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A B S T R A C T
The drive for smarter, greener, and more livable cities has led to research towards more effective
solar energy forecasting techniques and their integration into traditional power systems. However,
the availability of real-time data, data storage, and monitoring has become challenging. This research
investigates a method based on Bi-directional LSTM (BDLSTM) neural network. BDLSTM takes into
account the data’s past and future context. The future hidden layer takes input in ascending order while
the past hidden layer evaluates the input in decreasing order, making BDLSTM relevant in analyzing
the input data’s past context and evaluating future predictions. The eleven-year (2010-2020) weather
dataset used for this paper was acquired from NASA. Two pre-processing approaches, Automatic
Time Series Decomposition (ATSD) and Pearson correlation, were used to remove the noisy values
from the residual components and for feature selection, respectively. To ensure storage and reuse
of data, the architecture includes a cloud-based server for data management and reuse for future
predictions. Popular in multi-energy systems, the cloud-based server also serves as a platform for
monitoring predicted solar energy data. The metrics values and results obtained have demonstrated
that the BDLSTM performs efficiently on the available data. Data from two separate climatic horizons
proved the study’s quality and reliability.

1. Introduction
Energy security is a critical problem, with solar energy

being seen as one of the most promising means of achieving
sustainable development, multi-energy systems and energy
security (Liu, Kamoto and Liu (2020a)). Climate change,
global warming, and rising energy needs have prompted gov-
ernments worldwide to find ways to integrate cost-effective
and ecologically friendly energy sources into the traditional
grid (Hunter, Vettorato and Sagoe (2018)). The variability of
solar energy is one of the most important challenges limiting
the use of the source. Solar Energy is highly unpredictable;
therefore, it is sometimes referred to as an unreliable energy
source. Additionally, increases in the risk and uncertainty of
generating the predicted solar energy impede energy security
(Sindhu, Nehra and Luthra (2017)) since moving towards
renewable energy have become critical.

Accurate forecasting and thorough solar energy analysis
may assist decrease risk and enable assets to be operated
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at the lowest possible cost. Solar energy may be planned,
and accurate solar energy forecasts boost its penetration
in multi-energy system planning. Solar energy prediction
would provide early notice on power instability, allow opti-
mum awareness for utility, and inform economic decisions.
For this reason, it must be emphasized that the predictive
model’s accuracy is determined by the importance of the
variables chosen for the prediction and the forecasting hori-
zon in terms of the available data. Solar energy forecasts
can range from very short-term to long-term, depending on
compatibility.

Notwithstanding, predicting solar energy is not an easy
task due to several factors, such as uncertainty of load
demand (Na, Wang, Li, Xia, Liu, Xiong and Lu (2018)),load
management (Zhang, Liu, Chen, Tian and Wang (2021))
and load monitoring (Liu, Kamoto, Liu, Zhang, Yang,
Khosravi, Xu and Qi (2020b))-(Liu, Nakoty, Wu, Anaad-
umba, Liu, Zhang and Qi (2020c)), weather conditions,
geographic locations, nature of data (Xu, Wang, Wang,
Zhang and Hu (2021)), (Shen, Xu, Qi, Zhang and Srivastava
(2021)) and seasons (Hu, Xu, Zhang, Tang, Cheng, Qian
and Khosravi (2021)), especially in the emergence of multi-
energy systems applications (Wu, Liu, Liu, Zhang and Yang
(2022)) and maintenance (Darteh, Liu, Oduro, Liu and Adjei
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(2021)). To ensure the reliability of solar energy, multi-
energy system planners, for example, should routinely be
informed of the phenomenon in forecasting research to aid
energy management. Using unique and customized data cou-
pled with an integrated solution is required to reduce errors
and enable effective decision-making based on predictions
created by reliable models.

Machine and deep learning techniques such as recur-
rent neural network (RNN) (Li, Wang, Zhang, Xin and
Liu (2019)), long short term memory (LSTM) (Harrou,
Kadri and Sun (2020)), gated recurrent unit (GRU) (Wang,
Liao and Chang (2018a)), and multilayer perceptron (MLP)
(El Badaoui, Abdallaoui and Chabaa (2013)) were used
extensively for solar energy prediction. However, the main
challenge with these models is the lack of rigorous data
cleanings like ATSD, non-bidirectionality and the inability
to propose a storage medium for the input and the predicted
data. One of the challenge that affects the operation and
management of solar energy in multi-energy systems is the
volatile nature of solar energy generation due to unpre-
dictable weather conditions. Because operational manage-
ment’s role of instituting administrative functions that ensure
energy dependability and market competitiveness, as well
as power quality control, output control, and costs control,
and proposes initiatives to mitigate environmental impacts
in the energy business and multi-energy system initiatives,
this study presents a BDLSTM model combined with cloud-
based Photovoltaic (PV) data management based on critical
meteorological factors for 1 hour ahead of solar energy
forecasting. Also, BDLSTM has not been used in any re-
cently solar energy prediction papers. Against this backdrop,
this paper explores the BDLSTM solar energy forecasting
approach coupled with data storage. The following are this
study’s main contributions and goals:

• Automatic time-series decomposition is used smooth-
ing meteorological variables to find the essential me-
teorological data, from which the model should learn
to improve the accuracy;

• Various criteria and evaluation metrics are manipu-
lated to assess the efficiency of the proposed BDL-
STM for solar energy prediction;

• A cloud-based architecture has been implemented to
store and process collected data for energy monitor-
ing, control and future prediction.

The rest of this paper is organized as follows: Section
2, the most recent significant works in the solar energy fore-
casting field and research are done with BDLSTM. Section 3
covers the proposed cloud-based grid-connected PV System,
Cloud-based data management, data gathering, data prepro-
cessing, including automatic time series decomposition and
Pearson correlation, and the description of the relevance of
the proposed BDLSTM model in analyzing the past context
of input data and evaluation of any future predictions. Sec-
tion 4 covers experimental results and discussions, including

elaborating on the findings, and Section 5 summarizes the
paper’s content.

2. Related Work
This section discusses the most recent significant works

in solar energy forecasting and other literature using the
BDLSTM model. Literature on BDLSTM is exploratory.
BDLSTM involves duplicating the recurrent layer in the
network so that there are two layers side by side, then
feeding the input sequence to the first layer and feeding
a reversed duplicate of the input sequence to the second
(Bansal, Sharma and Singh (2019)). BDLSTM has been
instrumental in classification tasks such internet traffic intru-
sion detection (Ran, Zheng, Lai and Tian (2020)), network-
wide traffic state with missing values (Cui, Ke, Pu and Wang
(2020)), image captioning (Cao, Yang, Sun, Liang, Yang and
Guan (2019a)) and user reference captioning (Zhao, You,
Wen and Li (2020)). BDLSTM has also gained prominence
in real-time monitoring and analyzing anomalous data in
hydraulic systems (Kim and Jeong (2020)), early forest fire
recognition based on features from videos (Cao, Yang, Tang
and Lu (2019b)), and processing speech recognition (Yang,
Li, Wang and Tang (2019)). Due to its tendency to split
the state of the LSTM neurons in positive time directions
(forward states) and negative time directions (reverse states),
BDLSTM has become famous for predictive works in wire-
less sensor networks (Cheng, Zheng, Wang, Yang and Wan
(2019)), wind speed prediction (Saeed, Li, Danish, Saeed,
Tang, Gan and Ahmed (2020)), and multi-energy systems
interactive motion prediction of cut-in vehicles in urban
environments (Jeong and Yi (2020)). Despite the fact that
it is powerful for forecasting models, BDLSTM is rarely
used in the field of solar energy forecasting. Apart from
statistical models such as auto-regressive with exogenous
input, autoregressive moving average (ARMA) (Benmouiza
and Cheknane (2016)) and autoregressive integrated moving
average (ARIMA) (Agada, Eweh and Aondoakaa (2021)),
machine learning has become popular these days in solar
energy prediction (Mohanty, Patra and Sahoo (2015)). Over
the years, machine learning and deep learning techniques
for predicting solar energy have been proposed (Maciel,
Ledesma and Junior (2021)), (Qing and Niu (2018)), (Sun,
Wang, Zhang and Zheng (2018)), (Abualigah, Zitar, Almo-
tairi, Hussein, Abd Elaziz, Nikoo and Gandomi (2022)).
The most recently used solar energy forecasting models
are GAM-based PV forecasting Choi and Hur (2020),Mat-
sumoto and Yamada (2021) and Mpfumali et al.’s Convex
and Quantile regression averaging (QRA) predictor work
cited by Ilunga (2018). Research in McCandless, Dettling
and Haupt (2020), Hmamouche, Przymus, Casali and Lakhal
(2017) and Pasion, Wagner, Koschnick, Schuldt, Williams
and Hallinan (2020), also deployed hyper-parameter tuning
methods. Enhanced random forest (ERF) with Local Inter-
pretable Model-Agnostic Explanations, Extreme Boosting
Model, and Elastic Net as the feature selection strategies
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in Massaoudi, Chihi, Sidhom, Trabelsi, Refaat and Oues-
lati (2021), Multilayer perceptron with grey wolf optimizer
(MLP-GWO) and hybrid adaptive network-based fuzzy in-
ference systems (ANFIS) in Claywell, Nadai, Felde, Ard-
abili and Mosavi (2020) with results evaluated using mean
absolute error (MAE), mean square error (MSE), and root
mean square error (RMSE). Regularized online sequential
extreme learning machine integrated with variable forgetting
factor (FOS-ELM) to predict global solar radiation at Bur
Dedougou in Burkina Faso using Bayesian information cri-
terion (BIC) to build the weather parameters was proposed
in Hou, Zhang, Weng, Ali, Al-Ansari and Yaseen (2018).
Authors, Kim, Jung and Sim (2019) employed a random
forest regression (RFR) to predict solar power generation,
achieving an R-squared value of 70.5 per cent in the test set.
For precise short-term prediction of solar intensity based on
meteorological data, a novel least absolute shrinkage and
selection operator (LASSO) by Wang, Shen, Mao, Chen
and Zou (2018b) and long short-term memory (LSTM)
integrated forecasting model. It combines a fundamental
time series model, data clustering, a statistical model, and
machine learning into one system. All of the scientific con-
tributions described above are fascinating. However, they do
not offer a cloud-based solution for PV data management in
multi-energy systems environments, except for the authors,
Jebli, Belouadha, Kabbaj and Tilioua (2021) whose frame-
work deals with temperature, solar radiation, energy, humid-
ity, wind speed, direction, and pressure. Furthermore, the
authors used only Pearson correlation as a feature selection
tool, but our study also seeks to use automatic time series
decomposition.

3. The Proposed Cloud-based Grid-connected
PV System
This section describes the cloud-based grid-connected

PV System, the forecasting architecture, data preprocessing,
feature selection, and the architecture of the forecasting
models.
3.1. A Cloud-based Grid-connected PV System

A cloud-based grid-connected PV system is the archi-
tecture under consideration for this work. A basic grid-
connected PV system consists of a PV module, grid-connected
inverters, and grid interface control. Circuit breakers and
other hardware components make up the grid interface
control. The circuit breaker protects the system from over-
currents due to grid overloads and short circuits. The grid-
connected Inverter transforms direct current (DC) into alter-
nating current (AC) appropriate for injection into the grid or
consumption by the load, ensuring the anti-independence of
the entire system, which is one of the goals of multi-energy
systems. The incorporated cloud-based server is shown in
the architecture in Figure 1 is an internet-based server,
whereby on-demand hardware and software resources are
provided to users for data management. It is a by-product
and consequence of the ease of access to remote computing

sites provided by the internet. Since we do not have access
to the hardware cloud server due to the expensive cost of
acquiring data storage servers and the security concerns of
using public servers, the google collaboratory environment
is used. The google collaboratory gives affordable access
to a graphics processing unit (GPU) that allows high data
throughput and fast vector computation. The cloud GPU
comes with 32GB boot RAM, and the boot RAM is used
to store downloaded datasets for pre-processing as well
as model input and output data. Once the pre-processing
described in subsection 4 is completed, pre-processed data is
stored on the server. A user interface for data management is
provided via a link. Forecasting models perform forecasting
and evaluation directly from the drive and values stored
on the drive for future forecasting. Since grid-connected
inverters are equipped with PA300 to detect the power
status at both grid and the PV side, recent grid networks
have inbuilt Modbus communication protocol for two-way
communication between the NetMeter and the Inverter cited
in Swales et al. (1999). The Modbus is a request-response
protocol implemented using a master-slave relationship.
In the master-slave relationship, communication always
occurs in pairs, thus one device initiates a request the waits
for a response and the initiating device (the Inverter) is
responsible for initiating any interaction responsible with
the net-meter either read production from the solar system
or the grid. Hence, a cloud server with an IP address can
be ported. Meteorological factors such as solar irradiation,
temperature, humidity, wind speed, and pressure are other
factors that influence the energy production of solar energy,
but in most cases, emphasis is laid on solar irradiation.
Solar energy production can be established by computing
the meteorological parameters suggested by AlSkaif, Dev,
Visser, Hossari and van Sark (2020). The solar energy
generated at the output of a PV system is given by:

𝑒𝑃𝑉 𝑜𝑢𝑡 = 𝐴 ∗ 𝑟 ∗ 𝑃𝑅 ∗ 𝐻 ∗ 𝑡 (1)
where 𝑒𝑃𝑉 𝑜𝑢𝑡 is the energy in𝑊 ℎ,𝐴 is the total PV generator
area in𝑚2, 𝑟 is the PV module efficiency, which is the ratio of
the electrical power output of one PV to the cross-sectional
area of one PV, given by:

𝑟 = 𝑃1𝑃𝑉 𝑜𝑢𝑡∕𝐴1𝑃𝑉 (2)
𝑃𝑅 is the performance ratio, 𝐻 is the solar irradiance at
any time step falling on the surface of the solar PV module
in watt-hour per squared meter (𝑊 ℎ∕𝑚2) and 𝑡 is the time
at which data is taken in ℎ. The performance ratio is a
location-independent measure of a PV plant’s quality, some-
times referred to as a quality factor by Rajasegarar, Leckie,
Palaniswami and Bezdek (2007). Inverter losses, temper-
ature losses, DC cable losses, AC cable losses, shadings,
weak radiation, dust, snow, dew, and others are variables
in the 𝑃𝑅 value. The PV system’s DC power is transferred
through the DC cable. The issue with DC power is that
it cannot be used directly by most appliances and gadgets
but can be converted into AC power with the help of an
inverter. Losses from DC and AC cable runs occur during
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Figure 1: Cloud-based grid-connected PV system

Table 1
Parameters of the Test Bench PV module

Parameter Symbol Values
Maximum Power 𝑃𝑝𝑣𝑜𝑢𝑡 575Wp

Maximum Power Voltage 𝑉 𝑚𝑝 44.67v
Maximum Power Current 𝐼𝑚𝑝 12.88A

Operating Efficiency 𝑟 21.30
Area of Unit PV module 𝐴1𝑃𝑉 2.734𝑚2

the design and installation stages due to the cable size
and the cable runs’ distance, insulation, and termination at
devices. A default 𝑃𝑅 value of 0.75 is chosen where these
variables are unknown (Solar and Ag (2016)). Because of its
strong performance, PV module used to compute the solar
energy is 3479 pieces of 575Wp Jinko TR Bifacial in Chen,
Baek, Hou, Aydin, De Bastiani, Scheffel, Proppe, Huang,
Wei, Wang et al. (2020) which gives approximate 2001kWp
power output with parameters shown in Table 1.
3.2. The Forecasting architecture

The proposed forecasting architecture comprises five
main processes, as shown in Figure 2 data collecting,
data pre-processing (data filtering, handling missing data,
data scaling, feature engineering, data splitting), algorithm
training, and algorithm testing to analyze the model’s per-
formance. This architecture processes the meteorological
dataset as variables and solar energy as the label. It should
be noted that the architecture is employed for data in the

instance of Tamale in Ghana’s Northern region. However,
for the method’s reliability, Wuhan, China, with a parallel
climatic condition (Ye, Chen and Hou (2015)) is chosen
as an additional test case. The two climatic locations were
selected due to the parallel variability in climatic conditions.
For instance, according to World Weather Information
(Ritterbush (2006)), Tamale’s average annual sun hours
is 2755, almost 1.5 times the average annual sun hours
of 1870 in Wuhan. The average annual precipitation days
in Tamale and Wuhan are 70 and 116, respectively. The
eleven-year data (in time-steps of one hour from (2010-
01-01,00 hours to 2020-12-31, 23 hours consisting of solar
radiation, humidity, wind speed, UVA irradiance, and UBA
irradiance was downloaded from POWER (2018). The UVA
irradiance and UBA for solar energy prediction is important
because they are almost constant up at 60 degrees and fall
within the acceptable wavelength of 280-320 (UBA) and
320-400 (UVA). Even though UVA has not been considered
harmful for years, research by Sola and Lorente (2015)
recognizes its role in some biological response cases. Since
we aim to predict solar energy, it is imperative to compute
it using equation (1). The raw data used to train and test the
BDLSTM are the variables, and the computed solar energy is
the label. The web-based Jupyter notebook environment was
used for simulation. The distribution of solar energy data for
both geographical regions and the variance of solar energy
on a particular day across the period were analyzed. In
Tamale, for example, generation begins around 6 am, peaks
at 12noon, and then gradually drops until it returns to zero
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Figure 2: Proposed forecasting architecture.

at 6 pm. The hourly solar energy production trend appears
crucial in a day, but it does not completely address the
influence of seasonality owing to the geographic location’s
climatic circumstances.This is because the hourly recorded
irradiance is transient during the day and could not the
seasonality. As a result, the data were resampled in 24-hour,
168-hour, and 720-hour rolling windows, representing daily,
weekly, and monthly, and the mean of each window was
calculated. Because the data appears too dense, the daily
window, like the hourly window for the time, shows no
identifiable seasonality.

Overall, the weekly window appears the best, as illus-
trated in Figure 3, and the monthly window displays close
uniform peaks and troughs, indicating some seasonality
but shielding some noisy areas. For example, as shown in
Figure 4, the amplitude of the maximum yearly variation in

proportion to the value common to the months changes every
month. From 1 January to 31 December, the extreme value
of energy swings between 25000 and 3000MWh. Although
Tamale is in the dry season, poor solar energy output occurs
between November and February due to the harmattan haze
season. Harmattan haze is defined by cold, dry, dust-laden
wind and considerable temperature differences between day
and night (Minka, Ayo et al. (2014)). Thick dust in the air
significantly reduces solar irradiation. We also discovered
that the unstable trough witnessed between May and June
was caused by precipitation in both regions. However, it is
necessary to keep in mind that the showers do not occur
during the entire month or day, which has also called into
doubt the true impact of monthly seasonality on the data. In
light of this, we aim to use the feature engineering approach
in the next section.
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Figure 3: Weekly distribution of solar energy over the period studied (Tamale, left and Wuhan, right).

Figure 4: Cumulative monthly solar energy generation (Tamale).

3.3. Data Pre-processing
Time series forecasting is a predetermined sequence of

observations, each recorded at a given time (Wu, Wang, Su,
Tang and Wu (2020)). Time series data prediction, particu-
larly in the solar energy industry, is highly difficult because

of the chaotic nature of the meteorological variables on
which it is predicted.In addition, other challenges with time
series data is determining which predictors are most useful
for the time series label. Before using the feature engineering
approach, the input variables are filtered and normalized.
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After that we opted for automatic time series decomposition
and Pearson correlation as data pre-processing approaches.

3.3.1. Automatic time series decomposition
ATSD deconstructs time series into seasonality, trend,

and residual, which represent periodicity, long-term move-
ments, and random variation, respectively. This paper looks
at ways of using the ATSD to capture explicit periodicity in
data to improve model accuracy. Upon realizing that there
is seasonality and trend problem, the seasonal-decompose
function, which conducts (ATSD) was imported. Similar to
Dokumentov’s seasonal-trend regression approach (Doku-
mentov and Hyndman (2022)that allows for multiple and
cyclic components, covariates, and seasonal patterns that
have non-integer periods with complex topology. It is ideal
for time series indexes such as hourly, daily, weekly, monthly,
and quarterly data Oliveira, Francisco Filho, de Araújo,
Celestino and Gomes (2020).The ATSD of multiple seasonal
decompositions of a time series is presented below:

𝑦𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑅𝑡 (3)
where the observed components in the series are denoted by
𝑦𝑡 . Seasonal, trend and residual components are denoted
by 𝑇𝑡 , 𝑆𝑡 , and 𝑅𝑡, respectively. The trend is the time
series’ growing and falling value, and the seasonal is the
recurring short-term cycle. It represents the repetition of a
specific pattern promptly after some periods. The residual,
sometimes called the remainder, is the time series’ random
non-systematic fluctuation. Similar to mathematical opera-
tions, the residual is not exact; hence, an ATSD operation is
needed. If the latent components are dependent on one an-
other, the correlation is described in a multiplicative model
as:

𝑦𝑡 = 𝑇𝑡 ∗ 𝑆𝑡 ∗ 𝑅𝑡 (4)
Trends, seasonality, and residual data were developed after
examining the hourly, daily (24-H), and weekly (168-H) as
potential effects on energy output. The form of the seasonal
and trend components within each year is discovered to
be dependent on the variable nature of the series. Certain
aberrant maxima in the solar energy trend are documented
for the weekly interval for the period studied. Furthermore,
the residual fluctuations are due to changes affecting indi-
vidual variables, causing the residual to swing in negative
and positive directions. Upon realizing that these anomalies
impact the model’s performance, we set a lower limit by
subtracting three times the residual standard deviation from
the residual mean. Again, an upper limit threshold was
created by multiplying the residual standard deviation by
three, as illustrated in Figure 5. These procedures were used
to eliminate anomalies from the residual data.
3.3.2. Pearson Correlation

Because the input variables have a multivariate proba-
bility distribution, Pearson correlation (Tastan (2019)) was
utilized to discover which variables influence the other. This

correlation is frequently used when the variables are quan-
titative in nature, such as ratio or interval scale variables.
Pearson’s correlation coefficient is represented by 𝑟 and is
calculated as follows:

𝑟 =
∑

(𝑥𝑖 − 𝑥𝑚)
∑

(𝑦𝑖 − 𝑦𝑚)∕
√

∑

(𝑥𝑖 − 𝑥𝑚)2
∑

(𝑦𝑖 − 𝑦𝑚)2

(5)
where the mean of 𝑥 and 𝑦 is represented by 𝑥𝑚 and 𝑦𝑚.

The value is always between -1 and 1. 𝑟 = -1 or 1 shows that
𝑥 and 𝑦 have a perfect (positive or negative) correlation. 𝑟 =
0 denotes that there is no or little correlation.

Initially, the correlation was performed on data without
ATSD, and then on data with ATSD. As demonstrated in
Figure 6, the connection of solar energy to the other variables
with ATSD is better than without ATSD. In addition, we
noticed that dampness had less of an impact on solar energy.
Humidity, on the other hand, should not be overlooked
because it has the potential to have a systemic impact.
For example, the correlation of humidity to wind speed at
10 meters is -0.36, which is statistically significant. The
analytical process is based on historical data and the most
significant factors engineered utilizing ATSD. The ATSD
is useful for smoothing the residual components’ extremely
positive and negative spikes. Pearson correlation was used to
exclude irrelevant variables. This section goes through our
suggested model, BDLSTM, and its advantages over MLP
and the performance indicators we employed.
3.4. The Proposed Forecasting Methods

In a Jupiter notebook environment, the models are cre-
ated utilizing Python modules such as Scikit-learn, Pandas,
NumPy, SciPy, Matplotlib, and the TensorFlow framework.
Jupyter notebook was utilized because it is open-sourced
all-in-one web-based interactive environment that combines
the codes, rich text, images, mathematical equations and
the graphical user interface in a single document during
experiment. A Train-Test-Val/split sample strategy was used
to train the models. Out of the total of 96432 energy data,
80 per cent of the dataset representing 77146, was used
for training, while the remaining 20 per cent representing
19286, was used for testing and validation. We started with
the rectified linear unit (ReLU) activation function and then
learned that tanh activation function aids in quick model
learning, therefore tanh was picked as a time complexity
trade-off. Dropout was used after each layer to reduce over-
fitting further and boost prediction capability.Dropout at a
rate of 0.1 is used at each layer, meaning one in five inputs
will be randomly excluded from the update cycle, which reg-
ularizes the network to reduce overfitting. Finally, we picked
the ADAM optimizer (Achkar, Elias-Sleiman, Ezzidine and
Haidar (2018)), which is computationally efficient, requires
little memory to function and is appropriate for solving
problems with noisy gradients. We employed 120 epochs and
256 batch sizes to reduce the error rate.
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Figure 5: Weekly plots for decomposed residual threshold.

Figure 6: Pearson Correlation (a) without ATSD; (b) with ATSD

3.4.1. Multilayer Perceptron
The MLP is a prominent supervised learning model

of the neural network used to assess solution functions,
having numerous layers of neurons in its construction. One
major advantage of the multilayer perceptron is capable of

learning any mapping functions and complex relationships,
while single-layer perceptron only learns linear patterns. In
most cases, MLP is trained using a direct technique based
on a direct descent in stable conditions (Almonacid, Fernán-
dez, Mallick and Pérez-Higueras (2015)). Furthermore, the
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response preparation of the feedback neural network (Hon-
toria, Aguilera, Riesco and Zufiria (2001)), 𝑙 is important
in monitoring and assessing indirect plants and time-series
forecasting models under changing conditions. There is,
however the information travels in just one direction from the
input layer to the output layer via linked channels (Gbémou,
Eynard, Thil, Guillot and Grieu (2021)). Due to the non-
linearity of the data, the MLP was trained with two layers.
For an input layer 𝑓 (𝑥) = 𝑥, where 𝑥 is an input vector and
the network’s hidden layers, 𝐿 = 1, . . . .𝑙 the following is
given:

𝑎𝐿(𝑥) = 𝑏𝐿 +𝑊 𝐿𝑓𝐿−1(𝑥) (6)

𝑓𝐿(𝑥) = 𝜙(𝑎𝐿(𝑥)) (7)
where 𝑏𝐿 is the layer’s bias vector 𝐿 ,𝑊 𝐿 is the layer’s
weight matrix, and 𝜙 is the hidden neuron’s activation func-
tion. Because we want to anticipate solar energy hourly, we
set the timeframe to one hour. We tested the model with three
thick layers, each with 100 neurons, 100 neurons, and one
neuron.
3.4.2. Bi-directional LSTM

Traditional RNNs have a key drawback; they only use
previous context states to predict future ones. Because they
employ memory cells and gates to recall long-term de-
pendencies in time series, LSTM networks are used as an
alternative to RNNs.One significant limitation of traditional
RNNs is that they only utilize prior context states to predict
future states. LSTM networks are used as an alternative to
RNNs because they use memory cells and gates to recall
long-term dependencies in time series. LSTM networks com-
pute a hidden state ℎ𝑡, which is the working memory of the
LSTM as

ℎ𝑡 = tanh(𝑐𝑡) ∗ 𝑜𝑡 (8)

𝑖𝑡 = 𝜎(𝑥𝑡𝑈 𝑖 + ℎ𝑡−1𝑊
𝑖) (9)

𝑓𝑡 = 𝜎(𝑥𝑡𝑈𝑓 + ℎ𝑡−1𝑊
𝑓 ) (10)

𝑜𝑡 = 𝜎(𝑥𝑡𝑈 𝑜 + ℎ𝑡−1𝑊
𝑜) (11)

𝑐𝑡 = tanh(𝑥𝑡𝑈𝑔 + ℎ𝑡−1𝑊
𝑔) (12)

𝑐𝑡 = 𝜎(𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐𝑡) (13)
where the input, forget, and output is denoted by 𝑖𝑡,𝑓𝑡,and 𝑜𝑡 at time 𝑡, respectively. 𝑥𝑡 and ℎ𝑡 are the number of

input components and hidden nodes, respectively. 𝑊 and
𝑈 are the weight matrices that are modified during training
along the bias. The hidden state of the cell is represented
by 𝑐𝑡 = 𝜎 , while the unit’s internal memory is represented
by 𝑐𝑡 . However, LSTM still has a drawback in that it only
analyses the past context of the input and cannot evaluate
any future context. To solve this constraint, BDLSTM was
deployed by Aksoy, Ertürk, Erdogan, Eyduran and Tariq
(2018), which takes into account the data’s past and future
context, as shown in Figure 7. Unlike the MLP, which is a
feed-forward neural network, the BDLSTM has the following
advantages:

• Allows the connection of the neural network to form a
cycle, allowing information to persist.

• Capable of learning long-term dependencies by in-
troducing the memory cell that replaces the artificial
neurons in the network’s hidden layers

• Deals with the challenge of vanishing and exploding
gradients.

• With the memory cells, networks can associate memo-
ries, hence grasping the structure of the data dynam-
ically over time prediction capacity.

In addition, whiles the LSTM performs the same func-
tions listed above, the BDLSTM have a superior function of
processing information in both directions with two separate
hidden layers, which is then propagated forward to the same
output layer. The forward hidden layer ℎ𝑓𝑡 takes input in
ascending order in the form t=1,2,3..., T. The backward
hidden layer ℎ𝑏𝑡 , adversely, evaluates the input in decreasing
order in the form t=T,....3,2,1. The following equations are
used to implement the BDLSTM:

ℎ𝑓𝑡 = tanh(𝑥𝑡𝑈
𝑓
𝑥ℎ + ℎ𝑓𝑡−1𝑊

𝑓
ℎ ) (14)

ℎ𝑏𝑡 = tanh(𝑥𝑡𝑈 𝑏
𝑥ℎ + ℎ𝑏𝑡−1𝑊

𝑏
ℎ ) (15)

Finally, ℎ𝑓𝑡 and ℎ𝑏𝑡 are merged to produce 𝑦𝑡 as follows
𝑦𝑡 = ℎ𝑓𝑡 + ℎ𝑏𝑡 (16)

4. Experimental Results and Evaluation
4.1. Experimental Results

The validation of the proposed BDLSTM solar energy
forecasting model’s findings with decomposed data is shown
in this section. To assess the results, several metrics are em-
ployed, including the Mean Absolute Error (𝑀𝐴𝐸), Mean
Square Error (𝑀𝑆𝐸), Root Mean Square Error (𝑅𝑀𝑆𝐸),
and R-squared. The following are their formulations:

𝑀𝐴𝐸 = 1∕𝑛
𝑛
∑

𝑖=1
|𝑦𝑖 − 𝑦𝑝𝑖| (17)
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Figure 7: Illustration of Bi-directional LSTM.

𝑀𝑆𝐸 = 1∕𝑛
𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑝𝑖)2 (18)

𝑅𝑀𝑆𝐸 =

√

√

√

√1∕𝑛
𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑝𝑖)2 (19)

𝑅𝑆𝑞𝑢𝑎𝑟𝑒𝑑 = (1 − 𝑠𝑠𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛)∕𝑠𝑠𝑡𝑜𝑡𝑎𝑙 (20)
where 𝑦 connotes the actual output, the 𝑦𝑝𝑖 connotes the
forecasted output, and the 𝑛 is the number of samples. The
average of the absolute errors in 𝐸𝑞.(17) is used to compute
𝑀𝐴𝐸. 𝐸𝑞.(18) computes 𝑀𝑆𝐸, the difference between
the true and the forecasted . When only minor mistakes are
tolerated, 𝐸𝑞.(19) calculates RMSE, which is the square
root of the 𝑀𝑆𝐸. Furthermore, to measure the forecasting
accuracy of our models, we used R-squared, a statistical
parameter in a regression model, to estimate the amount of

variation in the dependent variable that can be made explicit
by the independent variable in𝐸𝑞.(20), where𝑆𝑆𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 is
the sum of squares due to regression and 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 is the total
sum of squares. Also, the R-squared statistical parameter
determines the amount of variation in the actual data that
can be explained by the the forecast value. Its significance is
to show the goodness of fit for the regression model. Details
of the metrics values based on the test data for the BDLSTM,
other corresponding models, and ablation experiments by
other papers are shown in Table 2 The findings are compared
with the MLP model to demonstrate the consistency of
the BDLSTM. The influence of ATSD is noticed in the
consistency of Figure 8 and Figure 9 for decomposed data for
both case study locations. The ability of BDLSTM to store
and recognize information in both directions for extended
time windows gives it an edge over MLP since learning for
short time windows may not provide the best information
on the data. R-squared values of 96.12 per cent, 99.90 per
cent, and 99.91 per cent were found for the 1-hour, 24-hour,
and 168-hour periods, respectively. On the ability to learn
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Figure 8: Actual and predicted values of solar energy related to Tamale (a) BDLSTM; (b) MLP

Figure 9: Actual and predicted solar energy values related to Wuhan (a) BDLSTM; (b) MLP

quickly, the learning computation time was dramatically de-
creased due to the compatibility of BDLSTM with the 𝑡𝑎𝑛ℎ
activation function and the ADAM optimizer. Nonetheless,
we notice that the MLP has the fastest training speed, at
2.15 seconds, compared to 6.95 seconds for the BDLSTM.
It is important to note that using Google’s GPU pro boosted
training speed. Regardless, like all other deep learning mod-
els, the BDLSTM requires deep processing to train, which
increases computational complexity, the BDLSTM remains
a promising model for solar energy forecasting. Additionally,
the curves for historical, actual, and predicted solar energy
values shown in Figure 9 using the BLSTM, and the MLP,
compared to Tamale’s, the acquired data demonstrate the
repeatability of our studied models. For the 𝑅𝑀𝑆𝐸, the
BDLSTM measures the best of 0.0093 compared to 0.0633
for MLP. We noted in Figure 12 (a) that, after using many
dense layers, the 𝑅𝑀𝑆𝐸 value for the MLP is better at a 1-
hour timescale than BDLSTM at the same timescale but it is
also observed that the best performance of the BDLSTM at a
168-hour time window is because its bi-directional learning.

It is also worth noticing from Figure 11 that there is
still an instance of overfitting with the MLP compared to
the fitting BDLSTM. Overfitting happens when a model

learns the information and noise in the training data to the
point that it adversely hampers its performance on validation
data. This suggests that the MLP model does not detect but
learns random fluctuations in the training data. The difficulty
is that these concepts do not apply to validation data and
negatively impact the models’ ability to generalize compared
to BDLSTM. Figure 12 presents the performance metrics
graphs for solar energy prediction in Wuhan.

5. Conclusion and Future Work
This paper introduced the BDLSTM model for solar

energy forecasting. The historical values for solar energy
are estimated using the solar irradiance, values of the test
bench PV module parameters, efficiency, and performance
ratio to indicate a comprehensive implementation of the
technique. A cloud-based server was embedded in the archi-
tecture for data storage, management and future predictions.
A comparative analysis was then carried out on the perfor-
mance of the BLSTM against LSTM and MLP. Because
of its prominence in time series-based forecasting works,
BDLSTM has become an algorithm of interest that the solar
energy forecasting field benefits. Firstly, the models were
experimented with data from Ghana’s Northern Region,
Tamale and secondly, with data from China’s northern city,
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Table 2
Performance comparison of metrics values based on the test data.

Models Location Timescales MAE(MWH) MSE(MWH) RMSE(MWH) R2 (%)

BDLSTM Tamale, Ghana 168-H 0.0049 0.0001 0.0093 99.91
Wuhan, China 168-H 0.0060 0.0001 0.0112 99.84

LSTM Tamale, Ghana 168-H 0.0059 0.0001 0.0102 99.85
Wuhan, China 168-H 0.0064 0.0001 0.0116 99.82

MLP Tamale, Ghana 1-H 0.0358 0.0040 0.0633 96.30
Wuhan, China 1-H 0.692 0.0076 0.0872 90.16

Other Researches
Massaoudi et al. (2021) ERF Australia - 5.2100 - 8.3600 -
Claywell et al. (2020) ANFIS Almeria, Spain - 0.4222 - 0.5167 -
Claywell et al. (2020) MLP-GWO Almeria, Spain - 0.0773 - 0.1144 -
Hou et al. (2018) FOS-ELM Dedougou, Bukina - 0.5860 - 0.8310 97.9
Kim et al. (2019) RFR South Korea - - - 4.000 70.5

Figure 10: Performance metrics related to Tamale. (a) metric values; (b) R-squared values

Wuhan, to perform the hourly forecasting. The locations
were chosen due to their parallel climatic variability. The
outcomes were evaluated using four metrics: MSE, MAE,
RMSE, and R-Squared, which examine prediction accuracy
and error range. One limitation of forecasting research is the

unavailability of hardware components. Our future work will
look at hosting a hardware cloud-based server for optimum
data management.

Figure 11: Training error rates and validation error rates (a) BDLSTM; (b) MLP
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Figure 12: Performance metrics related to Wuhan (a) metric values; (b) R-squared
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