortion parameter or the order of the probability moment 205 

[50].  For a range of values of q ([-5,+5] as recommended by Ebrahimkhanlou et al.  [51] for shear-206 

critical RC elements), a normalized form of ( )q

iP a  is computed.  207 

( )

1

( )
( , )

( )

q

i
i N a

q

i

i

P a
q a

P a








                                                       (8) 208 

For a given value of q, the singularity exponent ( )q and its corresponding fractal dimension 209 

( ( ))f q  can then be estimated as: 210 

( )

1

0

( , ) log( ( ))

( ) lim
log( )

N a
q

i i

i

a

q a P a

q
a



 





                                        (9)  211 

( )

1

0

( , ) log( ( , ))

( ( )) lim
log( )

N a

i i

i

a

q a q a

f q
a

 

 





                               (10) 212 

As already mentioned, a plot of the set of values of  against ( )f  for the range of q values, 213 

produces the so-called singularity spectrum. Similarly, a q   plot yields the generalized 214 

dimension spectrum. These spectra upon application of multifractal analysis on the crack pattern 215 

of the above beam, is shown in Fig. 4 below. 216 
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 217 

Fig. 4 Key features of (a) the singularity spectrum and (b) generalized dimension spectrum; W: 218 

width, FD: fractal dimension, LBA: area under the left branch, RBA: area under the right branch , 219 

ID: information dimension, CD: correlation dimension, C: capacity and DD:dimensional 220 

difference. (color printed) 221 

3. Extracted features from singularity and generalized dimension spectra 222 

Past research efforts have revealed that specific features that can be extracted from the singularity 223 

spectrum of RC shells, can be utilized in structural damage level assessment. In particular, the 224 

width (W), area of the left branch (LBA), area of the right branch (RBA) and the peak (FD) of the 225 

singularity spectrum have been suggested as critical parameters for damage level identification of 226 

RC shells [1] (see Fig. 4a). The geometric width (W) of the singularity spectrum has been deemed 227 

to be influential at characterizing RC crack inclination. Generally, the width of the singularity 228 

spectrum quantifies the image’s heterogeneity. Larger values of the width would usually imply a 229 

more severe uneven spatial crack density distribution. In addition, due to the typical asymmetry 230 

shape of the singularity spectrum (see Fig. 4a) the area under the left (LBA) and right branch 231 

(RBA) of the singularity spectrum has been proven to be key features that influence cracking 232 

properties. Also, as noted by Athanasiou et al. [1], the peak of the singularity spectrum (FD) is 233 

highly correlated with  crack inclination  [1].  234 
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The fractal dimension (FD) can also be obtained from the generalized dimension spectrum (Fig. 235 

4b) when q = 0. Nevertheless, some well know generalized dimensions ( qD ,i.e,  for a particular 236 

q) can be candidate features that can significantly characterize the damage performance of RC 237 

elements. Information dimension (ID) is the ordinate of the generalized dimension spectrum when 238 

q = 1 . It characterizes the rate at which information contained in the image profile changes with  239 

box size. To this end, the information dimension (ID) is explored in this study. The generalized 240 

dimensions qD , corresponding to q > 1 accentuates the more singular regions (regions with 241 

significant cracking behaviour), whereas for q < 1, reflects the regular regions of the RC crack 242 

pattern. The correlation dimension (CD) is also used in this study for RC damage assessment. It 243 

quantifies correlation for the heterogeneity of a pair of boxes. The generalized dimension 244 

corresponding to the maximum q value is usually referred to as the capacity (C) (see Fig. 4b). The 245 

capacity reflects segments of the RC crack patterns with low densities ( ( )iP a ). The capacity, C, 246 

can also be used as a proxy for heterogeneity since, larger values signify a higher degree of 247 

homogeneity within the singular regions. To this end the capacity (C) is also used in this study. 248 

Finally, the dimensional difference (DD) defined as the difference between the fractal dimension 249 

of the most singular event 
min( )f   and the most regular event 

max( )f   is utilized (see Fig. 4). It 250 

reflects the frequency ratio or the proportion of the number of regular regions to singular regions. 251 

In summary, eight geometric and generalized dimension multifractal features are extracted from 252 

crack patterns of selected shear-critical RC beams and slabs for damage assessment; width (W), 253 

peak (FD), area of left (LBA) and right (RBA) branch of the singularity spectrum, information 254 

dimension (ID), correlation dimension (CD), capacity (C) and dimensional difference (DD).  255 

 256 

4. Image database of RC beams and Slabs 257 

In order to develop a reliable model for structural load estimation, the load-level of  RC beams and 258 

slabs of an existing database was compiled by Davoudi et al.[2] is utilized in this study. It 259 

comprises a variety of experimental programs ranging from uniform to monotonic loading of RC 260 

beams and one-way slabs without transverse reinforcement. Table 1 presents a summary of the 261 

various independent sources of experimental programs that have been aggregated to form the 262 

database used in this study.  263 

To this end, a complied database of the multifractal features considered in this study was presented 264 

for 508 RC beams and slabs. The eight multifractal features (see section 3.0) served as input 265 

features for the estimation model, whereas the load level (LL) served as the output.  LL is defined 266 

as:  267 

/ failureLL V V                                                             (11)   268 

where V and failureV  represents the nominal applied shear during loading and at failure, 269 

respectively. Pragmatic use of the load level (LL) would be to anticipate the degree to which an 270 

RC member has been subjected to a load that would cause failure (an LL of 0.7 would imply that 271 

the RC member has been given a load of 70% of what it can sustain (capacity)). Some descriptive 272 
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statistics of both input and output features is presented in Table 2, whereas Fig. 5 and 6 displays 273 

statistical distributions, in particular pairwise relationship between some selected features. Each 274 

row and column of the matrix of subplots in Fig. 5 and 6 signifies a single feature. The diagonal 275 

plots reveal the univariate marginal distribution of a particular feature, whereas the annotations 276 

inserted in the upper half of the off-diagonal plots are used to quantify the correlation between two 277 

features. All variables were positively correlated with each other, except the LBA and DD which 278 

was negatively correlated. The various forms of generalized dimensions are very highly correlated 279 

(see Fig. 5), whereas the other features are fairly correlated (see Fig. 6). In order to obtain more 280 

insight into how these features could be used to provide a meaningful estimate of the load-level of 281 

shear-critical RC beams and slabs, sophisticated machine learning model implementation were 282 

explored as opposed to the basic statistical measures presented in Fig. 5 and 6.  283 

Table 1. Summary of experimental testing programs from which database is compiled. 284 

Reference #S #I Test / Specimen Type a/d ρ (%) fc’ 

Sneed[51] 8 52 3-point load, beam 2.3 0.55-0.85 18.6-32.4 

Murray[52] 8 88 3-point load, beam 2.97-3 1.2-1.3 64.8-74.8 

McCain[53] 10 82 3-point load, beam 2.3-2.9 0.63-0.98 22.8-33.8 

Sherwood[54] 30 197 3-point load, beam & slab 2.79-3.4 0.3-1.33 29.1-77.3 

Quach[55] 1 10 3-point load, deep beam 3.1 0.70 40.0 

Yoshida[56] 1 4 3-point load, deep beam 2.9 0.70 31.8 

Cao[57] 2 12 3-point load, deep beam 2.8-2.9 0.4-1.5 26.2-28.3 

Perkins[58] 6 35 Uniform loading 1.62-3.24 0.98 39-64 

Nghiep[59] 3 28  3-point load, haunched beam 3-5.0 1.57-3.1 35.4-59.1 

Overall 69 508 - 1.1-5.0 0.3-3.1 18.6-77.3 

Note: #S = number of specimens; #I = number of images; a/d = shear span-to-depth ratio; ρ = 285 

tensile reinforcement ratio; fc’ = compressive strength. 286 

 287 

Table 2. Multifractal features of database of RC beams and slabs 288 

Reference Statistic FD ID CD C LBA RDA DD W 

Sneed[51] 

Minimum 0.79 0.79 0.78 0.75 0.03 0.14 0.44 0.25 

Mean 1.22 1.21 1.20 1.18 0.04 0.24 0.48 0.26 

Maximum 1.45 1.44 1.44 1.41 0.05 0.30 0.55 0.27 

Murray[52] 

Minimum 0.38 0.36 0.34 0.19 0.03 0.03 0.02 0.19 

Mean 1.03 1.01 0.99 0.88 0.09 0.15 0.19 0.26 

Maximum 1.38 1.36 1.34 1.28 0.13 0.25 0.29 0.27 

McCain[53] 

Minimum 0.34 0.33 0.33 0.21 0.01 0.02 0.01 0.11 

Mean 1.05 1.04 1.02 0.94 0.07 0.17 0.29 0.26 

Maximum 1.33 1.31 1.29 1.23 0.09 0.23 0.41 0.27 

Sherwood[54] Minimum 0.36 0.34 0.32 0.19 0.02 0.04 0.03 0.20 
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Mean 1.12 1.10 1.08 1.00 0.08 0.18 0.26 0.26 

Maximum 1.46 1.44 1.42 1.32 0.13 0.25 0.48 0.27 

Quach[55] 

Minimum 0.91 0.90 0.89 0.85 0.04 0.15 0.23 0.25 

Mean 1.37 1.36 1.34 1.27 0.10 0.24 0.26 0.27 

Maximum 1.57 1.55 1.53 1.46 0.12 0.28 0.41 0.27 

Yoshida[56] 

Minimum 0.47 0.45 0.43 0.34 0.03 0.06 0.25 0.25 

Mean 0.93 0.92 0.89 0.81 0.07 0.15 0.26 0.26 

Maximum 1.29 1.27 1.25 1.17 0.10 0.22 0.28 0.26 

Cao[57] 

Minimum 0.32 0.32 0.31 0.30 0.24 0.01 0.13 0.24 

Mean 1.01 1.00 0.97 0.87 0.26 0.09 0.20 0.26 

Maximum 1.33 1.31 1.29 1.19 0.28 0.12 0.52 0.28 

Perkins[58] 

Minimum 0.74 0.73 0.70 0.60 0.06 0.11 0.09 0.23 

Mean 1.19 1.17 1.15 1.05 0.10 0.19 0.20 0.26 

Maximum 1.38 1.37 1.34 1.27 0.12 0.24 0.27 0.27 

Nghiep[59] 

Minimum 0.61 0.59 0.58 0.50 0.04 0.08 0.26 0.23 

Mean 1.16 1.14 1.12 1.05 0.08 0.19 0.30 0.25 

Maximum 1.41 1.40 1.38 1.32 0.10 0.25 0.34 0.26 

 289 

 290 
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 291 

Fig. 5. Pair-plot of input features (C, FD, ID, CD) showing statistical distribution and correlation. 292 

(color printed) 293 
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 294 

Fig. 6. Pair-plot of input features (W, LBA, RBA, DD) showing statistical distribution and 295 

correlation. (color printed) 296 

 297 

5. Machine Learning Model Implementation 298 

5.1 Training-Testing Data Splitting 299 

Fig. 7 shows a schematic representation of the proposed machine learning model implementation 300 

procedure. Firstly, the image database of RC beams and one-way slabs is split into training and 301 

testing data. In this study, random samples of 70% of the entire database was assigned to the 302 

training data, whereas the remaining 30% was assigned as testing data. Four regression-like 303 

machine learning techniques were implemented using the training data (see Fig. 7). A brief 304 

background on these four regression techniques is presented as follows: 305 

 306 

ρ = 0.261 ρ = 0.306 ρ = 0.595 

ρ = -0.634 ρ = 0.378 

ρ = 0.412 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 

 307 

 308 

Fig. 7. Machine learning model implementation. (color printed) 309 

 310 

5.2 Machine learning Algorithms 311 

In the present context, a predictive model that could map the set of multifractal features into a load 312 

level (FR) estimate for the database of RC beams and one-way slabs is sought after. The Support 313 

Vector Regression (SVR), Random Forest Regression (RFR), linear Elastic-Net Regression (ENR) 314 

and the Extreme Gradient Boosting (XGboost) algorithm were adopted in this study. All these 315 

machine learning techniques have been successfully employed in solving similar structural 316 

engineering-related problems [60–62] which usually comprises a relatively limited number of data 317 

points in a dataset.  318 

5.2.1 Elastic-Net regression (ENR) 319 

The basic linear regression model seeks to provide a solution to finding the best fit between a set 320 

of input points and an output. In the present context, given an input vector of multifractal features, 321 

1 2 3( , , , ... )i i i i ipX x x x x and an output load level, LL, of an RC beam or one-way slab, the linear 322 

regression model has the following functional form [52]: 323 

0

p

i j ij

i j

LL x 


                                                    (12) 324 

where j  are the unknown parameters and p is the number of input features. Given a training 325 

dataset (
1 1 2 2 3 3( , ), ( , ), ( , ), ...( , )N NX LL X LL X LL X LL ), j  are estimated by using the most 326 

popular loss function; the sum of squared error (SSE) as given in Eq. 13. 327 

2

0

1 1

( )
pN

i j ij

i j

SSE LL x  
 

 
   

 
                                   (13) 328 
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It turns out that the estimates obtained from minimizing the SSE, have the smallest variance for all 329 

available linear unbiased estimators [53]. Nevertheless, biased estimators tend to have a fairly 330 

relatively low variance compared to their unbiased counterpart. The emphasis of most regression-331 

like machine learning models is to determine model parameters that will reduce the generalization 332 

or test error, hence the variance. To this end, the regularized variable selection regression model, 333 

Elastic-Net Regression (ENR) is able to mitigate this drawback of the original regression model. 334 

It consists of minimizing the aggregate sum of a loss and penalty function. The unknown 335 

parameters 
elastic   are estimated from Eq. 14.  336 

2

2

0

1 1 1

argmin (1 )
p pN

elastic i j ij j j

j j j

LL x


      
  

  
             

             (14) 337 

The penalty term as seen in Eq. 14, requires the specification of two hyperparameters;  and   . 338 

A comprehensive description of ENR can be found in Hastie et al. [54]. 339 

5.2.2 Support Vector Regression (SVR) 340 

The general support vector machine which was originally described to solve classification 341 

problems, can be adapted for regression analysis [52]. Similar to the elastic-net model presented 342 

above, the algorithm minimizes the following objective function: 343 

2

0

1 1 1

argmin
2

p pN

svr i j ij j

i j j

V LL x



   

  

  
      

  
                         (15) 344 

where 
0        if 

( )
,  otherwise 

r
V r

r






 
 


                                        (16) 345 

This support-vector formalism is usually referred to as the ϵ-insensitive or error-insensitive SVR 346 

model. It basically requires the determination of two hyperparameters, epsilon ( ) and lambda (347 

 ). However, the general minimization problem is solved numerically by making use of kernels 348 

after approximating the regression function given in Eq. 12 with a set of basis functions [55]. Some 349 

of the widely used kernels are the polynomial, sigmoid, and the gaussian radial basis kernel 350 

function. The selection of the most appropriate kernel as well as other hyperparameters is 351 

oftentimes determined via cross-validation. 352 

5.2.3 Random Forest Regression (RFR) 353 

Random forest leverages the superiority of considering an ensemble of regression trees for decision 354 

making, in this case, predicting a quantitative response value (see Fig. 8). The algorithm begins 355 

with bootstrapping a sample from the training data, from which a regression tree that utilizes a 356 

random selection of a subset of features can be developed [52]. This procedure is repeated for 357 

different bootstrap samples and features. The prediction of unseen or test data can then be 358 

computed by taking the mean of the predictions obtained from the various regression trees already 359 

developed. Fig. 8 provides a schematic presentation of the Random Forest Regression (RFR) 360 

implementation procedure. A couple of hyperparameters influence the performance of an RFR 361 
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scheme; the number of trees or estimators, maximum depth of tree, and the number of features to 362 

select at each split, and the minimum number of samples in each split. 363 

 364 

 365 

 366 

Fig. 8 A random forest regression implementation scheme. 367 

 368 

5.2.4 Extreme Gradient Boosting (XGBoost) 369 

This fairly recent developed machine learning technique is an extension of the popular ensemble 370 

learning method, gradient descent decision tree [56,57]. The XGBoost aggregate a collection weak 371 

learner that is usually obtained from a decision tree model. Whereas random forest regression 372 

outputs the mean of different trees, XGBoost incrementally improves the prediction through a 373 

weighted aggregation of weak learners to form a strong learner. In this study, decision trees are 374 

used as weak learners. The XGBoost regressor seeks to provide a mapping between the input set 375 

of features and the output of a training dataset using the following Equation.  376 

1

( )
K

i k k i

k

LL f X


                                                  (17) 377 

where, K is the number of weak learners or estimators, 
k  is the learning rate, and ( )k if X  is the 378 

weak leaner obtained from a decision tree. In determining the most appropriate learner at a 379 

particular stage, and other hyperparameters, the loss and penalty functions that need to be 380 

minimized is given in Equation 18 below.   381 

2

 1 1 1

1
argmin ( )

2

N t t

t i k k i k
f F i k k

f LL f X T w  
   

    
      

    
                    (18) 382 
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where 
tf  is the weak learner to be determined at the t-th  step,  and  are the hyperparameters of 383 

the penalty term, and  and kT w are the number of leaf nodes and weights, respectively. It is worth 384 

noting that, the sequential nature of the XGBoost algorithm only permits the determination of the 385 

optimal weak leaner and penalty coefficients at the t-th step (
tf , and  ), since all other 386 

parameters and learners before the t-th step would have been determined. The output of the 387 

regression model is sequentially updated to a point where t equals to K, the number of weak 388 

learners to be considered. Further details on how the weak learners with its accompanying 389 

hyperparameters are determined can be found elsewhere in Chen and Guestrin [57]. 390 

 391 

5.3 Hyperparameter Optimization 392 

In the implementation process, a 10-fold cross-validation scheme was utilized in hyperparameter 393 

optimization via a random search, in order to determine the best set of parameter combinations for 394 

each model training. The performance measure used in determining the optimal hyperparamter 395 

was the mean squared error. This analysis is performed for 1000 runs, and the modal values of the 396 

hyperparameters that were optimal for each machine learning model is presented in Table 3. As 397 

observed, the optimal number of estimators for the random forest and extreme gradient boosting 398 

machine were different (see Table 3), after hyperparameter optimization. The number of estimators 399 

refers to the number of decision trees that constitutes the meta model. Informed comparisons 400 

between these two models can be made since their learning algorithms are different. For instance, 401 

whereas random forest assigns equal weight to each decision tree during the aggregation process 402 

to make a final prediction, the weighting scheme for the extreme gradient boosting machine model 403 

is adjustable or adaptive and depends on the loss function to be minimized. With this inherent 404 

difference in the two algorithms, the number of estimators does not have to be necessarily equal 405 

to make well-informed comparison during model evaluation.  406 

Table 3. Tuned hyperparameters for various machine learning models 407 

Model Hyperparameter Modal Value 

SVR 

Kernel Radial Basis  

Epsilon ( ) 0.1 

Lambda ( ) 1000 

ENR 
Alpha ( ) 0.9 

Lambda ( ) 0.001 

RFR 

Number of Estimators 800 

Maximum depth of tree 6 

Minimum samples for split  3 

Maximum number of features 3 

XGboost 

Number of Estimators 500 

Learning rate 0.01 

Maximum depth of tree 6 
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Minimum samples for split  3 

Lambda ( ) 0.1 

Gamma ( ) 0.1 

 408 

5.4 Performance Measures 409 

One of the four machine learning models obtained from the training data after hyperparameter 410 

optimization was then selected as the final proposed predictive model. In order to make valuable 411 

comparison of the various machine learning models, suitable performance or error measures are 412 

needed to be selected, for the acquisition of illustrative estimation accuracy of the output variable. 413 

To that end, the four-regression performance metrics were used in this study, with a brief 414 

description of them given below. 415 

5.4.1 Root-Mean-Squared Error (RMSE) 416 

This performance measure assesses the difference between the true and predicted output of an 417 

entire dataset as follows: 418 

 419 

2

1

( )
N

i i

i

LL LL

RMSE
N








                                                       (19) 420 

where  
iLL is the true value of the load-level for a particular datapoint i ,  iLL  is the predicted 421 

value, and N represents the total number of samples in the dataset. 422 

 423 

5.4.2 Correlation Coefficient (R) 424 

The strength and direction of the linear relation between the predicted and true values of the output 425 

can be measured using the correlation coefficient, R. Values of R are usually bounded between -1 426 

and 1, and it depicts the strength of the correlation, with positive values presenting positive 427 

correlation and vice-versa. The correlation coefficient, R, can be computed as: 428 
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                                       (20) 429 

where iLL and  iLL are the averages of the true and predicted load-levels, respectively. 430 

5.4.3 Explained Variance Score (EV) 431 

The explained variance score measures the extent to which the variance in the output of the dataset 432 

is captured by the predictive model. Values of EV closer to 1.0 signifies a higher correlation 433 
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between predicted and true values of the output. Mathematical, Explained Variance Score, EV, is 434 

computed as: 435 

 
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                                          (21) 436 

5.4.4 Index of Agreement (IA) 437 

It establishes a level of agreement between the predicted and their corresponding true values. It is 438 

a dimensionless measure of model accuracy and has been argued by some researchers as a 439 

remarkable improvement to the more popular coefficient of determination. Values of Index of 440 

Agreement (IA) closer to 1.0 signifies better agreement. Although similar to the correlation 441 

coefficient, R, IA is less sensitive to outliers or extreme values and is computed as follows: 442 
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                                            (22) 443 

The best performing machine model is selected by assessing the aforementioned performance 444 

metrics on the testing data. The model is then validated by considering the full dataset and 445 

predicting the load-level of the RC beams and one-way slabs. 446 

5.5 Model Interpretation 447 

The various forms of machine learning techniques differ in their level of complexity, and hence 448 

influence how they can be interpreted. Generally, linear models are more likely to be interpreted 449 

with ease, and thus can give a fair understanding of the underline process being modelled. Also, 450 

they tend to give valuable insight and information needed for model improvement. Conversely, 451 

linear models are not sophisticated enough to yield very accurate results compared to non-linear 452 

machine linear models. For instance, the XGBoost regression model usually tends to produce more 453 

accurate results than linear regression models on many datasets. On the other end, interpretating a 454 

model developed from the XGboost algorithm or any flexible machine learning model, is quite 455 

challenging. To this end, the recently developed SHapley Additive exPlanation (SHAP) tool can 456 

be used for model interpretability of very complex machine learning models. SHAP results in the 457 

provision of a so-called explanation model useful for (1) demonstrating the importance of any 458 

feature in the dataset; (2) quantifying how each feature affects the model prediction on both local 459 

and global scales; (3) ascertaining how the prediction model output changes with variations in the 460 

input values of the feature. A brief description of Shapley Additive Explanation (SHAP) for model 461 

interpretation is presented below. 462 

Once again, consider an example input vector of features  1 2 3( , , , ... )i i i i ipX x x x x for which a 463 

machine model ( )if X  is developed to predict a quantitative response
iLL . The SHapley Additive 464 

ExPlanation (SHAP) for machine learning model interpretation begins with mapping the original 465 
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input vector of features 
iX  into a binary simplified input vector  0, 1

p

iX   , which serves as 466 

input for the explanation model ( )ig X  . The  iX which contains either 0 or 1, depicts whether a 467 

feature is present ( ijx = 1) or absent ( ijx = 0) in the explanation model yet to be determined.  The 468 

explanation model is usually obtained by a weighted summation of the simplified input vector of 469 

features iX   and a constant term as represented in Eq. 23.  470 

0

1

( )
p

i j ij

j

g X x 


                                                           (23)  471 

where  0, 1
p

iX    is a vector of binary simplified inputs features, ijx  , which are mapped to the 472 

original input features ijx , and j is the attribution value for feature j .  To this end, SHAP is 473 

usually referred as a class of feature attribution methods, amongst others such as LIME [58], 474 

deepLIFT [59] etc. 475 

The advantage of using SHAP as opposed to other feature attribution methods is how it presents 476 

three key desirable properties that any feature attribution method should have. The first property 477 

deals with local accuracy, where the output of the explanation is expected to match that of the 478 

model prediction for any data point in the dataset (see Eq. 24).  479 

( )if X  = ( )ig X                                                          (24) 480 

Secondly, if a feature does not contribute to the predictive model’s output, then the feature 481 

attribution value should be zero in the explanation model (see Eq. 25).  482 

0 0ij jx                                                              (25) 483 

To conclude, the third property states that if the predictive model changes and causes a particular 484 

simplified input contribution to increase or stay the same regardless of other simplified inputs, then 485 

the attribution from that input should not decrease. In explaining the third property, known as 486 

consistency, consider two predictive models 
1( )if X and 

2 ( )if X . Mathematically, the consistency 487 

property can be presented as: 488 

1 1 2 2 1 2( ) ( \ ) ( ) ( \ ) ( ) ( )i i i i j jf X f X j f X f X j f f                  (26) 489 

where 
1( \ )if X j and 

2 ( \ )if X j  denote prediction values of models 
1( )if X and 

2 ( )if X  with 490 

feature j  absent, respectively. Similarly, 1( )j f   and 2( )j f  are the feature attribution values for 491 

1( )if X and 
2 ( )if X respectively. 492 

It turns out the only solution for the feature attribution values j  that satisfies these three 493 

properties, are the Shapley values of the conditional expectation function of the original model[60]. 494 

These Shapley values can be computed from Eq. 27 as: 495 
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 
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f X f Z f Z j

P


 

  
                   (27) 496 

where ( , )j if X is the Shapley regression value or feature attribution value for the feature j  in 497 

the model ( )if X , Z  is a vector of binary values representing one of the subsets of X  , P is the 498 

number of input features, Z  represents the number of non-zero elements in Z  ,  if Z  denotes 499 

the model prediction for Z   and  \if Z j  represents the prediction for Z without feature j . 500 

These Shapley values ( , )j if X , once obtained, can be used to explain the model output. The 501 

magnitude and sign of ( , )j if X will determine whether a particular feature impacts the model 502 

output negatively or positively. The 
0  from Eq. 23 represents the average value of the model 503 

prediction assuming the model has no input feature and usually represents a base value for the 504 

model output before the various Shapley values obtained from Eq. 27 are aggregated to obtain the 505 

output ( )if X . Further details on techniques available to compute the Shapley values can be found 506 

elsewhere in [60]. 507 

6. Results and Discussions 508 

6.1 Model Predictions and Evaluation 509 

6.1.2 Global Level 510 

The performance of the four selected machine learning models for load-level estimation of the 511 

class of structural elements under consideration is presented. Following the training-testing 512 

splitting rule of 70/30 as previously mentioned, the accuracy of these models was drawn for each 513 

group of data (training and testing data). Typically, the performance of the model on the testing 514 

data is used to determine its generalization capacity. Table 4 shows a summary of the four 515 

performance measures for each dataset, across the machine learning models developed. It presents 516 

the mean and standard deviation of the performance measures for 1000 runs of the developed 517 

models having different randomly sampled training and testing data. Multiple runs of the 518 

developed models were necessary to help ascertain how statistically significant the model 519 

predictions might differ. It is worth mentioning that high values of the correlation coefficient (R), 520 

explained variance (EV) and index of agreement (IA) for a particular model signifies greater 521 

performance. Similarly, models with lower root-mean squared error (RMSE) also presents a case 522 

for better predictability.  523 

Among the four machine learning models, the RFR and XGBoost models yielded the best 524 

performance on the training and testing data respectively (see Table 4). They produced relatively 525 

high values of the correlation coefficient (R), explained variance (EV) and index of agreement 526 

(IA) when compared to the ENR and SVR models. Similarly, lower average values were recorded 527 

for the root-mean squared error (RMSE) of these models, when compared to the ENR and SVR 528 

models, during the training and testing phase. However, the diferrence between the mean estimate 529 

for these models (RFR and XGBoost) were comparatively similarly, as well as their deviations. 530 

To assess the statistical significance of the differences of the mean values of these two high 531 
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performing models we calculated the t-statistic, compared this to the critical t-value, and calculated 532 

the corresponding p-values as well. Details on how the t-statistic is computed when comparing 533 

means of different populations can be found elsewhere [61,62] . 534 

Table 4. Performance measures of various machine learning models 535 

Data Algorithm Statistic 
Performance Metrics 

RMSE R EV IA 

T
ra

in
in

g
 

SVR 
Mean 0.150 0.811 0.628 0.851 

SD 0.004 0.012 0.020 0.011 

ENR 
Mean 0.151 0.785 0.616 0.867 

SD 0.004 0.012 0.020 0.009 

RFR 
Mean 0.0897 0.934 0.867 0.961 

SD 0.003 0.005 0.009 0.003 

XGBoost 

Mean 0.104 0.913 0.819 0.941 

SD 0.003 0.005 0.011 0.004 

T
es

ti
n
g

 

SVR 
Mean 0.151 0.810 0.625 0.849 

SD 0.009 0.028 0.035 0.016 

ENR 
Mean 0.152 0.784 0.611 0.864 

SD 0.008 0.028 0.043 0.017 

RFR 
Mean 0.138 0.827 0.681 0.900 

SD 0.009 0.026 0.044 0.014 

XGBoost 
Mean 0.136 0.831 0.687 0.895 

SD 0.008 0.026 0.042 0.014 

SD: standard deviation; SVR: Support vector regression; ENR: elastic-net regression; RFR: 536 

random forest regression; XGBoost: extreme gradient boosting. 537 

Table 5 and 6 presents the calculated t-values and p-values for the comparisons of the performance 538 

mean values for the RFR and XGBoost models. The t-values were compared to a critical t-value 539 

of 1.96, obtained from the student’s-t distribution at a 5% significance level with 1998 degrees of 540 

freedom. All t-values computed for these two models, and across various performance measures 541 

were higher than this critical value (see Table 5 and 6). The calculated p-values show that the 542 

actual levels of statistical significance are all below 1%. 543 

The data shown in Tables 4, 5 and 6 mean that the differences between the mean values of RFR 544 

and XGBoost for the various performance measures are statistically significant. From Table 4, the 545 

XGBoost model outperformed the RFR model when the RMSE, R and EV are considered, whiles 546 

a higher IA values was observed for the RFR model, during the testing phase. To this end, we 547 

recommed the XGBoost model as the optimal model for load level estimation of shear-critical RC 548 

beams and slabs. Since the generalization capability of a model is usually assessed by considering 549 

how it performs during the testing phase, further comparisons between these two models are 550 

drawn. 551 
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 552 

Table 5. T-values of various model comparisons  553 

Performance  

Measure Dataset Model 
t-value 

SVR ENR RFR XGB 

RMSE 

Training 

SVR  -5.59017 381.3707 290.9295 

ENR 5.59017  387.6952 297.2541 

RFR -381.371 -387.695  -106.586 

XGB -290.93 -297.254 106.5859  

Testing 

SVR  -2.62613 32.29876 39.39193 

ENR 2.626129  36.7658 44.72136 

RFR -32.2988 -36.7658  5.252257 

XGB -39.3919 -44.7214 -5.25226  

R 

Training 

SVR  48.44814 -299.2 -248.117 

ENR -48.4481  -362.446 -311.363 

RFR 299.2001 362.4457  93.91486 

XGB 248.1172 311.3627 -93.9149  

Testing 

SVR  20.76349 -14.0693 -17.3797 

ENR -20.7635  -35.5871 -38.8975 

RFR 14.0693 35.58705  -3.4401 

XGB 17.37972 38.89748 3.440105  

EV 

Training 

SVR  13.41641 -344.608 -264.615 

ENR -13.4164  -361.91 -281.24 

RFR 344.608 361.9105  106.7986 

XGB 264.615 281.2401 -106.799  

Testing 

SVR  7.985022 -31.4975 -35.8615 

ENR -7.98502  -35.9803 -39.9834 

RFR 31.49748 35.98033  -3.11925 

XGB 35.86152 39.98339 3.119251  

IA 

Training 

SVR  -35.5995 -305.085 -243.154 

ENR 35.59953  -313.333 -237.6 

RFR 305.0851 313.3333  126.4911 

XGB 243.1545 237.5997 -126.491  

Testing 

SVR  -20.3186 -75.8579 -68.4209 

ENR 20.31856  -51.693 -44.5134 

RFR 75.85792 51.69299  7.985957 

XGB 68.42087 44.51341 -7.98596  

 554 

 555 

 556 
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Table 6. P-values of various model comparisons  557 

Performance  

Measure Dataset Model 
p-value 

SVR ENR RFR XGB 

RMSE 

Training 

SVR  2.58E-08 0 0 

ENR 2.58E-08  0 0 

RFR 0 0  0 

XGB 0 0 0  

Testing 

SVR  0.008702 1.6E-184 1.2E-251 

ENR 0.008702  1.8E-226 2.9E-303 

RFR 1.6E-184 1.8E-226  1.66E-07 

XGB 1.2E-251 2.9E-303 1.66E-07  

R 

Training 

SVR  0 0 0 

ENR 0  0 0 

RFR 0 0  0 

XGB 0 0 0  

Testing 

SVR  7.19E-87 6.12E-43 4.07E-63 

ENR 7.19E-87  2.9E-215 6.9E-247 

RFR 6.12E-43 2.9E-215  0.000593 

XGB 4.07E-63 6.9E-247 0.000593  

EV 

Training 

SVR  2.32E-39 0 0 

ENR 2.32E-39  0 0 

RFR 0 0  0 

XGB 0 0 0  

Testing 

SVR  2.35E-15 3.8E-177 7.2E-218 

ENR 2.35E-15  5.4E-219 2.4E-257 

RFR 3.8E-177 5.4E-219  0.001839 

XGB 7.2E-218 2.4E-257 0.001839  

IA 

Training 

SVR  2.2E-215 0 0 

ENR 2.2E-215  0 0 

RFR 0 0  0 

XGB 0 0 0  

Testing 

SVR  1.39E-83 0 0 

ENR 1.39E-83  0 3E-301 

RFR 0 0  2.33E-15 

XGB 0 3E-301 2.33E-15  

 558 

 559 

In corroborating this finding, a score analysis is conducted. Score analysis basically entails 560 

assigning a score to the various values of the performance measures across different models. In 561 

this study, with the number of machine learning models being 4, a model that yields the greatest 562 
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performance is assigned a score of 4, whereas the least performing model is assigned a value of 1. 563 

Considering that 1000 runs of the developed models for different training and testing data was 564 

conducted, the average score for a particular model is used. Subsequently, a summation of the 565 

average scores of the various performance measures for each machine learning model is computed 566 

to obtain the total score (see Table 7).  567 

Table 7. Score analysis results of various machine learning models 568 

Data Algorithm 
Score 

Total Score 
RMSE R EV IA 

T
ra

in
in

g
 SVR 1.63 1.00 2.00 1.92 6.55 

ENR 1.37 2.00 1.00 1.08 5.45 

RFR 4.00 4.00 4.00 4.00 16.00 

XGBoost 3.00 3.00 3.00 3.00 12.00 

T
es

ti
n
g

 SVR 1.63 1.00 2.25 1.85 6.73 

ENR 1.4.0 2.00 1.02 1.20 5.62 

RFR 3.32 3.88 3.10 3.31 13.61 

XGBoost 3.65 3.12 3.63 3.64 14.04 

 569 

The model producing the highest total score is deemed to be the best performing model.  As seen 570 

in Table 7, the RFR and XGBoost models dominated the score analysis by being the best models 571 

during the training and testing phase respectively. Nevertheless, since the generalization capability 572 

of model can be evaluated by considering its performance on the testing data, the XGBoost model 573 

is deemed the optimal model for load-level estimation of shear-critical RC beams and slabs. The 574 

attained total score were 13.61 and 14.04 for the RFR and XGboost models respectively, during 575 

the testing phase. However, the RFR model tends to outperforms the XGBoost model during the 576 

training phase (see Table 7). This observation might imply that there is an inherent overfitting 577 

problem with the RFR model. The least performing model was the Elastic-Net Regression (ENR), 578 

which yielded total scores of 5.45 and 5.62 during the training and testing phase respectively. This 579 

observation also suggests that the linear statistical method of analysis may not be optimal for 580 

predicting the load-level of shear-critical beams and slabs using multifractal analysis.  581 

Graphical presentation of the score analysis is given in a form of a radar chart as shown in Fig. 9, 582 

to facilitate interpretation. It is observed that the Random Forest Regression (RFR) model tends to 583 

perform well on the training data (see Fig. 9) than any other model across the various performance 584 

measures. Similarly, the radar charts indicates the the XGboost model performance better than the 585 

RFR model during the testing phase. This suggests that non-linear models, in particular tree-based 586 

models such as random forest and the extreme gradient boosting machine, tends to produce better 587 

estimates of the load-level of shear-critical concrete beams and slabs using the proposed 588 

framework.  589 
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 590 

Fig. 9 Radar charts for various performance measures: (a) RMSE; (b) R; (c)  EV; (d) IA. (color 591 

printed) 592 

6.1.3 Local Level 593 

In order to gain insight into the predictive performance of these models at the local level, Fig. 10 594 

shows a typical scatter plot, to help establish the correlation between predicted and true values of 595 

the load-level for each data point in the training and testing dataset. This visualization will also 596 

assist in determining which regions across the load-level range, tends to produce better estimates. 597 

Evidently, the XGboost produces the lower scatter or deviation with a narrow prediction interval 598 

compared to the other models investigated in this study (see Fig. 10). The mean of the predicted-599 

to-tested ratio for this model was 1.04 with a coefficient of variation of 27%. Nonetheless, there 600 

seems to be significant error or outliers for some data points, particularly in the testing data. The 601 

majority of these data points yielded a prediction of load-level higher than their true values, and 602 

hence conservative for damage assessment or design. Although there exist works on estimating 603 

the load-level of beams and slabs using fractal analysis and other data-driven machine learning 604 

algorithms[2,35,63], fair comparison cannot be generally drawn for most of them due to the 605 

disparity in specimens that make up the database as well as its size. Nevertheless, a closely related 606 

work that used about 95% of the database in this study is that of Davoudi et al. [2] who provided 607 

another alternative to damage assessment of shear-critical concrete beams and slabs using machine 608 

vision  In their assessment, scatter plot and performance metric values similarly those presented in 609 

Fig. 10 and Table 4 were plotted. By comparison, the developed model produced comparable 610 

performance measures as against those reported by Davoudi et al. [2]  611 
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 612 

Fig. 10 Scatter plot of load-level results predicted by different machine learning model: (a) SVR; 613 

(b) ENR; (c) RFR; (d) XGBoost. (color printed) 614 

A typical regression error characteristic (REC) curve  as constructed in Fig. 11 for the various 615 

models is used to facilitate model predictability at the local scale. The REC curve is a cumulative 616 

distribution function which tends to establish a relationship between the absolute error or deviation 617 

(x-axis) as against the proportion of datapoints (y-axis) with absolute error lesser than or equal to 618 

the current level. It is analogous to the receiver operating characteristic (ROC) curve in 619 

classification problems for model assessment.  Whereas the ROC curve uses the area under the 620 

curve (AUC) to evaluate performance, it has been widely established that the area over curve 621 

(ROC) be used to provide a valid measure for regression problems. The ROC can be simply 622 

computed by subtracting the AUC from 1. A regression model is known to perform well if the 623 

AOC value of an REC curve is low.  624 

(a)

(d)(c)
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 625 

Fig. 11 Regression error characteristic curves for various machine learning model: (a) SVR; (b) 626 

ENR; (c) RFR; and (d) XGBoost 627 

 628 

From Fig. 11, which shows the REC curve using the full dataset, the XGBoost model produced 629 

the lowest ROC of 0.077, hence corroborating findings attained at the global level of assessment. 630 

The ROC for both SVR and ENR models were the same, hence suggesting equal performance. 631 

80% of the datapoints produced absolute errors of load-level lesser than 0.1 for the XGBoost model 632 

(see Fig. 11d). The RFR, ENR and SVR models yielded predictions of which 80% had absolute 633 

errors within 0.17, 0.21 and 0.21 respectively. In this study, the XGBoost model developed 634 

remains the optimal model at both local and global levels for estimating the load-level of shear-635 

critical RC beams and slabs.  636 

6.2 Model Interpretation  637 

6.2.1 Global Level   638 

A simplified explanation model was developed for the optimal predictive model, i.e, XGBoost, for 639 

interpretation using SHapley Additive ExPlanation (SHAP). On the global scale (entire dataset), 640 

the relative importance of each feature is given in Fig. 12. It provides the mean of the absolute 641 

SHAP values computed for each feature in the full dataset. These mean values are then used to 642 

ascertain the impact of each feature on the predictions made.  643 
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 644 

Fig. 12 Global interpretations of XGBoost model: (a) SHAP feature importance; and (b) SHAP 645 

summary plot. (color printed) 646 

 647 

Generally, it was observed that the so-called generalized dimensions (FD, ID and CD), which were 648 

obtained from the multifractal analysis of the crack patterns considered, has significant impact on 649 

the estimation of the load-level, as opposed to the other geometric features acquired from the 650 

singularity spectrum. For the generalized dimensions, the box-counting fractal dimension (FD) 651 

was arguably the most critical parameter (see Fig. 12a). Many of previous works on the application 652 

of multifractal analysis for crack damage assessment of RC elements have always considered FD 653 

as the most influential feature, with the findings from this study affirming it.  The area under the 654 

left branch of the singularity spectrum (LBA) tends to contribute the most to the model predictions 655 

for the geometric features considered, providing about 35% of that produced by FD. The least 656 

contributing feature as seen in Fig. 12a is the capacity (C), whose mean absolute SHAP value was 657 

about 17% as important as the most critical feature.  658 

In order to determine how the original values of the features within the dataset affects the model 659 

prediction or load-level, Fig. 12b demonstrate a summary plot for such analysis. Each point in the 660 

plot shows the SHAP value (x-axis) of a particular feature (y-axis). For each feature, the 661 

distribution of SHAP values are shown along the x-axis, which are colour-coded to differentiate 662 

between high (red dots) and low (blue dots) values of the original feature. For instance, for high 663 

values of the fractal dimension (FD) as seen in the upper right corner of Fig. 12b, there is an 664 

expected increase in the load-level of about 16%. Nevertheless, there are instances for which 665 

higher values of FD cause a reduction in the load-level (red dots on the left-hand side of the 666 

summary plot for FD). To this end, the average value of the distribution of SHAP values is used 667 

to ascertain whether a feature impacts the load-level positively or negatively. In general, for the 668 

critical features, an increase in the fractal dimension FD, information dimension ID, and 669 

correlation dimension CD causes an increase in the load-level. Conversely, the load-level tends to 670 

decrease when the area under the left branch (LBA), is low.  671 
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6.2.2 Local Level  673 

SHAP also provides interpretation for each individual prediction. In assessing the impact of the 674 

various feature at the local level, four RC beams were sampled from the database considered. 675 

These samples had load-levels spanning various damage states (low, moderate, near failure and 676 

ultimate failure). For the sample exhibiting a lower degree of damage, a simplified explanation 677 

model which comprises the aggregation of SHAP values for each feature and a base value to yield 678 

a final prediction is given in the second column of Table 8.  This sample had a true load-level of 679 

17.1% and a predicted value of 22%. It is worth noting that the base value depicts the default 680 

prediction when the attribution from each feature is excluded.  681 

Table 8. Relative SHAP values of features for four selected samples 682 

Feature 
Shapley values of selected sample scenarios (%) 

Low Moderate Near failure Failure 

C -3.6 1.7 0.2 0.6 

FD -18.1 -6.8 1.9 12.2 

W -1.8 0.2 0.7 2.5 

LBA -8.7 3.1 5.6 3.1 

RBA -1.8 -1.5 -3.3 0.9 

ID -8.7 -5.3 1.7 6.3 

CD -2.2 -1.8 -0.2 3.6 

DD -0.8 0.4 5.9 1.3 

Base Prediction 67.7 67.7 67.7 67.7 

Prediction 22.0 57.7 80.2 98.2 

True Value 17.1 59.0 81.5 100 

 683 

It is observed that, FD, LBA, ID and C are the most critical features that influence the predictions 684 

of RC beams with a low load-level (see Fig. 13a). These features negatively impact the final 685 

prediction by reducing the base value. For this particular sample, FD, LBA ID and C caused a 686 

reduction in the base value of about 18.1%, 8.7%, 8.7% and 3.6%, respectively.  687 
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 689 

Fig. 13 Local interpretations of selected RC beams with different damage levels: (a) low- 690 

Sherwood [54]  ; (b) moderate Cao[57] - ; (c) near failure  - Cao[57]  ; and (d) ultimate failure - 691 

Cao[57]. (color printed) 692 

The second sample was selected to depict an instance where the RC beam is moderately damaged. 693 

The true and predicted load-level for this sample is 59% and 57.7%, respectively. The SHAP 694 

values of each feature for this sample are given in Table 8. Fig. 13b illustrates the critical features 695 

that influence the prediction made for this sample. The red bars represent contributions from 696 

features that increase the load-level, with the blue bars outlining features that affect the load-level 697 

prediction negatively. It is observed that whereas LBA and C reduce the load-level for the slightly 698 

damaged beams (Fig. 13a), they rather tend to increase the load-level for moderately damaged RC 699 

beams (Fig. 13b). The original values of LBA and C are relatively higher for the moderately 700 

damaged beams when compared to the slightly damaged beams, and hence could be a contributing 701 

factor to explain this observation (see annotations in Fig. 13a and 13b).  As the level of damage of 702 

the RC beam increases and approaches failure, the SHAP values for the features assume positive 703 

values (Table 8). This is evident in the two other samples which were used to represent near failure 704 

and ultimate failure cases (see Table 8 and Fig. 13). The fractal characteristics of these beams 705 

produced relatively high values of the original features and hence can partly give a physical reason 706 

why the predictions are increased from the base value to the final output. In all cases, FD and ID 707 

appears to dominate the most critical features for the four samples considered and either affect the 708 

load-level prediction positively or negatively, depending on the level of damage the RC beam in 709 

question has sustained. 710 

6.3 Feature Dependency plot 711 

The correlation between SHAP values and features values can give a detailed insight into which 712 

scenarios can either cause a decrease or increase in the load-level. Fig.14 shows feature 713 

dependency plots to facilitate such analysis. For brevity, the variation of SHAP values for six 714 

selected features is presented.  715 
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 716 

Fig. 14 Plots of feature dependency: (a) FD; (b) LBA; (c) RBA; (d) CD; (e) ID; and (f) W. (color 717 

printed) 718 

SHAP values increase with increasing values of FD, LBA, CD and ID. This indicates that FD, 719 

LBA, CD and ID are positively correlated with load-level estimation of shear-critical RC beams. 720 

From Fig. 14a, RC beams with FD greater than 1.05 tend to cause an increase in load-level. Note 721 

that many of these RC beams tend to have values of ID greater than 1.1 (Fig. 14e). Nevertheless, 722 

whereas the maximum increase in load-level considering ID is about 6%, FD can contribute an 723 

increase of about 16% in load-level (Fig. 14a and 14e). Beams with LBA values greater than 0.05 724 

and DD less than 0.3, do cause an increase in load-level (Fig. 14b). Even though RC beams with 725 

CD greater than 1.1 tend to cause an increase in load-level, its contribution is not so significant 726 

with a maximum increase of about 4.5%. For W and RBA, the pattern is inconclusive and hence 727 

insignificantly affect load-level estimates. Findings from this analysis can be used to develop 728 

closed form solutions to load-level estimation for damage assessment of shear-critical RC beams 729 

and slabs.  730 

7. Conclusions 731 

This paper explored the application of multifractal analysis to shear-critical RC beams and slabs 732 

for load-level estimation. A database of 508 RC beams and slabs were used for model training 733 

(70%) and testing (30%). Multifractal analysis was first conducted on images of crack patterns of 734 

these beams, with critical features extracted from the singularity and generalized dimension spectra 735 

to form the design input matrix in the model development phase, whereas the load-level for each 736 

specimen served as the output. The efficiency of four regression-like machine learning models 737 

(elastic-net regression (ENR), support vector regression (SVR), random forest regression (RFR) 738 

and extreme gradient boosting (XGBoost)) were explored on the dataset. Hyperparameter 739 

optimization was conducted for these models using a random search algorithm. For performance 740 
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measures (root-mean squared error (RMSE), correlation (R), explained variance (EV) and index 741 

of agreement (IA)) were used to facilitate model evaluation and selection. Shapley additive 742 

explanations (SHAP) was later used for model interpretation. The primary findings from this study 743 

are listed below: 744 

 The XGBoost model was the most effective model for estimating the load-level of shear-745 

critical RC beams and slabs. The mean of the predicted-to-tested ratio was 1.04 with 746 

coefficient of variation of 27%. 747 

 Upon comparing the XGBoost model with the other models, it was found out that tree-748 

based methods perform significantly better than linear and non-linear methods of 749 

regression.  750 

 For model interpretation at the global level, it was revealed by SHAP that the so-called 751 

generalized dimensions (fractal dimension (FD), information dimension (ID) and 752 

correlation dimension (CD)) which was obtained from the multifractal analysis of the crack 753 

patterns considered, had significant impact on the estimation of the load-level, as opposed 754 

to the other geometric features acquired from the singularity spectrum. The fractal 755 

dimension (FD) was arguably the most critical feature whereas the capacity (C) was the 756 

least influential. 757 

 Shear-critical RC beams with FD greater than 1.05 tend to cause an increase in load-level, 758 

which can be as high as high as 16%. Even though RC beams with CD greater than 1.1 759 

tend to cause an increase in load-level, its contribution is not so significant with a maximum 760 

increase of about 4.5%. 761 

 It was observed that depending on how high or low the original values of the multifractal 762 

features are, which is heavily related to the level of damage, the obtained SHAP values will 763 

either increase or decrease the load-level estimates. For instance, whereas the area under 764 

the left branch (LBA) and C reduce the load-level for the slightly damaged beams (Fig. 765 

14a), they rather tend to increase the load-level for moderately damaged RC beams (Fig. 766 

14b). 767 

To facilitate the practical application of the developed model as well as reproducibility, the source 768 

code and database will be made available to the public on a GitHub account. Users may use the 769 

proposed model to either get a firsthand insight on the level of damage sustained by such structural 770 

elements in service, before another sophisticated framework can be applied.  771 

8. Limitations 772 

Despite the successful development of the structural load estimation model based on 773 

multifractal features, some limitations have been identified. The present study only considers 774 

RC beams and slabs that have been designed to exhibit shear dominant failure. In order words, 775 

the developed model is not generally applicable, as it cannot be utilized for other structural 776 

failure phenomena. Future studies should continuously explore the combined application of 777 

machine-learning and multifractal analysis to other modes of structural failure, type of RC 778 

element and loading conditions. This could assist in the development of a unified model for 779 

structural load level estimation for a wide variety of RC structural elements. Secondly, valuable 780 

damage parameters on crack patterns such concrete spalling and crack width were not 781 
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considered in the present study. The generalization error of the develop model can be improved 782 

if information relating these parameters are provided and well documented. Therefore, future 783 

experimental testing programs should grant the research community access to raw data if 784 

possible. Despite these limitations, findings from this research have revealed the need for 785 

continuous research in the application of machine-learning based multifractal analysis of 786 

reinforced concrete structures for structural load-level assessment. 787 
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RESPONSE TO REVIEWER’S COMMENT 

We value the time spent in reviewing our manuscript. We believe that the technical comments raised 

will help improve on our current submission and enlighten us on areas we couldn’t capture well. Below 

are the responses to the comments raised. 

Reviewer One 

Comment Number 1: It seems that the predictors utilized are extracted from images, while the 

response/output is the ratio of  nominal applied shear during loading to the one at failure (i.e., 

V/Vfailure). I wonder if  the definition "failure ratio" for output is appropriate under this 

circumstance? In addition, how do authors determine the value of  V/Vfailure from image? More 

importantly, it seems that the input predictors extracted from images do not have physical meaning. 

If  so, how do authors apply their proposed model for future prediction only based on images? 

 

Response: The paper primarily sought to develop a model for estimating the internal load levels in 

shear critical RC concrete beams and slabs using images of  their crack patterns upon loading. To that 

end, all RC specimens used in the analysis were designed to have shear dominant failure. For each 

experimental program, a captured sequence of  images that are linked to their recorded load levels 

were obtained for each specimen. Because these images were captured at multiple load levels, we are 

trying to explore patterns between the images and the loading, as well as correlations between them. 

Specifically, we intend to predict how close a specimen is to failure based on the captured image.  

We have used V/Vfailure to quantify what we mean by “how close a specimen is to failure” because 

all specimens under consideration were shear-critical. For clarity we have edited the definition of  

V/Vfailure  as “load level” instead of  “failure ratio”.   

With regards to your question on how we determined the value of  V/Vfailure from images, it worth 

noting that they were load levels that were recorded when capturing such images.  

With regards to the question on the application of  this model for future prediction, the present 

research findings as communicated in this manuscript is based solely on utilizing multifractal features 

for damage level evaluation. The inputs features can be considered as additional piece of  information 

that can assist in the quantifying the load level sustained by a shear-critical RC beams or slabs. The 

model can be used as it is or combined with other sophisticated approaches that utilizes some physical 

and measurable design parameters. 

 

Comment Number 2: The validation and comparison of  ML models should be rearranged to 

comprehensively consider the sensitivities of  ML algorithms to training and testing sets. Different 

training and testing sets applied to ML algorithms may generate totally different results. It seems that 

the authors only split training and testing sets once and use the results for the final comparison and 

decision-making. Please implement your method (i.e., Figure 7) at least ten times with different random 

splits to consider the sensitivities of  ML algorithms to the split of  training and testing sets. 

Detailed Response to Reviewers



Response: The validation and comparison of  the ML models were conducted in our original 

manuscript as submitted. We have considered different training and testing sets as spelt in section 

6.1.2. To be precise, 1000 runs on different training and testing sets were conducted. Table 5 and 6 

presents results on their comparison and subsequent decision-making process.  

Comment number 3: Please add a section to discuss the limitations of  your proposed method in a 

VERY detailed way. 

Response: A section on assumptions and limitations has been inserted in the revised manuscript. See 

section 8 of  revised manuscript.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reviewer Two 

 

Comment number 1: P.1, ll.28-29: What is "reinforced concrete civil engineering infrastructure 

system"? The meaning of  this term is not clear. Is it "reinforced concrete structure"? 

Response: We were generally referring to “civil engineering infrastructure systems”. We have made 

the necessary corrections in the revised manuscript.  

Comment number 2: P.2, ll.54-55: Please provide suitable reference for a case of  the bridge collapse. 

Response: A suitable reference has been cited and also inserted in the list of  bibliography. See 

reference number 10. 

Comment number 3: PP.1-2, introduction part: At pages 1-2, authors mentioned the importance 

about how to assess the damage of  existing structures which has cracks. But the main focus of  this 

study is estimating load level of  RC members. The damage evaluation and the load level estimation 

are different, so the introduction part doesn't match with the main content of  the paper. It will be 

better to modify the introduction part. 

Response: The introduction part has been modified to address this important difference. See 

highlight portion of  the introductory part. 

Comment number 4: Table 1: The loading conditions or structural characteristics should be different 

for each reference. This point should be summarized, because they are strongly affect the cracking 

behavior during loading. 

Response: Table 1 has been edited to capture the suggestions given above.  

Comment number 5: Table 2: It is recommended that the multifractal features of  each experiment 

from references are shown separately, because different experimental condition (such as 3-point 

loading or 4-point loading, deep beam or not deep beam) can have largely different cracking patterns 

and it can result in different behavior of  multifractal features. 

Response: Table 2 has been edited to capture the suggestions given above.  

Comment number 6: Chapter 4: Is the information of  shear cracks extracted effectively from the 

crack patterns? Because most of  the cracks in the crack pattern shown in Fig.3 are bending cracks 

which is less related to shear capacity of  RC members, we are not sure whether it is effective to use 

the whole crack patterns to estimate the load level. Especially, at low load level, all cracks should be 

bending cracks. Even if  all cracks are bending crack, is the information used to estimate load level for 

shear failure? 

Response: The paper primarily sought to develop a model for estimating the internal load levels in 

shear critical RC concrete beams and slabs using images of  their crack patterns upon loading. As we 

rightly acknowledge, at low levels, all cracks can be considered to be tensile cracks. Nevertheless, all 

RC specimens used in the analysis were designed to have shear dominant failure. The intention is to 

estimate how close these specimens are to failure, and as such when the develop model outputs a low-



level prediction, for which bending cracks dominate, its relevance may not be that significant in this 

context.  

Comment number 7: P.29, section 6.2.2: From which reference were four RC beams selected? And, 

if  possible, please provide crack patterns and the value of  multifractal features for four cases. It will 

be helpful for better understanding of  behaviors. 

Response: The crack patterns and values of  multifractal features are presented in Fig. 13. The 

appropriate references have been inserted in this figure’s caption.   

Comment number 8: References: Please provide necessary information for references. For example, 

the information for[55]-[58] is poor. 

Response: Thank you for drawing our attention to this.  We have added extra information to such 

references. 
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Abstract 13 

This paper presents a machine learning model for load-level estimation for shear-critical reinforced 14 

concrete (RC) beams and slabs using multifractal features of their characteristic crack patterns to 15 

automate and provide well-informed decisions for RC damage assessment. Multifractal analysis 16 

was conducted on a database of 508 images, of which critical features were extracted from the 17 

singularity and generalized dimension spectra. These features are used as predictors for the load-18 

level estimation model. The extreme gradient boosting algorithm yielded the best performance 19 

among the four machine learning models considered. The mean of the predicted-to-true ratio for 20 

the developed model was 1.04 with a coefficient of variation of 0.27. Upon applying Shapley 21 

additive explanations, the fractal dimension, information dimension, correlation dimension and the 22 

area under the left branch of the singularity spectrum were the critical features influencing load-23 

level estimation. The proposed model can be useful to RC building inspectors.  24 

Keywords: Multifractal analysis; load-level assessment; beams and slabs; machine learning; score 25 

analysis 26 

1. Introduction 27 

The performance characteristics of many civil engineering infrastructure systems play a dominant 28 

role in structural safety evaluation [1], as well as public safety [2]. In practice, evaluating the 29 

service performance of such systems is typically facilitated by non-destructive techniques. Visual 30 

inspection techniques remain one of the most widely used approaches for the non-destructive 31 

evaluation of such systems [3]. They are used in many contexts, including but not limited to 32 

structural condition monitoring and damage assessment. The results from such techniques usually 33 

give a firsthand insight into whether the infrastructure should be repaired or replaced, or an 34 

estimate of the remaining life of the system at both local and global levels. For reinforced concrete 35 

(RC) structures, the available visual inspection techniques heavily rely on patterns in concrete 36 

cracking and propagation (width, length and orientation), spanning a significant period of 37 

deterioration. This methodology has been fairly justified since characteristic crack patterns of RC 38 

structures can be used as a proxy to ascertain the stress and strain levels induced in the system 39 

during deterioration. In other words, they become a valuable piece of information during load-40 
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level assessment of reinforced concrete structures. Typically, the damage assessment and structural 41 

condition monitoring phase of RC structures as done by visual inspectors is conducted in three 42 

stages; (1) using crack detection equipment such as lidars to determine their locations; (2) 43 

documenting the damage by capturing images of the cracked regions [4,5] and (3) and determining 44 

the internal load levels  and damage states of inspected elements.  One notable and conventional 45 

way to assess the damage of RC structures has been to augment data from crack pattern 46 

characterization and analysis, with condition rating systems[6–8]. Nevertheless, with regards to 47 

either estimating the residual strength of an RC member/structure (load-level assessment) or 48 

categorizing the extent of structural damage (damage assessment), condition rating systems 49 

oftentimes result in a qualitative assessment and hence do not necessarily provide building 50 

inspectors with the necessary information [7,9]. In particular, guidelines on condition rating of 51 

civil infrastructure systems allows for engineering judgment to be used in damage evaluation, 52 

hence subjective and highly reliant on the experience of the inspector[1]. With regards to 53 

documentation during the assessment phase, visual inspectors do take a considerable amount of 54 

time to complete such tasks, and therefore can causes delays. A case in point is the bridge collapse 55 

at the Florida International University [10], where although damage documentation was 56 

conducted, results were not accessible in a timely manner to aid in collapse prevention and 57 

mitigation.  Hence, a major drawback of the application of this visual inspection approach has been 58 

it’s time-consuming nature (damage documentation) amidst subjectivity in making well-informed 59 

decisions. To this end, the relevance of developing automated infrastructure inspection methods 60 

for load-level and damage assessment of RC structures has presented itself an interesting area of 61 

research. 62 

Structural design and industrial guidelines such as ACI [11] , IAEA [6] and AASHTO [12] make 63 

available procedures for load-level and damage evaluation of RC components via crack analysis. 64 

A real-world application of how crack patterns can be used to predict the strength and stiffness 65 

characteristics of RC shear walls that were damaged during an earthquake was conducted by 66 

Madani and Dolatshahi [13]. A significant number of research efforts [5,14–22] have been 67 

conducted on crack detection and measurement, which is one of the key stages in crack analysis. 68 

Nonetheless, the task of using information (width, length, orientation and number of cracks) 69 

obtained from crack analysis to correlate the level of damage still remains a challenge with 70 

research efforts still at an early stage.  In recent times, artificial intelligence-based data-driven 71 

techniques keep transforming the field of structural engineering. To this end, automated computer-72 

aided visual inspection approaches have been developed for the identification and characterization 73 

of structural damage of RC structures through crack assessment [4,5,20,21,23–27]. These 74 

approaches are heavily reliant on two fields: machine learning and computer vision. The 75 

fundamental problem of image segmentation (automatically retrieving cracks from images), 76 

coming from the computer vision perspective, for RC members has been studied extensively in 77 

recent times [28–30].  This has made it possible to extend machine learning algorithms to 78 

quantitatively predict the level of damage of many RC structural components. For instance, 79 

Ebrahimkhanlou [25] developed a probabilistic graphical model (Bayesian Belief Network) that 80 

could visually evaluate the extent of damage of an RC shear wall and also prognosticate the most 81 

likely mode of failure for such members. Fatigue life evaluation of bridge deck was presented 82 

Fathalla [31] by using an artificial neural network. Davoudi et al. [2,32] employed computer-83 
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3 

vision-based inspection methodologies for quantitative damage and load estimation of RC beams 84 

and slabs.   85 

The theory of fractals has been extensively applied in the field of structural engineering for 86 

performance evaluation and damage assessment of RC components. Farhidzadeh et al.[33]  87 

reported that the extent of structural damage of an RC shear wall under reverse-cyclic loading can 88 

be quantified from the fractal characteristic of their crack patterns. Experimental validation of how 89 

fractal characteristics of surface cracks of RC members can be utilized in damage classification 90 

was investigated by Carrillo et al. [34]. Athanasiou et al. [1] and Liu et al [35] have recently 91 

developed data-driven machine learning models for damage classification of RC shells using 92 

multifractal and fractal analysis respectively. 93 

The present work seeks to extend the application of multifractal analysis of crack patterns in 94 

damage evaluation of shear-critical monotonically-loaded simply-supported RC beams and one-95 

way slabs. In order to facilitate this, a database of segmented images of shear-critical RC beams 96 

and slabs as compiled by Davoudi et al. [2] is utilized. In particular, this study builds on the work 97 

done by Athanasiou et al. [1] that explored the utilization of multifractal features for damage 98 

evaluation of RC shells. The singularity spectrum (a parabolic curve, concave in nature) remains 99 

the most dominant output of any multifractal analysis. As shown in Athanasiou et al., [1]  100 

geometric features of the singularity spectrum can be extracted and utilized as inputs in a machine 101 

learning-based damage classification model of RC shells, with significant accuracy. Although four 102 

candidate multifractal features (peak, width, and the area under the left and right branch of the 103 

singularity spectrum) were used in their approach, which was seemly motivated by trying to reduce 104 

the dimensionality of the model, the authors could not exhaust all potential features that can be 105 

obtained from the multifractal analysis, which could equally impact the damage evaluation process 106 

positively. The primary distinction in the present study is on the identification of the critical 107 

multifractal features relating to both geometry and dimensionality of the basic output of 108 

multifractal analysis. The secondary distinction is the proposition of a machine learning regression 109 

model that utilizes multifractal features for damage evaluation (structural load estimation) of 110 

shear-critical simply-supported RC beams and slabs with a monotonic loading protocol, as 111 

opposed to the load estimation models developed by Davoudi et al. [2,32] using machine vision. 112 

The overall goal motivating this study is to provide an automated model that takes in captured 113 

images of RC beams and slabs and can provide a fairly quick estimation of the extent of damage 114 

before sophisticated and computationally expensive assessment techniques can be utilized for 115 

rigorous cracking assessment of RC structural components.   116 

 117 

2. Overview of Fractal Analysis 118 

Fractal theory [36] since its inception in the 1970s has been successful applied in many fields 119 

including astrophysics [37], financial engineering[38], structural engineering[33,34,39,40], 120 

medicine [41,42] and manufacturing [43].  The theory seeks to characterize the geometry of 121 

irregular and complex objects occurring in nature that the classical Euclidean geometry may seem 122 

non-applicable. As  noted by Mandelbrot [36], ‘clouds are not spheres, mountains are not cones, 123 

nor does lightning travel in a straight line. There are two main facets of fractal theory; 124 
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dimensionality and self-similarity. The dimensionality concept hinges on the fractal geometry of 125 

the object. As popularly known in literature, Euclidean geometry reveals that the topological 126 

dimension of a point, straight line and plane is 0, 1 and 2 respectively, without any intermediate 127 

values. However, fractal geometry permits the use of fractional or fractal dimensions. To illustrate 128 

this, consider the crack pattern of an RC beam in Fig. 1 which has an estimated fractal dimension 129 

of 1.4. 130 

 131 

 132 

Fig. 1 Typical crack pattern of an RC beam with fractal characteristics 133 

The self-similarity property of many fractal objects is related to an observation about how the 134 

method of construction of such objects at both local and global scales appear to be identical. Crack 135 

patterns of many reinforced concrete structures under both cyclic and monotonic loading have 136 

been shown to exhibit this self-similar behavior. An illustrative example is the crack surface of a 137 

prestressed RC girder as shown in Fig. 2 [40]. It possesses fractal behavior since the crack patterns 138 

contain replicas of itself at microscopical and macroscopical scales. In order words, if one zooms 139 

in or out the crack surfaces (Fig. 2), the geometrical shape has similar appearance. If there exist 140 

more than one replica of this self-similarity charateristics, the considered crack pattern is 141 

categorized as a multifractal crack pattern. Other technical background for categorizing a digital 142 

image as either having monofractal or multifractal characterisitics is discussed below.  143 

Nevertheless, for this particular example, since there exists some form of self-similarity at more 144 

than one location, there is reason to believe that the crack patterns have multifractal characteristics.  145 

 146 

Fig. 2 Self-similarity of RC cracks 147 

 148 

2.1 Monofractal Analysis 149 

Several implementation procedures exist for conducting  monofractal analysis of images, for 150 

fractal dimension determination [44–46]. The box-counting algorithm being the most popular is 151 

used in this study. In its abstract form, the fractal analysis seeks to establish the relation between 152 

two quantities; the scaling factor,  , and the number of coverings, ( )N   of the fractal set, for 153 
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instance, a digital image profile. Eq. 1 provides the power law relationship that exists between 154 

these two quantities. 155 

( ) DN                                                                                     (1)  156 

where D  denotes the fractal dimension. However, for the box-counting algorithm, the scaling 157 

factor,  , is approximated with the size of the box ( a ) used in discretizing the image pattern. The 158 

number of boxes that contains at least an active pixel ( ( )N a ) is also used as a proxy for the number 159 

of coverings ( ( )N  ).  Linearizing the power law from Eq. 1, the fractal dimension, D  , as per the 160 

box-counting algorithm, can be computed as: 161 

0

log( ( ))
lim

log(1 / )a

N a
D

a
                                                            (2) 162 

Alternatively, D can be estimated from the gradient between the number of boxes that contains at 163 

least an active pixel, ( )N a , and the inverse of the box size, a , in the logarithmic space. Fractal 164 

dimension, D  , depicts the global behavior of fractal sets or digital images  through the scaling 165 

law presented in Eq. 1, and is the primary output of any monofractal analysis. Monofractal analysis 166 

typically do not provide the necessary information for quantifying local fractal characterization.  167 

There is a possibility that different images with varying levels of complexities, irregularities and 168 

roughness, will yield the same fractal dimension,  D , when a monofractal anlysis is conducted 169 

[43,47]. In such situation, the utilization of a generalized fractal analysis, known as multifractal 170 

analysis could be employed to gain much more insight.  171 

2.2 Multfractal Analysis 172 

Multifractal analysis seeks to provide a detailed local description of the fractal characteristics of a 173 

digital image profile. The local pixel density of a particular box, ( )iP a , in the digital image is first 174 

computed as given in Eq. 3.  175 

( )

( )
( )

( )

i
i N a

ii

N a
P a

N a



                                                       (3) 176 

where ( )iN a  is the number of pixels in the ith box. In the special case where the image in question 177 

is a crack pattern of an RC element, ( )iP a denotes the crack density. As an illustrative example, 178 

consider the crack pattern of a beam shown in Fig. 1. 179 

 180 

Using four candidate boxes, the spatial distribution of the pixel intensities (crack density ( )iP a ) 181 

for the above RC beam is presented in Fig. 3. Evidently, the spatial crack density distribution 182 

seems to converge to the original crack pattern of the beam when the size of the box decreases. 183 
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 184 

Fig. 3 Spatial distribution of pixel intensities for the crack pattern of an RC beam (color printed) 185 

 186 

It turns out that, a similar power law exists between how the pixel density ( )iP a  scales, and size 187 

of the box a  (see Eq. 4).  188 

( ) i

iP a a


                                                               (4) 189 

where 
i is the singularity exponent, depicting the local scaling/fractal behaviour for the ith box. 190 

In other words, each box characterized by ( )iP a  will have its own singularity exponent 
i . For an 191 

infinitesimally small difference  , the number of boxes ( )N   for which their singularity 192 

exponents fall within the closed interval [ ,    ] is obtained, and follows a power law with 193 

the box size (a), similar to that of Eq. 1. 194 

( )( ) fN a                                                                        (5) 195 

where ( )f  is the fractal dimension of the boxes with the same local scaling  .  An ( )f 196 

plot is commonly called the singularity spectrum is typically used to summarize the output of any 197 

multifractal analysis study. The ( )f  can be computed from Eq. 6 as: 198 

0

log( ( ))
( ) lim

log(1 / )a

N
f

a





                                                          (6) 199 

Traditionally, Legendre Transformation as suggested by Hasley et al.  [48] is used to estimate200 

( )f  . Nevertheless, a direct numerical approach developed by Chhabra and Jensen  [49] is used 201 

in this study. It begins with obtaining distorted versions of the spatial distribution of the pixels 202 

using the following exponential mapping: 203 

( ) ( )q

i iP a P a                                                                      (7) 204 

( )iP a( )iP a

( )iP a( )iP a
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where q it is typically known as the distortion parameter or the order of the probability moment 205 

[50].  For a range of values of q ([-5,+5] as recommended by Ebrahimkhanlou et al.  [51] for shear-206 

critical RC elements), a normalized form of ( )q

iP a  is computed.  207 

( )

1

( )
( , )

( )

q

i
i N a

q

i

i

P a
q a

P a








                                                       (8) 208 

For a given value of q, the singularity exponent ( )q and its corresponding fractal dimension 209 

( ( ))f q  can then be estimated as: 210 

( )

1

0

( , ) log( ( ))

( ) lim
log( )

N a
q

i i

i

a

q a P a

q
a



 





                                        (9)  211 

( )

1

0

( , ) log( ( , ))

( ( )) lim
log( )

N a

i i

i

a

q a q a

f q
a

 

 





                               (10) 212 

As already mentioned, a plot of the set of values of  against ( )f  for the range of q values, 213 

produces the so-called singularity spectrum. Similarly, a q   plot yields the generalized 214 

dimension spectrum. These spectra upon application of multifractal analysis on the crack pattern 215 

of the above beam, is shown in Fig. 4 below. 216 
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 217 

Fig. 4 Key features of (a) the singularity spectrum and (b) generalized dimension spectrum; W: 218 

width, FD: fractal dimension, LBA: area under the left branch, RBA: area under the right branch , 219 

ID: information dimension, CD: correlation dimension, C: capacity and DD:dimensional 220 

difference. (color printed) 221 

3. Extracted features from singularity and generalized dimension spectra 222 

Past research efforts have revealed that specific features that can be extracted from the singularity 223 

spectrum of RC shells, can be utilized in structural damage level assessment. In particular, the 224 

width (W), area of the left branch (LBA), area of the right branch (RBA) and the peak (FD) of the 225 

singularity spectrum have been suggested as critical parameters for damage level identification of 226 

RC shells [1] (see Fig. 4a). The geometric width (W) of the singularity spectrum has been deemed 227 

to be influential at characterizing RC crack inclination. Generally, the width of the singularity 228 

spectrum quantifies the image’s heterogeneity. Larger values of the width would usually imply a 229 

more severe uneven spatial crack density distribution. In addition, due to the typical asymmetry 230 

shape of the singularity spectrum (see Fig. 4a) the area under the left (LBA) and right branch 231 

(RBA) of the singularity spectrum has been proven to be key features that influence cracking 232 

properties. Also, as noted by Athanasiou et al. [1], the peak of the singularity spectrum (FD) is 233 

highly correlated with  crack inclination  [1].  234 
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The fractal dimension (FD) can also be obtained from the generalized dimension spectrum (Fig. 235 

4b) when q = 0. Nevertheless, some well know generalized dimensions ( qD ,i.e,  for a particular 236 

q) can be candidate features that can significantly characterize the damage performance of RC 237 

elements. Information dimension (ID) is the ordinate of the generalized dimension spectrum when 238 

q = 1 . It characterizes the rate at which information contained in the image profile changes with  239 

box size. To this end, the information dimension (ID) is explored in this study. The generalized 240 

dimensions qD , corresponding to q > 1 accentuates the more singular regions (regions with 241 

significant cracking behaviour), whereas for q < 1, reflects the regular regions of the RC crack 242 

pattern. The correlation dimension (CD) is also used in this study for RC damage assessment. It 243 

quantifies correlation for the heterogeneity of a pair of boxes. The generalized dimension 244 

corresponding to the maximum q value is usually referred to as the capacity (C) (see Fig. 4b). The 245 

capacity reflects segments of the RC crack patterns with low densities ( ( )iP a ). The capacity, C, 246 

can also be used as a proxy for heterogeneity since, larger values signify a higher degree of 247 

homogeneity within the singular regions. To this end the capacity (C) is also used in this study. 248 

Finally, the dimensional difference (DD) defined as the difference between the fractal dimension 249 

of the most singular event 
min( )f   and the most regular event 

max( )f   is utilized (see Fig. 4). It 250 

reflects the frequency ratio or the proportion of the number of regular regions to singular regions. 251 

In summary, eight geometric and generalized dimension multifractal features are extracted from 252 

crack patterns of selected shear-critical RC beams and slabs for damage assessment; width (W), 253 

peak (FD), area of left (LBA) and right (RBA) branch of the singularity spectrum, information 254 

dimension (ID), correlation dimension (CD), capacity (C) and dimensional difference (DD).  255 

 256 

4. Image database of RC beams and Slabs 257 

In order to develop a reliable model for structural load estimation, the load-level of  RC beams and 258 

slabs of an existing database was compiled by Davoudi et al.[2] is utilized in this study. It 259 

comprises a variety of experimental programs ranging from uniform to monotonic loading of RC 260 

beams and one-way slabs without transverse reinforcement. Table 1 presents a summary of the 261 

various independent sources of experimental programs that have been aggregated to form the 262 

database used in this study.  263 

To this end, a complied database of the multifractal features considered in this study was presented 264 

for 508 RC beams and slabs. The eight multifractal features (see section 3.0) served as input 265 

features for the estimation model, whereas the load level (LL) served as the output.  LL is defined 266 

as:  267 

/ failureLL V V                                                             (11)   268 

where V and failureV  represents the nominal applied shear during loading and at failure, 269 

respectively. Pragmatic use of the load level (LL) would be to anticipate the degree to which an 270 

RC member has been subjected to a load that would cause failure (an LL of 0.7 would imply that 271 

the RC member has been given a load of 70% of what it can sustain (capacity)). Some descriptive 272 
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statistics of both input and output features is presented in Table 2, whereas Fig. 5 and 6 displays 273 

statistical distributions, in particular pairwise relationship between some selected features. Each 274 

row and column of the matrix of subplots in Fig. 5 and 6 signifies a single feature. The diagonal 275 

plots reveal the univariate marginal distribution of a particular feature, whereas the annotations 276 

inserted in the upper half of the off-diagonal plots are used to quantify the correlation between two 277 

features. All variables were positively correlated with each other, except the LBA and DD which 278 

was negatively correlated. The various forms of generalized dimensions are very highly correlated 279 

(see Fig. 5), whereas the other features are fairly correlated (see Fig. 6). In order to obtain more 280 

insight into how these features could be used to provide a meaningful estimate of the load-level of 281 

shear-critical RC beams and slabs, sophisticated machine learning model implementation were 282 

explored as opposed to the basic statistical measures presented in Fig. 5 and 6.  283 

Table 1. Summary of experimental testing programs from which database is compiled. 284 

Reference #S #I Test / Specimen Type a/d ρ (%) fc’ 

Sneed[51] 8 52 3-point load, beam 2.3 0.55-0.85 18.6-32.4 

Murray[52] 8 88 3-point load, beam 2.97-3 1.2-1.3 64.8-74.8 

McCain[53] 10 82 3-point load, beam 2.3-2.9 0.63-0.98 22.8-33.8 

Sherwood[54] 30 197 3-point load, beam & slab 2.79-3.4 0.3-1.33 29.1-77.3 

Quach[55] 1 10 3-point load, deep beam 3.1 0.70 40.0 

Yoshida[56] 1 4 3-point load, deep beam 2.9 0.70 31.8 

Cao[57] 2 12 3-point load, deep beam 2.8-2.9 0.4-1.5 26.2-28.3 

Perkins[58] 6 35 Uniform loading 1.62-3.24 0.98 39-64 

Nghiep[59] 3 28  3-point load, haunched beam 3-5.0 1.57-3.1 35.4-59.1 

Overall 69 508 - 1.1-5.0 0.3-3.1 18.6-77.3 

Note: #S = number of specimens; #I = number of images; a/d = shear span-to-depth ratio; ρ = 285 

tensile reinforcement ratio; fc’ = compressive strength. 286 

 287 

Table 2. Multifractal features of database of RC beams and slabs 288 

Reference Statistic FD ID CD C LBA RDA DD W 

Sneed[51] 

Minimum 0.79 0.79 0.78 0.75 0.03 0.14 0.44 0.25 

Mean 1.22 1.21 1.20 1.18 0.04 0.24 0.48 0.26 

Maximum 1.45 1.44 1.44 1.41 0.05 0.30 0.55 0.27 

Murray[52] 

Minimum 0.38 0.36 0.34 0.19 0.03 0.03 0.02 0.19 

Mean 1.03 1.01 0.99 0.88 0.09 0.15 0.19 0.26 

Maximum 1.38 1.36 1.34 1.28 0.13 0.25 0.29 0.27 

McCain[53] 

Minimum 0.34 0.33 0.33 0.21 0.01 0.02 0.01 0.11 

Mean 1.05 1.04 1.02 0.94 0.07 0.17 0.29 0.26 

Maximum 1.33 1.31 1.29 1.23 0.09 0.23 0.41 0.27 

Sherwood[54] Minimum 0.36 0.34 0.32 0.19 0.02 0.04 0.03 0.20 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



11 

Mean 1.12 1.10 1.08 1.00 0.08 0.18 0.26 0.26 

Maximum 1.46 1.44 1.42 1.32 0.13 0.25 0.48 0.27 

Quach[55] 

Minimum 0.91 0.90 0.89 0.85 0.04 0.15 0.23 0.25 

Mean 1.37 1.36 1.34 1.27 0.10 0.24 0.26 0.27 

Maximum 1.57 1.55 1.53 1.46 0.12 0.28 0.41 0.27 

Yoshida[56] 

Minimum 0.47 0.45 0.43 0.34 0.03 0.06 0.25 0.25 

Mean 0.93 0.92 0.89 0.81 0.07 0.15 0.26 0.26 

Maximum 1.29 1.27 1.25 1.17 0.10 0.22 0.28 0.26 

Cao[57] 

Minimum 0.32 0.32 0.31 0.30 0.24 0.01 0.13 0.24 

Mean 1.01 1.00 0.97 0.87 0.26 0.09 0.20 0.26 

Maximum 1.33 1.31 1.29 1.19 0.28 0.12 0.52 0.28 

Perkins[58] 

Minimum 0.74 0.73 0.70 0.60 0.06 0.11 0.09 0.23 

Mean 1.19 1.17 1.15 1.05 0.10 0.19 0.20 0.26 

Maximum 1.38 1.37 1.34 1.27 0.12 0.24 0.27 0.27 

Nghiep[59] 

Minimum 0.61 0.59 0.58 0.50 0.04 0.08 0.26 0.23 

Mean 1.16 1.14 1.12 1.05 0.08 0.19 0.30 0.25 

Maximum 1.41 1.40 1.38 1.32 0.10 0.25 0.34 0.26 

 289 

 290 
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 291 

Fig. 5. Pair-plot of input features (C, FD, ID, CD) showing statistical distribution and correlation. 292 

(color printed) 293 

ρ = 0.987 ρ = 0.989 

ρ = 0.999 

ρ = 0.991 

ρ = 0.999 

ρ = 0.999 
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 294 

Fig. 6. Pair-plot of input features (W, LBA, RBA, DD) showing statistical distribution and 295 

correlation. (color printed) 296 

 297 

5. Machine Learning Model Implementation 298 

5.1 Training-Testing Data Splitting 299 

Fig. 7 shows a schematic representation of the proposed machine learning model implementation 300 

procedure. Firstly, the image database of RC beams and one-way slabs is split into training and 301 

testing data. In this study, random samples of 70% of the entire database was assigned to the 302 

training data, whereas the remaining 30% was assigned as testing data. Four regression-like 303 

machine learning techniques were implemented using the training data (see Fig. 7). A brief 304 

background on these four regression techniques is presented as follows: 305 

 306 

ρ = 0.261 ρ = 0.306 ρ = 0.595 

ρ = -0.634 ρ = 0.378 

ρ = 0.412 
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 307 

 308 

Fig. 7. Machine learning model implementation. (color printed) 309 

 310 

5.2 Machine learning Algorithms 311 

In the present context, a predictive model that could map the set of multifractal features into a load 312 

level (FR) estimate for the database of RC beams and one-way slabs is sought after. The Support 313 

Vector Regression (SVR), Random Forest Regression (RFR), linear Elastic-Net Regression (ENR) 314 

and the Extreme Gradient Boosting (XGboost) algorithm were adopted in this study. All these 315 

machine learning techniques have been successfully employed in solving similar structural 316 

engineering-related problems [60–62] which usually comprises a relatively limited number of data 317 

points in a dataset.  318 

5.2.1 Elastic-Net regression (ENR) 319 

The basic linear regression model seeks to provide a solution to finding the best fit between a set 320 

of input points and an output. In the present context, given an input vector of multifractal features, 321 

1 2 3( , , , ... )i i i i ipX x x x x and an output load level, LL, of an RC beam or one-way slab, the linear 322 

regression model has the following functional form [52]: 323 

0

p

i j ij

i j

LL x 


                                                    (12) 324 

where j  are the unknown parameters and p is the number of input features. Given a training 325 

dataset (
1 1 2 2 3 3( , ), ( , ), ( , ), ...( , )N NX LL X LL X LL X LL ), j  are estimated by using the most 326 

popular loss function; the sum of squared error (SSE) as given in Eq. 13. 327 

2

0

1 1

( )
pN

i j ij

i j

SSE LL x  
 

 
   

 
                                   (13) 328 
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It turns out that the estimates obtained from minimizing the SSE, have the smallest variance for all 329 

available linear unbiased estimators [53]. Nevertheless, biased estimators tend to have a fairly 330 

relatively low variance compared to their unbiased counterpart. The emphasis of most regression-331 

like machine learning models is to determine model parameters that will reduce the generalization 332 

or test error, hence the variance. To this end, the regularized variable selection regression model, 333 

Elastic-Net Regression (ENR) is able to mitigate this drawback of the original regression model. 334 

It consists of minimizing the aggregate sum of a loss and penalty function. The unknown 335 

parameters 
elastic   are estimated from Eq. 14.  336 

2

2

0

1 1 1

argmin (1 )
p pN

elastic i j ij j j

j j j

LL x


      
  

  
             

             (14) 337 

The penalty term as seen in Eq. 14, requires the specification of two hyperparameters;  and   . 338 

A comprehensive description of ENR can be found in Hastie et al. [54]. 339 

5.2.2 Support Vector Regression (SVR) 340 

The general support vector machine which was originally described to solve classification 341 

problems, can be adapted for regression analysis [52]. Similar to the elastic-net model presented 342 

above, the algorithm minimizes the following objective function: 343 

2

0

1 1 1

argmin
2

p pN

svr i j ij j

i j j

V LL x



   

  

  
      

  
                         (15) 344 

where 
0        if 

( )
,  otherwise 

r
V r

r






 
 


                                        (16) 345 

This support-vector formalism is usually referred to as the ϵ-insensitive or error-insensitive SVR 346 

model. It basically requires the determination of two hyperparameters, epsilon ( ) and lambda (347 

 ). However, the general minimization problem is solved numerically by making use of kernels 348 

after approximating the regression function given in Eq. 12 with a set of basis functions [55]. Some 349 

of the widely used kernels are the polynomial, sigmoid, and the gaussian radial basis kernel 350 

function. The selection of the most appropriate kernel as well as other hyperparameters is 351 

oftentimes determined via cross-validation. 352 

5.2.3 Random Forest Regression (RFR) 353 

Random forest leverages the superiority of considering an ensemble of regression trees for decision 354 

making, in this case, predicting a quantitative response value (see Fig. 8). The algorithm begins 355 

with bootstrapping a sample from the training data, from which a regression tree that utilizes a 356 

random selection of a subset of features can be developed [52]. This procedure is repeated for 357 

different bootstrap samples and features. The prediction of unseen or test data can then be 358 

computed by taking the mean of the predictions obtained from the various regression trees already 359 

developed. Fig. 8 provides a schematic presentation of the Random Forest Regression (RFR) 360 

implementation procedure. A couple of hyperparameters influence the performance of an RFR 361 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 

scheme; the number of trees or estimators, maximum depth of tree, and the number of features to 362 

select at each split, and the minimum number of samples in each split. 363 

 364 

 365 

 366 

Fig. 8 A random forest regression implementation scheme. 367 

 368 

5.2.4 Extreme Gradient Boosting (XGBoost) 369 

This fairly recent developed machine learning technique is an extension of the popular ensemble 370 

learning method, gradient descent decision tree [56,57]. The XGBoost aggregate a collection weak 371 

learner that is usually obtained from a decision tree model. Whereas random forest regression 372 

outputs the mean of different trees, XGBoost incrementally improves the prediction through a 373 

weighted aggregation of weak learners to form a strong learner. In this study, decision trees are 374 

used as weak learners. The XGBoost regressor seeks to provide a mapping between the input set 375 

of features and the output of a training dataset using the following Equation.  376 

1

( )
K

i k k i

k

LL f X


                                                  (17) 377 

where, K is the number of weak learners or estimators, 
k  is the learning rate, and ( )k if X  is the 378 

weak leaner obtained from a decision tree. In determining the most appropriate learner at a 379 

particular stage, and other hyperparameters, the loss and penalty functions that need to be 380 

minimized is given in Equation 18 below.   381 

2

 1 1 1

1
argmin ( )

2

N t t

t i k k i k
f F i k k

f LL f X T w  
   

    
      

    
                    (18) 382 
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where 
tf  is the weak learner to be determined at the t-th  step,  and  are the hyperparameters of 383 

the penalty term, and  and kT w are the number of leaf nodes and weights, respectively. It is worth 384 

noting that, the sequential nature of the XGBoost algorithm only permits the determination of the 385 

optimal weak leaner and penalty coefficients at the t-th step (
tf , and  ), since all other 386 

parameters and learners before the t-th step would have been determined. The output of the 387 

regression model is sequentially updated to a point where t equals to K, the number of weak 388 

learners to be considered. Further details on how the weak learners with its accompanying 389 

hyperparameters are determined can be found elsewhere in Chen and Guestrin [57]. 390 

 391 

5.3 Hyperparameter Optimization 392 

In the implementation process, a 10-fold cross-validation scheme was utilized in hyperparameter 393 

optimization via a random search, in order to determine the best set of parameter combinations for 394 

each model training. The performance measure used in determining the optimal hyperparamter 395 

was the mean squared error. This analysis is performed for 1000 runs, and the modal values of the 396 

hyperparameters that were optimal for each machine learning model is presented in Table 3. As 397 

observed, the optimal number of estimators for the random forest and extreme gradient boosting 398 

machine were different (see Table 3), after hyperparameter optimization. The number of estimators 399 

refers to the number of decision trees that constitutes the meta model. Informed comparisons 400 

between these two models can be made since their learning algorithms are different. For instance, 401 

whereas random forest assigns equal weight to each decision tree during the aggregation process 402 

to make a final prediction, the weighting scheme for the extreme gradient boosting machine model 403 

is adjustable or adaptive and depends on the loss function to be minimized. With this inherent 404 

difference in the two algorithms, the number of estimators does not have to be necessarily equal 405 

to make well-informed comparison during model evaluation.  406 

Table 3. Tuned hyperparameters for various machine learning models 407 

Model Hyperparameter Modal Value 

SVR 

Kernel Radial Basis  

Epsilon ( ) 0.1 

Lambda ( ) 1000 

ENR 
Alpha ( ) 0.9 

Lambda ( ) 0.001 

RFR 

Number of Estimators 800 

Maximum depth of tree 6 

Minimum samples for split  3 

Maximum number of features 3 

XGboost 

Number of Estimators 500 

Learning rate 0.01 

Maximum depth of tree 6 
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Minimum samples for split  3 

Lambda ( ) 0.1 

Gamma ( ) 0.1 

 408 

5.4 Performance Measures 409 

One of the four machine learning models obtained from the training data after hyperparameter 410 

optimization was then selected as the final proposed predictive model. In order to make valuable 411 

comparison of the various machine learning models, suitable performance or error measures are 412 

needed to be selected, for the acquisition of illustrative estimation accuracy of the output variable. 413 

To that end, the four-regression performance metrics were used in this study, with a brief 414 

description of them given below. 415 

5.4.1 Root-Mean-Squared Error (RMSE) 416 

This performance measure assesses the difference between the true and predicted output of an 417 

entire dataset as follows: 418 

 419 

2

1

( )
N

i i

i

LL LL

RMSE
N








                                                       (19) 420 

where  
iLL is the true value of the load-level for a particular datapoint i ,  iLL  is the predicted 421 

value, and N represents the total number of samples in the dataset. 422 

 423 

5.4.2 Correlation Coefficient (R) 424 

The strength and direction of the linear relation between the predicted and true values of the output 425 

can be measured using the correlation coefficient, R. Values of R are usually bounded between -1 426 

and 1, and it depicts the strength of the correlation, with positive values presenting positive 427 

correlation and vice-versa. The correlation coefficient, R, can be computed as: 428 
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
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                                       (20) 429 

where iLL and  iLL are the averages of the true and predicted load-levels, respectively. 430 

5.4.3 Explained Variance Score (EV) 431 

The explained variance score measures the extent to which the variance in the output of the dataset 432 

is captured by the predictive model. Values of EV closer to 1.0 signifies a higher correlation 433 
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between predicted and true values of the output. Mathematical, Explained Variance Score, EV, is 434 

computed as: 435 
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                                          (21) 436 

5.4.4 Index of Agreement (IA) 437 

It establishes a level of agreement between the predicted and their corresponding true values. It is 438 

a dimensionless measure of model accuracy and has been argued by some researchers as a 439 

remarkable improvement to the more popular coefficient of determination. Values of Index of 440 

Agreement (IA) closer to 1.0 signifies better agreement. Although similar to the correlation 441 

coefficient, R, IA is less sensitive to outliers or extreme values and is computed as follows: 442 
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                                            (22) 443 

The best performing machine model is selected by assessing the aforementioned performance 444 

metrics on the testing data. The model is then validated by considering the full dataset and 445 

predicting the load-level of the RC beams and one-way slabs. 446 

5.5 Model Interpretation 447 

The various forms of machine learning techniques differ in their level of complexity, and hence 448 

influence how they can be interpreted. Generally, linear models are more likely to be interpreted 449 

with ease, and thus can give a fair understanding of the underline process being modelled. Also, 450 

they tend to give valuable insight and information needed for model improvement. Conversely, 451 

linear models are not sophisticated enough to yield very accurate results compared to non-linear 452 

machine linear models. For instance, the XGBoost regression model usually tends to produce more 453 

accurate results than linear regression models on many datasets. On the other end, interpretating a 454 

model developed from the XGboost algorithm or any flexible machine learning model, is quite 455 

challenging. To this end, the recently developed SHapley Additive exPlanation (SHAP) tool can 456 

be used for model interpretability of very complex machine learning models. SHAP results in the 457 

provision of a so-called explanation model useful for (1) demonstrating the importance of any 458 

feature in the dataset; (2) quantifying how each feature affects the model prediction on both local 459 

and global scales; (3) ascertaining how the prediction model output changes with variations in the 460 

input values of the feature. A brief description of Shapley Additive Explanation (SHAP) for model 461 

interpretation is presented below. 462 

Once again, consider an example input vector of features  1 2 3( , , , ... )i i i i ipX x x x x for which a 463 

machine model ( )if X  is developed to predict a quantitative response
iLL . The SHapley Additive 464 

ExPlanation (SHAP) for machine learning model interpretation begins with mapping the original 465 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



20 

input vector of features 
iX  into a binary simplified input vector  0, 1

p

iX   , which serves as 466 

input for the explanation model ( )ig X  . The  iX which contains either 0 or 1, depicts whether a 467 

feature is present (
ijx = 1) or absent (

ijx = 0) in the explanation model yet to be determined.  The 468 

explanation model is usually obtained by a weighted summation of the simplified input vector of 469 

features iX   and a constant term as represented in Eq. 23.  470 

0

1

( )
p

i j ij

j

g X x 


                                                           (23)  471 

where  0, 1
p

iX    is a vector of binary simplified inputs features, ijx  , which are mapped to the 472 

original input features ijx , and j is the attribution value for feature j .  To this end, SHAP is 473 

usually referred as a class of feature attribution methods, amongst others such as LIME [58], 474 

deepLIFT [59] etc. 475 

The advantage of using SHAP as opposed to other feature attribution methods is how it presents 476 

three key desirable properties that any feature attribution method should have. The first property 477 

deals with local accuracy, where the output of the explanation is expected to match that of the 478 

model prediction for any data point in the dataset (see Eq. 24).  479 

( )if X  = ( )ig X                                                          (24) 480 

Secondly, if a feature does not contribute to the predictive model’s output, then the feature 481 

attribution value should be zero in the explanation model (see Eq. 25).  482 

0 0ij jx                                                              (25) 483 

To conclude, the third property states that if the predictive model changes and causes a particular 484 

simplified input contribution to increase or stay the same regardless of other simplified inputs, then 485 

the attribution from that input should not decrease. In explaining the third property, known as 486 

consistency, consider two predictive models 
1( )if X and 

2 ( )if X . Mathematically, the consistency 487 

property can be presented as: 488 

1 1 2 2 1 2( ) ( \ ) ( ) ( \ ) ( ) ( )i i i i j jf X f X j f X f X j f f                  (26) 489 

where 
1( \ )if X j and 

2 ( \ )if X j  denote prediction values of models 
1( )if X and 

2 ( )if X  with 490 

feature j  absent, respectively. Similarly, 1( )j f   and 2( )j f  are the feature attribution values for 491 

1( )if X and 
2 ( )if X respectively. 492 

It turns out the only solution for the feature attribution values j  that satisfies these three 493 

properties, are the Shapley values of the conditional expectation function of the original model[60]. 494 

These Shapley values can be computed from Eq. 27 as: 495 
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where ( , )j if X is the Shapley regression value or feature attribution value for the feature j  in 497 

the model ( )if X , Z  is a vector of binary values representing one of the subsets of X  , P is the 498 

number of input features, Z  represents the number of non-zero elements in Z  ,  if Z  denotes 499 

the model prediction for Z   and  \if Z j  represents the prediction for Z without feature j . 500 

These Shapley values ( , )j if X , once obtained, can be used to explain the model output. The 501 

magnitude and sign of ( , )j if X will determine whether a particular feature impacts the model 502 

output negatively or positively. The 
0  from Eq. 23 represents the average value of the model 503 

prediction assuming the model has no input feature and usually represents a base value for the 504 

model output before the various Shapley values obtained from Eq. 27 are aggregated to obtain the 505 

output ( )if X . Further details on techniques available to compute the Shapley values can be found 506 

elsewhere in [60]. 507 

6. Results and Discussions 508 

6.1 Model Predictions and Evaluation 509 

6.1.2 Global Level 510 

The performance of the four selected machine learning models for load-level estimation of the 511 

class of structural elements under consideration is presented. Following the training-testing 512 

splitting rule of 70/30 as previously mentioned, the accuracy of these models was drawn for each 513 

group of data (training and testing data). Typically, the performance of the model on the testing 514 

data is used to determine its generalization capacity. Table 4 shows a summary of the four 515 

performance measures for each dataset, across the machine learning models developed. It presents 516 

the mean and standard deviation of the performance measures for 1000 runs of the developed 517 

models having different randomly sampled training and testing data. Multiple runs of the 518 

developed models were necessary to help ascertain how statistically significant the model 519 

predictions might differ. It is worth mentioning that high values of the correlation coefficient (R), 520 

explained variance (EV) and index of agreement (IA) for a particular model signifies greater 521 

performance. Similarly, models with lower root-mean squared error (RMSE) also presents a case 522 

for better predictability.  523 

Among the four machine learning models, the RFR and XGBoost models yielded the best 524 

performance on the training and testing data respectively (see Table 4). They produced relatively 525 

high values of the correlation coefficient (R), explained variance (EV) and index of agreement 526 

(IA) when compared to the ENR and SVR models. Similarly, lower average values were recorded 527 

for the root-mean squared error (RMSE) of these models, when compared to the ENR and SVR 528 

models, during the training and testing phase. However, the diferrence between the mean estimate 529 

for these models (RFR and XGBoost) were comparatively similarly, as well as their deviations. 530 

To assess the statistical significance of the differences of the mean values of these two high 531 
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performing models we calculated the t-statistic, compared this to the critical t-value, and calculated 532 

the corresponding p-values as well. Details on how the t-statistic is computed when comparing 533 

means of different populations can be found elsewhere [61,62] . 534 

Table 4. Performance measures of various machine learning models 535 

Data Algorithm Statistic 
Performance Metrics 

RMSE R EV IA 

T
ra

in
in

g
 

SVR 
Mean 0.150 0.811 0.628 0.851 

SD 0.004 0.012 0.020 0.011 

ENR 
Mean 0.151 0.785 0.616 0.867 

SD 0.004 0.012 0.020 0.009 

RFR 
Mean 0.0897 0.934 0.867 0.961 

SD 0.003 0.005 0.009 0.003 

XGBoost 

Mean 0.104 0.913 0.819 0.941 

SD 0.003 0.005 0.011 0.004 

T
es

ti
n
g

 

SVR 
Mean 0.151 0.810 0.625 0.849 

SD 0.009 0.028 0.035 0.016 

ENR 
Mean 0.152 0.784 0.611 0.864 

SD 0.008 0.028 0.043 0.017 

RFR 
Mean 0.138 0.827 0.681 0.900 

SD 0.009 0.026 0.044 0.014 

XGBoost 
Mean 0.136 0.831 0.687 0.895 

SD 0.008 0.026 0.042 0.014 

SD: standard deviation; SVR: Support vector regression; ENR: elastic-net regression; RFR: 536 

random forest regression; XGBoost: extreme gradient boosting. 537 

Table 5 and 6 presents the calculated t-values and p-values for the comparisons of the performance 538 

mean values for the RFR and XGBoost models. The t-values were compared to a critical t-value 539 

of 1.96, obtained from the student’s-t distribution at a 5% significance level with 1998 degrees of 540 

freedom. All t-values computed for these two models, and across various performance measures 541 

were higher than this critical value (see Table 5 and 6). The calculated p-values show that the 542 

actual levels of statistical significance are all below 1%. 543 

The data shown in Tables 4, 5 and 6 mean that the differences between the mean values of RFR 544 

and XGBoost for the various performance measures are statistically significant. From Table 4, the 545 

XGBoost model outperformed the RFR model when the RMSE, R and EV are considered, whiles 546 

a higher IA values was observed for the RFR model, during the testing phase. To this end, we 547 

recommed the XGBoost model as the optimal model for load level estimation of shear-critical RC 548 

beams and slabs. Since the generalization capability of a model is usually assessed by considering 549 

how it performs during the testing phase, further comparisons between these two models are 550 

drawn. 551 
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 552 

Table 5. T-values of various model comparisons  553 

Performance  

Measure Dataset Model 
t-value 

SVR ENR RFR XGB 

RMSE 

Training 

SVR  -5.59017 381.3707 290.9295 

ENR 5.59017  387.6952 297.2541 

RFR -381.371 -387.695  -106.586 

XGB -290.93 -297.254 106.5859  

Testing 

SVR  -2.62613 32.29876 39.39193 

ENR 2.626129  36.7658 44.72136 

RFR -32.2988 -36.7658  5.252257 

XGB -39.3919 -44.7214 -5.25226  

R 

Training 

SVR  48.44814 -299.2 -248.117 

ENR -48.4481  -362.446 -311.363 

RFR 299.2001 362.4457  93.91486 

XGB 248.1172 311.3627 -93.9149  

Testing 

SVR  20.76349 -14.0693 -17.3797 

ENR -20.7635  -35.5871 -38.8975 

RFR 14.0693 35.58705  -3.4401 

XGB 17.37972 38.89748 3.440105  

EV 

Training 

SVR  13.41641 -344.608 -264.615 

ENR -13.4164  -361.91 -281.24 

RFR 344.608 361.9105  106.7986 

XGB 264.615 281.2401 -106.799  

Testing 

SVR  7.985022 -31.4975 -35.8615 

ENR -7.98502  -35.9803 -39.9834 

RFR 31.49748 35.98033  -3.11925 

XGB 35.86152 39.98339 3.119251  

IA 

Training 

SVR  -35.5995 -305.085 -243.154 

ENR 35.59953  -313.333 -237.6 

RFR 305.0851 313.3333  126.4911 

XGB 243.1545 237.5997 -126.491  

Testing 

SVR  -20.3186 -75.8579 -68.4209 

ENR 20.31856  -51.693 -44.5134 

RFR 75.85792 51.69299  7.985957 

XGB 68.42087 44.51341 -7.98596  

 554 

 555 

 556 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



24 

Table 6. P-values of various model comparisons  557 

Performance  

Measure Dataset Model 
p-value 

SVR ENR RFR XGB 

RMSE 

Training 

SVR  2.58E-08 0 0 

ENR 2.58E-08  0 0 

RFR 0 0  0 

XGB 0 0 0  

Testing 

SVR  0.008702 1.6E-184 1.2E-251 

ENR 0.008702  1.8E-226 2.9E-303 

RFR 1.6E-184 1.8E-226  1.66E-07 

XGB 1.2E-251 2.9E-303 1.66E-07  

R 

Training 

SVR  0 0 0 

ENR 0  0 0 

RFR 0 0  0 

XGB 0 0 0  

Testing 

SVR  7.19E-87 6.12E-43 4.07E-63 

ENR 7.19E-87  2.9E-215 6.9E-247 

RFR 6.12E-43 2.9E-215  0.000593 

XGB 4.07E-63 6.9E-247 0.000593  

EV 

Training 

SVR  2.32E-39 0 0 

ENR 2.32E-39  0 0 

RFR 0 0  0 

XGB 0 0 0  

Testing 

SVR  2.35E-15 3.8E-177 7.2E-218 

ENR 2.35E-15  5.4E-219 2.4E-257 

RFR 3.8E-177 5.4E-219  0.001839 

XGB 7.2E-218 2.4E-257 0.001839  

IA 

Training 

SVR  2.2E-215 0 0 

ENR 2.2E-215  0 0 

RFR 0 0  0 

XGB 0 0 0  

Testing 

SVR  1.39E-83 0 0 

ENR 1.39E-83  0 3E-301 

RFR 0 0  2.33E-15 

XGB 0 3E-301 2.33E-15  

 558 

 559 

In corroborating this finding, a score analysis is conducted. Score analysis basically entails 560 

assigning a score to the various values of the performance measures across different models. In 561 

this study, with the number of machine learning models being 4, a model that yields the greatest 562 
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performance is assigned a score of 4, whereas the least performing model is assigned a value of 1. 563 

Considering that 1000 runs of the developed models for different training and testing data was 564 

conducted, the average score for a particular model is used. Subsequently, a summation of the 565 

average scores of the various performance measures for each machine learning model is computed 566 

to obtain the total score (see Table 7).  567 

Table 7. Score analysis results of various machine learning models 568 

Data Algorithm 
Score 

Total Score 
RMSE R EV IA 

T
ra

in
in

g
 SVR 1.63 1.00 2.00 1.92 6.55 

ENR 1.37 2.00 1.00 1.08 5.45 

RFR 4.00 4.00 4.00 4.00 16.00 

XGBoost 3.00 3.00 3.00 3.00 12.00 

T
es

ti
n
g

 SVR 1.63 1.00 2.25 1.85 6.73 

ENR 1.4.0 2.00 1.02 1.20 5.62 

RFR 3.32 3.88 3.10 3.31 13.61 

XGBoost 3.65 3.12 3.63 3.64 14.04 

 569 

The model producing the highest total score is deemed to be the best performing model.  As seen 570 

in Table 7, the RFR and XGBoost models dominated the score analysis by being the best models 571 

during the training and testing phase respectively. Nevertheless, since the generalization capability 572 

of model can be evaluated by considering its performance on the testing data, the XGBoost model 573 

is deemed the optimal model for load-level estimation of shear-critical RC beams and slabs. The 574 

attained total score were 13.61 and 14.04 for the RFR and XGboost models respectively, during 575 

the testing phase. However, the RFR model tends to outperforms the XGBoost model during the 576 

training phase (see Table 7). This observation might imply that there is an inherent overfitting 577 

problem with the RFR model. The least performing model was the Elastic-Net Regression (ENR), 578 

which yielded total scores of 5.45 and 5.62 during the training and testing phase respectively. This 579 

observation also suggests that the linear statistical method of analysis may not be optimal for 580 

predicting the load-level of shear-critical beams and slabs using multifractal analysis.  581 

Graphical presentation of the score analysis is given in a form of a radar chart as shown in Fig. 9, 582 

to facilitate interpretation. It is observed that the Random Forest Regression (RFR) model tends to 583 

perform well on the training data (see Fig. 9) than any other model across the various performance 584 

measures. Similarly, the radar charts indicates the the XGboost model performance better than the 585 

RFR model during the testing phase. This suggests that non-linear models, in particular tree-based 586 

models such as random forest and the extreme gradient boosting machine, tends to produce better 587 

estimates of the load-level of shear-critical concrete beams and slabs using the proposed 588 

framework.  589 
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 590 

Fig. 9 Radar charts for various performance measures: (a) RMSE; (b) R; (c)  EV; (d) IA. (color 591 

printed) 592 

6.1.3 Local Level 593 

In order to gain insight into the predictive performance of these models at the local level, Fig. 10 594 

shows a typical scatter plot, to help establish the correlation between predicted and true values of 595 

the load-level for each data point in the training and testing dataset. This visualization will also 596 

assist in determining which regions across the load-level range, tends to produce better estimates. 597 

Evidently, the XGboost produces the lower scatter or deviation with a narrow prediction interval 598 

compared to the other models investigated in this study (see Fig. 10). The mean of the predicted-599 

to-tested ratio for this model was 1.04 with a coefficient of variation of 27%. Nonetheless, there 600 

seems to be significant error or outliers for some data points, particularly in the testing data. The 601 

majority of these data points yielded a prediction of load-level higher than their true values, and 602 

hence conservative for damage assessment or design. Although there exist works on estimating 603 

the load-level of beams and slabs using fractal analysis and other data-driven machine learning 604 

algorithms[2,35,63], fair comparison cannot be generally drawn for most of them due to the 605 

disparity in specimens that make up the database as well as its size. Nevertheless, a closely related 606 

work that used about 95% of the database in this study is that of Davoudi et al. [2] who provided 607 

another alternative to damage assessment of shear-critical concrete beams and slabs using machine 608 

vision  In their assessment, scatter plot and performance metric values similarly those presented in 609 

Fig. 10 and Table 4 were plotted. By comparison, the developed model produced comparable 610 

performance measures as against those reported by Davoudi et al. [2]  611 
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 612 

Fig. 10 Scatter plot of load-level results predicted by different machine learning model: (a) SVR; 613 

(b) ENR; (c) RFR; (d) XGBoost. (color printed) 614 

A typical regression error characteristic (REC) curve  as constructed in Fig. 11 for the various 615 

models is used to facilitate model predictability at the local scale. The REC curve is a cumulative 616 

distribution function which tends to establish a relationship between the absolute error or deviation 617 

(x-axis) as against the proportion of datapoints (y-axis) with absolute error lesser than or equal to 618 

the current level. It is analogous to the receiver operating characteristic (ROC) curve in 619 

classification problems for model assessment.  Whereas the ROC curve uses the area under the 620 

curve (AUC) to evaluate performance, it has been widely established that the area over curve 621 

(ROC) be used to provide a valid measure for regression problems. The ROC can be simply 622 

computed by subtracting the AUC from 1. A regression model is known to perform well if the 623 

AOC value of an REC curve is low.  624 
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 625 

Fig. 11 Regression error characteristic curves for various machine learning model: (a) SVR; (b) 626 

ENR; (c) RFR; and (d) XGBoost 627 

 628 

From Fig. 11, which shows the REC curve using the full dataset, the XGBoost model produced 629 

the lowest ROC of 0.077, hence corroborating findings attained at the global level of assessment. 630 

The ROC for both SVR and ENR models were the same, hence suggesting equal performance. 631 

80% of the datapoints produced absolute errors of load-level lesser than 0.1 for the XGBoost model 632 

(see Fig. 11d). The RFR, ENR and SVR models yielded predictions of which 80% had absolute 633 

errors within 0.17, 0.21 and 0.21 respectively. In this study, the XGBoost model developed 634 

remains the optimal model at both local and global levels for estimating the load-level of shear-635 

critical RC beams and slabs.  636 

6.2 Model Interpretation  637 

6.2.1 Global Level   638 

A simplified explanation model was developed for the optimal predictive model, i.e, XGBoost, for 639 

interpretation using SHapley Additive ExPlanation (SHAP). On the global scale (entire dataset), 640 

the relative importance of each feature is given in Fig. 12. It provides the mean of the absolute 641 

SHAP values computed for each feature in the full dataset. These mean values are then used to 642 

ascertain the impact of each feature on the predictions made.  643 
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 644 

Fig. 12 Global interpretations of XGBoost model: (a) SHAP feature importance; and (b) SHAP 645 

summary plot. (color printed) 646 

 647 

Generally, it was observed that the so-called generalized dimensions (FD, ID and CD), which were 648 

obtained from the multifractal analysis of the crack patterns considered, has significant impact on 649 

the estimation of the load-level, as opposed to the other geometric features acquired from the 650 

singularity spectrum. For the generalized dimensions, the box-counting fractal dimension (FD) 651 

was arguably the most critical parameter (see Fig. 12a). Many of previous works on the application 652 

of multifractal analysis for crack damage assessment of RC elements have always considered FD 653 

as the most influential feature, with the findings from this study affirming it.  The area under the 654 

left branch of the singularity spectrum (LBA) tends to contribute the most to the model predictions 655 

for the geometric features considered, providing about 35% of that produced by FD. The least 656 

contributing feature as seen in Fig. 12a is the capacity (C), whose mean absolute SHAP value was 657 

about 17% as important as the most critical feature.  658 

In order to determine how the original values of the features within the dataset affects the model 659 

prediction or load-level, Fig. 12b demonstrate a summary plot for such analysis. Each point in the 660 

plot shows the SHAP value (x-axis) of a particular feature (y-axis). For each feature, the 661 

distribution of SHAP values are shown along the x-axis, which are colour-coded to differentiate 662 

between high (red dots) and low (blue dots) values of the original feature. For instance, for high 663 

values of the fractal dimension (FD) as seen in the upper right corner of Fig. 12b, there is an 664 

expected increase in the load-level of about 16%. Nevertheless, there are instances for which 665 

higher values of FD cause a reduction in the load-level (red dots on the left-hand side of the 666 

summary plot for FD). To this end, the average value of the distribution of SHAP values is used 667 

to ascertain whether a feature impacts the load-level positively or negatively. In general, for the 668 

critical features, an increase in the fractal dimension FD, information dimension ID, and 669 

correlation dimension CD causes an increase in the load-level. Conversely, the load-level tends to 670 

decrease when the area under the left branch (LBA), is low.  671 

 672 
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6.2.2 Local Level  673 

SHAP also provides interpretation for each individual prediction. In assessing the impact of the 674 

various feature at the local level, four RC beams were sampled from the database considered. 675 

These samples had load-levels spanning various damage states (low, moderate, near failure and 676 

ultimate failure). For the sample exhibiting a lower degree of damage, a simplified explanation 677 

model which comprises the aggregation of SHAP values for each feature and a base value to yield 678 

a final prediction is given in the second column of Table 8.  This sample had a true load-level of 679 

17.1% and a predicted value of 22%. It is worth noting that the base value depicts the default 680 

prediction when the attribution from each feature is excluded.  681 

Table 8. Relative SHAP values of features for four selected samples 682 

Feature 
Shapley values of selected sample scenarios (%) 

Low Moderate Near failure Failure 

C -3.6 1.7 0.2 0.6 

FD -18.1 -6.8 1.9 12.2 

W -1.8 0.2 0.7 2.5 

LBA -8.7 3.1 5.6 3.1 

RBA -1.8 -1.5 -3.3 0.9 

ID -8.7 -5.3 1.7 6.3 

CD -2.2 -1.8 -0.2 3.6 

DD -0.8 0.4 5.9 1.3 

Base Prediction 67.7 67.7 67.7 67.7 

Prediction 22.0 57.7 80.2 98.2 

True Value 17.1 59.0 81.5 100 

 683 

It is observed that, FD, LBA, ID and C are the most critical features that influence the predictions 684 

of RC beams with a low load-level (see Fig. 13a). These features negatively impact the final 685 

prediction by reducing the base value. For this particular sample, FD, LBA ID and C caused a 686 

reduction in the base value of about 18.1%, 8.7%, 8.7% and 3.6%, respectively.  687 
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 689 

Fig. 13 Local interpretations of selected RC beams with different damage levels: (a) low- 690 

Sherwood [54]  ; (b) moderate Cao[57] - ; (c) near failure  - Cao[57]  ; and (d) ultimate failure - 691 

Cao[57]. (color printed) 692 

The second sample was selected to depict an instance where the RC beam is moderately damaged. 693 

The true and predicted load-level for this sample is 59% and 57.7%, respectively. The SHAP 694 

values of each feature for this sample are given in Table 8. Fig. 13b illustrates the critical features 695 

that influence the prediction made for this sample. The red bars represent contributions from 696 

features that increase the load-level, with the blue bars outlining features that affect the load-level 697 

prediction negatively. It is observed that whereas LBA and C reduce the load-level for the slightly 698 

damaged beams (Fig. 13a), they rather tend to increase the load-level for moderately damaged RC 699 

beams (Fig. 13b). The original values of LBA and C are relatively higher for the moderately 700 

damaged beams when compared to the slightly damaged beams, and hence could be a contributing 701 

factor to explain this observation (see annotations in Fig. 13a and 13b).  As the level of damage of 702 

the RC beam increases and approaches failure, the SHAP values for the features assume positive 703 

values (Table 8). This is evident in the two other samples which were used to represent near failure 704 

and ultimate failure cases (see Table 8 and Fig. 13). The fractal characteristics of these beams 705 

produced relatively high values of the original features and hence can partly give a physical reason 706 

why the predictions are increased from the base value to the final output. In all cases, FD and ID 707 

appears to dominate the most critical features for the four samples considered and either affect the 708 

load-level prediction positively or negatively, depending on the level of damage the RC beam in 709 

question has sustained. 710 

6.3 Feature Dependency plot 711 

The correlation between SHAP values and features values can give a detailed insight into which 712 

scenarios can either cause a decrease or increase in the load-level. Fig.14 shows feature 713 

dependency plots to facilitate such analysis. For brevity, the variation of SHAP values for six 714 

selected features is presented.  715 
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 716 

Fig. 14 Plots of feature dependency: (a) FD; (b) LBA; (c) RBA; (d) CD; (e) ID; and (f) W. (color 717 

printed) 718 

SHAP values increase with increasing values of FD, LBA, CD and ID. This indicates that FD, 719 

LBA, CD and ID are positively correlated with load-level estimation of shear-critical RC beams. 720 

From Fig. 14a, RC beams with FD greater than 1.05 tend to cause an increase in load-level. Note 721 

that many of these RC beams tend to have values of ID greater than 1.1 (Fig. 14e). Nevertheless, 722 

whereas the maximum increase in load-level considering ID is about 6%, FD can contribute an 723 

increase of about 16% in load-level (Fig. 14a and 14e). Beams with LBA values greater than 0.05 724 

and DD less than 0.3, do cause an increase in load-level (Fig. 14b). Even though RC beams with 725 

CD greater than 1.1 tend to cause an increase in load-level, its contribution is not so significant 726 

with a maximum increase of about 4.5%. For W and RBA, the pattern is inconclusive and hence 727 

insignificantly affect load-level estimates. Findings from this analysis can be used to develop 728 

closed form solutions to load-level estimation for damage assessment of shear-critical RC beams 729 

and slabs.  730 

7. Conclusions 731 

This paper explored the application of multifractal analysis to shear-critical RC beams and slabs 732 

for load-level estimation. A database of 508 RC beams and slabs were used for model training 733 

(70%) and testing (30%). Multifractal analysis was first conducted on images of crack patterns of 734 

these beams, with critical features extracted from the singularity and generalized dimension spectra 735 

to form the design input matrix in the model development phase, whereas the load-level for each 736 

specimen served as the output. The efficiency of four regression-like machine learning models 737 

(elastic-net regression (ENR), support vector regression (SVR), random forest regression (RFR) 738 

and extreme gradient boosting (XGBoost)) were explored on the dataset. Hyperparameter 739 

optimization was conducted for these models using a random search algorithm. For performance 740 
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measures (root-mean squared error (RMSE), correlation (R), explained variance (EV) and index 741 

of agreement (IA)) were used to facilitate model evaluation and selection. Shapley additive 742 

explanations (SHAP) was later used for model interpretation. The primary findings from this study 743 

are listed below: 744 

 The XGBoost model was the most effective model for estimating the load-level of shear-745 

critical RC beams and slabs. The mean of the predicted-to-tested ratio was 1.04 with 746 

coefficient of variation of 27%. 747 

 Upon comparing the XGBoost model with the other models, it was found out that tree-748 

based methods perform significantly better than linear and non-linear methods of 749 

regression.  750 

 For model interpretation at the global level, it was revealed by SHAP that the so-called 751 

generalized dimensions (fractal dimension (FD), information dimension (ID) and 752 

correlation dimension (CD)) which was obtained from the multifractal analysis of the crack 753 

patterns considered, had significant impact on the estimation of the load-level, as opposed 754 

to the other geometric features acquired from the singularity spectrum. The fractal 755 

dimension (FD) was arguably the most critical feature whereas the capacity (C) was the 756 

least influential. 757 

 Shear-critical RC beams with FD greater than 1.05 tend to cause an increase in load-level, 758 

which can be as high as high as 16%. Even though RC beams with CD greater than 1.1 759 

tend to cause an increase in load-level, its contribution is not so significant with a maximum 760 

increase of about 4.5%. 761 

 It was observed that depending on how high or low the original values of the multifractal 762 

features are, which is heavily related to the level of damage, the obtained SHAP values will 763 

either increase or decrease the load-level estimates. For instance, whereas the area under 764 

the left branch (LBA) and C reduce the load-level for the slightly damaged beams (Fig. 765 

14a), they rather tend to increase the load-level for moderately damaged RC beams (Fig. 766 

14b). 767 

To facilitate the practical application of the developed model as well as reproducibility, the source 768 

code and database will be made available to the public on a GitHub account. Users may use the 769 

proposed model to either get a firsthand insight on the level of damage sustained by such structural 770 

elements in service, before another sophisticated framework can be applied.  771 

8. Limitations 772 

Despite the successful development of the structural load estimation model based on 773 

multifractal features, some limitations have been identified. The present study only considers 774 

RC beams and slabs that have been designed to exhibit shear dominant failure. In order words, 775 

the developed model is not generally applicable, as it cannot be utilized for other structural 776 

failure phenomena. Future studies should continuously explore the combined application of 777 

machine-learning and multifractal analysis to other modes of structural failure, type of RC 778 

element and loading conditions. This could assist in the development of a unified model for 779 

structural load level estimation for a wide variety of RC structural elements. Secondly, valuable 780 

damage parameters on crack patterns such concrete spalling and crack width were not 781 
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considered in the present study. The generalization error of the develop model can be improved 782 

if information relating these parameters are provided and well documented. Therefore, future 783 

experimental testing programs should grant the research community access to raw data if 784 

possible. Despite these limitations, findings from this research have revealed the need for 785 

continuous research in the application of machine-learning based multifractal analysis of 786 

reinforced concrete structures for structural load-level assessment. 787 
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