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Abstract—Online Social Networks have grown exponentially
in the recent years whilst finding applications in real life
like marketing, recommendation systems, and social awareness
campaigns. An important research area in this field is Influence
Maximization, which pertains to finding methods for maximizing
the spread of information (influence) across an OSN. Existing
works in IM widely use a pre-defined edge propagation
probability for node activation. Hurst exponent (H), which depicts
the self-similarity in the time series depicting a user’s past
interaction behaviour, has also been used as activation criteria.
In this work, we propose a Time Series Characteristic based
Hurst-based Diffusion Model (TSC-HDM), which calculates H
based on the stationary or non-stationary characteristic of the
time series. TSC-HDM selects a handful of seed nodes and
activates a seed node’s inactive successor only if H>0.5. The
proposed model has been tested on 4 real-world OSN datasets.
The results have been compared against 4 other IM models
- Independent Cascade, Weighted Cascade, Trivalency, and
Hurst-based Influence Maximisation. TSC-HDM is found to have
achieved as much as 590% higher expected influence spread as
compared to the other models. Moreover, TSC-HDM has attained
344% better average influence spread than other state-of-the-art
models namely LIR, A-Greedy, LPIMA, Genetic Algorithm
with Dynamic Probabilities, NeighborsRemove, DegreeDecrease,
IGIM, IRR, and PHG.

Index Terms—online Social Networks, Influence Maximization
(IM), Hurst-based Diffusion Model, Self-Similarity.

I. INTRODUCTION

In terms of size and reach, Online Social Networks (OSNs)
have grown exponentially during the last few years. OSNs
enable umpteen users to connect and share information. OSNs
have become an integral part of our lives and its immense
usage has led to the generation of unprecedented volumes
of user-related data [1]. The availability of this data has
presented researchers with newer opportunities, pertaining
to the research on user behaviour in social networks [2].
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The widespread popularity of OSNs is owing to their
applicability in numerous areas like finance, bio-informatics,
politics, healthcare, social awareness, etc. Using OSNs for
diffusing (spreading) information is a part of many real-life
activities such as viral marketing, online recommendation
systems, online advertising, influential blogger identification,
healthcare communities, and political and social awareness
campaigns [3–9].

Information gets spread or diffused through interactions
between individuals in the society [10], [11]. A real-world
social group can be conceptualized as a huge social network
(graph) wherein “a node is an abstract representation of an
individual user in the real world [12].” Interaction between
two users indicates a relation between them and is depicted
by an edge connecting the two corresponding nodes [13, 14].

Social Interactions Analysis is all about analysing social
interactions for a better comprehension of social structures
and user relations [15]. Social Influence Analysis is a favoured
research domain under social interactions analysis, “which
focuses on studying the process of information diffusion in
social networks along with the identification of influential
users [5].” Influence Maximization (IM), a prominent research
topic within the domain of social influence analysis, aims
at finding an answer to the question, "how to maximize the
spread of influence across an OSN [16]."

A predominant commercial application of IM is viral
(influencer) marketing, wherein an organization collaborates
with influencers to promote their product or services [17].
Influencer marketing has seen a continuous growth over the
past few years, with 93% of businesses confirming the use of
influencer marketing as a major marketing strategy [18]. In the
U.K. Google searches for influencer marketing grew by 400%
during 2016-2021 [18]. Statistics reveal that in 2022, the
U.S. influencer marketing industry was around $16.4 billion
and in 2023 around 89% of marketers currently utilising
influencer marketing plan to raise/ maintain their influencer
marketing budget in 2023 [19]. Recommendations from
friends/ family are often a one-to-one interaction, however
influencer marketing has the potential of reaching thousands,
or even millions of people. It has been found that 49% of
consumers rely on influencer recommendations and about
82% consumers take purchasing advice from social networks



2

[20]. These statistics depict that influencer marketing is an
important aspect of the marketing strategy and contributes
significantly towards better marketing outcome.

Consider a scenario such that an organization plans to
utilize an OSN for viral marketing of its new offering
by utilizing an OSN. The organization would thus aim to
maximize the spread (reach) of its campaign and touch
as many potential customers as possible. Achievement of
this goal is reliant on two core steps. First step is seed
node identification [21]. Seed nodes are a small subset of
OSN users who are the initial adopters of information and
initiate the diffusion process. The second task involves the
development of a diffusion model pertaining to the underlying
information diffusion process. The diffusion model signifies
how information would spread from a node to its neighbours,
over the edge connecting the two of them. Studies indicate
that “how information is propagating from one user to another
heaviliy impacts the influence spread achieved [22]”. Hence,
selection of diffusion model is very critical as the diffusion
model outlines the condition(s) for node activation.

The diffusion model helps in assessing the influence
spread anticipated to be achieved by the selected seed nodes.
Some existing diffusion models for IM are Independent
Cascade (IC), Weighted Cascade (WC), Linear Threshold
(LT), Trivalency (TV) model, and Dynamic Independent
Cascade (DIC) model [23–25]. In all these aforesaid
diffusion models, diffusion is reliant on some pre-decided
value for propagation probability and is either selected
randomly or from a pre-defined set of values. In the Credit
Distribution with Node Features model developed by Deng
et al., credits allocated to a node are the deciding factor
for its activation [26]. The credits are decided based on the
past interactions carried out by the node. Under the Voter
model of diffusion, a node chooses a successor, based on
the probability derived from the assigned edge weights,
and aligns its own opinion with the opinion of the chosen
successor [27–30].

Edges surely depict the probable paths for diffusion,
but how much diffusion has been carried out over a path,
can only be known by studying the connecting node’s past
temporal behaviour. Thus, “to develop a more realistic
diffusion model, node’s actual past interactions should also be
considered for node activation [31]”. Propagation probability
signifies likelihood of diffusion, but node’s past interaction
pattern presents a more truthful view of diffusion that has
actually taken place [32].

User behaviour (interactions) being a time dependent
phenomenon, can be represented in the form of a time series
and this time series can further be analyzed to discover the
existence of a pattern/ trend. Although, human are assumed
to behave randomly in general, researchers have found that
human behaviour tends to repeat over time, thereby displaying
statistical similarity. Studies reveal that time series generated
analogous to how humans behave in the real-world, has been

found to exhibit self-similarity [33]. On similar lines, the
behaviour of OSN users over time can also be expected
to exhibit statistical self-similarity. Although “the role of
self-similarity in edge creation in OSNs” has been explored,
exhibition of self-similarity in an OSN users’ past interaction
pattern is not a much explored aspect [34].

Saxena and Saxena have presented the Hurst-based Influence
Maximization (HBIM) diffusion model, in which firstly a time
series has been generated corresponding to each node’s past
interactions [35]. Thereafter, Hurst exponent (H) is computed
for quantifying the self-similarity trend (SST) displayed by
each node’s generated time series. Under HBIM model node
activation is reliant on its degree along with the H value
quantifying its past activity’s SST.

A time series can be either stationary or non-stationary.
Researchers have observed that applying the same method
for computing the H value of a stationary as well as
non-stationary time series may lead to inaccurate evaluations
[36, 37]. Drawing motivation from this notion, a novel
diffusion model, called Time Series Characteristic based
Hurst-based Diffusion Model (TSC-HDM) is being presented
in this paper, which augments the aforementioned HBIM
model and incorporates the usage of different methods to
compute H value, depending upon if the time series is
stationary or not.

Under the proposed TSC-HDM model, firstly a time
series corresponding to the past interactions of each node
is generated, followed by the computation of H value for
quantifying the SST displayed by the time series. Based upon
the characteristic of the time series under consideration, i.e.,
whether it is stationary or not, different methods have been
used to compute H value. Thereafter, based on the nature of
SST, node activation takes place. Thus, node’s activation is
dependent on its past real-time behaviour. Figure 1 depicts
the framework used for the proposed TSC-HDM Model

The proposed work has been presented in 5 sections. A
brief discussion about the existing models of diffusion for
IM is presented in Section II. Section III presents the work
proposed in this paper. Experimental setup and analysis of
results are discussed in Section IV. Lastly, section V presents
the final conclusion.

A. Research contributions of this work
Following are the key contributions of the proposed work:
1. We have proposed a novel diffusion model called Time

Series Characteristic based Hurst-based Diffusion Model
(TSC-HDM) wherein activation of node relies on the
SST displayed by its past interaction pattern, which is
quantified by computing the H value for the time series
generated based on node’s past interactions.

2. Our model takes into account each node’s influence
potential as a criteria for its activation. It does not rely
on a random edge propagation probability like many of
the existing works done before in the field of IM.
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Figure 1: The framework used for our TSC-HDM Model

3. Our model computes H value on the basis of whether the
generated time series is stationary or non-stationary. This
has not been done before and is the first of its kind in
the field of IM.

4. This has led to TSC-HDM model outperforming other
existing models by 344%. Our model also achieved
anywhere from 27% to 590% higher expected influence
spread as compared to IC, WC, TV, and HBIM models.

5. Our model is the first to place so much importance on the
characteristics of time series - whether they are stationary
or non-stationary, and then calculate H value depending
on that and this has led to our model performing much
better. Apart from this, our paper will be an important
landmark as it proves that node activation during the
diffusion process should be dependent on the node’s past
temporal interaction behaviour.

II. RELATED WORKS

IM is explored as an algorithmic problem in the seminal
work of Domingos and Richardson [3]. Following that, for
addressing the problem of IM in OSNs, many diffusion
models along with seed identification algorithms have been
designed. Influence Maximization (IM) largely covers two
activities, which are development of the diffusion model and
identification of the seed node. “The various existing seed
identification algorithms can be classified into two types -
heuristic based approaches and greedy based approaches"
[9, 22]. Seed selection in greedy based approaches is done
on the basis of the nodes’ marginal gain, whereas in heuristic
based approaches seed selection is relent on the fulfilment of
some condition(s).

Maximizing the influence spread across a given network is
IM’s aim. “The extent of influence spread attained by the
chosen seed nodes is dependant upon the diffusion model

[22]”. Hence, quantifying the diffusion process and deciding
the criteria for node activation is a critical activity. The
following section briefly describes some of the existing
diffusion models.

A. Existing Diffusion Models

Three diffusion models have been discussed by Kempe
et al. namely Independent Cascade (IC),Weighted Cascade
(WC), and Linear Threshold (LT) [23]. Under IC diffusion
model, the network edges are assigned a randomly chosen
pre-defined propagation probability. In LT, edges are assigned
a randomly chosen pre-defined weight and a pre-defined
random threshold value is allotted to each node. When
the sum of edge weights of the active neighbours of a
node exceeds its assigned threshold value, the node gets
activated. WC model is a variant of the IC model, wherein
each edge’s probability of propagation is equivalent to the
reciprocal of the recipient node’s in-degree, whereas Chen et
al. proposed the Trivalency (TV) diffusion model, where an
edge’s probability of propagation is randomly chosen from
amongst three values, 0.l, 0.01, and 0.001 [24].

As can be observed, in all these aforementioned models,
diffusion is driven by a randomly chosen value or weight
assigned to the edges in the network. These models get behind
the idea that an inactive node’s chances of transitioning to
an active state increases when the inactive node’s active
neighbours increase. Table I given below talks about related
works on Influence Maximization

Dynamic Independent Cascade model (DIC), extends the
IC model [25]. Under the DIC model, the edge propagation
probability is randomly picked from a pre-defined distribution,
but unlike IC, the edge’s probability of propagation isn’t
the same for all of the edges. Deng et al. are credited to
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Table I: Related works on Influence Maximization
References Contributions Strengths Weaknesses

Kempe et al. [23]

Discussed about the widely popular Independent
Cascade model (IC) in which a randomly
chosen pre-defined propagation probability
is given to every edge in a network

For an arbitrary instance of the IC Model, the resulting
influence function σ() is submodular

Diffusion is dependent on a pre-defined edge
propagation probability, which is not reliant
on any node characteristic and is the same
for all of the edges in the Online Social Network
(OSN) in the Independent Cascade model

Chen et al. [24]
Their algorithm gives the users the ability to
control the balance between the spread of
influence of the algorithm and the running time

Their algorithm not only scales beyond million-sized graphs
where greedy algorithm becomes infeasible, but their
algorithm also performs consistently in all the size ranges, from
small to very large

In their MIA model the authors assume
that the seeds which are in S, influence each
node v in the graph G through its MIIA(v, θ)
(Maximum Influence In(Out)-Arborescence

Tong et al. [25]
The paper introduces the concept, which is
adaptive seeding strategy and it also presents
the Dynamic Independent Cascade (DIC) Model

The Dynamic Independent Cascade model is able to
capture both - The dynamic aspects of a real social network
as well as the uncertainness of the diffusion process

H-Greedy is a heuristic strategy, which is not effective
for all the settings of the Dynamic Independent
Cascade model. Moreover, with a round limit, their
objective function is no longer submodular

Zhang et al. [38]
Proposed Opinion-based Cascading
model (OC), which studies the spread of
positive opinion across an OSN

An opinion indicator is attached to each node,
which depicts a positive, negative, or neutral opinion

The opinion spread function O(), which is under the
Opinion-based Cascading model is no longer submodular

Shrivastava et al. [39]

They propose a cost-effective diffusion model based
on the classic IC model, but each active node
tries to infect it’s most influential neighbour
with a predefined constant probability platform

The conventional IC model is outperformed by the proposed
model by more than 5 times for the core super-spreaders and
2 times for the non-core super-spreaders

The paper assumes that for each of the infected
edge, there is an equal cost

Our proposed approach
Our proposed diffusion model activates a node
on the basis of the self-similarity trend exhibited
by the past interaction pattern of the node

Our proposed model outperforms other state-of-art
diffusion models by 344 %. Our model identifies
the importance of the characteristics of time
series - whether they are stationary or non-stationary,
and then calculates H value depending on that

Assumption that the node can be expected to continue
displaying similar behaviour in the future

have developed the Credit Distribution with Node Features
model, where credits are assigned to a node on the basis
of it’s past interactions and depending on these credits, the
node is activated [26]. Both, dynamic and static influence are
taken into consideration while assigning credits to these nodes.

Voter model of diffusion, first a weight is assigned to
every edge in the network [27, 28]. Thereafter, based on the
probability proportional to the assigned edge weights, a node
selects one of its successors and adopts the opinion held by
the chosen successor. The Voter model has been extended by
Li et al. in order to incorporate negative relationships [40].
In their model, if the edge to the chosen successor holds
positive opinion, then the opinion of the successor is adopted
by the node. Whereas if negative opinion is held by the edge,
then an opinion opposite to the opinion of the successor is
adopted by the node.

The Opinion-based Cascading (OC) model, which was
developed by Zhang et al., studies the spread of positive
opinion across an OSN [38]. Under the OC model, an
opinion indicator is attached to each node, which depicts a
positive, negative, or neutral opinion. When for a node its
active predecessors’ collective edge weight exceed the node’s
pre-defined threshold, activation of the node takes place.
On activation, a node adopts the opinion of the incoming
influence.

Saxena and Kumar have given Activity-based IC (AbIC) and
Activity-based LT (AbLT) models of diffusion, which draw
inspiration from the IC and LT models, respectively [31].
Under AbIC and AbLT models, the number of interactions
a node initiated in the past are the basis on which edge
propagation probability is computed.

An extension of the classic IC model is the second-order IC
model [41]. In the second order IC model, activation takes
place at both node and edge level. Each of the seed nodes
propagates influence to its out-neighbours with a pre-defined

influence probability. Thus, node to node activation takes
place in the first order. Additionally, whenever a seed node
successfully activates it’s out-neighbour, the connecting edge
also becomes active. Thereafter, in the second-order, edge to
edge influence propagation takes place, in which every edge
which is active attempts to convert their inactive out-edges to
active ones with some constant probability.

Yu and Li, who developed the CMMI model for diffusion
incorporate user preferences and diffusion enhancement
[42]. Under CMMI model, a node on receiving information,
changes state from inactive to active. Once a node becomes
active, it can then move into accepted or rejected state, if
the node’s probability of accepting product is greater or less
than a pre-defined node transition threshold, respectively.
Probability of accepting product is computed based on
internal influence (user preference), influence of adjacent
nodes, and external influence. Accepted state is indication that
the node has accepted the product and will be propagating it
further, whereas rejected state is an indication that the node
has rejected the product and has refused to propagate it further.

Hudson and Khamfroush have presented the Behavioral
Independent Cascade diffusion model (BIC) for the purpose
of opinion maximization, where user nodes’ opinions and
their personalities form the basis for propagation probabilities
[43]. Though the BIC model makes use of IC model
framework, it differs from it in certain aspects. Unlike the
classical IC model, propagation probabilities in the BIC
model are not static and pre-determined. Rather, they are
dynamically computed before each activation using behaviour
and opinion parameters assigned to each node. Further, BIC
model permits multiple activation attempts.

Li et al. have proposed the User Behavior Model (UBM) for
undirected networks [44]. Under UBM, a message is sent by
every node to all its neighbours with a pre-defined probability
(similar to classic IC model [23]). On the successful receipt
of the message, a node gets activated and responds to the
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message as per its personal interest, and may then send out
a message (forward or reply) to all its neighbours. Diffusion
stops when all nodes have tried responding to the received
messages.

With the aim of developing an integrated information
diffusion model, Kong et al. have presented the Diffusion
and Influence Model (DIM), which combines the two aspects
- diffusion as well as information influence together [45].
DIM consists of two stages, one is called the diffusion stage
and the other is called the influence stage. These two stages
are represented using diffusion and influence functions,
respectively. The diffusion function is a probabilistic function
depicting the chance of information being spread by users.
The influence function is also a probabilistic function,
representing how users in a network get influenced. DIM
presents a unified approach for implementing classic diffusion
models, which can be done by varying the settings of the
diffusion and influence functions.

Shrivastava et al. have proposed a cost-effective diffusion
approach motivated by the classic IC model [39]. Under the
proposed model, each active node tries to infect its most
influential neighbour with a pre-defined constant probability.
In case the node fails to activate its most influential neighbour,
it then tries infecting the second most influential neighbour.
If it fails again, it tries infecting the third most influential
neighbour and so on.

In the Charismatic Transmission in Influence Maximization
algorithm developed by Kazemzadeh et al., nodes having high
“charismatic power” are selected [46]. In this algorithm, the
nodes which have a high correlation with other communities’
influential nodes are selected, which leads to optimal diffusion.

Fu et al. targetted the dynamic OSNs and worked on
extending the IC model to a Dynamic Social Network
Dissemination model which is based on effective links
[47]. They have presented a two-stage IM algorithm called
Outdegree Effective Link, which utilises node degree and
effective links to tackle the ever changing nature of dynamic
OSNs. The authors also discuss the influence of node
interaction between nodes on information dissemination in
dynamic social networks.

Li et al. have proposed the Layered Gravity Bridge
Algorithm, wherein a community detection technique has
been used for obtaining communities in social networks
and thereafter, bridge nodes which can be considered as
possible candidate seeds are identified [48]. The detected
communities are then amalgamated into larger communities
and new bridge nodes are realized. Finally, all the candidate
seed nodes are sorted through an improved gravity model, in
order to determine the final seed nodes.

Rezvanian et al. have presented a diffusion model based on
a stochastic graph, wherein the influence probabilities related
with the links are unknown random variables [49]. They then

go on to use the set of learning automata in their proposed
diffusion model to create an approach which estimates the
influence probabilities by sampling the links of the stochastic
graph.

III. PROPOSED TIME SERIES CHARACTERISTIC BASED
HURST-BASED DIFFUSION MODEL (TSC-HDM)

This section first of all provides a brief overview of the
concepts that have been used for our model and the later part
of the section explains the proposed model.

A. Rescaled Range (R/S) analysis

R/S analysis technique helps in assessing a time series’s
variability over time [50]. For computing H using R/S analysis
technique, firstly divide the full-length time series into various
shorter, varying length time series. Thereafter, computation
of an average value for the R/S is done [51]. For a given
time series Xt of length n, where t ∈ n, R/S is calculated as
follows:

1) Firstly, mean (x) of given time series (X) is computed
using Eqn. 1:

x =
1

n

n∑
j=1

Xj (1)

2) Then, generate the mean-adjusted series (Z) using Eqn.
2:

Zt = Xt − x, t = 1, 2, ..n (2)

3) Then, compute cumulative deviate series (C) using Eqn.
3:

Ct =

t∑
j=1

Zj , t = 1, 2, ..n (3)

4) Generate range (R) and standard deviation (S) series as
indicated in Eqn. 4 and 5:

Rt = max(C1, C2...Cn)−min(C1, C2...Cn), t = 1, 2, ..n
(4)

St =

√√√√1

t

t∑
j=1

(Yj − u)2, t = 1, 2, ..n (5)

Use Eqn. 6 to compute Rescaled Range value:

(R/S)t =
Rt

St
, t = 1, 2, ..n (6)

Thereafter, estimation of H is done by fitting a straight line
through the plot of the values of log(R/S) vs. log (t) and (n
being the time series length):

(R/S)t ∝ tH (7)

Slope of the fitted line represents H [50, 51].

B. Detrended Fluctuation Analysis

(DFA) DFA is used for quantifying the SST of a
non-stationary time series [36, 52, 53]. For computing H
using DFA technique, a time series of length K is first
integrated. Assume a bounded time series yt of length K,
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where t ∈ K. Eqn. 8 first of all converts the bounded time
series to unbounded time series Xt [54].

x(t) =

t∑
i=1

(yi − ⟨y⟩) , (8)

where ⟨y⟩ denotes the mean of the time series and x(t) denotes
the summation profile. Then, integrated time series is divided
into shorter time series (boxes) of length k samples each. Next,
the fluctuation (mean-squared residual) is calculated using:

F (k) =

√√√√ 1

D

D∑
t=1

[x(t)− x∆k(t)]2, (9)

D signifying the total number of data points. Thereafter, using
fluctuation the self similarity in the time series is calculated
(Eqn. 10), which is further used to calculate the H .

F (k) ∝ kα, (10)

ln(F (k)) = αln(k) + ln(C) (11)

where C and α denote constant of proportionality and
scaling exponent estimated using least-squares fit, respectively.
Finally, H is calculated using Eqn. 12.

H = α(2)− 1 (12)

Development of a model for diffusion of information
(influence) across an OSN is an important aspect of IM. A
node is either active (influenced) or inactive. Diffusion model
outlines the condition(s) to be fulfilled by a node to transition
from inactive to active state.

As stated earlier, in the widely popular IC model, diffusion is
not reliant on any node characteristic, rather it is dependent
on a pre-decided probability of propagation [23]. Further, all
edges are assigned the same propagation probability. In the
LT diffusion model, a threshold is assigned to each node,
which again is not dependent on any node characteristic and
is the same for all nodes in the OSN [23]. This threshold
value assigned to a node is to be crossed by the incoming
influence, only then the node can get activated. Additionally,
influence propagated over an edge is a randomly chosen
pre-defined value, which is again same for all edges. The
propagation probability in WC model, is equivalent to the
reciprocal of the recipient node’s degree [23]. TV model picks
the propagation probability from the set 0.001, 0.01, 0.1 at
random [24] . Under the DIC model, propagation probability
is randomly picked from a pre-defined distribution[25].

It can be observed that in most of these popular
diffusion models, node activation does not rely on any
node characteristics, and is mostly based on a randomly
chosen edge propagation probability or weight. Instead of
selecting a random propagation probability, a better approach
would be to consider each node’s influence potential as a
criterion for its activation. To assess the influence potential of
a node, its structural and temporal characteristics are usually
considered.

As mentioned before, an aspect that has not been explored
much in context with OSN users (nodes) is the SST displayed
by a node’s past interactions. Study of human behaviour
conducted by Fan et al. suggests that humans have a tendency
of repeating their actions in real world, i.e., human behaviour
over time can be exhibits statistical self-similarity [33]. On
similar lines, OSN users can also be presumed to repeat their
behaviour and hence exhibit statistical self-similarity [35].
User behaviour is a time dependent phenomenon and can be
represented as a time series and the extent of self-similarity
(auto-correlation) in this generated time series can be assessed
using Hurst exponent (H) [33, 36, 53]. “H measures the
relative inclination of a time series to either regress strongly
to the mean or to cluster in one direction [55].”

H helps figure out whether a time series is exhibiting
an anti-persistent, random, or persistent trend. The value of
H lies between 0 and 1. H value between 0 – 0.5 signifies
an anti-persistence (long-term switching between high and
low values). H = 0.5 signifies uncorrelated (random) time
series, for which establishment of any trend becomes difficult
owing to the non-existence of correlation. H between 0.5 –
1 signifies persistence indicating the possibility of a high
value being followed by another high value, and the trend
will possibly remain so for a long time.

Drawing motivation from the aforementioned notion, Saxena
and Saxena developed the HBIM diffusion model which
utilizes degree of the node and the H value corresponding
to the SST of its past interactions, as the criteria for node
activation [35]. Under HBIM model, a node gets activated
if its degree is greater than the average node degree in the
network, and if its H value is greater than 0.5. In the HBIM
model R/S analysis technique is used to compute the value
of H corresponding to a generated time series. But, a time
series can be either stationary or non-stationary. Kirichenko
et al., Resta, and Wairimu have found that applying the
same method for computation of H for stationary as well as
non-stationary time series may lead to inaccurate evaluations
[36, 37, 53]. R/S analysis method has been found to be
more suitable for computing H corresponding to a stationary
time series, and Detrended Fluctuation Analysis (DFA)
method has been found to give more accurate evaluations for
non-stationary time series [36, 37, 53].

For getting a realistic estimation of a node’s influence
potential, its past temporal behaviour must be regarded as a
significant contributor. Driven by this belief, a novel Time
Series Characteristic based Hurst-based Diffusion Model
(TSC-HDM) is being proposed in this paper, which augments
the aforementioned HBIM model and aims to develop a
diffusion model for IM, in which diffusion is based on the H
value corresponding to the time series of the recipient node’s
past interactions, and the method used for computing H is
reliant on the characteristic (stationary or non-stationary) of
the generated interaction time series [35]. The proposed work
supports the premise that node activation during the diffusion



7

process should be dependent on its influence potential, instead
of some pre-defined probability or threshold [31, 35].

The HBIM model makes use of R/S analysis method
for computing H value corresponding to each generated
time series, while not considering the nature (stationary
or non-stationary) of the time series. Though R/S analysis
is prevalently used for computing H, researchers have
been found that DFA method is more suitable for making
accurate evaluations pertaining to a non-stationary time series
[36, 37, 53]. Hence, in the proposed work, each generated
time series is first checked for stationarity, and thereafter
depending upon the characteristic of the time series (i.e.,
stationary or non-stationary). R/S analysis and DFA methods
have been used for computation of H for stationary and
non-stationary time series respectively.

Algorithm 1 TSC-HDM Diffusion Model
Graph G = (V, E), seed_nodes []: seed node set of size k
expec_spread: expected spread to be achieved
for each node n do

Generate time series based on past interactions, TS(n),
for the time span under consideration Using Augmented
Dicky Fuller method, check if TS(n) is stationary or
non-stationary if TS(n) is stationary then

Compute H for TS(n) using the Rescaled Range
Analysis method

else
Compute H for TS(n) using the Detrended Fluctuation
Analysis method

influenced_nodes[] := seed_nodes[] expec_spread :=
LEN(influenced_nodes[])
for each node in influenced_nodes do

for each successor of node do
if successor not in influenced_nodes then

if IF H(successor) > 0.5 then
expec_spread := expec_spread + 1
influenced_nodes[expec_spread] := successor

Return expec_spread

Under the proposed TSC-HDM model, diffusion is
modelled as a two-step process. The first step focuses on the
computation and assignment of H to each node, based on the
SST exhibited by the node’s past interactions. Thus, for each
node a time series is first created corresponding to the node’s
past interaction pattern. Thereafter, the generated times series
is checked for stationarity using the Augmented Dicky Fuller
(ADF) method. ADF is the most commonly used statistical
test used for analyzing the stationary of a time series. If the
generated time series is found to be stationary, then the H
value is computed using the R/S analysis method. However, if
the generated time series exhibits non-stationarity, then DFA
method is used for computing the H value corresponding
to the SST depicted by the time series under consideration.
Once the H values get assigned to each node, the second step
commences.

In the second step, the diffusion cascade is initiated
using a k-sized seed set. The seed set comprises of k
nodes which are considered to be in an active state at the
beginning of the diffusion process, and act as the initiator
of the diffusion process. In the TSC-HDM model, diffusion
propagates from an active node to its inactive successor(s)
if for the successor H > 0.5. influenced_nodes depicts a list
of active nodes. At the beginning of the diffusion process,
the list influenced_nodes contains only the seed nodes.
expec_spread denotes the count of influenced nodes, i.e., the
number of nodes activated by the diffusion process, and is
equal to length of the list influenced_nodes.

During the first iteration, the k active seed nodes contact each
of their successors and check for yet inactive successors. If the
H value for the inactive successor is greater than 0.5, then the
state of the successor is swapped to active, and it is added to
the list influenced_nodes whilst increasing the expec_spread
by 1. Thereafter, in each subsequent iteration, an active node
(from the list influenced_nodes) checks on all its yet inactive
successors and activates those whose H > 0.5. With each
iteration the nodes that change state from inactive to active
keep on adding to the influenced_nodes list and expec_spread
keeps updating as per the length of the list influenced_nodes.
In the proposed TSC-HDM model node activation takes place
if the node’s predecessor is active and the node’s self H value
is greater than 0.5. “Activation criteria of H > 0.5 is based on
the fact that, H > 0.5 depicts a persistent time series [35]”.
Diffusion process keeps continuing until no further activation
cannot be done. When the process culminates, expec_spread
denoted the total number of nodes influenced by the diffusion
process. Algorithm 1 presents an outline of the proposed
TSC-HDM diffusion model.

IV. EXPERIMENTAL SET-UP AND RESULTS

A. Experimental Set-up

All the experiments were run on Windows Operating
System in a Python Environment. The machine on which
the experiments were run had an Intel Core i5-8250U CPU,
running at a base clock speed of 1.6GHz. The machine had
8GB RAM.

For evaluating the proposed TSC-HDM diffusion model,
its performance was compared with four existing diffusion
models for IM, namely IC, WC, TV, and HBIM models. In
the IC model, the edge’s probability of propagation had been
set as 0.1 for evaluation purposes.

Model evaluation was done using four publicly available
real-world social network datasets. Each of the four datasets
is a directed temporal network, wherein an edge (u, v, t)
signifies that user u interacted with (sent message to) user v
at timestamp t. Following are the datasets used:

• UC Irvine messages1 - The dataset contains messages
shared by users on an online social network of University

1http://snap.stanford.edu/data/CollegeMsg.html
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of California, Irvine. Each directed edge indicates a
message exchange between the students of the university.

• Email EU-Core 2 - The dataset represents an email
network from a large European research institution. A
directed edge between two nodes indicates an exchange
of email between the two institution members.

• Math Overflow 3 - The dataset depicts a network of
interactions among users of the Math Overflow website.
Interactions among users could be answering a question
or commenting on a question or answer.

• Linux Kernel mailing list 4 - The dataset depicts the
communication network of the Linux kernel mailing list.
A directed edge between two nodes represents a reply
from a user to another.

Each dataset, for the purpose of evaluation, was split into
two parts. For calculating H as well as creating time series,
the first part was used. For studying the diffusion process, the
second part was used. First 100 days data of the UC Irvine
dataset, first 1-year data of the Email EU-Core dataset, first
4 years data of the Math Overflow dataset, and first 5 years
data of the Linux Kernel dataset was used to compute H
and create the interaction time series. To study the spread of
influence, the remaining data was used. Details of all the four
datasets have been shown in Table II.

The four datasets used have varying time spans ranging
from 193 days to 2922 days. Datasets having varying time
spans have been used so as to validate the proposed method
for shorter as well as longer interaction periods between
the users. Considering UC Irvine dataset, for each node the
interaction time series gets generated for 193 days which
is a short time span. For Email EU-Core the length of the
time series generated for each node is 803 days, which is a
medium sized time span. For Math Overflow a time series for
2350 days is generated for each node, and for Linux Kernel
mailing list the time series generated for each node covers it
a span of 2922 days, both of which are longer time durations.

B. Results

The proposed TSC-HDM diffusion model’s performance is
compared to the performance of four diffusion models, namely
IC, WC, TV, and HBIM models. The four datasets mentioned
previously have been used to do evaluation. Initial sets of
seeds having different sizes (k = 10, 20, 30, 40, and 50)
were created using the below-mentioned algorithms for seed
selection (number of nodes in the initial set of seeds is denoted
by k):

• Degree - The k nodes which have the highest degree are
selected as the seed nodes by this seed selection algorithm
[23].

• SingleDiscount - In this algorithm, the node with highest
degree becomes the seed node, and the degree of every
inactive neighbour of that node gets discounted by 1 [56].

2http://snap.stanford.edu/data/email-Eu-core-temporal.html
3http://snap.stanford.edu/data/sxmathoverflow.html
4http://konect.uni-koblenz.de/networks/lkml-reply

• DegreeDiscountIC - It this scheme, node having highest
degree node is chosen as seed node. After that, the degree
of the node’s yet inactive neighbours is discounted based
on the degree of that inactive neighbour and how many
of its neighbours have been selected as seeds [56].

The generated seed sets are given as input to the IC, WC,
TV, HBIM and proposed TSC-HDM models. The spread
attained by the given seeds under the 5 diffusion models
under consideration has been computed and compared. If we
start the process with k seed nodes, the overall number of
nodes which are expected to be influenced when we reach
the end of the diffusion process, are denoted by the Influence
Spread attained.

The spread of influence is calculated independently for
all the five different seed set sizes, i.e., k = 10, 20, 30, 40, and
50. For the purpose of representing, the spread of influence
attained by the seed set having k = 50 has been shown in
Figures 2(a), 2(b), 2(c), and 2(d) corresponding to the UC
Irvine, the Email EU-Core, the Math Overflow, and the Linux
Kernel datasets respectively.

Obtained results depict that the spread of influence attained
by our proposed TSC-HDM model is far greater than the
influence spread attained by the remaining four existing
models under consideration, by the generated seed sets.
Hence it has been found that, a greater number of nodes
are getting influenced in the proposed TSC-HDM model,
in comparison with the IC, WC, TV, as well as HBIM models.

Figure 2(a) shows that for the UC Irvine dataset, the
spread of influence achieved by the seed set initialized using
Degree algorithm under our TSC-HDM model is about 351%
more than the influence spread attained under Independent
Cascade model, 29% more than WC model, 644% more than
TV model, and 114% more than HBIM model. For seed set
generated using SingleDiscount algorithm, spread achieved
under TSC-HDM is 332% higher than IC, 27% higher than
WC, 627% higher than TV model, and 114% more than
HBIM model. For seed nodes chosen using DegreeDiscountIC
algorithm, influence spread under TSC-HDM is 315% more
than IC, 31% more than WC, 616% more than TV, and 110%
more than the spread achieved under the HBIM model.

Figure 2(b) shows the spread of influence attained by
the seed set generated pertaining to Email EU-Core dataset.
Spread achieved by seeds chosen utilizing the Degree
algorithm by our TSC-HDM model is about 67% higher than
the influence spread attained by the Independent Cascade
model, 96% higher than WC model, and 275% higher than TV
model. Seed nodes selected using SingleDiscount algorithm,
attain 67% more spread under TSC-HDM as compared to IC
model, 94% more than WC, and 264% more than TV model.
For seeds chosen using DegreeDiscountIC algorithm, spread
under TSC-HDM is 65% more than IC, 103% more than
WC, and 245% higher than the spread obtained under the TV
model. Influence Spread achieved by seed sets chosen by all
the seed selection algorithms which are under consideration,
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Table II: Details of used datasets

Dataset Name Total
Nodes

Static
Edges

Temporal
Edges

Data Available For (Duration) Time Span
(in days)

UC Irvine messages 1,899 20,296 59,835 15-04-2004 to 26-10-2004 193
Email EU-Core 986 24,929 3,32334 01-01-1970 to 15-03-1972 803
Math Overflow 24,818 506,550 239,978 29-09-2009 to 06-03-2016 2350
Linux Kernel mailing list 63,399 242,976 1,096,440 01-01-2006 to 01-01-2014 2922

is about 88% higher in our TSC-HDM model, in comparison
with the influence spread attained by the same seeds in the
HBIM model.

Figure 2(c) shows that for the Math Overflow dataset,
influence spread attained by our TSC-HDM model is about
252% more than the influence spread attained by the
Independent Cascade model, 134% more than WC, and
852% more than TV model for those seed sets which are
initialized by making use of the Degree algorithm. Spread of
influence in TSC-HDM is 250% higher than IC, 136% more
than WC and 855% more than TV for seed set generated
using SingleDiscount algorithm. For seed nodes selected
using DegreeDiscountIC algorithm, spread under proposed
TSC-HDM is 248% higher than IC, 150% higher than WC,
and 840% higher than TV model. Spread of influence attained
in our TSC-HDM model is approximately 95% higher than
the influence spread attained in the HBIM model by all the
seed sets which are under consideration.

Figure 2(d) shows that the spread of influence attained by
seeds chosen using Degree and SingleDiscount algorithms is
approximately 253% higher under TSC-HDM in comparison
with the influence spread attained by the same set of seeds
when they are under the Independent Cascade model, and
approximately 259% higher for seed set generated using
DegreeDiscountIC algorithm. Compared to the spread of
influence attained by the WC model, spread attained under
proposed TSC-HDM increases by approximately 157% for
Degree seed set, 155% for SingleDiscount seed set and
200% for DegreeDiscountIC seed set. Compared to the
spread attained under TV model, the spread achieved under
TSC-HDM model increases by approximately 590% for seeds
of Degree and SingleDiscount algorithms, and 595% for seeds
selected using DegreeDiscountIC algorithm. Compared to the
spread attained under HBIM model, the spread of influence
attained by our TSC-HDM model is approximately 50% more
for seeds of Degree and SingleDiscount algorithms, and 49%
for seeds selected using DegreeDiscountIC algorithm.

Thus, it has been affirmed by the results obtained, that
in comparison with the influence spread attained under four
existing diffusion models under consideration, namely IC,
WC, TV, and HBIM models, there is a higher spread of
influence in our TSC-HDM model. Consequently, on account
of the results obtained, we can conclude that aspects of a
node’s past interaction pattern when taken into consideration,
results in a better assessment of the influence potential of

a node. Hence, it should be considered as a criterion for
node activation during the diffusion process. Furthermore,
on comparing the obtained results for HBIM and proposed
TSC-HDM models, it can be observed that using different
methods for computing H value significantly improves the
expected influence spread.

Researchers generally don’t present a comparison of research
work related to Influence Maximization in Online Social
Networks with existing approaches because the results which
are obtained are not comparable directly. Results obtained by
a particular approach depend on different parameters such
as different types of datasets used. Datasets which are used,
many times differ with regards to the type of information they
consist of as well as the time period for which the dataset’s
data is being considered. For the purpose of comparison,
the proposed TSC-HDM model’s performance, with regards
to the spread of influence achieved, is compared to nine
state-of-the-art existing approaches for IM (where each uses
the initial seed set size, k = 50), namely LIR, A-Greedy,
LPIMA, Genetic Algorithm with Dynamic Probabilities,
NeighborsRemove, DegreeDecrease, IGIM, IRR, and PHG
[25, 57–63]. The average percentage of spread of influence
attained by an initial seed set of size k = 50, i.e., having 50
seed nodes, has been used as the base for comparison.

As per the reported results, LIR achieves an average
percentage of spread of influence of 9.13%, A-Greedy
attains 1.6%, LPIMA achieves 2.7% and Genetic Algorithm
with Dynamic Probabilities achieves 11.33% [25, 57–59].
NeighborsRemove and DegreeDecrease have been reported
to achieve an average percentage of spread of influence of
18.91% as well as 18.58% respectively [60]. Average spread
percentage for IGIM, as per reported results, is 13.27%, for
IRR it is 3.39%, and for PHG it is 7.98% [61–63]. However,
an average percentage of spread of influence of 84% is
achieved under the proposed TSC-HDM model. Figure 3
compares the average percentage of influence spread attained
under these ten aforementioned approaches towards IM in
OSN.
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(a) Seed sets taken from the UC Irvine dataset

(b) Seed sets taken from the Email EU-Core dataset

(c) Seed sets taken from the Math Overflow dataset

(d) Seed sets taken from the Email Network dataset

Figure 2: Influence spreads attained by the generated seed sets in the IC, WC, Trivalency and TSC-HDM models
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Figure 3: Average % of influence spread under TSC-HDM
compared to state of art algorithms

V. CONCLUSION

OSNs have long been researched upon to better understand
online social structures and behaviour. IM aims to maximize
influence spread in an OSN and “the influence spread attained
by the chosen seed nodes is heavily affected by the underlying
diffusion model [22]”. In many prevalent diffusion models,
diffusion depends either on a pre-defined edge propagation
probability, or on the node’s degree. However, a node’s past
interaction pattern can present a realistic view of actual
diffusion between the node and its neighbours.

In the proposed work, Time Series Characteristic based
Hurst-based Diffusion Model (TSC-HDM) for IM has been
presented, which is motivated by the belief that to assess a
node’s influence potential, its actual past interaction behaviour
should be considered as a significant contributor. TSC-HDM
draws inspiration from the HBIM model, wherein node
activation is done based on the statistical SST (quantified
using Hurst exponent (H)) displayed by the node’s past
interactions [35]. However, in TSC-HDM, the nature of each
time series is first explored, and then separate methods have
been used for computing H value depending on whether time
series is stationary or non-stationary. TSC-HDM has been
evaluated using four real-world OSN datasets and results
reveal that TSC-HDM outperforms IC, WC, TV, and HBIM
models [23, 24, 35]. Hence, taking the node’s past interaction
details into consideration, and using different methods for
computing H value for a time series, whilst considering its
stationarity characteristic, remarkably enhances the spread
achieved by a seed set.

VI. FUTURE SCOPE

A limitation of the work presented in this paper is that in
alignment with much of the research works carried pertaining
to IM in OSNs, a static snapshot of the data pertaining to the
node’s past interactions is being used to assess its temporal
behaviour. A node’s past static behaviour forms the base of
the proposed TSC-HDM diffusion model, with the assumption
that the node can be expected to continue displaying similar
behaviour in the future. Approaches developed by taking
the other aspects of node’s structure and behaviour into
consideration can be further explored.
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