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Abstract. Representation and boundedness properties of linear, right-
shift invariant operators on half-line Bessel potential spaces (also known
as fractional-order Sobolev spaces) as operator-valued multiplication op-
erators in terms of the Laplace transform are considered. These objects
are closely related to the input–output operators of linear, time-invariant
control systems. Characterisations of when such operators map con-
tinuously between certain interpolation spaces and/or Bessel potential
spaces are provided, including characterisations in terms of boundedness
and integrability properties of the symbol, also known as the transfer
function in this setting. The paper considers the Hilbert space case, and
the theory is illustrated by a range of examples.
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1. Introduction

Consider a bounded, linear operator G on L2(R+, U) for complex Hilbert
space U . As usual, L2(R+, U) denotes the Hilbert space of (equivalence classes
of) square-integrable functions R+ → U and R+ denotes the positive real
numbers. We say that G is right-shift invariant if it commutes with the right-
shift semigroup (στ )τ≥0 defined by

(στf)(t) =
{ 0 t < τ

f(t − τ) t ≥ τ
almost all t ≥ 0. (1.1)
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Note that σ leaves L2(R+, U) invariant. A famous result in the study of such
right-shift invariant operators is the following multiplier-type theorem.

Theorem 1.1. The operator G : L2(R+, U) → L2(R+, U) is bounded, linear
and right-shift invariant if, and only if, it is of the form G = L−1MGL, for
some (unique) holomorphic function G : C0 → B(U). Furthermore, ‖G‖ =
sups∈C0

‖G(s)‖B(U).

In the above theorem C0 denotes the open right-half complex plane, L
denotes the (unilateral) Laplace transform, MG denotes the multiplication
operator by G, and B(U) the Banach space of bounded linear operators U →
U equipped with the uniform topology. Theorem 1.1 is a special case of a
general result proved in [15], and appears with a simpler proof in [42, Theorem
2.3, Remark 2.4], along with a number of bibliographical notes.

Bounded, linear, right-shift invariant operators on L2(R+, U) arise nat-
urally in mathematical systems and control theory, as they are precisely
the so-called input–output maps G of linear, time-invariant, input–output
stable control systems with input u and output Gu; see, for instance [43]
and [36]. The terminology input–output stable refers to the property that in-
puts in L2(R+, U) are continuously mapped to outputs in L2(R+, U). Both u
and Gu are assumed to take their values in the space U . In this setting, the
symbol G in Theorem 1.1 is called the transfer function associated with the
input–output map G. The independent variable t ∈ R+ denotes time, and the
choice of the semi-infinite real-axis R+ is important (as we shall note later)
for developing a theory which facilitates two features: (a) a stability theory,
which requires an unbounded time domain, and; (b) the treatment of initial
value problems associated with, for example, controlled and observed evolu-
tion equations [40], which requires an initial time, and so support bounded
to the left.

Theorem 1.1 is in the spirit of operator-valued multiplier theorems for
pseudo-differential operators, considering translation-invariant1, linear oper-
ators of the form a(D) := F−1MaF where the symbol a is typically de-
fined on R

n, takes values in B(U), and F denotes the Fourier transform. A
common aim is to determine conditions on the symbol a so that a(D) has
desired boundedness properties with, for example, Mikhlin’s theorem [25]
being a classical result in the field. Fourier multiplier theorems are hugely
well-studied problems, although perhaps slightly less so in the vector-valued
case. The paper [2], and texts [1,3] by the same author, treat this problem
in considerable detail, and contain a substantial history of the area. That
Theorem 1.1 contains necessary and sufficient conditions is an exceptional
consequence of the imposed Hilbert space structure (Lp(R+, U) with p = 2
and Hilbert space U) via the Paley–Wiener Theorem.

Connecting these ideas back to control theory, it is well-known (from,
for example [39, Theorem 6.2]) that there is a one-to-one relationship between
bounded, linear, right-shift invariant operators on L2(R+, U) and bounded,

1Here translation-invariant means commuting with the (bilateral) shifts πτ given
by (πτ f)(x) := f(x − τ) for all real τ .
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linear, translation-invariant, causal operators on L2(R, U). Recall that a lin-
ear, translation-invariant operator F : L2(R, U) → L2(R, U) is called causal
(or non-anticipative) if L2(R+, U) is an F -invariant subspace. In the so-called
well-posed linear systems literature—a class of physically-motivated infinite-
dimensional linear control systems, see [35]—input–output operators are typ-
ically considered to/from function spaces on R+ or to/from function spaces
on R. The latter framework facilitates a connection between the control theo-
retic input–output maps of [35] and the scattering theory of Lax and Phillips
[21], see [36, Section 6]. By the above discussion these two approaches are
equivalent for L2-spaces. Indeed, it can be shown that (interpreted care-
fully) F and G as above coincide on L2(R+, U).

Here, we present a number of far-reaching generalisations of Theo-
rem 1.1, broadly investigating representation and boundedness properties of
linear, right-shift invariant operators between certain interpolation spaces of
Lebesgue and (usual) Sobolev spaces, or certain fractional-order Bessel po-
tential spaces. Our first result contains a characterisation of bounded, linear,
right-shift invariant operators between two interpolation spaces of the form[

Hm
0 (R+, U),Hm+1

0 (R+, U)
]
γ

m ∈ {0, 1, 2, . . . }, γ ∈ [0, 1],

as necessarily multiplication operators L−1MGL for some holomorphic sym-
bol G : C0 → B(U). Moreover, boundedness properties of G are characterised
by boundedness conditions on G involving the interpolation exponents. This
result appears as Theorem 3.1. Our main result is Theorem 3.5 which con-
tains a characterisation now for such operators between Hγ(R+, U) spaces
for γ ≥ 0—which are fractional-order Bessel potential spaces when γ is not
a nonnegative integer—and combines the previously-mentioned boundedness
condition with a strong Hardy space H2

str-condition. Furthermore, Proposi-
tion 3.10 provides a characterisation of certain bounded, linear, right-shift
invariant operators in terms of a strong convolution representation. We dis-
cuss how our results relate to others in the literature in Sect. 3.2.

We outline our argumentation, which relies on a few crucial ingredi-
ents. In this first study we consider the Hilbert-space setting only. Roughly,
right-shift invariant operators commute with the generator of the associated
right-shift semigroup, which is a differentiation operator on R+ whose do-
main includes a zero-trace boundary condition. Consequently, right-shift in-
variant operators commute with fractional powers of this generator, which
are well defined. The images of certain fractional powers of operators form
a scale of so-called fractional power spaces, and are isometrically isomorphic
to L2(R+, U). Moreover, we exploit a powerful result relating interpolation
spaces and fractional power spaces (see, for example, [17, Theorem 6.6.9]).
The upshot is that we are able to use Theorem 1.1 to prove a number of
generalisations of this very result.

Given the extensive research on operator-valued Fourier multiplier the-
orems on Euclidean space, where the case n = 1 so that R

n = R is arguably
the simplest to treat, it seems natural to approach the present problem by
relating the half-line case to the whole-line case. Although we argue differ-
ently here, this approach may be used in the “zero-trace case”, Theorem 3.1,
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as certain zero-trace functions on the half-line may be continuously extended
by zero to functions on the whole line and causality plays a key role. How-
ever, when non-zero initial conditions are imposed, as will generally happen
when considering Hγ(R+, U) for γ > 1/2, another argument seems to be re-
quired. Indeed, our theory identifies numerous examples of bounded, linear,
translation-invariant and causal F : L2(R) → L2(R) (here U = C), which
restrict to bounded operators H1(R) → H1(R) but the restriction of F
to H1(R+) does not map continuously into H1(R+). It is this key distinc-
tion which has, in part, motivated the current study, along with the control-
theoretic motivation of investigating when additional regularity of an input
signal is continuously inherited by the corresponding output signal.

The paper is organised as follows. Section 2 gathers notation and pre-
liminary results. Our main results are contained in Sect. 3 and examples are
presented in Sect. 4 which include connections of the current results to Reg-
ular Linear Systems and Pritchard–Salamon Systems in Sects. 4.1 and 4.2,
respectively. A number of further and technical details appear in the Appen-
dix.

2. Preliminaries

We gather preliminary requisite notation and material.

2.1. Notation

Most mathematical notation used is standard. As usual, let N, Z, R and C

denote the positive integers (natural numbers), integers, real numbers and
complex numbers, respectively. Furthermore, we set

Z+ := N ∪ {0}, R+ :=(0,∞) and Cα :=
{
s ∈ C : Re (s) > α} ∀ α∈R.

Throughout the work we let (U, | · |U ) denote a complex, separable Hilbert
space. The theory developed applies in the setting of real spaces U by con-
sidering their complexifications so as to make sense of Laplace transforms in
the usual way.

For another Hilbert space V , we let B(U, V ) denote the Banach space
of all linear bounded operators U → V , with the usual induced operator
norm ‖ · ‖ from U and V , and set B(U) := B(U,U). We write U ↪→ V if U is
continuously embedded in V , meaning

|u|V � |u|U ∀ u ∈ U.

The symbol � (�) means less (greater) than or equal to, up to a general
multiplicative constant independent of the variables appearing. Its use is
intended to clarify the exposition by reducing the number of constants which
appear in estimates. The symbol =̇ means equals with equivalent norms.

2.2. Function Spaces

We let (L2(R+, U), ‖·‖L2(R+)) denote the usual Lebesgue space of (equivalence
classes of Bochner measurable) square-integrable functions R+ → U ; see, for
example [39, Section 1], which is a Hilbert space when U is. For simplicity,
we write L2(R+) for L2(R+, C).
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We shall require Sobolev spaces of vector-valued functions and we refer
the reader to, for example, the texts [22, Chapter 8], [1, Chapter III, Sections
4.1, 4.2] or [3, Chapter VII]. For m ∈ N, we recall the (integer) Sobolev
spaces

Hm(R+, U) :=
{
u ∈ L2(R+, U) : u(j) ∈ L2(R+, U), ∀ j ∈ {1, 2, . . . ,m}},

with norm

‖u‖Hm(R+) :=
( m∑

k=0

‖u(k)‖2L2(R+)

) 1
2 ∀ u ∈ Hm(R+, U).

Here the symbol u(j) denotes the j-th (weak) derivative of u for j ∈ Z+,
with u(0) = u. If u has a j-th classical derivative, then this is also denoted
by u(j).

It follows from, for instance, [22, Theorem 8.57] that elements of
H1(R+, U) (that is, equivalences classes of functions) may be identified with
locally absolutely continuous functions R+ → U , and that

f(t) = f(a) +
∫ t

a

g(s) ds ∀ t, a > 0, ∀ f ∈ H1(R+, U), (2.1)

for some g ∈ L2(R+, U). We shall make this identification. Furthermore,
taking the limit t ↘ 0 in the right-hand side of (2.1) gives that every f ∈
H1(R+, U) is well-defined at zero, with value denoted f(0).

Recall that Hk
0 (R+, U) is defined as the closure in Hk(R+, U) of com-

pactly supported smooth functions R+ → U . Repeated application of [26,
Lemma B.7.9] gives the description that, for every m ∈ N,

Hm
0 (R+, U) =

{
u ∈ Hm(R+, U) : u(0) = · · · = u(m−1)(0) = 0

}
. (2.2)

We shall require certain interpolation spaces. For thorough treatments we
refer the reader to, for example, [1] or [5]. Let θ ∈ (0, 1). For reasons we
discuss below, we borrow the notation of the so-called Lions-Magenes spaces
from [23, Chapter 1, Section 11.7], and define the interpolation spaces

Hθ
00(R+, U) :=

[
L2(R+, U),H1

0 (R+, U)
]
θ

=̇
(
L2(R+, U),H1

0 (R+, U)
)
θ,2

. (2.3a)

Here [·, ·]θ denotes the usual complex interpolation functor, and (·, ·)θ,2 de-
notes a real interpolation functor. By the results of [7], in the current Hilbert
space setting, the choice of K-method or J-method for real interpolation
gives rise to the same interpolation space.

For θ = m + α where m ∈ N and α ∈ (0, 1), we set

Hθ
00(R+, U) :=

[
Hm

0 (R+, U),Hm+1
0 (R+, U)

]
α

=̇
(
Hm

0 (R+, U),Hm+1
0 (R+, U)

)
α,2

. (2.3b)

The second equalities in (2.3) are well-known; see, for example [7, Remark
3.6], as all the spaces appearing in the interpolation functors are Hilbert
spaces. We set Hm

00(R+, U) := Hm
0 (R+, U) (as in (2.2)) for m ∈ Z+.

Apart from certain “borderline” values, the spaces Hθ
00(R+, U) may be

related to zero-trace Bessel potential spaces, which we now recall. For which



   19 Page 6 of 34 C. Guiver, M. R. Opmeer IEOT

purpose, for θ ∈ R, the Bessel potential space Hθ
B(R, U) is defined as the set

of all u ∈ L2(R, U) such that∥∥F−1Mb2θ
Fu

∥∥
L2(R)

< ∞,

where F denotes the Fourier transform and bθ(ξ) := (1 + |ξ|2) θ
2 is the so-

called Bessel potential. This space is a Hilbert space when equipped with the
norm

‖u‖Hθ
B(R) :=

∥∥F−1Mb2θ
Fu

∥∥
L2(R)

.

Let K = cl(R+) = [0,∞) or R+ = (0,∞). The Bessel potential spaces
Hθ

B(K, U) are defined as the restriction of elements in Hθ
B(R, U) to K, with

norm

‖u‖Hθ
B(K) := inf

v∈Hθ
B(R,U)

v|K=u

‖v‖Hθ
B(R).

Let X = R or K. It follows from [3, VII, Theorem 4.3.2] that

Hm
B (X, U) =̇ Hm(X, U) ∀ m ∈ Z+.

Therefore, from hereon in we omit the subscript B from Bessel potential
spaces, as the use of the same symbol for both Bessel potential spaces and
Sobolev spaces in this case is unproblematic, up to equivalent norms.

We highlight that, in following the work [3], Sobolev spaces and Bessel
potential spaces may be defined on closed sets, such as H := [0,∞), which is
not the approach usually taken elsewhere in the literature. Typically, spaces of
differentiable functions are defined on open sets. In fact, the results of [3] show
that, for example, the spaces Hθ(R+, U) and Hθ(H, U), coincide. We refer
the reader specifically to [3, VIII, Section 1.9, Notes] for more information.

We now consider zero-trace Bessel potential spaces. To summarise [3,
VIII, pp. 299–300], for θ > k + 1/2 and k ∈ Z+, it follows that the trace
operator of order k on ∂H, denoted trk and given by

trk u = u(k)(0) ∀ u ∈ Hθ(H, U),

is well-defined. Moreover, the traces are continuous maps from Hθ(H, U)
to U , so that

max
j∈{0,...,k}

|u(j)(0)| � ‖u‖Hθ(H) ∀ u ∈ Hθ(H, U). (2.4)

Define Hθ
0 (H, U) as the closure in Hθ(H, U) of the set of compactly supported

smooth functions (0,∞) → U . (This agrees with Hm
0 (R+, U) already intro-

duced when θ = m ∈ Z+.) With this definition, the result [3, VIII, Theorem
1.6.8] gives that:

Hθ
0 (H, U) = Hθ(H, U) ∀ θ ∈ (0, 1/2), (2.5)

and, if k ∈ Z+ and k + 1/2 < θ < k + 1 + 1/2, then{
u ∈ Hθ(H, U) : u(j)(0) = 0, ∀ j ∈ {0, . . . , k}} = Hθ

0 (H, U). (2.6)
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It can be shown that, for θ ∈ (0, 1)

Hm+θ
0 (R+, U) =̇

[
Hm

0 (R+, U),Hm+1
0 (R+, U)

]
θ

whenever θ 
= 1
2
.

(2.7)

For scalar-valued functions, the equality is contained in [23, Theorem 11.6,
p. 64]. The (Hilbert space) vector-valued case can be established by adapting
arguments from [3, proof of Theorem 1.6.4, p. 320], particularly [3, equation
(1.6.10), p. 320].

The upshot of (2.2) and (2.7) is that

Hθ
00(R+, U) =̇ Hθ

0 (R+, U) whenever θ 
∈ 1
2

+ Z+. (2.8)

An explicit characterization of H
1
2
00(R+) is given in [23, Theorem 11.7], again

in the scalar-valued case.
We comment that, in light of the interpolation description (2.7), the

symbol Hθ
00 is usually reserved in the literature for the borderline values θ ∈

1/2 + Z+. However, it is notationally convenient for us to use Hθ
00 every-

where as it is, by definition, an interpolation space, a property which shall
be important later in the context of domains of fractional powers of certain
operators. In the sequel, we adopt the perspective that, whenever θ is not
a borderline value, then Hθ

00 also admits a characterisation as a zero trace
space Hθ

0 , that is, (2.8) holds. Finally, we note that a discussion of H
1/2
00 also

appears in [38, Section 33].

2.3. Hardy Spaces and Laplace Transforms

For α ∈ R, we let H∞
α (B(U)) denote the Hardy space of all holomorphic

functions Cα → B(U) which are bounded in the norm

‖H‖H∞
α

:= sup
s∈Cα

‖H(s)‖.

The space H∞
α (B(U)), endowed with the above norm, is a Banach space. For

notational simplicity we set H∞(B(U)) = H∞
0 (B(U)). For a complex Banach

space E we recall the Hardy space H2(E) = H2(C0, E) as the complex vector
space of holomorphic functions C0 → E bounded in the norm

‖H‖H2(E) := sup
x>0

∫ ∞

−∞
|H(x + iy)|2E dy.

When E = B(U), equipped with the uniform operator topology, then we
obtain the (uniform) Hardy space H2(B(U)). We shall more frequently require
the space B(U,H2(C0, U)) which, by [27, Lemma 4.1], may be (isometrically)
identified with the so-called strong Hardy space, denoted H2

str(B(U)), of all
holomorphic G : C0 → B(U) such that

‖G‖H2
str(B(U)) := sup

‖u‖≤1

‖s �→ G(s)u‖H2(U) < ∞.

Evidently, the following estimate holds

‖s �→ G(s)v‖H2(U) � |v|U ∀ G ∈ H2
str(B(U,U)), ∀ v ∈ U.
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From [26, Lemma F.3.2] it follows that if dim(U) < ∞, then

H2(B(U)) =̇ H2
str(B(U)).

We note that there is no distinction between H∞
str(B(U)) and H∞(B(U)).

Throughout the paper we abuse notation by using the same symbol
to associate D ∈ B(U) with the bounded linear operators L2(R+, U) →
L2(R+, U) or H2(U) → H2(U) given by u �→ Du.

We let L denote the usual (one-sided) Laplace transform. By the Paley–
Wiener Theorem L is, up to a multiplicative constant, an isometric isomor-
phism L2(R+, U) → H2(C0, U) (see, for instance [33, Theorem E, p. 91]
or [4, Theorem 1.8.3, p. 47]). One consequence of the vector-valued Paley–
Wiener Theorem is the following operator-valued version (which is routinely
established or appears in [26, Lemma F.3.4 (d), p. 1019]).

Lemma 2.1. The Laplace transform L is (up to a multiplicative constant) an
isometric isomorphism B(U,L2(R+, U)) → B(U,H2(C0, U)).

2.4. Right-Shift Semigroups and Their Fractional Powers

Here we gather preliminary material on right-shift semigroups and the frac-
tional powers of their generators which shall play an important auxiliary
role in proving our main results. The overall idea is that fractional powers
of the generator of the right-shift semigroup (which is a differentiation op-
erator and commutes with the focal objects of the present paper) induce a
scale of fractional power spaces, which are naturally isometrically isomorphic
to L2(R+, U), and admit a representation in terms of interpolation spaces.
This latter property facilitates a connection to the Hθ

00(R+, U) spaces from
Sect. 2.2. The upshot is that we are able to prove generalisations of Theo-
rem 1.1 by mapping back to the case of bounded, linear, right-shift invariant
operators on L2(R+, U), where Theorem 1.1 applies.

Let σ denote the right-shift semigroup on L2(R+, U), so that στ de-
notes right-shift by τ as in (1.1), which is a contraction semigroup. From,
for example [40, Example 2.4.5], the generator A of σ equals minus the de-
rivative operator, with domain H1

0 (R+, U). Note that the graph norm of A
is simply the H1(R+, U) norm. Further, σ restricts to a strongly continuous
semigroup on Hm

0 (R+, U) for m ∈ Z+ with generator the restriction of A
to Hm+1

0 (R+, U).
Set V := L2(R+, U) and define the operators R0 := I, the identity on

V0 := V, and

Rθz :=
1

Γ(θ)

∫ ∞

0

τθe(A−I)τz
dτ

τ
∀ z ∈ V, ∀ θ > 0. (2.9)

Since the growth bound of σ equals zero, we have that 1 belongs to the
resolvent set of A and, therefore, an application of [35, Lemma 3.9.5] gives
that Rθ is a bounded, injective operator on V. Moreover, its image with the
norm v �→ ‖R−1

θ z‖V is a Hilbert space, which we denote by Vθ, and is called
the fractional power space of index θ for A. Consequently, the operator Rθ :
V → Vθ is an isometric surjection; its inverse (I − A)θ : Vθ → V is called the
fractional power of I − A of index θ (and is also an isometric surjection).
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We shall also require the fractional power spaces Vθ for negative θ. These
are defined, as usual, as the completion of V with respect to the (weaker)
norm

v �→ ‖R−θv‖V ∀ θ < 0.

It is well-known that the scale of spaces Vθ are nested with continuous em-
beddings in the sense that Vθ1 ↪→ Vθ2 for all θ2 < θ1. Moreover,

Rθ|Vα
: Vα → Vα+θ

and R−1
θ |Vα+θ

: Vα+θ → Vα

}
are isometries ∀ θ > 0, ∀ α ∈ R,

(see, for example, [35, p. 148]).
We record further properties of Rθ and important consequences in the

next lemma.

Lemma 2.2. Let θ > 0, α ∈ R, V := L2(R+, U) and let Rθ be as in (2.9).
Define

qθ(t) :=
1

Γ(θ)
tθe−t 1

t
1(0,∞)(t) ∀ t > 0.

The following statements hold.

(i) qθ ∈ L1(R+) with L(qθ)(s) = 1/(1 + s)θ for all s ∈ C0 and

Rθz = qθ ∗ z ∀ z ∈ V. (2.10)

(ii) Rθ ∈ B(Vα,Vα+θ) and is right-shift invariant. Moreover, Rθ is invertible
and R−1

θ is a right-shift invariant operator in B(Vα+θ,Vα).

Now additionally assume that α ≥ 0.

(iii) Vα =̇ Hα
00(R+, U) and so Rθ and R−1

θ in statement (ii) satisfy

Rθ ∈ B(Hα
00(R+, U),Hα+θ

00 (R+, U))

and R−1
θ ∈ B(Hα+θ

00 (R+, U),Hα
00(R+, U)).

Proof. The first two claims in statement (i) are routinely established. To
minimise disruption to the current section, the proof of equality (2.10) is
relegated to Appendix 4.2.

The bulk of the argument for statement (ii) has been given in the text
preceding the statement of the lemma. Right-shift invariance of Rθ follows
from the convolution representation in (2.10). The Laplace transform of qθ

equals s �→ (1 + s)−θ and has inverse s �→ q−θ(s) = (1 + s)θ—a polynomially
bounded holomorphic function on C0. Therefore, by [46, Theorem 6.5-1, p.
121], the inverse Laplace transform of q−θ equals a distribution with sup-
port in [0,∞) and, moreover, the inverse of Rθ equals convolution with this
distribution. Convolution with such a distribution is right-shift invariant.

That statement (iii) holds when β = m ∈ Z+ does not require interpo-
lation spaces and follows as

Vm = D((I − A)m) = D(Am) = Hm
0 (R+, U).
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To prove statement (iii) for non-integer exponent, let θ ∈ (0, 1). We seek to
apply [17, Theorem 6.6.9] to I − A. For which purpose, routine calculations
show that (−∞, 0) is contained in the resolvent set of I − A and

sup
t>0

‖t(tI + (I − A))−1‖ < ∞,

hence I −A is sectorial by [17, Proposition 2.2.1]. Furthermore, I +(I −A) =
2I − A is injective and A is skew-adjoint, meaning Re〈Av, v〉 = 0 for all
v ∈ D(A). Thus,

Re〈(I + (I − A))v, v〉 = 2‖v‖2 ≥ 0 ∀ v ∈ D(A),

and so I +(I −A) is m-accretive, as in [17, Appendix C.7], as also closed with
dense range. We conclude that I + (I − A) has bounded imaginary powers
by [17, Corollary 7.1.8]. The hypotheses of [17, Theorem 6.6.9] are satisfied,
and this result yields that

D((I − A)θ) =
[V,D(I − A)

]
θ
.

However, D(I − A) = D(A), and so

D((I − A)θ) =
[
L2(R+, U),H1

0 (R+, U)
]
θ

=: Hθ
00(R+, U),

where the final equality follows from (2.3). Since Vθ = D((I − A)θ) and θ
was arbitrary, the claim is proven for θ ∈ (0, 1). Applying the construction to
the restriction of A to an operator Hm+1

0 (R+, U) → Hm
0 (R+, U), the claim is

proven for any θ > 0. The claimed boundedness of Rθ and R−1
θ follows from

the equalities Vγ =̇ Hγ
00(R+, U) when γ ≥ 0. �

3. Representations and Regularity of Right-Shift Invariant
Operators on Half-Line Bessel Potential Spaces

Lemmas 2.2 facilitates the following theorem—a generalisation of
Theorem 1.1. Recall that Vθ denotes the fractional power spaces from Sect. 2.4,
with V0 = V = L2(R+, U).

Theorem 3.1. Let α, β ∈ R be given. The following statements hold.

(1) If G : Vα → Vβ is a bounded, linear, right-shift invariant operator, then
there exists a unique holomorphic function G : C0 → B(U) such that
G = L−1MGL and

s �→ (1 + s)β−αG(s) ∈ H∞(B(U)). (3.1)

(2) If a holomorphic function G : C0 → B(U) satisfies (3.1), then G :=
L−1MGL defines a bounded, linear, right-shift invariant operator Vα →
Vβ.

In either case, we have that∥∥G
∥∥

B(Vα,Vβ)
=

∥∥s �→ (1 + s)β−αG(s)
∥∥

H∞ . (3.2)
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Proof. To prove statement (1), an application of Lemma 2.2 yields that
R−1

β GRα is a bounded, linear, right-shift invariant operator on L2(R+, U).
Therefore, by Theorem 1.1, there exists a function H ∈ H∞(B(U)) such that

R−1
β GRαz = L−1MHLz,

for all z ∈ L2(R+, U). As convolution operators, we have

Rα = L−1M(1+s)−αL and Rβ = L−1M(1+s)−βL. (3.3)

Consequently,

L−1M(1+s)βLGL−1M(1+s)−αL = L−1MHL,

which, under simplification and rearrangement, gives

LGL−1 = M(1+s)−βMHM(1+s)α .

As a composition of multiplication operators, we infer that G = L−1MGL,
where

G(s) := (1 + s)−βH(s)(1 + s)α, (3.4)

which is evidently holomorphic C0 → B(U). Moreover, from the equality (3.4)
we conclude the desired boundedness property, namely,

s �→ (1 + s)β−αG(s) = H(s) ∈ H∞(B(U)).

The proof of statement (2) follows along the same lines by reversing the
above steps, and using that multiplication by a H∞(B(U)) function induces
a bounded, linear, right-shift invariant operator on L2(R+, U), again by The-
orem 1.1.

To establish the equality of norms (3.2), we invoke the corresponding
equality of norms in Theorem 1.1, which here gives that∥∥R−1

β GRα

∥∥
B(L2(R+,U))

=
∥∥H∥∥

H∞

Simplifying both sides of the above, and using that R−1
β and Rα are isometric

isomorphisms completes the proof. �

The following corollary is a special case of Theorem 3.1 wherein α =
β ≥ 0, also using the identification Vβ =̇ Hβ

00(R+, U) from Lemma 2.2.

Corollary 3.2. If G : L2(R+, U) → L2(R+, U) is bounded, linear and right-
shift invariant, then G maps Hβ

00(R+, U) continuously into itself for all β ≥ 0.

Corollary 3.2 may be interpreted in terms of compressions of bounded,
linear and right-shift invariant operators on L2(R+, U). Analogously, it fol-
lows that a bounded, linear and right-shift invariant operator on Hβ

00(R+, U)
uniquely dilates to a bounded operator on Hγ

00(R+, U) for all γ ∈ [0, β).
By (3.2), the operator norm of these dilations are equal.

We proceed to investigate boundedness properties of linear, right-shift
invariant operators Hα(R+, U) → Hβ(R+, U). In light of

Hγ
00(R+, U) � Hγ(R+, U) for γ ≥ 1/2,

we should not expect any such boundedness properties to follow from Theo-
rem 3.1 alone.
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We introduce a construction that we shall repeatedly exploit. Since
Hγ

00(R+, U) is a closed subspace of the Hilbert space Hγ(R+, U) for all γ ≥ 0,
the direct sum decomposition

Hγ(R+, U) = Hγ
00(R+, U) +̇ Wγ , (3.5)

is valid for some subspace Wγ of Hγ(R+, U). When γ is not a “borderline”
value, it is straightforward to construct a subspace Wγ such that (3.5) holds in
terms of a family of so-called Bohl functions, and this construction comprises
the content of Lemma 3.3 below. For which purpose, for k ∈ N define gk :
R+ → C by

gk(t) :=
tk−1e−t

(k − 1)!
∀ t ∈ R+. (3.6)

It is clear that gk ∈ Hγ(R+) for all k ∈ N and all γ ≥ 0 and, further, that

g
(r)
k (0) =

{ 1 r = k − 1
0 r < k − 1

∀ k ∈ N. (3.7)

Lemma 3.3. Let γ ≥ 0, γ 
∈ 1/2 + Z+ be given. Define Wγ by

Wγ := {0} 0 < γ <
1
2
,

Wγ :=
〈
gkv : v ∈ V, k ∈ {1, . . . , argmin�∈N|γ − �|}〉 γ >

1
2
,

⎫⎪⎬
⎪⎭ (3.8)

(linear span of vectors in second equality). Then Wγ satisfies (3.5) and, for
all u ∈ Hγ(R+, U), there exists a unique ξu ∈ Wγ such that

u =
(
u − ξu

)
+ ξu ∈ Hγ

00(R+, V ) + Wγ ,

and the mapping

Hγ(R+, U) → (Wγ , ‖ · ‖Hκ(R+,U)), u �→ ξu,

is continuous for all κ ≥ 0.

In words, a suitable Wγ is a linear space of scalar-valued Bohl-functions,
with dimension tied to γ, tensored with the Hilbert space U .

Proof of Lemma 3.3. Let γ ≥ 0 be such that γ 
∈ 1/2 + Z+. If γ ∈ (0, 1/2),
then the claim follows immediately from (2.5).

The proof for γ > 1/2 relies on (2.8), recall, that Hγ
00(R+, U) =̇ Hγ

0

(R+, U) for these γ, and the description (2.6) of Hγ
0 (R+, V ). Let m :=

argmin�∈N|γ − �| ≥ 1 and define

ξu :=
m∑

k=1

dkgk ∀ u ∈ Hγ(R+, U),

where the dk ∈ U are to be determined. In fact, the dk should be chosen so
that

0 = u(r)(0) −
m∑

k=1

dkg
(r)
k (0) ∀ r ∈ {0, 1, . . . ,m − 1}, (3.9)
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which is m equations in the m unknowns dk.
Taking r = 0 gives d1 = u(0), and taking r = 1 gives d2 = u′(0)+u(0).

More generally, we iterate over increasing r ∈ {0, 1, . . . ,m − 1} and use the
expression for g

(r)
k (0) in (3.7) to note that

0 = u(r)(0) −
r+1∑
k=1

dkg
(r)
k (0) = u(r)(0) −

r∑
k=1

dkg
(r)
k (0) − dr+1,

which determines dr+1 in terms of u(r)(0) and (the known) dk for k ≤ r.
Therefore, we have shown that

u = (u − ξu) + ξu ∈ Hγ
00(R+, U) + Wγ ∀ u ∈ Hγ(R+, U),

so that

Hγ(R+, U) = Hγ
00(R+, U) + Wγ .

If v ∈ Hγ
00(R+, V ) ∩ Wγ , then v = ξv and, in light of the unique solution

to (3.9), it follows that d1 = · · · = dm = 0. Hence, v = 0 and the inter-
section is trivial. We conclude that Wγ as in (3.8) satisfies the direct sum
decomposition (3.5).

The map u �→ ξu is evidently linear, and so to prove the claimed conti-
nuity, we invoke the trace bound (2.4) to majorise

∥∥∥
m∑

k=1

dkgk

∥∥∥
Hκ(R+,U)

≤
m∑

k=1

|dk|U‖gk‖Hκ(R+)

�
( m∑

k=1

‖gk‖Hκ(R+)

)
max

0≤k≤m−1

{|u(k)(0)|U
}

� ‖u‖Hγ(R+,U) ,

for any κ > 0, as required. �

Remark 3.4. Observe that Wγ in (3.8) is finite dimensional when U is. How-
ever, even in the scalar-valued U = C setting, the second expression for Wγ

in (3.8) cannot satisfy (3.5) when γ ∈ 1/2 + Z+. Indeed, Lemma 3.3 shows
that the inclusion operator Hγ

00(R
+) → Hγ(R+) (which is injective) is Fred-

holm for γ ≥ 0 such that γ 
∈ 1/2+Z+. The theory of Fredholm operators on
interpolation spaces, particularly [14, Corollary 5.2], gives that the dimen-
sion of the cokernel is continuous in γ, and is also integer valued. However,
Lemma 3.3 further shows that the dimension of the cokernel jumps by one
across values in 1/2 + Z+, and hence the inclusion operator is not Fredholm
at these points. In particular, the quotient space Hγ(R+)/Hγ

00(R
+) must be

infinite dimensional at these values of γ. We do not have an explicit char-
acterisation of a direct sum decomposition (3.5) at these borderline values.
Consequently, the approach we adopt below is not currently applicable for
those borderline values.

In overview, Theorem 3.1 provides a characterisation of bounded, linear,
right-shift invariant functions between Hγ

00(R+, U) spaces. In light of the
direct-sum decomposition (3.5), a necessary and sufficient condition for such
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operators to be bounded between Hγ(R+, U) spaces is that they behave nicely
on Wγ . Characterising this last property essentially comprises the content of
the next theorem, which is our main result.

Theorem 3.5. Let α, β ≥ 0 with α, β 
∈ 1/2 + Z+, and let

G = L−1MGL : L2(R+, U) → Vβ−α,

denote a bounded, linear, right-shift invariant operator, for some holomor-
phic G : C0 → B(U). The following statements are equivalent.
(1) The restriction of G to Hα(R+, U) maps continuously into Hβ(R+, U) ;
(2) G(g1v) ∈ Hβ(R+, U) for all v ∈ U ;
(3) Let m = argmin�∈Z+

|β − �|.
(1) If m = 0, then

s �→ (1 + s)β G(s)
1 + s

∈ H2
str(B(U)). (3.10a)

(2) If m ≥ 1, then there exist Dk ∈ B(U) for k ∈ {1, . . . , m} such that

s �→ (1 + s)β
(G(s)

1 + s
−

m∑
k=1

Dk

(1 + s)k

)
∈ H2

str(B(U)). (3.10b)

If any of the above statements hold with β > 1/2, then D1 in (3.10b) is given
by D1v = G(g1v)(0) for all v ∈ U .

Some remarks on Theorem 3.5 are in order. Recall that g1 = t �→ e−t is
the first Bohl function in (3.6). Next, G in the statement of Theorem 3.5 must
necessarily be of the form L−1MGL for G as stated by Theorem 3.1 and,
by the same result, G satisfies the H∞-condition (3.1). Additionally, since α
and β are not borderline values, we may by (2.8) view G as a bounded linear
operator Hα

0 (R+, U) → Hβ
0 (R+, U).

Observe that α does not appear in statements (2) and (3), which place
constraints on β only. We reconcile this by recalling that the H∞-condition
(3.1) places a constraint on α − β which, of course, when combined with a
condition on β is equivalent to a condition on the pair α and β.

If α ∈ (0, 1/2), then (3.1) is sufficient for the strong H2-condition (3.10a)
as

s �→ (1 + s)β G(s)
1 + s

= (1 + s)β−αG(s) × 1
(1 + s)1−α

,

is the product of an H∞ and H2 function, and hence a forteriori belongs
to H2

str. Alternatively, for α ∈ (0, 1/2), we have that

Hα
00(R+, U) =̇ Hα

0 (R+, U) =̇ Hα(R+, U),

from (2.5), and hence the result follows immediately from Theorem 3.1.
The proof of Theorem 3.5 is aided by the following technical lemmas.

Lemma 3.6. Let α, β ≥ 0 and let G : L2(R+, U) → Vβ−α denote a bounded,
linear, right-shift invariant operator. It follows that G(g1v) ∈ Hβ(R+, U) for
all v ∈ U if, and only if, v �→ G(g1v) ∈ B(U,Hβ(R+, U)).
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Proof. Sufficiency is immediate. For necessity, assume that G(g1v) ∈ Hβ

(R+, U) for all v ∈ U . We seek to apply the Closed Graph Theorem. For
which purpose, let vn → 0 in U and G(g1v) → y in Hβ(R+, U) as n → ∞.
Since

g1vn → 0 in L2(R+, U) as n → ∞,

we conclude from the assumed continuity of G that

G(g1vn) → 0 in Vβ−αas n → ∞.

Therefore, we reach the desired conclusion that y = 0, as the inclusion
map Hβ(R+, U) ↪→ Vβ−α is injective. �

The next lemma may be summarised in words as: if G(g1v) has certain
regularity properties, then these are inherited by G(gkv) for all k ∈ N. Recall
that gk denotes the k-th Bohl function defined in (3.6).

Lemma 3.7. Let α, β ≥ 0 and let G : L2(R+, U) → Vβ−α denote a bounded,
linear, right-shift invariant operator. The following statements are equivalent.
(i) v �→ G(g1v) ∈ B(U,Hβ(R+, U)) ;
(ii) v �→ G(gkv) ∈ B(U,Hk−1+β(R+, U)) for all k ∈ N.

Proof. That statement (ii) implies statement (i) is clear by taking k = 1.
Conversely, assume that statement (i) holds. We use an induction argument.
The base case is true by hypothesis. For the inductive step, assume that
statement (ii) holds for some k − 1 ∈ N. An elementary calculation shows
that gk satisfies the ordinary differential equation

g′
k = −gk + gk−1.

Right-shift invariance of G gives that
1
τ

(
στG − G

)
=

1
τ

(
G(στ ) − G

)
= G

(στ − I

τ

)
∀ τ > 0.

Therefore, in light of the continuity of G from Theorem 3.1, taking the
limit τ ↘ 0 above, it follows that

(G(u))′ = G(u′) ∀ u ∈ Vα+γ+1(U), ∀ γ ≥ 0,

as an equality holding in Vβ−α−γ . Thus,

G(gkv)′ = G(g′
kv) = −G(gkv) + G(gk−1v) ∀ v ∈ U. (3.11)

By induction hypothesis,

v �→ G(gk−1v) ∈ B(U,Hk−2+β(R+, U)), (3.12)

and, in light of (3.7) and the description (2.6),

gkv ∈ Hγ
00(R+, U) ∀ v ∈ U, ∀ γ ∈ (k − 3/2, k − 1/2),

(where recall that k ≥ 2). Therefore, the continuity of G from Theorem 3.1
and the above inclusion combine to give

v �→ G(gkv) ∈ B(U,Vγ+β−α) ∀ γ ∈ (k − 3/2, k − 1/2). (3.13)

In light of (3.11), (3.12) and (3.13), we see that G(gk) has one more unit
of regularity than that claimed in (3.13), provided k − 2 + β > γ + β − α.
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Bootstrapping this argument, which replaces γ + β − α by γ + β − α + 1 and
so on, eventually gives that

v �→ G(gkv) ∈ B(
U,H(k−2+β)+1(R+, U)

)
= B(

U,Hk−1+β(R+, U)
)
,

as required. �

Proof of Theorem 3.5. We prove that statements (1) and (2) are equivalent,
and that statements (2) and (3) are equivalent. We shall use throughout that,
by Lemma 3.6, statement (2) is equivalent to v �→ G(g1v) ∈ B(U,Hβ(R+, U)).

Assume first that statement (1) holds. That statement (2) is true is clear,
as g1v ∈ Hγ(R+, U) for all γ ≥ 0. Conversely, suppose that statement (2)
holds. Since α 
∈ Z+ +1/2, the conjunction of Lemmas 3.3 and 3.7 gives that
the restriction of G to Wα is continuous Wα → Hβ(R+, U). The hypotheses
of Theorem 3.1 are satisfied by assumption, and this result gives that the
restriction of G to Hα

00(R+, U) is continuous

Hα
00(R+, U) → Hβ

00(R+, U) ↪→ Hβ(R+, U).

Statement (1) now follows from these ingredients and the direct sum decom-
position (3.5).

We next prove the equivalence of statements (2) and (3). Suppose first
that statement (2) holds. If m = 0, then

v �→ G(g1v) ∈ B(U,Hβ
00(R+, U)),

and thus Lemma 2.2 yields that

v �→ R−1
β G(g1v) ∈ B(U,L2(R+, U)). (3.14)

If m ≥ 1, then appealing to the decomposition in Lemma 3.3, we write

ξG(g1v) =
m∑

k=1

dkgk ∈ Wβ so that G(g1v) − ξG(g1v) ∈ Hβ
00(R+, U),

for some dk ∈ U . The proof of Lemma 3.3 shows that dk are linear com-
binations of G(g1v)(j)(0), and hence v �→ dk := Dkv ∈ B(U) by the trace
estimate (2.4). In particular, taking r = 0 in (3.9) gives the claimed equal-
ity d1 = G(g1v)(0) =: D1v for all v ∈ U . Putting the above together, we
conclude that

v �→ G(g1v) −
m∑

k=0

Dkvgk ∈ B(U,Hβ
00(R+, U)),

and thus

v �→ R−1
β

(
G(g1v) −

m∑
k=0

Dkvgk

)
∈ B(U,L2(R+, U)). (3.15)

In either case for m, an application of Lemma 2.1 yields that the Laplace
transform of the above belongs to B(U,H2(C0, U)). Computing the Laplace
transforms of (3.14) and (3.15) gives exactly (3.10). The converse argument
reverses these steps. �
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Remark 3.8. Developing the trail of thought from Remark 3.4, imposing the
notation of Theorem 3.5 but relaxing the requirements that α, β 
∈ 1/2+Z+,
it follows that statement (1) is further equivalent to
(2∗) the restriction of G to Wα as in (3.5) maps continuously into Hβ(R+, U).
However, in the absence of a description of Wγ at the borderline values, this
result is not constructive.

3.1. A Convolution Characterisation

Here we provide a further characterisation of bounded, linear, right-shift
invariant operators Hβ(R+, U) → Hβ(R+, U) in terms of so-called strong
convolution operators, and appears as Proposition 3.10 below. For which
purpose, the following lemma describes operators defined in terms of convo-
lution with elements in B(U,L2(R+, U)). The present formulation is inspired
by [35, Theorem A.3.5], [26, Lemma F.2.2] and [26, Lemma F.3.7].

Lemma 3.9. Let h ∈ B(U,L2(R+, U)). There exists a unique bounded, linear,
right-shift invariant operator H : L1(R+, U) → L2(R+, U) with the property
that

(
H(uv)

)
(t) =

∫ t

0

h(u(t − s)v)(s) ds =
∫ t

0

(hv)(s)u(t − s) ds

∀ t ≥ 0, ∀ v ∈ U, ∀ u ∈ L1(R+, C). (3.16)

We write Hu = h ∗ u for all u ∈ L1(R+, U). Moreover, the following state-
ments hold.
(i) H(g1v) = h∗ (g1v) = (hv)∗g1 belongs to H1

0 (R+, U) for all v ∈ U , with(
H(g1v)

)′ = hv − H(g1v) and ‖H(g1v)‖H1(R+) � |v|U ∀ v ∈ U.

(ii) Suppose that G ∈ H2
str(B(U)) ∩ H∞(B(U)), and set h := L−1(G) ∈

B(U,L2(R+, U)). Then the restriction of H to L1 ∩L2 has a unique ex-
tension to a bounded, linear, right-shift invariant operator on L2(R+, U).
We write this extension as Heu = h ∗e u for all u ∈ L2(R+, U).

(iii) Let G = L−1MGL with G ∈ H∞(B(U)). If G ∈ H2
str(B(U)), then Gu =

h ∗e u, where h = L−1(G) and ∗e is as described in statement (ii).

A sufficient condition for h ∈ B(U,L2(R+, U)) is that h : R+ → B(U)
is Bochner- (also known as uniformly) or even just strongly-measurable and
‖h‖B(U) ∈ L2(R+). However, as demonstrated in [35, Remark A.3.6, p. 742],
not every h ∈ B(U,L2(R+, U)) as in Lemma 3.9 is of this form when U is
infinite dimensional.

By way of further commentary, recall the so-called strong L2-space,
denoted L2

str(R+,B(U)), which comprises all f : R+ → B(U) such that fv ∈
L2(R+, U) for all v ∈ U and

‖f‖L2
str(R+) := sup

‖v‖≤1

‖t �→ f(t)v‖L2(R+,U) < ∞.

This space can be identified as a subspace of B(U,L2(R+, U)), and a version
of Lemma 3.9 applies for h ∈ L2

str(R+,B(U)). Moreover,

L2
str(R+,B(U)) =̇ L2(R+,B(U)),
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when U is finite dimensional; see [26, Lemma F.1.5, p. 1003]. Strong Lp-spaces
are studied in some generality in [26, Appendix F].

However, the main motivation for our present focus on B(U,L2(R+, U)),
rather than the strong L2-space is that this latter space is not isomorphic
to H2

str(B(U)) under the Laplace transform, that is, the corresponding ver-
sion of Lemma 2.1 does not hold here. This claim is proven in [26, Example
F.3.6, p. 1020]. As the proof of Theorem 3.5 illustrates, to obtain various
characterisations of boundedness properties of bounded, linear, right-shift
invariant operators, we make essential use of spaces which are isomorphic
under the Laplace transform.

We use the notation ∗e for convenience, even though it is an extension
of convolution in the sense of (3.16). For brevity, we write h ∗e in place
of u �→ h ∗e u.

Proof. The first claim is taken from [35, Theorem A.3.5] in the case p = 2.
Statement (1) is routine to prove in light of the equality (3.16), namely,

that

H(g1v) =
∫ t

0

(hv)(s)e−(t−s) ds ∀ t ≥ 0, ∀ v ∈ U.

The estimate for ‖H(g1v)‖H1(R+) follows from the expression for (H(g1v))′

and as

‖hv‖L2(R+) � |v|U and ‖H(g1v)‖L2(R+) � ‖g1v‖L1(R+) � |v|U ∀ v ∈ U.

To prove statement (ii), we first estimate that

‖Hu‖L2(R+) � ‖L(Hu)‖H2(U) = ‖s �→ G(s)L(u)(s)‖H2(U)

≤ ‖G‖H∞‖L(u)‖H2(U)

� ‖u‖L2(R+) ∀ u ∈ L1(R+, U) ∩ L2(R+, U). (3.17)

Here we have used that

L(Hu)(s) = G(s)L(u)(s) ∀ s ∈ C0, ∀ u ∈ L1(R+, U),

which follows from [35, Theorem A.3.5]. Since L1(R+, U)∩L2(R+, U) is dense
in L2(R+, U), the estimate (3.17) gives the unique claimed extension.

Finally, statement (iii) follows from statement (ii), noting that L(Gu) =
L(Heu) for all u ∈ L2(R+, U). Hence, G = He. �

Proposition 3.10. Imposing the notation of Theorem 3.5, in the situation
that α = β > 0, each statement is additionally equivalent to:

(4a) if β ∈ (0, 1/2), then there exists h ∈ B(U,L2(R+, U)) such that G =
R−1

1−βh ∗e ;
(4b) if β ∈ (1/2, 1), then there exist D ∈ B(U) and h ∈ B(U,L2(R+, U))

such that G − D = R−1
1−βh ∗e ;

(4c) if β ≥ 1, then there exist D ∈ B(U) and h ∈ B(U,Hβ−1(R+, U)) such
that G − D = h ∗e .
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For the above proposition to be true, note that the claimed condi-
tions must each be equivalent to G(g1v) ∈ Hβ(R+, U) for all v ∈ U . Ob-
serve that h ∗ (g1v) ∈ H1

0 (R+, U) when h ∈ B(U,L2(R+, U)). In particu-
lar, when β < 1 as is the case in statements (4a) and (4b), then R−1

1−β is
the inverse of convolution with an L1-function, and so is convolution with
some distribution. This (in general) removes regularity. Although we have
presented the case β > 1 differently above, essentially the opposite is hap-
pening, as now R−1

1−β is convolution with a function, which is smoothing. We
note that G and G − D in statements (4a) and (4b), respectively, are still
strong convolution operators.

Proof of Proposition 3.10. Assume first that any of the statements of Theo-
rem 3.5 hold.

The proofs of statements (4a) and (4b) are similar. We give the latter,
as the former essentially has the same calculations only with D = 0. On the
one hand, as statement (3) holds with m = 1, it follows that

s �→ (1 + s)β−1
(
G(s) − D

) ∈ H2
str(B(U)).

On the other hand, as α = β it follows from Theorem 3.1 that G ∈ H∞(B(U))
and, therefore, that

s �→ (1 + s)β−1
(
G(s) − D

) ∈ H∞(B(U)).

Define G0 := L−1MG−DL = G − D ∈ B(L2(R+, U)). An application of
statement (iii) of Lemma 3.9 to G0 yields that

R1−β

(
G − D

)
= R1−βG0 = h∗e,

for some h ∈ B(U,L2(R+, U)), and where we have invoked the property
of R1−β as a multiplication operator as in (3.3). The desired expression in
statement (4b) is obtained.

In the case that β ≥ 1, the conclusions of Theorem 3.5 are valid with β
replaced by 1. Hence, the above argument, with R0 = I, now gives again
the desired expression for G0 = G − D. Here it remains to see that h ∈
B(U,Hβ−1(R+, U)) when β > 1. The operator G0 clearly also satisfies state-
ment (2), as well as G0(g1v) = h ∗ g1v. Therefore, rearranging the first equa-
tion in statement (i) of Lemma 3.9 gives that

hv =
(
G0(g1v)

)′ + G0(g1v) ∀ v ∈ U. (3.18)

Viewed as a linear operator in v, the right hand side of the above belongs
to B(U,Hβ−1(R+, U)) by hypothesis, and hence so does the left hand side.
We have proven statement (4c).

Conversely, assume that statement (4a), (4b) or (4c) holds. Where ap-
plicable, set G0 := G−D. We seek to prove that statement (2) of Theorem 3.5
holds. Since

R−1
1−β = L−1M(1+s)1−βL,

it follows from Theorem 3.1 with α = 1 that R−1
1−β is a bounded linear oper-

ator H1
00(R+, U) → Hβ

00(R+, U). Statement (i) of Lemma 3.9 gives that h ∗
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(g1v) ∈ H1
0 (R+, U) =̇ H1

00(R+, U), and hence

G0(g1v) = R−1
1−βh ∗ (g1v) ∈ Hβ

0 (R+, U) ∀ v ∈ U. (3.19)

If β ∈ (0, 1/2), then Hβ
0 (R+, U) =̇ Hβ(R+, U) by (2.5). We now see from (3.19)

that G = G0 has the desired regularity. If β ∈ (1/2, 1), then from (3.19) we
now conclude that G(g1v) = G0(g1v) + D(g1v) has the required regularity.

For β ≥ 1, we again consider G0(g1v) = h ∗ g1v. Rearranging (3.18)
yields that (

G0(g1v)
)′ = −G0(g1v) + hv ∀ v ∈ U.

The initial value problem

y′ = −y + hv, y(0) = 0,

has unique solution y = g1 ∗ hv ∈ Hβ(R+, U), as hv ∈ Hβ−1(R+, U) by
hypothesis. Therefore, G0(g1v) = y ∈ Hβ(R+, U), which proves statement
(2). �

Our final result of the section is a corollary in the special case that α =
β = m ∈ N, so that the focal object is a bounded, linear, right-shift invariant
operator on L2(R+, U) or, equivalently, a symbol in H∞(B(U)). This setting
is particularly relevant in the study of well-posed linear control systems.

Corollary 3.11. Let G denote a bounded, linear, right-shift invariant opera-
tor L2(R+, U) → L2(R+, U), with G as in Theorem 1.1, and fix m ∈ N. The
following statements are equivalent.
(1) The restriction of G to Hm(R+, U) maps continuously into Hm(R+, U) ;
(2) G(g1v) ∈ Hm(R+, U) for all v ∈ U ;
(3) There exist Dk ∈ B(U) for k ∈ {1, . . . , m} such that

s �→ (1 + s)m
(G(s)

1 + s
−

m∑
k=1

Dk

(1 + s)k

)
∈ H2

str(B(U)); (3.20)

(4) There exist D ∈ B(U) and h ∈ B(U,Hm−1(R+, U)) such that G − D =
h∗e.
When m = 1, the condition (3.20) in statement (3) simplifies to G −

D1 ∈ H2
str(B(U)). This condition plays a key role in [27, Theorem 1.2], in the

context of so-called Pritchard–Salamon systems, as we discuss in Sect. 4.2.
Each of the statements of Corollary 3.11 are in turn equivalent to

Hm(R+, U) being an invariant subspace for G as in the statement of the
result. The non-trivial claim here of course is that invariance of a one-
dimensional subspace of Hm(R+, U) is sufficient for the invariance of the
whole subspace. We note that if Hm(R+, U) is an invariant subspace for G,
then G|Hm(R+) is continuous in the stronger norm of Hm(R+, U) by the
Closed Graph Theorem.

The next remark addresses the situation of linear, right-shift invariant
operators mapping between vector-valued function spaces with distinct spaces
of function values. Hitherto, a single Hilbert space has been used as a space
of values in both the domain and codomain, and has always been denoted U .
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Remark 3.12. The results of the present paper may easily be extended to
operators of the form L−1MGL for holomorphic G : C0 → B(U, Y ) and
complex Hilbert space Y 
= U . Specifically, a trick is used which considers
the block operators on the product space U × Y given by

G̃ :=
(

0 0
G 0

)
: C0 → B(U × Y ) and G̃ := L−1MG̃L.

The results of the present paper are applied to G̃ and G̃, and then G and G
are recovered by restriction and projection. The current choice of U = Y has
been made primarily to simplify the presentation.

3.2. Connections to Other Results

We conclude the section by describing how our results relate to others in
the literature. The paper [29] considers bounded, linear, right-shift invariant
operators X → X where X denotes a Banach space of locally integrable
scalar-valued functions on R+ with certain properties. The main result of
[29] is [29, Theorem 2.1] which shows that such operators are necessarily of
the form L−1MGL for some symbol G ∈ H∞(C) or, in words, “represented
by transfer functions”. The authors of [29] acknowledge that the methods
used only apply to spaces X with zero boundary conditions at zero (where
these evaluations make sense). As such there is some overlap between [29,
Theorem 2.1] and Theorem 3.1, although neither result truly generalises the
other. In particular, whilst the Banach space X includes spaces of functions
other than Hα

00(R+, U) for α ≥ 0, Theorem 3.1 considers operators between
different (vector-valued) spaces, allows for the situation that the symbol G
is unbounded, and that G maps between spaces of distributions (Vα, Vβ with
negative exponent). The argumentation used presently and that of [29] is
very different, and so these works are complementary in this sense as well.

There is some minor overlap between Theorem 3.5 and [30, Theorem
6]. However, in the proof of [30, Theorem 6] it is erroneously claimed that
C∞

0 (R+, U) is dense in Wα,2(R+, U) for all α > 0. Consequently, no condition
of the form (3.10) appears in [30, Theorem 6]. In fact, the authors of [30]
essentially prove another version of Theorem 3.1 where β = 0, although from
a state-space perspective.

Regarding connections to Proposition 3.10, we comment that convolu-
tion operators are well-studied objects, from a variety of perspectives with a
vast literature. We relate the present work to three papers. First, the work
[8], which builds on the earlier paper [45], considers convolution operators

(Gu)(t) =
∫ t

0

h(t − τ)u(τ) dτ, t > 0, (3.21)

(mostly) in the setting that the Laplace transform of h : R+ → R
l×m is a

rational matrix function. The main results of [8] are summarised in [8, Table
1] and derive exact formulae, or computable upper bounds, for the norm of G
viewed as an operator Lp1

(
R+, (Rm, |·|r1)

) → Lp2
(
R+, (Rl, |·|r2)

)
spaces for

1 ≤ pi, ri ≤ ∞, where |·|r denotes the Euclidean r-norm.
Second, the work [18] also considers convolution operators of the

form (3.21) but with operator-valued kernels h : R+ → B(U, Y ) for Hilbert
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spaces U and Y . Two problems are studied related to characterising when
G is a bounded operator between the weighted spaces L2(R+, w(s) ds, U) →
L2(R+,m(s) ds, Y ). Here the terms w and m are weighting functions and,
roughly, either the weight pair (w,m), or the kernel h, is fixed, and the prob-
lem is to characterise the other quantity which ensures boundedness of G.
Positive results are given in both cases.

Third, the paper [13] broadly addresses solvability properties of Wiener-
Hopf equations of the form

H(φ)(t) := φ(t) +
∫ ∞

0

k(t − τ)φ(τ) dτ = f(t) t ∈ R+, (3.22)

on various function spaces on R+, for given right-hand side f and ker-
nel k ∈ L1(R). There are some differences to the situation considered pre-
sented, namely that k is not assumed to be supported in R+ and so H need
not be causal (and so necessarily need not be right-shift invariant). However,
when k is supported on R+, then H is a linear, right-shift invariant operator
of the form H−I = k∗. In order to address solvability of (3.22) in [13, Section
6], the author in [13, Section 4] considers a number of boundedness properties
of H between various function spaces, with results [13, Theorems 11, 13, 14],
the latter of which addresses boundedness between Bessel potential spaces.

A direct comparison between Proposition 3.10 and [13, Theorem 14] is
difficult owing to the different assumptions imposed but, in the case that p =
2 and the kernel k is supported on R+, Proposition 3.10 extends [13, Theorem
14] to the vector-valued setting and kernels not in L1, and, in some sense,
provides a converse. The overlap between our results and those of [8] or [18] is
minimal, as these works both consider convolution operators between various
(possibly weighted) Lebesgue spaces, and neither consider their continuity
between Bessel-potential spaces, which is the main focus of the present work.

4. Examples

We illustrate our results through four examples. As mentioned, one moti-
vation for the present study comes from mathematical systems and con-
trol theory, where bounded, linear, right-shift invariant operators are called
input–output maps of linear, time-invariant control systems, and the associ-
ated symbol (should such a multiplication representation exist) is called the
transfer function. Consequently, our examples are drawn from this field, al-
though the presentation is elementary, does not require extensive knowledge
of the area, and the examples are primarily intended to illustrate the theory.

There are a number of frameworks for extracting a transfer function
from so-called infinite-dimensional linear control systems, such as those spec-
ified by partial- or delay-differential equations. These frameworks are broadly
equivalent, and we refer the reader to, for example [16, Remark 7.6], as well
[20, Chapter 12] and [47] for more information. For brevity, in the following
examples we do not give extensive derivations of transfer functions.

Example 4.1. For fixed τ > 0 the right-shift semigroup G = στ is evidently
a bounded, linear, right-shift invariant operator L2(R+) → L2(R+). It is
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intuitively clear that the conclusions of Theorem 3.1 with U = C and2

B(U) = C should be true here — namely that στ has bounded compres-
sions Hβ

00(R+) → Hβ
00(R+) for all β ≥ 0. Indeed, στ is essentially “the identity

map delayed by τ and with zeros inserted beforehand”, which preserves all
zero boundary conditions and the regularity of a function. To formalise these
observations, Theorem 3.1 is applicable with α = β ≥ 0 as G = L−1MGL
with s �→ G(s) = e−sτ which belongs to H∞(C). We note that α = β is
optimal insomuch as s �→ (1 + s)γe−sτ 
∈ H∞(C) for any γ > 0.

To address the action of στ on functions with non-zero boundary con-
ditions, observe that t �→ G(g1v)(t) is discontinuous at t = τ , so does not
belong to Hβ(R+) for any β > 1/2. In particular, Theorem 3.5 yields that G
does not restrict to a bounded operator Hβ(R+) → Hβ(R+) for such β. For
completeness, we note that D1 in statement (3) of Theorem 3.5 (with m = 1)
equals zero, and G − D1 = G 
∈ H2(C0).

Consider next the controlled ordinary differential equation

ż(t) = −z(t) + u(t), t > 0, z(0) = 0,

with input u, and delayed output y = στz (based on [12, Example 7.1.1]),
with resulting input–output map G1 given by G1u = στ (g1 ∗ u) for all u ∈
L2(R+). The discontinuity in Gu introduced by the delay has been removed
as G1(g1v) is identically zero on a neighbourhood of zero, and hence infinitely
differentiable on the same neighbourhood, with(

G1(g1)
)(k−1)(0) = 0 ∀ k ∈ N.

Consequently, if condition (3.10b) is to hold, then it must hold with Dk = 0
for every k as, recall, the proof of Theorem 3.5 showed that the v �→ Dkv are
linear combinations of

(
G1(g1)

)(j)(0).
The transfer function G1 is given by s �→ e−sτ/(s + 1) on C0 which

satisfies

s �→ (1 + s)mG1(s)
1 + s

∈ H2(C0),

for m ∈ Z+ if, and only if, m = 1. We conclude that the compressions of G1

to Hm(R+) → Hm(R+) are bounded when m = 1 and are not bounded
when m ≥ 2.

Example 4.2. The controlled and observed neutral delay differential equation

ẇ − σrẇ = −aw + u, y = w,

is considered in [24]. Here, as usual, u and y denote the input and output
variables, respectively, and a, r > 0 are positive parameters. We have U = C.
The associated transfer function G is given by

G(s) =
1

s(1 − e−rs) + a
.

It is clear that G ∈ H∞
α for all α > 0. Furthermore, it follows from [24,

Propositions 3.1 and 3.4] that:

2We identify a scalar in C with a linear operator C → C.
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• there exists an open set Ω containing the closed right-half complex plane
such that G is holomorphic on Ω ;

• G is not bounded on C0, that is, G 
∈ H∞(C0), and ;
• s �→ G(s)/(1 + s) is bounded on C0.

The final property ensures that condition (3.1) in Theorem 3.1 applies with α−
β = 1. Consequently, for example, the associated input–output operator G is
continuous H1

0 (R+) → L2(R+).
We claim that s �→ G(s)/(1 + s) ∈ H2(C0), so that statement (3) of

Theorem 3.5 holds with β = m = 1 and D1 = 0. Thus, by that result, it
follows that G is continuous as an operator H1(R+) → L2(R+). For which
purpose, we compute that∣∣∣G(iω)

1 + iω

∣∣∣2 =
1

(1 + ω2)
(
(a − ω sin(rω))2 + ω2(1 − cos(rω))2

) ∀ ω ∈ R.

Since for all a, r > 0, there exists b > 0 such that

(a − ω sin(rω))2 + ω2(1 − cos(rω))2 ≥ b ∀ ω ∈ R,

we conclude that ∣∣∣∣G(iω)
1 + iω

∣∣∣∣
2

≤ 2b

(1 + ω)2
∀ ω ∈ R.

Therefore, s �→ G(s)/(1 + s) ∈ H2(C0), as required.

Example 4.3. Consider the ubiquitous finite-dimensional controlled and ob-
served system of linear ordinary differential equations

ẋ = Ax + Bu, x(0) = x0, y = Cx + Du, (4.1)

with input, state and output denoted u, x and y, respectively. The input, state
and output spaces are U = C

p, X = C
n and U , respectively, and A, B, C

and D may be identified with compatibly-sized complex matrices. Let h :
R+ → C

p×p be given by t �→ h(t) := CeAtB. With this notation, we have
that the input–output map G associated with (4.1) satisfies

Gu = h ∗ u + Du.

If every eigenvalue of A has negative real part, then, in light of

t �→ h(k)(t) = CeAtAkB ∈ L2(R+,B(U)) ⊆ B(U,L2(R+, U)) ∀ k ∈ N0,

it follows from Proposition 3.10 that the restriction of G to Hm(R+, U) maps
continuously into Hm(R+, U) for every m ∈ N.

Consider now the case that (4.1) denotes (at least formally) an infinite-
dimensional linear control system, where A : X ⊇ D(A) → X generates an
exponentially stable C0-semigroup. If C is bounded, meaning C ∈ B(X,U),
and AkB ∈ B(U,X) for k ∈ Z+, then the restriction of G to Hm(R+, U)
maps continuously into Hm(R+, U) for m = k + 1. We refer the reader to
[28] for a number of examples of controlled and observed partial differential
equations where the condition AkB ∈ B(U,X) is satisfied.

Our final example considers an operator-valued transfer function based
on [16, Example 7.14].
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Example 4.4. Consider the following controlled and observed heat equation
on the unit square Ω := (0, 1) × (0, 1):

∂w

∂t
(x1, x2, t) =

∂2w

∂x2
1

(x1, x2, t) +
∂2w

∂x2
2

(x1, x2, t),

w(0, x2, t) = 0, w(1, x2, t) = 0,

∂w

∂x2
(x1, 0, t) = 0,

∂w

∂x2
(x1, 1, t) = u(x1, t),

y(x1, t) = w(x1, κ, t) ,

where κ ∈ [0, 1) is a parameter. Here we choose as input and output
space U := L2(0, 1). The input u represents a Neumann boundary control
term along the top edge of the square. The measurement y is observation of w
along the line parallel to the x1-axis at x2-position κ and, as may be shown
by arguments analogous to those used in [6], the mapping U → U , u �→ y un-
der zero initial conditions is well-defined and continuous. We refer the reader
to [6] for more details of controlled and observed heat equations on bounded
domains in R

n.
Routine modifications to the calculation in [16, Example 7.14] show that

the transfer function G is given by

G(s)v =
∞∑

n=1

hn(s;κ)γn(v)
√

2 sin(nπ ·) ∀ v ∈ L2(0, 1),

where γn are the Fourier sine coefficients of v, namely,

γn(v) =
√

2〈v, sin(nπ ·)〉L2(0,1) =
√

2
∫ 1

0

v(x1) sin(nπx1)Fx1 ∀ n ∈ N,

and

hn(s;κ) :=
cosh(κ

√
s + n2π2)√

s + n2π2 sinh(
√

s + n2π2)
∀ s ∈ C0, ∀ n ∈ N.

The function G belongs to H∞(C0,B(U)) and so, by Theorem 3.1 with α =
β ≥ 0, the associated input–output operator u �→ y = G(u) maps Hα

00(R+, U)
continuously into itself.

We investigate the extent to which the hypotheses of Theorem 3.5 hold.
For which purpose, for ω ∈ R, set zn :=

√
iω + n2π2 
= 0 for all n ∈ N, which

further satisfies

zn = (ω2 + n4π4)
1
4 ei arg(zn) and Re zn = (ω2 + n4π4)

1
4 cos(arg(zn)).

Straightforward hyperbolic identities give that

cosh(κzn) = cosh(κ Re zn) cos(κ Im zn) + i sinh(κ Re zn) sin(κ Im zn)

and |cosh(κzn)|2 = cosh2(κ Re zn) − sin2(κ Im zn) ≤ cosh2(κ Re zn).

Similarly,

sinh(zn) = sinh(Re zn) cos(Im zn) + i cosh(Re zn) sin(Im zn)

and |sinh(zn)|2 = sinh2(Re zn) + sin2(Im zn) ≥ sinh2(Re zn).
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Therefore,∣∣∣∣cosh(κzn)
sinh(zn)

∣∣∣∣ ≤ cosh(κ Re zn)
sinh(Re zn)

� exp
(
(κ − 1)(ω2 + n4π4)

1
4 cos(arg(zn))

)

≤ exp
(
(1/

√
2)(κ − 1)(ω2 + n4π4)

1
4
) ∀ ω ∈ R, ∀ n ∈ N ,

where we have used that κ−1 < 0 and arg(zn) ∈ (−π/4, π/4). Consequently,

|hn(iω;κ)| � 1
nπ

exp
(
(1/

√
2)(κ − 1)(ω2 + n4π4)

1
4
) ∀ ω ∈ R, ∀ n ∈ N.

Noting that
√

ω + nπ � (ω2 + n4π4)
1
4 ∀ ω ∈ R+, ω ≥ n2π2,

we estimate that

∫
R

|(1 + iω)β hn(iω, κ)

1 + iω
|2 dω

� 2

(nπ)2

( ∫ n2π2

0

+

∫ ∞

n2π2

)
(1 + ω2)β−1 exp

(√
2(κ − 1)(ω2+n4π4)

1
4
)
dω

� 2

(nπ)2
e

√
2(κ−1)nπ

( ∫ n2π2

0

(1 + ω2)β−1 dω+

∫ ∞

n2π2
(1 + ω2)k−1e2c1(κ−1)

√
ω dω

)

≤ qβ(nπ)

2n
e

√
2(κ−1)nπ ∀ n ∈ N, ∀ β ≥ 0 ,

where qβ and c1 are a certain polynomial and positive constant, respectively.
Hence, we have shown that

‖s �→ (1 + s)β−1hn(s;κ)‖H2 �
√

qβ(nπ)
n

e(
√
2/2)(κ−1)nπ ∀ n ∈ N, ∀ β ≥ 0.

Evidently, by the Cauchy-Schwarz inequality

|γn(v)| = |
√

2〈v, sin(nπ ·)〉L2(0,1)| � ‖v‖L2(0,1)‖ sin(nπ ·)‖L2(0,1)

� ‖v‖L2(0,1) ∀ n ∈ N.

Consequently, invoking the above inequalities, we have that

‖s �→ (1 + s)β−1G(s)v‖H2(L2(0,1))

≤
∞∑

n=1

‖s �→ (1 + s)β−1hn(s;κ)‖H2 ‖γn(v)
√

2 sin(nπ ·)‖L2(0,1)

� ‖v‖L2(0,1)

∞∑
n=1

√
qβ(nπ)

n
e(

√
2/2)(κ−1)nπ � ‖v‖L2(0,1) ∀ v ∈ L2(0, 1) ,

where we have crucially used that κ ∈ [0, 1) so that the infinite series involv-
ing qβ is summable. We conclude that s �→ (1 + s)β−1G(s) ∈ H2

str(B(U))
and, therefore, from Theorem 3.5 with Dk = 0 for every k ∈ N that the
associated input–output map G maps Hβ(R+, U) continuously into itself for
all β ≥ 0. The above analysis crucially relies on the inequality κ < 1 and fails
when κ = 1. Indeed, in this case it can be shown that G does not continuously
map Hβ(R+, U) into itself for β > 1/2.



IEOT Right-Shift Invariant Operators Page 27 of 34    19 

4.1. Regular Linear Systems

Here we connect the results of Sect. 3 to the concept of regular systems in
mathematical systems and control theory. Regularity in this context was
originally defined as a property of G, but a number of characterisations are
available in terms of the associated function G as in Theorem 1.1. We recall
from [35, Definition 5.6.1, p. 318] that weak, strong or uniform regularity is
equivalent to the existence of the following limit

lim
s∈R+
s→∞

G(s),

in the weak, strong or uniform topology, respectively. The above concept
of regularity dates back to [41], and was further developed in, for example,
[43] (see also the discussion on [43, p. 833]) and [36]. A number of further
refinements of regularity appear in [26, Definition 6.2.3], including that of
uniform line-regularity, namely that G(s) has a limit in the uniform topology
as Re(s) → ∞. As noted in [26, Section 6.2, Notes], the concept of uniform
line-regularity dates much further back to the 1970s in [19, p. 155], although
the terminology regular is not used there.

In all cases, the resulting linear operator D defined by

Du := lim
s∈R+
s→∞

G(s)u ∀ u ∈ U,

is called the feedthrough operator, and belongs to B(U) by the uniform bound-
edness principle. To quote [35, p. 318]: “Most of the systems appearing in
practice seem to be regular.” An example of a non-regular function may be
found in [37, Example 8.4], viz. the function G : C0 → C given by

G(s) = cos(log(s2 + 1)),

where log is defined to be analytic on the split plane C\(−∞, 0]. Furthermore,
[35, Example 5.7.4] contains a function which is weakly regular, but not
strongly regular, and one which is strongly regular, but not uniformly regular.

Our next result relates the regularity property to additional continuity
properties of bounded, linear, right-shift invariant operators on L2(R+, U).
It follows from Corollary 3.11.

Corollary 4.5. Suppose that G = L−1MGL : L2(R+, U) → L2(R+, U) is
a bounded, linear, right-shift invariant operator, with G ∈ H∞(B(U)). The
following statements are equivalent.

(i) The restriction of G to H1(R+, U) maps continuously into H1(R+, U) ;
(ii) G is uniformly line-regular with feedthrough D and G−D ∈ H2

str(B(U)) ;
(iii) G is weakly regular with feedthrough D and G − D ∈ H2

str(B(U)).

In each case the feedthrough operator is equal to u �→ G(g1u)(0).

Proof. If statement (i) holds, then an application of Corollary 3.11 yields
that G − D = h∗e for some D ∈ B(U) and h ∈ B(U,L2(R+, U)). It now
follows from [26, Proposition 6.3.4, (a3)] with p = 2 that G − D is uniformly
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line-regular with zero feedthrough, and hence G is trivially uniformly line-
regular with feedthrough D. Further, invoking Lemma 3.9, we compute that

G(g1u)(0) = (h ∗ (g1u))(0) + D(g1u)(0) = Du ∀ u ∈ U,

giving the desired formula for D. Theorem 3.5 gives that D1v := G(g1v)(0) =
Dv is such that G − D1 ∈ H2

str(B(U)), as required.
That statement (ii) implies statement (iii) is trivial, and that state-

ment (iii) implies statement (i) follows from Corollary 3.11 with m = 1 and
D1 = D. �

An interesting facet of Corollary 4.5 is that the combination of weak
regularity with feedthrough D and G − D ∈ H2

str(B(U)) is sufficient for the
a priori stronger properties of uniformly line-regular with feedthrough D
and G−D ∈ H2

str(B(U)). Observe further that regularity is a necessary con-
dition for G to map H1(R+, U) continuously into itself. As a complementary
approach, in Appendix 4.2 we provide an elementary proof of the regularity
aspect in the implication (i) ⇒ (ii) which does not require the results of [26].

4.2. Pritchard–Salamon Systems

Pritchard–Salamon (PS) systems are a class of infinite-dimensional state-
space linear control systems, dating back to [31,32]. At their heart are three
operators (A,B,C) and Hilbert spaces W ↪→ V with A generating a C0-
semigroup on V , which restricts to a semigroup on W . The input map B
is bounded U → V , and induces a bounded controllability operator from
inputs in L2((0, t), U) → W for some (hence all) t > 0. The output map C
is bounded W → U , and induces a bounded observability operator V →
L2((0, t), U) for some (hence all) t > 0. These admissibility concepts are dual
to one another. Nowadays, Pritchard–Salamon systems have been generalised
to well-posed linear systems and system nodes, but they were popular for
a number of years and arguably helped pave the way for the contemporary
abstract functional-analytic understanding of infinite-dimensional state-space
linear control systems. They also have a number of appealing properties, such
as being closed under feedback. Studies of Pritchard–Salamon systems include
[10], [34] and [44] and, for more historical information, we refer the reader to
[35, Section 2.9] as well as, for example, [9] and [11].

By appealing to the combination of our results and those of [27], we are
able to provide a criterion for when the conclusions of Proposition 3.10 hold
with β = 1. For convenience, we recall [27, Theorem 1.2], the main result
of that paper, presented with the notation used currently. The symbol D
below refers to a feedthrough operator. For brevity, we refer to [27] for the
remaining definitions.

Theorem 4.6. (Theorem 1.2, [27]) Let γ ∈ R and let G : Cγ → B(U) be
holomorphic. The following statements hold.

(1) G has a realisation with a bounded input operator and D = 0 if, and only
if, there exists α ∈ R such that s �→ G(s)u ∈ H2(Cα, U) for all u ∈ U .
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(2) G has a realisation with a bounded output operator and D = 0 if, and
only if, there exists α ∈ R such that s �→ G(s)∗y ∈ H2(Cα, U) for
all y ∈ U .

(3) G has a realisation as a Pritchard–Salamon system with D = 0 if, and
only if, the conditions in both statements (1) and (2) hold.

The Closed Graph Theorem yields that the above condition s �→ G(s)u
∈ H2(C0, U) for all u ∈ U (here α = 0) is equivalent to G ∈ H2

str(B(U))—see
also [27, Lemma 3.1]. The analogous conclusion applies to the condition s �→
G(s)∗y ∈ H2(C0, U) for all y ∈ U . The conditions (1) and (2) above are
equivalent when U is finite-dimensional, but are not equivalent in general.

Presently, the upshot of the above result is that, in light of Corol-
lary 3.11, the bounded, linear, right-shift invariant operators G :
L2(R+, U) → L2(R+, U) with restrictions to H1(R+, U) that map continu-
ously into H1(R+, U) with finite-dimensional U are precisely those that may
be realised by an input–output stable Pritchard–Salamon system. In partic-
ular, this immediately provides numerous examples and counterexamples of
where Corollary 3.11 applies; for example, those discussed in [9] and [11].
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Step 1. We claim that for all z ∈ D(A) and all t > 0, it is true that
(∫ ∞

0

τθ(e(A−I)τz)
dτ

τ

)
(t) =

∫ ∞

0

τθ(e(A−I)τz)(t)
dτ

τ
. (A.1)

Observe that the integral on the left-hand side takes place in the abstract
space V. It is then evaluated at t to give an element of U (at least almost
everywhere). The integral on the right-hand side already takes place in U . To
establish (A.1), let t > 0 and let Tt : D(A) → U denote the evaluation map,
that is, Ttx := x(t) for all x ∈ D(A) = H1

0 (R+, U) with usual Sobolev norm,
so that Tt is continuous by (2.4). For z ∈ D(A), define fz : R+ → D(A) by

fz(τ) = τθe−τ 1
τ

1(0,∞)(τ)eAτz ∀ τ > 0,

which is well-defined as D(A) is eAτ -invariant.
Then, as Tt ∈ B(D(A), U), it follows from the commutativity of bounded

linear operators and the Bochner integral (see, for example [4, Proposition
1.1.6, p. 11]), that

Tt

∫ ∞

0

fz(τ) dτ =
∫ ∞

0

Ttfz(τ) dτ,

which, when unravelled, yields (A.1).
Step 2. In light of (A.1) we have that

Rθz = qθ ∗ z ∀ z ∈ D(A), (A.2)

as invoking Step 1 gives that

(Rθz)(t) =
1

Γ(θ)

∫ ∞

0

τθ(e(A−I)τz)(t)
dτ

τ
=

1
Γ(θ)

∫ ∞

0

τθe−τ (στz)(t)
dτ

τ

=
1

Γ(θ)

∫ τ

0

τθe−τz(t − τ)
dτ

τ

= (qθ ∗ z)(t) ∀ z ∈ D(A), ∀ t > 0.

Step 3. We claim that the equality (A.2) extends to all z ∈ V = L2(R+, U).
For which purpose, we use a density and continuity argument. Let z ∈ V and
let (zn)n with zn ∈ D(A) for all n ∈ N satisfy ‖zn − z‖L2(R+) → 0 as n → ∞.
On the one hand, since qθ ∈ L1(R+), by Young’s inequality

‖qθ ∗ z−qθ ∗ zn‖L2(R+)=‖qθ ∗ (z−zn)‖L2(R+)≤‖qθ‖L1(R+)‖z−zn‖L2(R+)→0,

as n → ∞. On the other hand, since Rθ is an isometry V → Vθ, we have that

‖Rθz − Rθzn‖Vθ
= ‖z − zn‖L2(R+) → 0 as n → ∞.

In light of the continuous embedding Vθ ↪→ V0 = V as θ > 0, it follows that

‖Rθz − Rθzn‖L2(R+) � ‖Rθz − Rθzn‖Vθ
→ 0 as n → ∞.

Therefore, the conjunction of the above two limits yields that

Rθz
L2(R+,U)←−−−−−− Rθzn = qθ ∗ zn

L2(R+,U)−−−−−−→ qθ ∗ z as n → ∞,

and so the claimed extension of (A.2) to V holds, completing the proof. �
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Appendix B: An Alternative Argument for Corollary 4.5

The following argument invokes the Laplace transform estimate below, an
immediate consequence of Hölder’s inequality: for f ∈ L2(R+, U) and all
s ∈ C0

|L(f)(s)|U ≤ ∥∥s �→ e−st
∥∥

L2(R+)
· ‖f‖L2(R+) =

1√
2Re (s)

‖f‖L2(R+).

(B.1)

Assume that statement (i) holds. Then G(g1v) ∈ H1(R+, U) and v �→ Dv :=
G(g1v)(0) ∈ B(U) is evidently linear, and is continuous by the trace esti-
mate (2.4), which here gives

|Du|U = |G(g1u)(0)|U ≤ ‖G(g1u)‖H1(R+) � ‖g1u‖H1(R+) � |u|U ∀ u ∈ U.

Therefore, on the one hand, by (B.1)

0 ≤ ∣∣L(
(G(g1v))′)(s)∣∣

U
≤ 1√

2Re (s)

∥∥(
G(g1v)

)′∥∥
L2(R+)

� 1√
2Re (s)

∥∥g1‖H1(R+)|v|U ∀ s ∈ C0. (B.2)

On the other hand, by Theorem 1.1 and usual Laplace transform identities

L(
(G(g1v))′)(s) = sL(G(g1v))(s) − G(g1v)(0) =

s

1 + s
G(s)v − G(g1v)(0)

= G(s)v − 1
1 + s

G(s)v − G(g1v)(0) ∀ s ∈ C0. (B.3)

Rearranging (B.3) gives

G(s)v − G(g1v)(0) =
1

1 + s
G(s)v + L(

(G(g1v))′)(s) ∀ s ∈ C0.

Since G ∈ H∞(B(U)), we have that
∣∣∣G(s)v

1 + s

∣∣∣
U

≤ ‖G‖H∞
1

|1 + s| |v|U � 1
1 + Re (s)

|v|U ∀ s ∈ C0. (B.4)

In light of (B.2) and (B.4), we estimate that

‖G(s) − D‖B(U) = sup
v∈U
v �=0

|G(s)v − G(g1v)(0)|U
|v|U

� 1
1 + Re (s)

+
1√

2Re (s)

∥∥g1‖H1(R+) . (B.5)

The right hand side of (B.5) converges to zero as Re (s) → ∞, whence G is
uniformly line-regular.
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