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Figure 1: The Qutee robot. A 12 DoF (blue angles) quadruped. Global coordinates given by a motion capture system (red arrows).
Middle: the trace of 2 hours of reset-free training within the exploration (green) and recovery (yellow) zones. Right: the
navigation task used to test the learned solutions. All training was done on the physical robot, without any simulators.

ABSTRACT
Learning algorithms, like Quality-Diversity (QD), can be used to
acquire repertoires of diverse robotics skills. This learning is com-
monly done via computer simulation due to the large number of
evaluations required. However, training in a virtual environment
generates a gap between simulation and reality. Here, we build
upon the Reset-Free QD (RF-QD) algorithm to learn controllers
directly on a physical robot. This method uses a dynamics model,
learned from interactions between the robot and the environment,
to predict the robot’s behaviour and improve sample efficiency. A
behaviour selection policy filters out uninteresting or unsafe poli-
cies predicted by the model. RF-QD also includes a recovery policy
that returns the robot to a safe zone when it has walked outside of
it, allowing continuous learning. We demonstrate that our method
enables a physical quadruped robot to learn a repertoire of be-
haviours in two hours without human supervision. We successfully
test the solution repertoire using a maze navigation task. Finally,
we compare our approach to the MAP-Elites algorithm. We show
that dynamics awareness and a recovery policy are required for
training on a physical robot for optimal archive generation. Video
available at https://youtu.be/BgGNvIsRh7Q
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1 INTRODUCTION
Quality-Diversity (QD) algorithms are techniques for optimisation
that, among other, have been used for learning robotics controllers
deployed in the real world. These algorithms find extensive col-
lections of both high-performing and diverse solutions, which is
advantageous for downstream applications [2, 4]. However, to the
best of our knowledge, all existing QD algorithms applied in ro-
botics use computer simulations to evaluate controller candidates.
While this approach affords evaluation of thousands of solutions,
it also comes with various disadvantages. For example, simulators
require accurate modelling of the physical properties and dynamics
of the environment. Though a great variety of advanced simulators
have been developed, it is still difficult to model the real world with
high fidelity. Furthermore, rigid-body simulation often assumes
a controlled environment and a robot with accurate sensors and
actuators. Meanwhile, in the real world, sensors and actuators are
often prone to noise and damage. Some methods, such as Kalman
filters and high-frequency closed-loop control, attempt to mitigate
the effects of stochastic environments. However, the controllers
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learned in simulation are not always robust when transferred di-
rectly to physical robots. Consequently, QD approaches in robotics
usually encompass further adaptationmechanisms to bridge the gap
between simulation and reality [2, 4, 7] which require additional
training and fine-tuning.

In this work, we use the Reset-free Quality-Diversity (RF-QD)
algorithm [8] to learn repertoires of controllers directly on a phys-
ical quadruped robot without human intervention. RF-QD learns
a dynamics model to predict the behaviour of controllers. Based
on these predictions, RF-QD applies a behaviour selection policy
to prioritise controllers according to predefined safety and explo-
ration heuristics to be executed in the environment. Accordingly,
controllers that are predicted to be unsafe or uninteresting are fil-
tered out, leading to better sample efficiency, reduced training time
and decreased risk of damage. Furthermore, given environmental
information, RF-QD ensures that training always takes place in a
safe zone so that continuous learning can take place, without the
need of human supervision or manual resets.

Our results show that RF-QD can successfully generate an archive
of behaviours without simulation in two hours. We compare RF-
QD with baselines to show that the recovery policy and behaviour
prioritisation are both essential components for achieving high-
performing and diverse repertoires. Finally, we test the generated
repertoires on a navigation task.

2 RELATEDWORK
Quality-Diversity in Robotics. Quality-Diversity (QD) form a
subset of evolutionary algorithms that generate many diverse and
high-performing solutions. To achieve this, QD algorithms char-
acterise solutions by their fitness, an objective function, and by a
vector known as the behaviour descriptor (BD) [5]. The BD is used
to quantify the difference in the behaviour of solutions.

In general, QD algorithms are initialised with a set of random
solutionsstored in an archive. At each iteration, solutions are se-
lected from the archive and mutated to generate offspring. The
offspring are evaluated and considered for addition to the archive,
based on their fitness and BD. The precise addition mechanism
differs according to the QD algorithm. For example, MAP-Elites
[9] employs a grid-based archive, achieved by tessellating the BD
space into several fixed-size bins. A solution is added to the grid
if the corresponding cell is empty or its fitness is higher than an
existing solution in the same cell, discarding the previous solution.
Alternatively, other QD algorithms use an unstructured archive
[6, 7] in which a solution is added if the distance to its k-nearest
neighbours in the descriptor space exceeds a predefined threshold.

QD algorithms are used in robotics to learn a collection of con-
trollers. The diversity of skills learned is advantageous for use in
downstream applications such as damage recovery or planning for
long horizon tasks [2, 3, 7]. Existing methods first learn skills in
simulation, and only after learning they use them on the physical
robot. In our work, we apply the QD algorithm directly on the
physical robot, with no simulator and prior experience.

End-to-end Learning on Physical Robots. Data-driven and
learning based methods are able to learn very complex skills [1].
However, they require a large number of samples or trials, mak-
ing them infeasible for direct implementation on physical robots.
Learning directly on physical robots rely on model-based RL for

locomotion [12, 13] and manipulation [10, 12, 14]. Our work demon-
strates learning directly on a physical robot is also possible for
evolutionary-based algorithms such as QD algorithms.

3 METHODS
Learning a Dynamics Model. Following DA-QD [7], a forward
model 𝑝 (𝒔𝑡+1 |𝒔𝑡 , 𝒂𝑡 ) that predicts the next state 𝒔𝑡+1 given the cur-
rent state 𝒔𝑡 and action 𝒂𝑡 , is learnt based on data collected from
interaction in the environment. The model is implemented as a deep
neural network where the delta of the next state (Δ𝒔𝑡+1 = 𝒔𝑡+1−𝒔𝑡 )
is learned. Similar to DA-QD and RF-QD, we learn an ensemble
of probabilistic models to minimise both aleatoric and epistemic
uncertainty. The disagreement between the models in the ensemble
is inferred using their distributions, allowing an estimation of the
epistemic uncertainty, which can be used to prioritise new con-
trollers. The model is trained via self-supervised learning using
gradient descent to maximise the log-likelihood of transitions sam-
pled from the replay buffer. The dynamics model is used to perform
rollouts of controllers, called recursively for the defined length of
the execution of a controller.

Performing QD in imagination. RF-QD uses the dynamics
model to predict a robot’s trajectory, fitness and behavioural de-
scriptor for a given controller. Solutions can be evaluated without
requiring any real-world interaction. Thus, the QD loop of selec-
tion, mutation, evaluation and archive addition is performed using
imagined rollouts and maintained in an separated archive. Solutions
from this imagined archive are selected to be executed in the real
world. These physical executions are added to the main archive
and added to the reply buffer for further training of the dynamics
model. Performing evaluations in imagination allows better data
efficiency as solutions that are not promising will be sieved out and
not executed.

Behaviour Selection Policy. BSP ensures that the robot re-
mains in a safe state while learning new skills and interacting with
the environment. The BSP determines the solutions from the imag-
ined archive to be executed provided that the user defines a safety
signal. In locomotion, BSP comprise exploration zones (a set of safe
states) and recovery zones (a set of unsafe states) Ω. The relative
safety of the robot in state 𝒔 is measured by an exploration parame-
ter 𝜖 (𝒔), calculated as the distance between 𝒔 and the nearest unsafe
state 𝝎 ∈ Ω normalised by the maximum distance between any
previous state and 𝝎:

𝜖 (𝒔) = 𝑑𝑖𝑠𝑡 (𝒔,𝝎) − 𝛽

max𝒔𝑖 𝑑𝑖𝑠𝑡 (𝒔𝑖 ,𝝎) − 𝛽
. (1)

Here, 𝛽 ensures a buffer space when the robot returns to the explo-
ration zone.

New controllers 𝒔′ are safe if they are expected to keep the robot
in the exploration zone, i.e. 𝜖 (𝒔′) > 0. Using this safety metric, RF-
QD filters the solutions in the imagined archive to obtain a subset
of solutions expected to be safe. RF-QD prioritise solutions in this
safe set by safety, novelty or disagreement between models. In our
experiments, we use novelty prioritisation to bias exploration in
the BD space.

Recovery Policy. A recovery policy is used for safety if the
robot leaves the exploration zone. While in the recovery zone, the
policy selects behaviours in the archive that returns the robot to
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the exploration zone. In the case of leaving the recovery and the
exploration zone the learning is stopped.

Controllers Update. We extend RF-QD to include an update
strategy for controllers used during recovery. The executions of
these controllers are used to update their fitness and BD. Given
a controller with fitness 𝑓 and behavioural descriptor b, the new
values are given by:

𝑓 = (1 − 𝛼) 𝑓 + 𝛼 𝑓 ′, b = (1 − 𝛼)b + 𝛼b′,

where 𝑓 ′ and b′ are the fitness and behaviour descriptor values
observed in the new execution, with 𝛼 ∈ [0, 1]. This updated con-
troller is reevaluated for addition or removal from the archive.

Physical Implementation. We use the Qutee robot (Fig.1)
which was designed, 3D printed and assembled by researchers
at the Adaptive and Intelligent Robotics Lab at Imperial College.
One cable is attached to the robot for power and another for data
transmission to a computer.

The action space of the robot corresponds to the angle commands
sent to each of these DoF. We restrict the range of movement of
each DoF to avoid collisions between the legs and the body of the
robot. We restrict the range of the hip actuators in the horizontal
plane to reduce the chances of turning upside down.

Exterioception is provided by a motion capture system. The
system returns the position, velocity, angle and angular velocity of
the centre of mass of the robot. We transform the world coordinates
to positions relative to the robot’s initial location. These coordinates
are used as part of the robot’s state space, along with the position
and velocities of each joint.

We define four main zones for exploration and recovery as vi-
sualised in Fig. 1. The robot is initially placed inside the green
exploration zone. In this zone, the robot executes new controllers.
Based on their fitness and BD, controllers are evaluated to be added
to the archive following the usual QD rules. When executing a con-
troller, if the robot exits the exploration zone, it enters the yellow
recovery zone. From this zone, the recovery policy is activated. The
policy takes into account the 𝛽 (Eq. 1) buffer before returning to
the exploratory mode. The training is stopped if the robot leaves
the recovery zone (red in Fig. 1).

4 EXPERIMENTS AND RESULTS
4.1 Experiments and Ablations
Training. We use an omnidirectional walking task to generate an
archive of controllers. In this task, the robot learns walking policies
to move in the horizontal plane [4]. The BD is the final position
of the robot with respect to the initial position of the behaviour.
The fitness is the negative error between the horizontal rotational
angle of the robot in the final position and the required angle to
arrive following a predetermined arc from the initial position. The
genotype is a vector of size 24. This vector represents the parameters
of an open-loop sinusoidal controller. The movement of each joint
is parameterised by the amplitude, the phase and the duty cycle.
We use the same parameters for the foot and knee of each leg.

We assume that the robot has a 2-D map of the exploration and
recovery zone, represented as concentric circles of radii 0.5m and
0.75m respectively, with 𝛽 = 0.3. The execution of a controller last
5s. We set 𝛼 = 0.8. To generate offspring, we use the ISO+LineDD

mutator [11]. We use an unstructured archive to store the solu-
tions and define novelty and gradient-contextual constraints for
the behaviour selection policy. For the dynamics model probabilis-
tic ensemble, we use 4 neural networks with two hidden layers of
500 neurons each. We store the action-state pairs in a replay buffer
and train the dynamics model after 10 evaluations.

Each experiment runs for 2 hours or until the robot leaves the
recovery zone. RF-QD includes an initialisation phase where 10 ran-
dom controllers are generated, executed and added to the archive.
Among all the experiments we ran, this initialisation failed only
once due to the robot moving out of the recovery zone.

Comparison to other algorithms. We compare RF-QD to two
variants. RF-QD without dynamics awareness, we remove the dy-
namics model. Thus, no training or behaviour selection policy is
possible. Removing the training phase allows more evaluations
during the 2 hours of the experiment. RF-QD without recovery func-
tion, the recovery function is removed. This version still has the
dynamics model so the behaviour selection policy still bias the ro-
bot to remain in the exploration zone. We compare the algorithms
to MAP-Elites, which is equivalent to RF-QD without a dynamics
model and no recovery policy. All the meta-parameters remain the
same between the four algorithms. We trained each version 4 times
and tested the solutions on navigation task 5 times each.

Planning on a maze. For testing, we use a maze task in which
the robot must navigate to a goal while avoiding obstacles (Fig. 1).
The location of the goal and obstacles are known to the robot.
We use RTE (Reset-free Trial-and-Error) algorithm [3] with an A∗

planning algorithm to select the best solution from the archive. We
count a test as successful if the robot reaches the goal within a
range of 5cm, and unsuccessful if the robot executes more than
100 actions without reaching the goal. We define an action as the
execution of a single controller for 5 seconds.

4.2 Results
Archive Generation. Fig. 2 (top) shows the best archive for each
algorithm. Algorithms that include recovery, RF-QD and RF-QD
no DA, outperform those without it. The coverage and maximum
fitness values achieved by RF-QD and RF-QD no DA are equivalent
and the best among the algorithms. When no recovery function
is available, the robot may leave the recovery zone, resulting in
early termination and lower number of evaluations, Fig. 2 (bottom).
On average, the non-recovery algorithms run 100 evaluations be-
fore leaving the recovering zone. By contrast, the two algorithms
with recovery run 600 and 1400 evaluations on average. RF-QD
no Recovery performs slightly better than MAP-Elites thanks to
the behaviour selection mechanism. This mechanism allows the
algorithm to perform slightly more evaluations than MAP-Elites,
but was still insufficient to avoid the robot to leave the recovery
zone.

RF-QD is more consistent on QD score while using fewer eval-
uations (Fig.2). In the same time frame, RF-QD no DA executed
more evaluations as it does not require time for training the model
and predicting behaviours. However, in physical training, requir-
ing fewer evaluations is a desired outcome. Also, asynchronous
execution of controllers and training of the model can always be
implemented to reduce this difference. Moreover, fewer evaluations
are desirable as it reduces the probability of damaging the robot.
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Figure 2: Top: without dynamics awareness (RF-QD no DA, orange), the archive tends to have more solutions around the origin
compared to RF-QD (blue). For RF-QD no Recovery (green) and MAP-Elites (red), few individuals are found before the robot is
outside the training zone. Bottom: Archive generation and navigation tasks have the best results for RF-QD and RF-QD no DA.

Maze Navigation Task. Fig. 2 also shows the results of each
algorithm in the navigation task. RF-QD and RF-QD no DA have
the best results with fewer actions and shorter arrival times. These
results are related to the coverage, maximumfitness and QD score of
the archives after training. There is a slight increase in performance
for the no DA variation. This effect is related to the selection policy
that prioritises individuals predicted to be safer and novel.

The results for the no-recovery versions show the relative worst
performance. The lack of diversity and relatively low fitness results
in the robot not having a proper set of actions to reach the goal.
The robot was observed to get stuck in corners and hit obstacles.

5 CONCLUSIONS
We trained a physical robot to find diverse walking solutions with-
out using any physical simulations. After 2 hours of training, the
robot could generate enough diverse solutions to navigate a maze.
Using a recovery function is necessary to keep the robot in the train-
ing regime. The data efficiency of our approach is improved by using
the dynamics model to predict and select safe and novel controllers
before testing them in the robot. To the best of our knowledge, this
is the first implementation of a QD algorithm directly on a physical
robot without using simulations. A video showing the training and
navigation tasks is available at https://youtu.be/BgGNvIsRh7Q
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