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ABSTRACT
We consider search spaces associated with neural network channel
configuration. Architectures and their accuracy are visualised us-
ing low-dimensional Euclidean embedding (LDEE). Optimisation
dynamics are captured using local optima networks (LONs). LONs
are a compression of a fitness landscape: the nodes are local optima
and the edges are search transitions between them. Several neural
architecture search algorithms are tested on the search space and
we discover that iterated local search (ILS) is a competitive algo-
rithm for neural channel configuration. We additionally implement
a landscape-aware ILS which performs well. Observations from
the search and landscape space analyses bring visual clarity and
insight to the science of neural network channel design: the results
indicate that a high number of channels, kept constant throughout
the network, is beneficial.

CCS CONCEPTS
•Mathematics of computing → Graph algorithms; Combina-
torial algorithms; • Theory of computation → Evolutionary
algorithms.

KEYWORDS
Fitness Landscapes, Neural Architecture Search, Local Optima Net-
works (LONs)
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1 INTRODUCTION
Neural architecture search (NAS) [9] is the pursuit of intelligently
and automatically designing neural network topology. Architec-
tures engineered in this way have been shown to match or ex-
ceed the performance of manually-designed architectures in object
recognition [41] natural language processing [17] and dense image
prediction [5]. As an optimisation problem, the search space is the
set of candidate neural network architectures and fitness is typi-
cally the validation accuracy using an architecture, which is to be
maximised. Several algorithmic approaches have been proposed for
neural architecture search; these include reinforcement learning
[41], gradient-based search [27], evolutionary algorithms [33], and
random search [16]. Recently, studies have shown that local search
is a competitive family of algorithms in this domain [7, 38].

Local optima networks (LONs) [22] are a compression of a fitness
landscape. The nodes are local optima, and the edges are heuristic
transitions between them. LONs have been employed to explain
and predict heuristic search performance on a variety of benchmark
combinatorial problems, including NK Landscapes [34]; quadratic
assignment [1]; and the travelling salesperson [4]. Lately, LONs
have been used to gain insights into aspects of machine learning -
autoML search spaces [31, 32], feature selection [19], and also NAS
[23, 24]. In this work, we closely analyse the search spaces of neural
architecture channel configuration search. As a first step, genotype
mapping and Low-Dimensional Euclidean Embedding (LDEE) [18]
are employed to visualise and understand the characteristics of the
search spaces. Local optima networks are constructed and their
structure investigated. In both of these stages, the spaces associated
with both validation accuracy and test accuracy are considered,
and these are compared to each other. Finally, we execute several
NAS algorithms on the channel optimisation space and find that
iterated local search is a competitive approach for this problem.
The contributions of this work are as follows:

(1) First fitness landscape analysis for neural network channel
optimisation, and the largest NAS space to be modelled using
LONs

(2) Analysis of the relationship between the validation and test
search spaces

(3) Proposal of iterated local search approaches for channel
configuration search, including a landscape-aware variant
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2 BACKGROUND
2.1 Fitness Landscapes
A fitness landscape [29] is composed of three parts: (𝑆, 𝑁 , 𝑓 ) : S is
the full set of possible solutions; 𝑁 : 𝑆 −→ 2𝑆 is the neighbour-
hood function, which assigns a set of adjacent solutions 𝑁 (𝑠) to
every 𝑠 ∈ 𝑆 ; and f is a fitness function 𝑓 : 𝑆 −→ R that pro-
vides a mapping from solution to associated fitness. That fitness
can be conceptualised as the solution height within the landscape
metaphor.

2.2 NAS Landscapes
NAS spaces have been studied previously using fitness landscapes
(sometimes called loss landscapes in the literature). A recent study
[38] found that minimising noise in the neural network training
pipeline (the effects of random instantiation of the network weights)
also reduces the number of local optima. They also noticed that
increasing the noise caused the basin of attraction surrounding
the global optimum to diminish. Another work analysed graph
neural network architecture spaces and found that the landscape
was straightforward and exhibited very little neutrality [21]. Local
optima networks have been constructed for neural architecture
search spaces on three occasions recently. One study considered
multilayer perceptrons with up to three hidden layers and found
that the fitness landscapes typically exhibited a "big valley" (sin-
gle funnel) global structure [24]. The architectures in the search
space struggled to model the cifar10 and cifar100 datasets, although
they worked well with other datasets. Convolutional network archi-
tectures were considered in another work [26]; a grammar-based
approach to solution representation was used to encode hyperpa-
rameters such as the number of filters. The search space, at 800
architectures, was small. As a result, the extracted LONs were also
small: between two and five nodes.

Another study constructed LONs for the topology search space of
theNATS-Bench benchmark and the cifar10, cifar100, and ImageNet16-
120 datasets [23]. They found that the landscapes contain quite a
low number of local optima and demonstrated that iterated local
search was, consequently, a competitive algorithm for traversing
the space. Our own study considers the largest NAS space which
has been subject to LON analysis, at 32 768 possible architectures;
the other works had search space sizes of 800 [26], 1 110 [24], and
15 625 [23] respectively. To the best of our knowledge, our study is
the first to conduct landscape analysis of the channel optimisation
problem.

2.3 Neural Architecture Benchmark
We consider the "size" search space from the tabular benchmark
NATS-Bench [8], made available through queries to the NATS-
Bench API1. Here, the notion of size does not refer to the number
of parameters in the network; but rather, the depth of its convo-
lutions. In the text that follows, we elaborate on what this means
and describe the network anatomies. The search space is based
around convolutional neural networks (CNNs) and a foundational
macro skeleton as the overall network architecture; the skeleton
contains cells. Cells represent "repeated motifs" in a network and

1https://github.com/D-X-Y/NATS-Bench

Figure 1: Macro skeleton of candidate architectures in the
search space, shared by all architectures

are alternatively called blocks. An illustration of the skeleton can
be seen in Figure 1. An initial 3x3 convolution stem is followed by
an alternating sequence of three cell blocks and two residual blocks.
Although cells can be stacked (as indicated with x N in the Figure),
this search space uses a single cell per block. The set of operations
inside a cell are the best possible configuration on cifar100 obtained
through optimisation of a cell topology search space. Those op-
erations consist of 3x3 convolution, 1x1 convolution, and a skip
connection. The final component to the skeleton is a global aver-
age pooling layer, which transforms the outputs into a vector of
features. Those vectors then pass through a fully connected layer
and through the softmax function in order to obtain the network
output (prediction).

Each of the cell and residual blocks employ a number of channels.
In convolutional neural networks, a channel is the depth dimension
of the matrices which are used for convolution. An RGB input
image has three channels (three matrices) initially: red, green, and
blue. These encode the respective amounts of the three colours in
the image. The initial number of channels must match the number
in the raw image, but the number of channels in the rest of the
network can be configured. More channels facilitate more complex
and specific features. Channel configuration is important because
it can affect performance of the network: more channels can allow
the detection of diverse and important features. In the benchmark
employed here, eight sizes are allowed for the number of channels:
8, 16, 24, 32, 40, 48, 56, and 64. Duplicate sizes are allowed, giving a
total search space size of 85 – 32768 possible solutions.

2.4 Channel Optimisation
A prevalent approach to neural network channel design doubles the
number of channels at downsampling locations (when the feature
map is reduced in size by half). This method has been employed in
well-known neural architectures such as VGG [28] and ResNet [12].
Another common approach to configuring channels is progressively
increasing them in number as the network gets deeper (without
contingency on feature map dimension); this is called a pyramid
structure [10]. Literature has suggested a linear increase of channels
over blocks is beneficial [11] and another promising approach is
scaling the number of channels alongside the network depth and
image resolution [30]. The paper which proposed the benchmark
used in our work [8] found that pyramid-structure neural networks
were sub-optimal when it comes to the trade-off between number
of parameters and test accuracy. Other recent neural architecture
studies focusing on channel configuration have shown that doing
so can produce architectures which perform better than standard
baselines [13, 35, 36].

We endeavour to understand the search for channel size. To
the best of our knowledge there has not hitherto been a fitness

1268

https://github.com/D-X-Y/NATS-Bench


Neural Channel Configuration and the Search Space GECCO ’23, July 15–19, 2023, Lisbon, Portugal

landscape analysis for this type of neural architecture space and
this is one of the novel contributions. Additionally, we use the
search space and landscape analyses to inform our proposal of
iterated local search (ILS) approaches for channel optimisation. ILS
is a metaheuristic which repeatedly combines large and random
mutations (perturbations, for the purpose of diversification) with
local search (intensification).

3 DEFINITIONS
3.1 Optimisation Problem Formulation
The solution representation, or genotype, used in this study is
a vector of integers of length five. The integers each map to a
channel configuration from the set of candidate sizes: 8, 16, 24,
32, 40, 48, 56, and 64. Each position in the genotype represents
a block in the neural network; these are blocks 3-7 in Figure 1.
We use two fitness functions: the validation accuracy and the test-
set accuracy, respectively, of neural networks which employ the
specified channel sizes. For both fitness functions, the accuracy is
averaged over three random network weight instantiations. The
reason for this is that there is data available for exactly three seeds
in the queryable benchmark API. The notion of neighbourhood is
defined as a 1-change operation; that is, the replacement of one
gene with another channel size from the set of eight candidate sizes.

3.2 Local Optima Networks
Local optima networks (LONs) [22] are a means to study the global
structure of a fitness landscape. In this work, we consider LONs
which are sampled using ILS. This section formally describes this
type of LON.

Nodes. The nodes, 𝐿𝑂 , are the local optima. That is, a local op-
timum (node) 𝑙𝑜𝑖 has superior fitness with respect to the entire
neighbourhood. Formally: ∀𝑛 ∈ 𝑁 (𝑙𝑜𝑖 ) : 𝑓 (𝑙𝑜𝑖 ) > 𝑓 (𝑛) (assuming
maximisation, as is the case for this study) where 𝑁 (𝑙𝑜𝑖 ) is the
neighbourhood and 𝑛 is a particular neighbour.

Edges. There is an edge from local optimum 𝑙𝑜𝑖 to local opti-
mum 𝑙𝑜 𝑗 , if 𝑙𝑜 𝑗 can be obtained after applying a random perturba-
tion (in the present study, this is 𝑘-exchange) to 𝑙𝑜𝑖 followed by
local search, and 𝑓 (𝑙𝑜 𝑗 ) ≥ 𝑓 (𝑙𝑜𝑖 ). In LON terminology, these are
called escape edges. The edges are called monotonic because they
record only non-deteriorating, directed connections between local
optima. Edges are weighted with the frequency of transition. The
set of edges is denoted by 𝐸.

Local optima network (LON). A local optima network, LON =
(𝐿𝑂, 𝐸), consists of nodes 𝑙𝑜𝑖 ∈ 𝐿𝑂 which are the local optima,
and edges 𝑒𝑖 𝑗 ∈ 𝐸 between pairs of nodes 𝑙𝑜𝑖 and 𝑙𝑜 𝑗 with weight
𝑤𝑖 𝑗 iff𝑤𝑖 𝑗 > 0. A LON which only includes neutral or improving
transitions between local optima is a monotonic LON, or MLON.

4 EXPERIMENTAL SETUP
In the tabular benchmark, each neural architecture is trained, val-
idated, and tested on three image classification datasets: cifar10
and cifar100 [14], alongside ImageNet16-120 [6]. For training, two
epoch settings are used: 12 and 90. For each of those scenarios, and
for each architecture candidate, training is executed three separate

times, differentiated by the random seed used to initialise the neural
network weights. All hyperparameters are fixed as the same for
each neural network architecture with the exception of number
of epochs (already described) and the channel size configurations
(these constitute the search space). The hyperparameters are: a Nes-
terov momentum stochastic gradient descent as optimiser; batch
size of 256; weight decay 0.0005; the learning rate decays according
to an annealing schedule from 0.1 to 0. A comprehensive descrip-
tion of the experimental setup for the benchmark can be found
in the paper which introduces it [8]. Owing to the three random
seeds, there is correspondingly three sets of metrics for each epoch
scenario. For all aspects of our study (search space analysis; LON
construction; optimisation algorithm runs) we used the averaged
metrics for a given neural architecture. This helps to de-noise the
searches, and we choose to do this in response to findings from
previous literature indicating that doing so reduces the difficulty of
the landscape [23, 38].

4.1 LON Construction
For constructing the LONs, fitness is the averaged validation ac-
curacy in the 90-epoch scenario. A hundred independent runs of
ILS are logged to collect nodes and edges for a LON. ILS combines
local search with random perturbations. As previously mentioned,
local search is competitive in NAS as a domain [7, 38] and ILS it-
self has recently been proposed and demonstrated as promising
[23]. Each of the runs terminates after 100 iterations with no im-
provement in local optimum quality. The local search uses a first
improvement pivot rule and changes one component of a solution
to another component randomly as mutation (1-change). Perturba-
tion is the 2-change operator. Only improving or equal local optima
are accepted during the search, although deteriorating connections
between local optima are also logged.

4.2 NAS Algorithm Performance
According to recent literature [7, 23, 37, 38] ILS and other local
search-based methods are highly competitive in neural architecture
search. We consider two versions of the ILS: ILS-shuffle where
the values for the 1-change operator are explored in random order
and ILS-ordered where the 1-change operator uses insights from
the search space and landscape analysis we conducted. We found
that, generally, high-channel configurations were associated with
high accuracy. In view of this, for ILS-ordered we systematically
explore neighbours using the following ordering of the channel
dimensions: 64, 56, 48, 40, 32, 24, 16, 8. Both ILS algorithms use
the same design and parameters as the LON construction process
detailed in Section 4.1. We contrast the ILS against the following
NAS methods, as implemented in [8].

• Random search (RANDOM) [39]. This serves as the base-
line. It draws sizes at random and returns the best found.

• Regularised evolution (REA) [25]. This is a mutation only
evolutionary algorithm that uses tournament selection and
introduces the notion of age to the individuals. The replace-
ment strategy removes the oldest individual in the popula-
tion, thus favouring newer sizes. This serves as a mechanism
to handle the noisy performance estimation.
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Figure 2: Genotype maps of the best 0.1% performing architectures for all datasets, sorted according to validation accuracy (top
row of plots) and test accuracy (bottom row), when trained using 90 epochs. Each horizontal row in the plots visualises an
architecture. Individual boxes indicate, by colour, the channel configuration at that cell position in the neural network. In this
way, the 𝑥-axis represents depth (in cells) of the network

• Reinforcement learning (REINFORCE) [41]. This frames
NAS as a reinforcement learning problem. The solution gen-
eration corresponds to the agent’s actions, with the action
space identical to the search space. The reward is based on
an estimate of network performance on unseen data.

When running the NAS optimisation algorithms (including the ILS
variants) we follow the general procedure and parameters provided
for experiments in NATS-Bench [8], although we opt to update
the process slightly by averaging model metrics over the 3 avail-
able seeds (for network weight instantiation). The rest mirrors
the original setup: searches are directed based on mean validation
accuracy using 12 epochs; the mean validation and test accuracy
for the obtained architectures in the 90-epoch situation are then
extracted. The training time budgets for cifar10, cifar100 and Ima-
geNet datasets are 20 000, 40 000, and 60 000 seconds respectively.
Each algorithm is executed 30 times per dataset.

5 RESULTS
5.1 Genotype Maps
Figure 2 shows genotype maps for architecture candidates which
have fitness in the top 0.1% of the search space. In each plot, the 𝑥-
axis is the sequential position of a block in the neural architecture
and the 𝑦-axis is the validation (top row) or test (bottom row)
accuracy. Colours indicate the number of channels present at each
position. As shown in the legend, darker colours represent fewer
channels and lighter colours indicate more. Each row in a plot
indicates an architecture candidate by its channel configuration.

It can be observed that light colours (high number of channels)
are markedly more prevalent than the darker colours (fewer chan-
nels). This is particularly the case for the cifar10 dataset in the 2
leftmost graphs. Architectures for the other 2 datasets more com-
monly involve lower-channel blocks. An interesting trend across
all 3 datasets is the frequency with which the highest number of
channels – 64 – is involved in these elite-ranking architectures.
This seems to be in opposition to the commonly-used "pyramid"
approach to channel configuration [10]; this was also noted in
the paper which proposed the benchmark we use here [8]. We ac-
knowledge that designing a neural network with high channels
throughout brings the disadvantage of increased computational
expense. Notice from the cifar10 figures with the rows containing
dark blue at position 5 that having a low-channel final block can be
associated with high accuracy if the other blocks are high-channel.

The 𝑦-axis captures accuracy, so the optimal architectures are at
the top of each plot. We note the fact that the optimal architectures
according to the validation accuracy are not optimal when ranked
using the test accuracy. This can be seen by comparing the top row
(i.e., horizontal block consisting of five components) in each of the
upper three plots with the top row in each of the bottom 3 plots.

Figure 3 visualises the genotypes of architecture candidates
within the lowest 0.1% of fitness. The layout is exactly the same as
Figure 2. Notice, however, the difference in 𝑦-axis accuracy values:
they are noticeably lower than in the first figure. Considering the
plots, the ubiquity of the low-channel genes (8, 16, and 24) is evident
by the amount of dark blue. When higher-channel genes do appear
here, it is typically early in the network – for example, blocks one
or two. The final block at position 5 in the genotype almost always
has the lowest number of channels for this set of architectures.
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If we contrast the ranges on the 𝑦-axes in this set of plots with
those of Figure 2, it can be stated with confidence that the channel
configuration can have a dramatic effect on accuracy of the neural
networks on these datasets – recall that all other hyperparameters
are fixed and only the channel numbers vary.

5.2 Low-Dimensional Euclidean Embedding
Combinatorial search spaces can be visualised using Low-Dimensional
Euclidean Embedding (LDEE) [18]. LDEE employs t-Distributed Sto-
chastic Neighbor Embedding (t-SNE) to map genotypes into Eu-
clidean space while maintaining spatial relationships between them,
and then uses a vacuum embedding method to decide the layout for
the solutions in a 2-dimensional grid.

We noticed while visualising the channel configuration spaces
using LDEE that some genes in the genotypes are more correlated
to accuracy than others. For cifar10, the third gene is the most
correlated; for the other two datasets, the final (fifth) gene is most
correlated. The decision was made to weight the Euclidean distance
calculations in light of these important genes. Specifically, we added
a weight vector to the Euclidean distance calculations: each gene is
assigned a weight of 1 except the most-correlated one with respect
to validation accuracy – this gene is given a weight of 2. This should
have the effect of clustering together solutions which have the same
value of the most-correlated gene. Figure 4 shows LDEE plots for
the search space of each combination of dataset (cifar10, cifar100,
ImageNet16-120) and data split (validation, test) pair. The 𝑥 and 𝑦
axes form the grid on which the Euclidean-transformed solutions
are visualised, and the heat (colour) of points is indication of the
validation or test accuracy.

Notice that the validation search spaces and the test spaces ap-
pear, by this method, to be very similar; this can be observed by
comparing the first row of graphs with their counterparts on the
lower row. This holds true for each of the three datasets: cifar10,
cifar100, and ImageNet16-120.

In order to make the differences more pronounced, we plotted
(test - validation) accuracy using the same coordinate mapping (4g-
4i). Interestingly, for cifar100 (and, to some extent, for cifar10) test
accuracy appears to be better than validation accuracy where the ac-
curacy values are high and, conversely, to be worse than validation
accuracy where the accuracy values are low (blue areas in the third
row correspond to blue areas in the top two rows). This is not the
case for ImageNet16-120 (4i). Another impression from the Figure is
that there are groups of solutions which are close both in distance
and in fitness. This can be seen in the solid patches of red, and
is particularly true with respect to cifar100 (4b and 4e). Recalling
that the placement of solutions is biased towards clustering those
with the same value for the gene most correlated to validation ac-
curacy, we stipulate that there are obviously groups of high-quality
solutions which are "similar" in both fitness and distance. We can
see that the ImageNet16-120 search spaces (Figures 4c and 4f) in-
dicate the presence of more lower-quality solutions, and also that
these are more spread out in terms of genotype when compared to
cifar10 and cifar100. An interesting note is that high-quality solu-
tions for cifar100 (Figures 4b and 4e) are clustered (notice the deep
red patches), and that this is also somewhat true for low-quality
genotypes (in blue); additionally, these two groups of solutions are
quite nearby to one another. This implies that the best genotypes
may not be so different in comparison to the worst ones.

Figure 3: Genotype maps of the worst 0.1% performing architectures for all datasets, sorted according to validation accuracy
(top row of plots) and test accuracy (bottom row), when trained using 90 epochs. Each horizontal row in the plots visualises an
architecture. Individual boxes indicate, by colour, the channel configuration at that cell position in the neural network. In this
way, the 𝑥-axis represents depth (in cells) of the network
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(a) cifar10; validation accuracy (b) cifar100; validation accuracy (c) ImageNet16-120; validation accuracy

(d) cifar10; test accuracy (e) cifar100; test accuracy (f) ImageNet16-120; test accuracy

(g) cifar10; (test - validation) accuracy (h) cifar100; (test - validation) accuracy (i) ImageNet16-120; (test - validation) accuracy

Figure 4: Low-dimensional Euclidean embedding of the NATS channel configuration search spaces; architectures trained with
90 epochs. The 𝑥 and 𝑦 axes form the grid on which the Euclidean-transformed solutions are visualised, and the heat (colour) of
points is indication of the accuracy

5.3 Local Optima Networks
Table 1 shows metrics for the extracted monotonic local optima
networks (MLONs). Each column contains values which relate to
a dataset and a data split type (validation or test). The provided
metrics are: nodes: number of nodes (local optima); global strength:
normalised weighted in-degree of the global optimum (or optima);
path to optimum: average path length, in LON edges, from source
nodes to the global optimum (or optima); and difference to optimum:
average accuracy difference between nodes and the global optimum
(or optima). Notice from the first row of Table 1 that the number
of local optima is low. This indicates relatively straightforward

landscapes which should be well-suited to local search. For the cifar
datasets, paths to a global optimum (path to optimum) are longer in
the test set than for validation. This can be observed in the third
row by comparing columns 2 and 4 with 1 and 3, respectively.

In the case of cifar100 and ImageNet16, difference to optimum is
larger for the test set than for validation. We note also that for all
datasets and data splits, the global strength is between 0.26 and 0.56.
This means that the global optima have a relatively large share of
the incoming edges in the LONs.
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Figure 5: LONs using validation (top) and test accuracy (bottom) of the architecture (using 90 training epochs) as fitness

Table 1: MLON metrics for all datasets

dataset cifar10 cifar100 ImageNet16
data split valid. test valid. test valid. test

nodes 25 33 34 31 28 23
global strength 0.42 0.56 0.26 0.26 0.39 0.35
path to optimum 1.57 2.00 1.89 2.00 1.93 1.71
difference to optimum 0.32 0.29 0.60 0.84 0.92 1.13

Figure 5 shows visualisations for the constructed local optima
networks. Only neutral or improving transitions between local op-
tima are shown; it follows that these aremonotonic LONs, orMLONs.
Each column in the plot matrix is for a dataset (e.g. cifar10); the top
row of graphs is based on validation accuracy, while the bottom row
are for test accuracy. That distinction refers to the way the fitness
landscape was searched and the LON consequently extracted: for
example, validation accuracy was used as the fitness function for
the networks shown in the validation graphs. Node colour indicates
fitness quality: darker colours are lower fitness. The graph layout
uses fitness as the 𝑦-coordinate, while the 𝑥-coordinate follows a
force-directed graph layout. Nodes with fitness within the top 5%
have their genotype shown as an annotation. The size of nodes is
proportional to their incoming weighted degree (strength). Global
optima are triangles; all other nodes are circles. Only improving or
equal transitions between local optima are plotted.

Notice from the Figure that all except one of the LONs have a sin-
gle global optimum. Note also the pattern of local optima organising
into shapes reminiscent of an inverted version of the "big valley"
landscape structure which has been observed in other combinato-
rial problems [2, 3]. Landscape anatomy which exhibits a big valley
or "central massif" layout is, intuitively, particularly well-suited to
iterated local search because it is designed to ascend through layers
of local optima and iteratively drive itself to the global optimum. It
appears that there are straightforward connections between fitness
levels in these landscapes (notice the edges between nodes of dif-
ferent colour). We direct your attention to the task of comparing
the validation accuracy LONs – top row – with their test accuracy
analogues along the bottom row. The highest-quality solutions (the

ones with the genotype annotations) are never shared between the
validation and test LONs. Of all the elite genotypes shown across
the six images, only one appears more than once: the architecture
with the highest-channel gene at every position. An unexpected
result is that for all the networks, the highest-channel gene is at the
first position in 8 of the 11 annotated elite local optima. This seems
to be in opposition to approaches to channel configuration such as
doubling at downsampling locations [28], pyramid structure [10],
linear increase [11], and compound scaling [30]. Less surprisingly,
8 of the 11 have the highest-channel gene at the final position.

The genotypic composition of the two global optima for cifar10
according to test set accuracy (bottom left) is curious. They are
almost identical except for the gene at the final block. One has
24 channels at this position, the other 64, but they have identical
fitness. This is compounded by the fact that architectures with the
same genotype as the global optima but with channel sizes between
24 and 64 at the final block do not share in the optimal fitness.

5.4 Algorithm Performance
For algorithm performance, we consider test set accuracy only;
this is in the interest of space, and also because the test accuracy
(and not validation accuracy) is the "real" performance of the NAS-
optimised architecture. Figure 6 shows, for the three datasets, the
test set accuracy of the final obtained architecture from runs. Each
box contains 30 runs of the algorithm labelled on the 𝑥-axis. In
terms of the medians – indicated with thick horizontal line through
the boxes – ILS-ordered (the left-most box) has the highest for all
three datasets. The conventional ILS (ILS-shuffle) has lower medians
than the directed version. For cifar10, the median is approximately
equal with REA; REINFORCE is above them, with RANDOM the
lowest. In the case of cifar100, shown in the middle plot, REA has a
higher median than ILS-shuffle; RANDOM and REINFORCE have
lower lines. For the ImageNet dataset, ILS-shuffle has a median
approximately equal to that of REINFORCE; REA is higher than
them, with RANDOM the lowest. However ILS-ordered produces
consistent results, albeit with a few outliers.

Figure 7 shows convergence plots for the five NAS algorithms.
Wall clock time is on the 𝑥-axes, with the neural network accuracy
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Figure 6: Obtained accuracy distributions from NAS algorithms across the datasets

Figure 7: Test accuracy convergence curves for NAS algorithms across the datasets

on the test set of the current solution on the 𝑦-axis. Each line is the
mean over 30 runs of a NAS algorithm, as indicated in the legend.

Surveying the cifar10 plot in Figure 7, it can be observed that the
non-ILS NAS algorithms initially have a steeper climb in accuracy
over the ILS variants. This can be seen by comparing the three
dotted lines with the two solid ones. By around 5 × 103 seconds,
however, ILS-ordered has outpaced all other algorithms. The tradi-
tional ILS (ILS-shuffle) has the slowest climb of all the algorithms,
although it does end up with higher accuracy than REINFORCE and
RANDOM. For cifar100 and ImageNet, ILS-ordered initally climbs
with roughly equal steepness to the non-ILS NAS approaches; it
then begins to out-perform them well before 1 × 104 seconds have
elapsed. The ILS-shuffle variant again has the slowest ascent in
accuracy, but overtakes the non-ILS algorithms at around 1 × 104
and 2 × 104, respectively.

The results in this Section indicate that iterated local search
variants are competitive in a channel configuration NAS space. The
ILS-ordered seems particularly effective. This explored the neigh-
bourhood in descending order for the channel dimension – a de-
cision we made after noticing that the best architectures typically
contain high channel numbers. Of course, ILS-ordered has an ad-
vantage not afforded to the others: we embedded knowledge of the
search space within it by testing large channel numbers first during
search. Nevertheless, it has value. We argue that this value lies both
in demonstrating the benefit of incorporating search space infor-
mation into search algorithms, and also in emphasising the result
that – at least for this search space and these three datasets – large
numbers of channels throughout neural networks are advantageous.
That goes against some observations in the literature that com-
pression with autoencoders can help with performance in CNNs
[20] which has also been noted for the cifar datasets specifically

[40]; it could be that high channel numbers perform better within
the specific environment of the other components comprising the
architecture used – which are kept constant while channels are
varied. We also note that the studied image datasets are diverse
[15] and have many possible classes (between 10 and 120), which
could possibly benefit from high channel dimension to capture the
feature nuances needed to differentiate between classes.

6 CONCLUSIONS
We have conducted a search space, fitness landscape, and algorithm
performance analysis on a tabular neural architecture search bench-
mark: the size search space from NATS-Bench [8], which considers
the optimisation of channel configuration within a neural architec-
ture. The results show that a high number of channels throughout
a convolutional neural network may be beneficial. This is in con-
trast to some commonly-adopted configuration styles for channel
dimension. The search space analysis brought visual clarity and
showed that there are many solutions (architectures) which are
both similar in fitness (network accuracy) and in close proximity
to each other. We found that the channel fitness landscapes were
straightforward and well-suited to local search approaches, particu-
larly iterated local search. This was then evidenced by experiments
which showed that ILS is competitive when it comes to searching
the channel configuration space. Going forward, we would like to
analyse other NAS spaces; in particular, modelling training accu-
racy fitness landscapes and comparing them to validation and test
landscapes. In this way, insight into overfitting might be obtained.
The LONs from this work are publicly available2.

2github.com/sarahlouisethomson/channel-configuration-local-optima-networks/

1274

github.com/sarahlouisethomson/channel-configuration-local-optima-networks/


Neural Channel Configuration and the Search Space GECCO ’23, July 15–19, 2023, Lisbon, Portugal

REFERENCES
[1] Marco Baioletti, Alfredo Milani, Valentino Santucci, and Marco Tomassini. 2019.

Search moves in the local optima networks of permutation spaces: the QAP case.
In Proceedings of the Genetic and Evolutionary Computation Conference Companion.
1535–1542.

[2] Marco Baioletti and Valentino Santucci. 2017. Fitness landscape analysis of
the permutation flowshop scheduling problem with total flow time criterion. In
International Conference on Computational Science and Its Applications. Springer,
705–716.

[3] Kenneth Dean Boese. 1995. Cost versus distance in the traveling salesman
problem. Technical Report [TR-950018]. UCLA CS Department, California.

[4] Wojciech Bożejko, Andrzej Gnatowski, Teodor Niżyński, Michael Affenzeller,
and Andreas Beham. 2018. Local optima networks in solving algorithm selection
problem for tsp. In International Conference on Dependability and Complex Systems.
Springer, 83–93.

[5] Liang-Chieh Chen, Maxwell Collins, Yukun Zhu, George Papandreou, Barret
Zoph, Florian Schroff, Hartwig Adam, and Jon Shlens. 2018. Searching for
efficient multi-scale architectures for dense image prediction. Advances in neural
information processing systems 31 (2018).

[6] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. 2017. A downsampled
variant of imagenet as an alternative to the cifar datasets. arXiv preprint
arXiv:1707.08819 (2017).

[7] Tom Den Ottelander, Arkadiy Dushatskiy, Marco Virgolin, and Peter AN Bosman.
2021. Local search is a remarkably strong baseline for neural architecture search.
In International Conference on Evolutionary Multi-Criterion Optimization. Springer,
465–479.

[8] Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan Gabrys. 2021. NATS-
Bench: Benchmarking NAS Algorithms for Architecture Topology and Size. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2021).

[9] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural architecture
search: A survey. The Journal of Machine Learning Research 20, 1 (2019), 1997–
2017.

[10] Dongyoon Han, Jiwhan Kim, and Junmo Kim. 2017. Deep pyramidal residual
networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 5927–5935.

[11] Dongyoon Han, Sangdoo Yun, Byeongho Heo, and YoungJoon Yoo. 2021. Re-
thinking channel dimensions for efficient model design. In Proceedings of the
IEEE/CVF conference on Computer Vision and Pattern Recognition. 732–741.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[13] Mahdi S Hosseini, Jia Shu Zhang, Zhe Liu, Andre Fu, Jingxuan Su, Mathieu
Tuli, and Konstantinos N Plataniotis. 2021. CONet: Channel Optimization for
Convolutional Neural Networks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 326–335.

[14] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[15] Kevin Alexander Laube, Maximus Mutschler, and Andreas Zell. 2022. What
to expect of hardware metric predictors in NAS. In International Conference on
Automated Machine Learning. PMLR, 13–1.

[16] Liam Li and Ameet Talwalkar. 2020. Random search and reproducibility for neural
architecture search. In Uncertainty in artificial intelligence. PMLR, 367–377.

[17] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. DARTS: Differentiable
Architecture Search. In International Conference on Learning Representations.

[18] Krzysztof Michalak. 2019. Low-dimensional euclidean embedding for visualiza-
tion of search spaces in combinatorial optimization. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion. 27–28.

[19] Werner Mostert, Katherine M Malan, Gabriela Ochoa, and Andries P Engelbrecht.
2019. Insights into the feature selection problem using local optima networks. In
European Conference on Evolutionary Computation in Combinatorial Optimization
(Part of EvoStar). Springer, 147–162.

[20] Nauman Munir, Jinhyun Park, Hak-Joon Kim, Sung-Jin Song, and Sung-Sik Kang.
2020. Performance enhancement of convolutional neural network for ultrasonic

flaw classification by adopting autoencoder. NDT & E International 111 (2020),
102218.

[21] Matheus Nunes, Paulo M Fraga, and Gisele L Pappa. 2021. Fitness landscape
analysis of graph neural network architecture search spaces. In Proceedings of
the Genetic and Evolutionary Computation Conference. 876–884.

[22] Gabriela Ochoa, Marco Tomassini, Sebástien Vérel, and Christian Darabos. 2008.
A study of NK landscapes’ basins and local optima networks. In Proceedings of
the 10th annual conference on Genetic and evolutionary computation. 555–562.

[23] Gabriela Ochoa and Nadarajen Veerapen. 2022. Neural Architecture Search:
A Visual Analysis. In International Conference on Parallel Problem Solving from
Nature. Springer, 603–615.

[24] Isak Potgieter, Christopher W Cleghorn, and Anna S Bosman. 2022. A Local
Optima Network Analysis of the Feedforward Neural Architecture Space. In 2022
International Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.

[25] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. 2019. Regular-
ized Evolution for Image Classifier Architecture Search. In AAAI Conference on
Artificial Intelligence, AAAI. AAAI Press, 4780–4789.

[26] Nuno M Rodrigues, Katherine M Malan, Gabriela Ochoa, Leonardo Vanneschi,
and Sara Silva. 2022. Fitness landscape analysis of convolutional neural network
architectures for image classification. Information Sciences 609 (2022), 711–726.

[27] Xian Shi, Pan Zhou, Wei Chen, and Lei Xie. 2021. Darts-conformer: Towards
efficient gradient-based neural architecture search for end-to-end asr. arXiv
preprint arXiv:2104.02868 (2021).

[28] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[29] Peter F. Stadler. 2002. Fitness landscapes. Biological Evolution and Statistical
Physics. Lecture Notes in Physics 585 (2002), 183–204.

[30] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on machine learning.
PMLR, 6105–6114.

[31] Matheus Cândido Teixeira and Gisele Lobo Pappa. 2022. Analysis of Neutrality
of AutoML Search Spaces with Local Optima Networks. In Intelligent Systems,
João Carlos Xavier-Junior and Ricardo Araújo Rios (Eds.). Springer International
Publishing, Cham, 473–487.

[32] Matheus C Teixeira and Gisele L Pappa. 2022. Understanding AutoML search
spaces with local optima networks. In Proceedings of the Genetic and Evolutionary
Computation Conference. 449–457.

[33] Chakkrit Termritthikun, Yeshi Jamtsho, Jirarat Ieamsaard, Paisarn Muneesawang,
and Ivan Lee. 2021. EEEA-Net: An early exit evolutionary neural architecture
search. Engineering Applications of Artificial Intelligence 104 (2021), 104397.

[34] Sébastien Verel, Fabio Daolio, Gabriela Ochoa, and Marco Tomassini. 2011. Local
optima networks with escape edges. In International Conference on Artificial
Evolution (Evolution Artificielle). Springer, 49–60.

[35] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie,
Bichen Wu, Matthew Yu, Tao Xu, Kan Chen, et al. 2020. Fbnetv2: Differentiable
neural architecture search for spatial and channel dimensions. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 12965–
12974.

[36] Yi RuWang, Samir Khaki, Weihang Zheng, Mahdi S Hosseini, and Konstantinos N
Plataniotis. 2021. CONetV2: Efficient Auto-Channel Size Optimization for CNNs.
In 2021 20th IEEE International Conference on Machine Learning and Applications
(ICMLA). IEEE, 998–1003.

[37] Colin White, Sam Nolen, and Yash Savani. 2020. Local search is state of the art
for NAS benchmarks. arXiv preprint arXiv:2005.02960 (2020).

[38] Colin White, Sam Nolen, and Yash Savani. 2021. Exploring the loss landscape in
neural architecture search. In Uncertainty in Artificial Intelligence. PMLR, 654–
664.

[39] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Mathieu Salz-
mann. 2020. Evaluating The Search Phase of Neural Architecture Search. In
Conference on Learning Representations, ICLR.

[40] Junbo Zhao, Michael Mathieu, Ross Goroshin, and Yann Lecun. 2015. Stacked
what-where auto-encoders. arXiv preprint arXiv:1506.02351 (2015).

[41] Barret Zoph andQuoc V. Le. 2017. Neural Architecture Searchwith Reinforcement
Learning. In Conference on Learning Representations, ICLR.

1275


	Abstract
	1 Introduction
	2 Background
	2.1 Fitness Landscapes
	2.2 NAS Landscapes
	2.3 Neural Architecture Benchmark
	2.4 Channel Optimisation

	3 Definitions
	3.1 Optimisation Problem Formulation
	3.2 Local Optima Networks

	4 Experimental Setup
	4.1 LON Construction
	4.2 NAS Algorithm Performance

	5 Results
	5.1 Genotype Maps
	5.2 Low-Dimensional Euclidean Embedding
	5.3 Local Optima Networks
	5.4 Algorithm Performance

	6 Conclusions
	References

