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ABSTRACT

We consider statistical randomness in the construction of local op-
tima networks (LONs) and conduct a preliminary and exploratory
study into this. LONs capture a fitness landscape into network for-
mat: the nodes are local optima, and edges are heuristic search
transitions between them. Problem instances from the benchmark
quadratic assignment problem library are used in the analysis. LONs
are constructed using an iterated local search (ILS) and several dif-
ferent random seeds. Metrics are computed from the networks and
visualised to assess the effect of randomness. Algorithm perfor-
mance models for ILS runtime are built using metrics of LONs
constructed using different seeds and the results compared. The
results show that some LON metrics seem consistent across seeds,
while others vary substantially. Additionally, the quality of algo-
rithm performance models using LON metrics as predictors can
differ depending on randomness. Finally, LON metrics associated
with separate seeds can lead to different algorithm configuration
recommendations for the same instance.
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1 INTRODUCTION

Local optima networks (LONs) [21] model local optima connectivity
in fitness landscapes and can serve as a vehicle for understanding or
predicting algorithm-problem interactions [1, 6]. Although several
studies use small search spaces so that exhaustive enumeration of
a LON can be conducted [21, 23, 25, 28, 32, 40], there has been an
emergent appetite for larger spaces and therefore LON sampling
in recent years [8, 20, 27, 31, 35, 39, 41]. The sampling algorithms
contain elements of randomness such as starting location; however,
it is not known how much of an impact this randomness has. Previ-
ous literature shows that evolutionary algorithm (EA) performance
can be affected (sometimes to a substantial degree) by randomness
[3, 11, 16, 17]; it therefore follows that LON construction Ð which is
done by evolutionary and heuristic search Ð may partially depend
on random factors. We argue that this is an important consideration,
especially as the popularity of LONs for understanding and predict-
ing search is growing. The purpose of this paper is to investigate
the variation seen in LONs when providing different random seeds
to an iterated local search algorithm used for constructing them.
Instances from the quadratic assignment problem (QAP) library are
used. Although the QAP is a case study here, the consideration of
randomness in LONs would be relevant for other problem domains.
We consider the nature of the LONs themselves, visualising and
analysing several extracted features. Additionally, the predictive
potency of LON metrics used in algorithm performance models is
studied, with iterated local search (ILS) runtime as the response
variable. Throughout the study, the effect of randomisation is given
particular attention. The contributions of the work are as follows:

(1) An preliminary, exploratory investigation into the effect of
randomness in LON construction

(2) Insights about LON metrics which show varying degrees of
stability across different random seeds

(3) The finding that different algorithm configurations can be
recommended, depending on the seed provided to LON con-
struction

2 BACKGROUND

2.1 Fitness Landscapes

A fitness landscape [29] is composed of three parts: (𝑆, 𝑁 , 𝑓 ) : S is
the full set of possible solutions; 𝑁 : 𝑆 −→ 2𝑆 is the neighbour-
hood function, which assigns a set of adjacent solutions 𝑁 (𝑠) to
every 𝑠 ∈ 𝑆 ; and f is a fitness function 𝑓 : 𝑆 −→ R that provides a
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mapping from solution to associated fitness. That fitness can be con-
ceptualised as the solution height within the landscape metaphor.
The local optima network (LON) model [21] was introduced as a
tool for studying the connectivity of local optima in a fitness land-
scape, and has subsequently shown proficiency in helping with
explaining metaheuristic search behaviour [1, 6]. In this work, we
consider LONs which are sampled using iterated local search. We
now formally define this type of LON.

Local optima. We assume a search space 𝑆 with a fitness func-
tion 𝑓 (𝑆) and a neighbourhood function 𝑁 (𝑠). A local optimum,
which in the QAP is a minimum, is a solution 𝑙 such that ∀𝑠 ∈ 𝑁 (𝑙 ),
𝑓 (𝑙 ) ≤ 𝑓 (𝑠).

Monotonic perturbation edges. There is an edge from local
optimum 𝑙1 to local optimum 𝑙2, if 𝑙2 can be obtained after applying
a random perturbation (in the present study, this is 𝑘-exchange) to
𝑙1 followed by local search, and 𝑓 (𝑙2) ≤ 𝑓 (𝑙1). In LON terminology,
these are called escape edges [38]. The edges are called monotonic

because they record only non-deteriorating, directed transitions
between local optima. Edges are weighted with the frequency of
transition. The set of edges is denoted by 𝐸.

Compound local optima. A compound local optimum is a set
of connected LON nodes with the same fitness value. Two nodes
are connected if there is a monotonic perturbation edge between
them. The set of connected optima with the same fitness, denoted
by𝐶𝐿, corresponds to the set of nodes in the compound monotonic
LON model.

Compound monotonic LON. Is the directed network CMLON

= (CL,CE), where nodes are compounded local optima 𝐶𝐿, and
the edges 𝐶𝐸 are aggregated from the monotonic edge set 𝐸 by
summing up the edge weights.

Monotonic sequence. A monotonic sequence is a path of con-
nected nodes𝑀𝑆 = {𝑐𝑙1, 𝑐𝑙2, . . . , 𝑐𝑙𝑠 } where 𝑐𝑙𝑖 ∈ 𝐶𝐿. By definition
of the edges, 𝑓 (𝑐𝑙𝑖 ) ≤ 𝑓 (𝑐𝑙𝑖−1). There is a natural end to every
monotonic sequence, 𝑐𝑙𝑠 , when no improving transitions can be
found. This node, 𝑐𝑙𝑠 , is called a sink as it does not have improving
outgoing edges1 The global optimum will always be a sink, and
there can be sub-optimal sinks as well. Note that 𝑐𝑙𝑠 can also be
a compounded node; that is, the combination of more than one
connected nodes of equivalent fitness.

Funnel. A funnel in the CMLON comprises the aggregation of
all monotonic sequences ending at the same sink (which can be a
compound node) [23] and is a subset of the CMLON. Conceptually,
funnels can be viewed as being basins of attraction at the level of
local optima. The funnel whose sink is the global optimum can be
called the "optimal" funnel (there can be more than one optimal
funnel); all other funnels are sub-optimal.

2.2 LON Construction

For a few years after local optima networks were proposed, exhaus-
tive enumeration of the complete network was standard [21, 25, 40];
indeed, some later works also took this approach [23, 28, 32]. In

1In directed networks, a node without outgoing edges is called a 𝑠𝑖𝑛𝑘 .

these works, the node set is constructed by mapping every so-
lution to its local optimum through local search. Edges are then
defined according one of two approaches: basin transition edges
[21], which capture the probability of moving between two basins
of attraction under the chosen neighbourhood operator, and escape
edges [38]: these connect nodes if the destination local optimum
can be reached from the source by carrying out a defined operation
(usually perturbation) followed by local search. The nature of ex-
haustive enumeration necessarily constrains the studied instances
to small sizes. In response to this, sampling methodologies have
been proposed to construct partial local optima networks; these
implement the escape edge model. Algorithms include iterated local
search (ILS) [20]. ILS is a metaheuristic which repeatedly combines
large and randommutations (perturbations, for the purpose of diver-
sification) with local search (intensification); it navigates through
the local optima space, and is therefore suited for extracting a LON.
Other LON sampling approaches include snowball sampling [39],
recombination approaches [8, 41], and local search based methods
[1, 7]. Literature has suggested that snowball-sampled LON metrics
correlate well with those of a complete LON [39]. For LON sampling
by ILS, the number of nodes Ð and to a lesser degree, the number of
edges Ð were found to be related to the exhaustively-enumerated
quantity [35]. The issue with this kind of comparative analysis is
that it is necessarily constrained to problem sizes small enough
that LONs can be completely enumerated; it is not clear how the
perceived correlations scale to larger problem dimension.

In terms of connection between LONs and their predictive po-
tency, authors have shown that LONs sampled using ILS seem to be
able to explain search performance better than enumerated LONs
[35]. This might be in line with the argument from network sam-
pling literature that sampling algorithms can provide a kind of
"positive" bias [14], in that they may encourage the samples to con-
tain representative information. In general, questions surrounding
sampling bias and the effect of randomness in LON construction al-
gorithms are still open. Iterated local search based sampling seems
to be the most prevalent in the literature [22, 27, 31, 34, 37]; we
therefore focus our attention on it for the purposes of this study.

2.3 Randomness and Sampling

Statistical randomness, otherwise known as pseudorandomness, is ob-
tained from a pseudorandom number generator [9]. This behaviour
does not imply or guarantee true randomness. We consider the
effect of statistical randomness in this study, and refer to it with the
term "randomness" for the purpose of concision. In statistical lan-
guage, a partial local optima network is essentially a sample from
a larger population: the exhaustively-enumerated sets of nodes
and edges. For random samples, it has been argued that 30-50 are
sufficient [18]; this aligns with the Central Limit Theorem, which
stipulates that from around 30 observations, sample means begin
to resemble a normal distribution [12].

Literature has indicated that evolutionary algorithm performance
can be affected by the choice of random number generator [3, 11,
16, 17]. It has been argued that it is possible to remove randomness
from EAs while maintaining algorithm proficiency [42]. Some au-
thors have proposed a "quasi-random" approach as an alternative
to random population instantiation [13]; a quasi-random generator
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places points in a space such that the points are maximally distant
from each another. The construction of sampled LONs is influenced
by randomness in the heuristic algorithms used to identify the
nodes and edges. Authors use varying numbers of independent
algorithm runs for iterated local search LON construction to try
and mitigate the effects of randomness. There seems to be no agreed
value: as few as 30-50 runs have been employed [22, 27, 31]; other
works use in the region of 100-200 [19, 34ś36]; as many as 1000
have also been considered [37]. This lack of agreement is one rea-
son why an assessment for the influence of randomness on LON
construction is important.

The random mechanism which is used during LON construction
in this work is the pseudorandom number generator, Mersenne
Twister (MT) [15]. The quality of a pseudorandom number genera-
tor can be defined by its period, 𝑝 Ð how many numbers before the
generator repeats itself. Mersenne Twister has 𝑝=219337-1. Random-
ness is found in a few places in the LON construction algorithm. The
most consequential of these may be the starting solution, but there
is also the order of neighbour exploration in the first-improvement
local search and the random perturbations to consider.

3 METHODOLOGY

3.1 Quadratic Assignment Problem

Definition. A solution to the QAP is generally written as a per-
mutation 𝑠 of the set {1, 2, ..., 𝑛}, where 𝑠𝑖 gives the location of
item 𝑖 . Therefore, the search space is of size 𝑛!. The cost asso-
ciated with a permutation 𝑠 is a quadratic function of the dis-
tances between the locations, and the flow between the facilities,
𝑓 (𝑠) =

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑎𝑖 𝑗𝑏𝑠𝑖𝑠 𝑗 , where 𝑛 denotes the number of facili-

ties/locations and 𝐴 = {𝑎𝑖 𝑗 } and 𝐵 = {𝑏𝑖 𝑗 } are the distance and
flow matrices, respectively.

Instances. We consider instances from the QAPLIB2 [2] with be-
tween 25 and 50 facilities; these are of moderate size, and yet are not
always trivial to solve. There are 47 instances in this size range, but
we remove the esc group (which are real-world QAP occurrences
for the testing of sequential circuits in computer hardware): their
local optima networks are uninteresting to study because there is a
very high degree of LON neutrality [33]. The reduction results in 40
QAPLIB instances for the study, ranging in size between 25 and 50
facilities and locations. Eleven of the instances in this group have
not been solved to optimality; for those, we use their best-known
fitness as the surrogate global optimum. In the rest of this paper,
for simplicity we refer to these as the global optimum.

3.2 LON Metrics

Funnel-like organisation of local optima has been shown to be re-
lated to search difficulty for the travelling salesman problem [4],
number partitioning problem [23] and also for the QAP [33]. We
therefore concentrate our focus towards measurements relating
to funnels. Unless otherwise specified, all metrics are computed
on the CMLON. To calculate funnel depth measurements, we first
compute all finite shortest paths in the CMLON from origin nodes

2https://coral.ise.lehigh.edu/data-sets/qaplib/qaplib-problem-instances-and-
solutions/

(local optima at the beginning of ILS runs) towards sink nodes (ter-
mination points of ILS runs). A sink is the bottom of a funnel. This
process is completed separately for optimal and suboptimal sinks.
From the resultant sets of shortest paths (which are monotonic in
nature) we can extract metrics. For both optimal and suboptimal
funnels, we consider the mean depth and the maximum depth of
them; that is, the mean and maximum of the shortest paths which
reach the end of the funnel from an origin point.

Other LON metrics are included too: the incoming strength to
optimal sinks, and the relative size, in nodes, of the optimal funnel(s).
The former is calculated as the weighted in-degree to optimal sinks
in CMLON Ð as a proportion of the total weighted incoming degree
to all sinks. The size of optimal funnel(s) is defined to be the number
of nodes which can reach the optimal sinks using a monotonic path;
the size is normalised by the total number of nodes. Also considered
are the number of global optima and local optima, respectively, in
the un-compounded LON; the number of nodes in the CMLON; the
mean size of compounded nodes; and the cardinality for optimal and
sub-optimal funnels. Abbreviated names for LON features are used
in the results section; we therefore provide a list with shortnames
and descriptions now, in the order they first appear in a Figure.

(1) cnodes_size_avg: the mean size of compounded LON nodes
(nodes which are a combination of more than one connected
nodes of equal fitness)

(2) depth_gfunnel_avg: the mean depth (in edges) of optimal
funnels

(3) depth_gfunnel_max: the maximum depth (in edges) of opti-
mal funnels

(4) depth_sofunnel_avg: themean depth (in edges) of sub-optimal
funnels

(5) depth_sofunnel_max: the maximum depth (in edges) of sub-
optimal funnels

(6) num_cnodes: number of compounded nodes
(7) num_gfunnel: number of optimal funnels
(8) num_global: number of global optima
(9) num_nodes: number of local optima
(10) num_sofunnel: number of sub-optimal funnels
(11) size_gfunnel: proportional size, in nodes, of optimal funnel(s)
(12) strength_gfunnel: proportional strength of optimal funnel(s),

measured as weight of incoming edges to the funnel sink(s)

4 EXPERIMENTAL SETUP

Throughout the experiments, a random swap of facilities in the
QAP permutation is considered as the neighbourhood structure. All
experiments are run on an 8-core MacBook Pro equipped with the
Apple M1 chip and using OS X Ventura. We use Stützle’s iterated
local search (ILS) for both gathering performance data and as the
foundation of LON construction [30]. The local search stage uses
a first improvement hill-climbing, and the perturbation strength
is 𝑘 = 𝑁

2 . This setting was selected because large perturbation
strengths of around 50% of 𝑁 are generally advantageous in this
problem domain [20, 30].

4.1 LON Construction

For each instance, 30 LONs are constructed Ð with a different ran-
dom seed provided to the Mersenne Twister (MT) mechanism each
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time. The C implementation of MT is used. For each instance and
seed pair, 100 runs of ILS are amalgamated to form the LON. Only
local optima with equal or improving fitness are accepted. Worsen-
ing local optima are never accepted. Runs terminate after 10 000 ILS
iterations with no improvement. This termination condition has
been used in the literature to estimate sinks and funnel structure
[24].

4.2 Algorithm Performance

We consider runtime over 100 independent executions (with differ-
ent random seeds from those used for the LON construction runs)
to summarise ILS performance on the instances. Each of the three
ILS variants have the same seeds provided to them. Runs terminate
when either the known best fitness is found or after 10 000 ILS iter-
ations with no improvement. To give an indication of how many
iterations this may result in: the instance tai50a was associated
with 12 178 iterations in an example run. Performance metrics were
computed using three distinct local optima acceptance strategies
for the ILS, detailed now.

Better or equal. Only local optima which have improved or equal
fitness to the current local optimum are accepted. Worsening local
optima are never accepted.

Annealing. Improving and equal local optima are always ac-
cepted. Worsening local optima are accepted according to prob-
ability. This is governed by an annealing-like cooling schedule
termed Large Step Markov Chain (LSMC) in the work proposing ILS
for QAP. We set the LSMC parameters to mirror those used in Stüt-
zle’s work [30]: that is, an initial temperature of 2.5% of the current
solution fitness Ð a solution which is 2.5% lower fitness is allowed
with the probability 1

𝑒 ; the number of steps at a temperature is 10.
Temperature is reduced according to a scaling factor, 𝛼 = 0.9.

Restart. Improving and equal local optima are always accepted.
If iterations since an improvement in local optima quality have
exceeded 3𝑁 (where𝑁 is the problem dimension), a restart happens.

4.3 Regression Model Setup

LON metrics serve as the independent variables in the algorithm
performance models. The dependent variable is runtime of iterated
local search; the modelling is therefore a regression task. As the
learning algorithm, Random Forest in R is used. For each individual
model, the observations include metrics from LONs constructed
using one of the 30 random seeds, combined with ILS runtime for
the problem instance as the dependent variable. To be clear, the
same ILS performance data is used regardless of the LON random
seed: for example, the runtime value for bur26a is mapped to all 30
of its LONs. Because we use one row per QAP instance to build the
models, there are limited number of observations in the datasets: 40.
The one-in-ten rule [5] stipulates that roughly ten observations are
required per independent variable. Owing to data splitting during
cross-validation, our training sets can be as small as 32. We compute
12 LON metrics and then conduct recursive feature elimination
to obtain the top three features. The feature selection bases its
decisions on the minimisation of RMSE and executes 100 bootstrap
replications. One hundred bootstraps is a quantity backed up by
literature [26]. Feature selection is conducted separately for each of

the 30 set of LONs (one set per seed), and the elite features stored.
For the final modelling stage, features which appeared the most
at the top three positions were included. Each feature selection
process includes 100 bootstrapping iterations as cross-validation.

For both feature selection and final modelling, default hyper-
parameters for the Random Forests are employed; these are: 500
trees,

𝑛𝑝
3 variables sampled [where 𝑛𝑝 is the number of predictors],

subsampling of observations with replacement, and a sample size
of 𝑛 [where 𝑛 is the number of the whole sample]. We conduct
Monte Carlo cross-validation (random repeated sub-sampling) to
estimate model quality metrics. This is done with an 80-20 training-
validation split and for 100 iterations; we consider the 𝑅2 and root
mean squared error (RMSE) as model metrics. These are computed
on the validation sets and averaged over 100 cross-validation itera-
tions.

5 RESULTS

5.1 Network Comparison

Figure 1 shows, for each QAP instance, the distribution of LON fea-
tures across different random seeds provided to the LON construc-
tion process. There are 30 seeds for each instance. Each horizontal
line on a box is for a particular feature, as indicated on the left of
the overall Figure. Recall the descriptions for features from Section
3.2. Colours represent the normalised value of the feature: dark is
closer to zero, with yellow closer to one. Instance names are the
labels for individual boxes.

Notice from the Figure that particular features, such as the met-
ricsx
size_gfunnel and strength_gfunnel, are often consistent across seeds.
This can be observed with the solid blocks of either yellow or dark
blue at the bottom of several of the instance boxes. Other features
which display little variation for many of the instances include
size_cnodes_avg, num_global, and num_sofunnel. There are, how-
ever, features which show less stability across seeds. We notice that
metrics relating to funnel depth, particularly depth_gfunnel_avg

and depth_gfunnel_max, often depend on the seed. This can be seen
by checking for the rows labelled with those metric names and
observing the variation in colour there.

With all that said, there seems to be no universal rule about
which metrics are dependable across seeds. Even size_gfunnel and
strength_gfunnel display lack of uniformity in some instances (for
example, kra30a and kra30b); we therefore stipulate that stability
of metrics depends on the problem instance.

Figure 2 presents distributions of LON metrics across seeds as
parallel coordinate plots. Notice that the 𝑥-axis now measures the
normalised value for features. Each line traces feature values for a
particular seed. Colour is used to identify an instance as belonging
to an instance group, as labelled in the legend. Surveying the Figure,
we can see that the eight instances comprising the bur category are
each associated with LONs which are remarkably constant across
different seeds. This can be seen by considering the tightness of
the line groups in these instances when compared to instances
from other instance types. In the tainna category, there is a lot
of variation in metrics relating to depth of the optimal funnel(s):
depth_gfunnel_avg and depth_gfunnel_max. The number of local
optima, as well as features which capture neutrality at the local
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Figure 1: For each instance, the distribution of LON metrics across different random seeds provided to LON construction

optima level Ð cnodes_size_avg and num_cnodes Ð show stability
across seeds almost universally for problem instances (note the low-
est part of the individual boxes). The tainnb category each display
the same "skeleton" of feature patterns. The first four instances
have extremely similar plots, while tai50b shows more diversity of
funnel depth metrics across different seeds.

To take a closer look into possible differences between QAP in-
stance groups, we show the distributions for selected features as
boxplots in Figures 3 and 4. The diagrams represent the features
num_nodes and depth_gfunnel_avg, respectively. Those two were
selected because one of them displays relative consistency across
groups (and across random seeds), while the other shows differ-
ent behaviour: the amount of variation across seeds seems to be
somewhat related to instance group. Due to space constraints, we
cannot show these plots for every feature.

Figure 3 tells us that the number of nodes (local optima) cap-
tured by LON sampling is usually quite consistent even with differ-
ing random seeds. We can see this from the narrow distributions
throughout most of the plot. These are present in every instance
group, although some instances within real have more local optima
and slightly more varied distributions. Turning our attention to

Figure 4, the pattern is unlike that of Figure 3. Here, there are sev-
eral distributions which exhibit high variation. In some cases, this
seems like it might be related to instance group: compare grid and
tainna to the other categories. For those two, the sampled depth of
optimal funnel is often highly diverse depending on seed. For the
real instances, however, the depth is quite stable across seeds.

5.2 Feature Selection

For feature selection, the set of observations used to build a model
comprise metrics computed on a set of 40 LONs Ð one per QAP
instance Ð constructed using a particular random seed. There are
therefore sets 30 models, differentiated by the seed provided to the
LONs. Each of the three ILS variants serve as a separate response
variable, so each has an associated group of 30 model configura-
tions. We investigate in this Section how consistent the top-selected
feature was for these models across the different random seeds. Fig-
ure 5, presents the number of times particular features ranked first
place for the three response variables: ILS with default, annealing-
like, and restart acceptance. Notice that some features from the full
set (described in Section 3.2) do not appear in Figure 5; this means
that they did not appear as the top feature in any of the models.
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Figure 2: For each instance, the parallel coordinate representation of the distribution of LON metrics across different random

seeds provided to LON construction

Comparing the distributions in the three sub-plots, we can see
that the top feature for the default and annealing ILS variants was
rather consistent across different LON seeds. In the case of de-
fault, the strength_gfunnel feature ranked as first for 17 of the 30
possible seeds (observe the lowest bar of the left-most plot). The
most-common top feature for annealing ILS, depth_gfunnel_avg, is
even more dominant across seeds: around 22 out of 30. With restart

ILS as response variable, it is a different story: a few different fea-
tures have several occurrences, but none prevail as being distinctly
the most salient. These results suggest that when it pertains to ex-
plaining and predicting default and annealing ILS, the LON features
which are most potent are consistent across random seeds provided
to the LON construction algorithm. This does not appear to be the
case for restart ILS, however.

5.3 Modelling

The final models contain the top three selected features for each
ILS variant. Different LON seeds sometimes resulted in different
features ranking as the best. We took a pooling approach to fea-
ture choice for the final models: selecting the features which most
often ranked at places one, two, and three across the 30 seeds.
For default acceptance, these were strength_gfunnel, size_gfunnel,
and depth_sofunnel_avg; in the case of annealing ILS, they were
depth_gfunnel_avg, num_cnodes, and depth_sofunnel_avg; and for
restart acceptance: strength_gfunnel, depth_gfunnel_avg, and
size_gfunnel. Figures 6 and 7 present the distributions across 30
LON seeds of model 𝑅2 and RMSE, respectively, on validation sets
Ð averaged over 100 Monte Carlo cross-validation iterations.

One outlier has been removed for visual clarity: a model in the
restart set which had an 𝑅2 of -13.44. For random forest regression,
a negative 𝑅2 like this can occur when the model prediction is
less accurate than simply predicting the mean of the response
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Figure 3: For each instance, the distribution of the number of local optima in the LON across different random seeds provided

to LON construction

Figure 4: For each instance, the distribution of the average depth of optimal funnel(s) in the LON across different random seeds

provided to LON construction

variable. Looking at Figure 6 and comparing the three boxes, it
can be observed that models with default ILS as response variable
have the narrowest range of 𝑅2 across seeds. Even so, there are
values as far apart as ∼0.5 and ∼0.97. This is a substantial difference.
The ranges for annealing and restart are even more vast; this is
particularly the case for the latter. Depending on the random seed
provided to the LON construction algorithm, the subsequent model
𝑅2 can vary from below zero Ð indicating a model which is worse
than predicting the mean response variable value Ð to∼0.96 (almost
all variance explained). Recalling the variation of top feature across
seeds during the feature selection process (Figure 5, it is possible
that the low 𝑅2 values arise because the most powerful metrics of
a LON constructed with a specific seed were not used (we used the
same three features to build models regardless of seed).

Figure 7 contains RMSE values. RMSE is in the same units as
the response variable, which is ILS runtime, measured in iterations.
The Figure indicates that the lowest RMSE values, and indeed the
narrowest distribution, arises from models with default ILS as the
response variable. This communicates that these models are the
strongest, and also that the dispersion of model error is relatively
low across LON seeds. The annealing and restart models have larger
errors and wider distributions. The consistency of model error
depending on LON seeds seems quite low.

5.3.1 Algorithm Configuration. We now report an algorithm con-
figuration decision experiment. The intention was to investigate
whether different recommendations might be made depending on
the seed provided to LON construction.
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Figure 5: Distribution across 30 seeds of the top feature se-

lected with each ILS variant as response variable

For all three ILS variants, we set their predictor features to be the
best three for the default ILS. This decision was made for simplic-
ity and consistency. Thereafter, we obtain the predicted runtimes
for each QAP instance and for the three algorithm configurations.
These are produced by executing 100 iterations of Monte Carlo
cross-validation, with the relevant instance always excluded from
the training set and included in the validation. The models predict
the runtime. Then each instance is mapped to the ILS variant with
associated with the lowest predicted runtime.

In Table 1 we report statistics describing the consistency of
algorithm configuration recommended across different seeds: the
column labelled #config. contains values between 0 and 1 Ð the
number of recommended algorithm configurations as a proportion

default annealing restart

−
0
.5

0
.0

0
.5

1
.0

R
2

Figure 6: Distribution across 30 LON seeds of model 𝑅2 on

validation data (mean over 100 cross-validation iterations)

with three ILS variants as the response variable. Predictors

are the top three LONmetrics obtained from feature selection

default annealing restart

1
0
0
0

4
0
0
0

R
M

S
E

Figure 7: Distribution across 30 LON seeds of model 𝑅𝑀𝑆𝐸 on

validation data (mean over 100 cross-validation iterations)

with three ILS variants as the response variable. Predictors

are the top three LONmetrics obtained from feature selection

of the available number (three). In column freq. prevailing config.

the proportions are out of 30, and represent for how many seeds
the most prevalent algorithm configuration was recommended.

Table 1: Algorithm configuration distributions: #config. cap-

tures how many different ILS variants were recommended

for the instance, depending on LON seed (as a proportion

of three total variants); freq. prevailing config. is how often

the most common recommendation for an instance appears

(presented as a proportion of 30 models)

statistic #config. freq. prevailing config.

minimum 0.667 0.500
1st quartile 0.667 0.567
median 0.667 0.633
mean 0.825 0.700
3rd quartile 1.000 0.833
maximum 1.000 0.967

Let us consider the #config. column initially. The minimum pro-
portion is 0.667, which means that at least two algorithm configu-
rations were recommended for each instance. Both the 3rd quartile
and the maximum have proportional values of 1, which tells us
that some instances had all three ILS variants recommended. In the
freq. prevailing config. column, notice that the minimum propor-
tional representation of the dominant recommended configuration
is 0.5. The maximum is 0.967, which represents 29 out of the 30
seeds agreeing on the best algorithm variant. A mean and median
of 0.700 and 0.633 respectively indicate that, for most instances,
the dominant variant is recommended for a reasonable majority of
LON seeds.

6 CONCLUSIONS

We have conducted a preliminary study on statistical randomness
in a local optima network (LON) construction algorithm: iterated
local search (ILS). LONs were extracted for a set of quadratic assign-
ment problem (QAP) instances and with a range of different random
seeds provided to the construction algorithm. Metrics were com-
puted on the obtained LONs. These were analysed with the aid of
visualisation. Algorithm performance prediction models were built
using the metrics as features and performance of ILS as the response
variable. The results showed that some LON metrics seem consis-
tent across seeds, while others vary substantially. Additionally, the
quality of algorithm performance models using LON metrics as
predictors can differ depending on randomness. Finally, LON met-
rics associated with separate seeds can lead to different algorithm
configuration recommendations for the same instance. For future
work, we will consider a larger QAP instance set. In particular,
an instance generator (such as [10]) could be used to obtain an
expansive set of similar problems. This should remove the vari-
ation seen between instances from different classes. We would
also like to further remove noise from the performance modelling
pipeline; consider the study of other problems, including pseudo-
boolean spaces; and include other heuristics or alternative LON
sampling methods such as snowballing [39] and those relating to
recombination [8, 41]. The data from this work are available at
https://doi.org/10.5281/zenodo.7900303.
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