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Abstract 10 

Implementing effective environmental management strategies requires a comprehensive 11 

understanding of the chemical composition of environmental pollutants, particularly in complex 12 

mixtures. Utilizing innovative analytical techniques, such as high-resolution mass spectrometry and 13 

predictive retention index models, can provide valuable insights into the molecular structures of 14 

environmental contaminants. Liquid Chromatography-High-Resolution Mass Spectrometry is a 15 

powerful tool for the identification of isomeric structures in complex samples. However, there are some 16 

limitations that can prevent accurate isomeric structure identification, particularly in cases where the 17 

isomers have similar mass and fragmentation patterns. Liquid chromatographic retention, determined 18 

by the size, shape, and polarity of the analyte and its interactions with the stationary phase, contains 19 

valuable 3D structural information that is vastly underutilized. Therefore, a predictive retention index 20 

model is developed which is transferrable to LC-HRMS systems and can assist in the structural 21 

elucidation of unknowns. The approach is currently restricted to carbon, hydrogen, and oxygen-based 22 

molecules <500 g mol-1. The methodology facilitates the acceptance of accurate structural formulas and 23 

the exclusion of erroneous hypothetical structural representations by leveraging retention time 24 

estimations, thereby providing a permissible tolerance range for a given elemental composition and 25 

experimental retention time. This approach serves as a proof of concept for the development of a 26 

Quantitative Structure-Retention Relationship model using a generic gradient LC approach. The use of 27 

a widely used reversed-phase (U)HPLC column and a relatively large set of training (101) and test 28 

compounds (14) demonstrates the feasibility and potential applicability of this approach for predicting 29 

the retention behaviour of compounds in complex mixtures. By providing a standard operating 30 

procedure, this approach can be easily replicated and applied to various analytical challenges, further 31 

supporting its potential for broader implementation. 32 

 33 

KEYWORDS: HPLC-HRMS, Quantitative Structure- Retention Relationship model, In silico 34 

prediction, Retention index, Structural elucidation.  35 
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1. Introduction 36 

Since the onset of this millennium, the ability of high-resolution mass spectrometry to elucidate the 37 

elemental composition of unknown organic molecules has been steadily increasing  (Boiteau et al., 38 

2018; De Vijlder et al., 2018). The high mass accuracy in combination with isotope distribution 39 

assessment allows now the minimization of a vast number of possible corresponding elemental 40 

compositions down to a manageable few. The correct atomic composition can then in many cases fairly 41 

easily be obtained based on chemical reasonability, stability, and relevance (De Vijlder et al., 2018). 42 

Additional information can and should then also be obtained via MS/MS fragmentation analysis 43 

whereby the elemental composition of the daughter ions should be a logical fragment of the parent 44 

compound. Because the current instrumentation certainly allows successful implementation of this 45 

protocol up to molecular weights of at least 500 g mol-1, the more challenging part of the identification 46 

process is largely to be found in the subsequent structural elucidation problem (Boiteau et al., 2018; De 47 

Vijlder et al., 2018; Liu et al., 2019). 48 

The identification of previously known molecules via LC-MS can be performed if authentic 49 

standards are available and/or if they appear in accessible public databases (such as METLIN, 50 

PubChem, and Mass Bank) (Domingo-Almenara et al., 2019; Horai et al., 2010; Wen et al., 2018a). 51 

The ensuing identification is then also strongly reliant on mass fragmentography, which can, due to the 52 

selectivity of HRMS, allow for the correct identification of the molecule or type of molecule. While 53 

this does not exclude the possibility of misidentification due to positional isomer confusion, typically it 54 

can be  distinguished via chromatographic retention or by ion mobility measurements, whereby further 55 

increased reliability is obtained when the information from different separation modes or conditions is 56 

combined (Eugster et al., 2014; Kumari et al., 2011). 57 

By contrast, de novo structural elucidation of a priori truly unknown compounds, non-annotated in 58 

databases, but for which an elemental composition can be obtained by HRMS, is more problematic 59 

(Kumari et al., 2011). This would be typically solved via the combined implementation of various 60 

spectroscopic techniques with a particularly strong emphasis on nuclear magnetic resonance 61 

spectroscopy (NMR). NMR remains, however, limited due to the at least > 0.1 mg analyte quantity and 62 
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purity prerequisites, compelling the implementation of multi-repetitive tedious and costly preparative 63 

compound fractionation and purification protocols, prior to the spectroscopy (Witting and Böcker, 64 

2020). While this is a well-nurtured approach in chemical or drug development processes, preparative 65 

compound purification in life- or environmental sciences are often not feasible due to the too small 66 

concentrations and high sample complexity usually involved (Szucs et al., 2021). Additionally, while 67 

NMR is the most powerful tool for structural elucidation, the expert nature of the techniques and the 68 

lack of specialist-free fully automated structural elucidations algorithms add other hurdles to the 69 

challenge (Witting and Böcker, 2020). Another problem with the analysis of unknown solutes is that 70 

often they are confused with known related compounds in the databases, whereby obtaining definitive 71 

proof of the actual structure is difficult. Therefore, there is a strong need for the development of 72 

additional tools allowing to gather structural information of solutes, also when they appear at trace 73 

levels that are only detectable by mass spectrometry (Aalizadeh et al., 2021; Boiteau et al., 2018; Cui 74 

et al., 2018; Liu et al., 2019). 75 

While the available chromatographic retention information in LC-MS data has been for a long time 76 

underused for such purposes, its increased implementation is now gradually emerging to assist in this 77 

elucidation process (Gritti, 2023; Zheng et al., 2018). The main challenge therein is that unfortunately 78 

chromatographic retention as it is today cannot directly be related to the unambiguous and discrete 79 

molecular characteristics hence leading to specific, “easily” understandable, and predictable behavior. 80 

This comprising the fragmentation, absorbance or excitation processes observed in mass spectrometry, 81 

UV/IR or NMR spectroscopy, respectively (Aalizadeh et al., 2021; Sagandykova and Buszewski, 2021). 82 

On the other hand, the retention mechanism of e.g., the reversed phase LC mode is intuitively 83 

understood by any chemist.  Because also the purity of the stationary phases has concomitantly been 84 

improving over time this has led to the many contemporary robust reversed phase methods ubiquitously 85 

used in the strictest validated analytical environments (Haddad et al., 2021a). Hence, the composition, 86 

structural formula, shape and e.g., the solvation of a molecular structure are all reflected through a 87 

particular resulting retention time. The latter can therefore also be considered a molecular characteristic 88 

which offers a powerful tool in the search for the structural formula for a given elemental composition.  89 
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Much research has been performed with respect to the prediction of molecular retention time for a 90 

given structural formula for applications such as swifter method development, suitable column selection 91 

and for enhanced compound elucidation within specific compound classes (Meshref et al., 2020; 92 

Randazzo et al., 2016a; Wen et al., 2018b; Xu et al., 2023). Various retention models were thereby 93 

introduced for Reversed-Phase Liquid Chromatography (RPLC), Hydrophilic Interaction Liquid 94 

Chromatography (HILIC), and Ion Chromatography (IC) separation modes (Haddad et al., 2021a; 95 

Randazzo et al., 2016a). Such algorithms are also increasingly successfully implemented for the 96 

prediction of the retention time of a range of specific groups of analytes, such as lipids (Aicheler et al., 97 

2015; Zheng et al., 2018), steroids (Randazzo et al., 2016a), peptides (Bouwmeester et al., 2021; Dorfer 98 

et al., 2018), proteins (Palmblad et al., 2004), and more. 99 

When predicting the chromatographic behavior, the Quantitative Structure-Retention Relationship 100 

(QSRR) modelling has often offered a propitious solution in building a promising predictive model 101 

(Kaliszan, 1993; Wen et al., 2018a). These mathematical models characterize retention relationships of 102 

molecules and have been applied for the aforementioned chromatographic separation techniques, for 103 

more than four decades (Amos et al., 2018). In these studies, the model is often used to predict the 104 

retention of a target group of compounds to acquire either faster identification and/or greater 105 

comprehension of the retention mechanism (Héberger, 2007). The first step involves collecting the 106 

experimental retention time of a known training set, such as to be able to build a predictive model that 107 

relates retention to the most relevant and broadly applicable molecular characteristics of the training set 108 

(Haddad et al., 2021b). Such methods have also been used to predict a variety of molecular 109 

characteristics such as retention time (RT) (Ma et al., 2018; Randazzo et al., 2016b; Szucs et al., 2021; 110 

Wen et al., 2019; Yang et al., 2021), retention factor (k) (Ruggieri et al., 2005a), logKw (Codesido et 111 

al., 2019), logP (Datta et al., 2021), logD (Köhler et al., 2023), and ability to permeate through 112 

biological membranes (Russo et al., 2017). Recently the QSRR approach has been increasingly used to 113 

prove or disprove the composition of classes of molecules characterized by their modular nature such 114 

as peptides or lipids in combination with HRMS/MS (Bouwmeester et al., 2021; Dorfer et al., 2018; 115 

Hutchins et al., 2018; Ma et al., 2018; Tiwary et al., 2019). The challenges which have thus far refrained 116 
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this approach from becoming universally applicable or broadly applied are multifaceted and appear 117 

mainly related to standardization and transferability.  118 

On the one hand, unfortunately, much QSRR work has also often been performed on RPLC columns 119 

or with chromatographic conditions which are less broadly used. Additionally, the transferability of the 120 

resulting retention data to any HPLC instrument type is as important. Considering the notoriously 121 

difficult method transfer between different instruments or geographic locations, predictive QSRR 122 

models based on retention time or even retention factor are therefore also inherently limited (Haddad et 123 

al., 2021a). Additionally, the absence of easily accessible open source information and of fully 124 

transferable workflows has also been hindering the development of a gold standard for LC-HRMS based 125 

structural elucidation of unknown organic solutes for which an elemental composition has been 126 

obtained. Today high-resolution mass spectrometry offers a powerful tool for reasonably reliable 127 

prediction of the elemental composition of complete unknowns. Combinations with QSRR then allows 128 

translation of the latter into all possible hypothetical structural formulas, for which the corresponding 129 

predicted retention (time, factor, or index) can be compared with the experimental retention. This allows 130 

removing of a large number of impossible structural formulas for a given retention time.  131 

The proposed research aims to enhance the structural elucidation of unknown environmental solutes 132 

with a molecular weight of less than 500 g mol-1 (MW<500 g mol-1) that contain carbon, hydrogen, or 133 

oxygen atoms. To achieve this, the study presents a novel approach that uniquely combines HRMS and 134 

retention information to build a predictive Chromatographic Retention Index Model (ChromaRIM). The 135 

transferability of the strategy is maximized through the translation of the retention information into 136 

retention indices (RI) on one of the most used stationary and mobile phase combinations, with a gradient 137 

spanning the entire elution range. The methodology is tested with known and unknown organic solutes 138 

of wastewater treatment relevance. 139 

2. Experimental 140 

2.1 Chemicals and reagents 141 

HPLC grade acetonitrile (MeCN), methanol (MeOH), and ethanol (EtOH) were obtained from 142 

Sigma–Aldrich (Steinheim, Germany). Milli-Q grade water (18.2 mΩ cm-1) was purified and deionized 143 
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in-house by a Milli-Q plus instrument from Millipore (Bedford, USA). Formic acid (FA), 99% purity, 144 

was supplied from Sigma–Aldrich (Steinheim, Germany). The 115 neat standard compounds (purity > 145 

98%) were obtained from TCI EUROPE N.V. (Zwijndrecht, Belgium) and Sigma–Aldrich (Steinheim, 146 

Germany). 147 

2.2 Sample preparation 148 

Stock solutions of training and test compounds were prepared in concentrations from 1-10 mg mL-149 

1 in MeCN, EtOH, and MeOH, depending on their solubility. Once the stock solutions were prepared, 150 

they were stored in the fridge or freezer (4 °C/ -18 °C). Standard working solutions were diluted to the 151 

concentration of 1-20 µg mL-1 in 60:40 (Milli-Q water: Organic solvent) and prepared on the day of 152 

analysis.  153 

2.3 Instrumentation and method development 154 

Chromatographic separation was performed on a 1200 series HPLC system (Agilent Technologies, 155 

Waldbronn, Germany). The system was constructed out of a 1200 binary pump equipped with a 1200 156 

degasser, a 1200 auto injector, and a 1200 variable wavelength detector (VWD) equipped with a 2 µL 157 

microflow cell.  RP-LC measurements were performed on a Kinetex Core-shell C18 2.6 µm, 150 x 2.1 158 

mm (Phenomenex, Torrance, CA, USA) with an optimal flow rate of 400 µL min-1. The latter was 159 

determined by measuring a reference test mixture isocratically 60:40 (Milli-Q: MeCN) at different flow 160 

rates allowing for plate numbers (N) > 27 000. The LC mobile phase, (A) Milli-Q grade water (18.2 161 

mΩ cm-1) and (B) MeCN, were both prepared with 0.1% of FA. Injection volume was 2 µL and the 162 

detection for all analytes was recorded at 210 nm, whereas for ketone reference mixture at 280 nm. The 163 

column temperature was kept at 30 °C during all analyses. To obtain the most general approach methods 164 

were operated from 5-95% (B) in 1) 10 min, 2) 20 min and 3) 40 min followed by re-equilibration with 165 

5% B for the next 10 min. To test the reproducibility and repeatability of the data, these 3 separation 166 

methods were performed under the above-listed conditions with random selection of 60 compounds, 167 

with differentiation in the linear gradient (Table S2). To generate the predictive model, method 2 was 168 

used for further calculations. Full MS (Section S7) was obtained using Q Exactive Orbitrap (Thermo 169 

Fisher Scientific). Scan range was 50-500 m/z, Automatic Gain Control (AGC) target was 1e6, 170 
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Maximum IT was set to 100 ms, and the resolution was 280 000. Detailed ESI parameters for positive 171 

and negative mode can be found in Table S10.  172 

2.4 Data collection and molecular descriptor selection 173 

The retention times of all compounds were measured in triplicate and intra- and inter-repeatability 174 

were calculated. Subsequently the corresponding RI were calculated according to Kovats RI method 175 

usually applied in gradient gas chromatography (Equation SE1). The structures of all compounds were 176 

transferred into a Simplified Molecular Input Line Entry System (SMILES) format using ChemDraw 177 

and the file was imported as such in the free (of charge) website “Online chemical database” to calculate 178 

molecular descriptors of choice using the tool DescriptorsCalculator. A total number of 1879 molecular 179 

descriptors were used comprising (2) ALogPS descriptors (Tetko et al., 2005; “Virtual Computational 180 

Chemistry Laboratory,” n.d.) and (1877) AlvaDesc v.2.0.14 (Mauri, 2020) from which (198) 2D 181 

AlvaDesc descriptors (including constitutional descriptors, Topological indices and P_VSA-like 182 

descriptors) and (1677) 3D AlvaDesc descriptors (comprising the following categories: Geometrical 183 

descriptors, 3D matrix-based descriptors, 3D autocorrelations, RDF descriptors, 3D-MoRSE 184 

descriptors, WHIM descriptors, GETAWAY descriptors, Randic molecular profiles, Functional group 185 

counts, 3D Atom Pairs, Charge descriptors, Molecular properties, CATS 3D, and WHALES). The value 186 

for each descriptor for each solute was calculate via AlvaDesc and exported to Excel.  187 

2.5 QSRR model validation 188 

The QSRR model was calculated using VEGA ZZ 3.2.1.33 (Pedretti et al., 2021), where the 189 

experimental RI was a dependent variable and molecular descriptors were the independent variables. 190 

Pre-processing of the data was done by normalization min-max feature scaling. The initial screening of 191 

descriptors involved two steps: evaluating zero variance and conducting a single-variable regression 192 

analysis (Danishuddin and Khan, 2016). Furthermore, by evaluating the variance inflation factor (VIF), 193 

collinear descriptors were recognized and those with VIF > 5.00 were disregarded. With the remaining 194 

37 descriptors the best models were calculated with both leave-one-out (LOO) cross-validation and by 195 

randomly splitting the dataset into 71:30 pairs of training and test sets in 10 trials. Lastly, the best QSRR 196 

model including 7 descriptors was used in the identification of unknown compounds by predicting their 197 
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RI. Internal validation was statistically determined with VEGA ZZ (Table S4-S7), and external 198 

validation was done by introducing 14 external test compounds. The assessment of applicability domain 199 

(AD) was presented in the Williams plot (Figure S4) using standardized residuals and leverages. For 200 

the unknowns for which the elemental composition was known, the list of possible structures with the 201 

same molecular masses was downloaded from ChemSpider in SDF format, after which molecular 202 

descriptors were calculated in the same way. All experimental chromatograms and graphs were 203 

processed using OriginPro 9.0 (OriginLab Corporation, Northampton, MA.). Simulation 204 

chromatograms were constructed with Microsoft Excel. 205 

3. Results and discussion  206 

This study explores the ability of reversed phase liquid chromatography to confirm or eliminate 207 

proposed structures for organic solutes based on their elemental composition. The first phase involves 208 

the development of a gradient HPLC methodology that is broadly applicable. This methodology has the 209 

potential to be established as a standard approach for chromatography-supported structural elucidation. 210 

All retention data is therefore translated towards RI, which are subsequently used to build a QSRR 211 

model allowing to accept or reject the retention of structures in a given molecular space. Emphasis is 212 

thereby not set on the ability to predict the retention times or indices for specific molecules in the best 213 

possible way, but on the capacity of the given model to provide useful and as reliable as possible 214 

exclusion or inclusion of structural predictions for C, H, O <500 g mol-1 compounds, when compared 215 

with the experimental retention of an unknown. In the second part of the work the implementation of 216 

the model is rigorously tested. It is thereby shown that it can be used to correctly accept or reject the 217 

many hypothetical structural formulas which can be drawn for a given elemental composition. Because 218 

the latter quickly leads to an astronomical number of possible structures, it is not realistic with 1D-219 

HPLC to pinpoint only the right structure, but it does offer the ability to remove a vast number of 220 

chromatographically impossible structures for a given experimental retention time and atomic 221 

composition of an unknown solute. Assuming a robust model is used one can then select the predicted 222 

structures, eluting in the range of the experimentally obtained one, as the most probable structures of 223 

the true unknown. The latter can then be further refined via conventional exploitation of the MS/HRMS 224 
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info. The current ChromaRIM approach can serve as platform method for this purpose but can also be 225 

considered as a first keystone method in multidimensional approaches whereby each added separation 226 

dimension further refines and restrict the search zone. 227 

The work is therefore subdivided into a development section comprising 1) the HPLC method 228 

selection/development, 2) selection of the compounds and of the charted molecular space and data 229 

collection 3) conversion to retention indices, 4) descriptor selection and attrition and 5) construction of 230 

the most suitable QSRR model. The model is then 6) internally assessed and also tested with known 231 

environmentally relevant solutes (for additional external consolidation) and finally 7) implemented 232 

using the developed model. The general strategy for both the development and implementation is 233 

represented in Figure 1A and B. 234 

 235 

Figure 1. Representation of the workflow applied to develop the model (a) and of the proposed 236 

implementation by the user (b). 237 

3.1 Selecting a generic RPLC method 238 

Proposing “the most” universal RPLC column and method is inherently ambiguous as this depends 239 

on the geography or field of application. In this current work the implementation of 240 

acetonitrile/water/0.1% formic acid gradients on a core-shell RPLC is proposed for this purpose. RPLC 241 

is selected because it is the most broadly applied separation mode (Majors, 2018). A benefit of this 242 

mode is that it can retain both neutral compounds as such, or ionized solutes via protonation (for acids) 243 

or ion pairing (for bases) when using MS-compatible acidic conditions (e.g., with 0.1% formic acid). 244 

Because the versatility of RPLC inherently leads to large differences in polarity of the possible analytes, 245 
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the use of gradients allowing both retention and elution of all solutes is essential. Acetonitrile is thereby 246 

the most suitable choice as it depicts high eluotropic strength, low viscosity, inertness, and excellent 247 

MS compatibility. A 150 x 2.1 mm ID core shell-based method was selected because it allows 248 

implementation in both HPLC and UHPLC while ensuring easy hyphenation to mass spectrometry. A 249 

core shell type of stationary phases was selected as such type is increasingly used, while being highly 250 

efficient at a lower pressure drop as compared to full porous particles (González-Ruiz et al., 2015; 251 

Tanaka and Mccalley, 2015). 252 

3.2 Selection of compounds as a function of the molecular space of interest 253 

Within a molecular space composed of only C, H and O up to 500 g mol-1 a large number of different 254 

elemental compositions can occur, leading to billions of possible corresponding structural formulas. 255 

Selection of the most representative data set is thereby inherently ambiguous and fraught with 256 

challenges. Emphasis was therefore set on the selection of compounds allowing broad coverage of the 257 

separation space. 258 

A variety of conventional CxHyOz organic solutes, pharmaceuticals, compounds of environmental 259 

concerns were selected for this purpose, such as to cover the molecular space in the best possible way. 260 

Van Krevelen plots and ALogPS_logP vs. MW representations were used for this (Figure 2, Table S1). 261 

The former illustrates a broad coverage in the amount of unsaturations (from 1 for the ketone ladder 262 

compounds to 11 for alizarin) while spanning a fair polarity range reflected through the O/C ratio range 263 

from 0 (for e.g., toluene) up to 0.6 for 2,5 dihydroxy-benzoic acid. A reflection of the polarity and hence 264 

water solubility is also obtained through visualization of the logP’s vs. the MW, where it can be seen 265 

that the logP’s range from close to 0 up to 7 and in this way e.g., outspan the range of typical 266 

pharmaceutical solutes. This also covers the applicability range of gradient RPLC as more polar solutes 267 

(saccharides) would barely be retained and more apolar solutes (petrochemical compounds) require 268 

stronger elution conditions with less generic solvents. Highly oxygenated or unstable species 269 

(saccharides, peroxides, or aldehydes) were avoided due to low compound retention or stability issues 270 

involved. Additionally, the expected C, H, O, functional groups were comprised in the dataset (alcohols, 271 

carboxylic groups, ketones, esters, aromatic, linear, and branched solutes, etc.). 272 
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 273 

Figure 2. Representation of the (a) Van Krevelen plots (H/C vs. O/C ratio’s) and of the (b) 274 

ALogPS_logP vs. MW of the 101 training set (black) and 14 test set (pink).  275 

3.3 Data collection and conversion to retention indices 276 

Although the purpose of this work was to introduce one broadly applicable gradient profile, the 277 

retention of 60 solutes was also measured (in triplicate) with 3 gradient profiles spanning the full elution 278 

range in 10, 20 or 40 min. (Section S2, Table S2). This to obtain insight in the robustness of the proposed 279 

method. The error on the repeatability of the retention times (n=3) was below 1% in all cases (and below 280 

0.1% for 53% of the triplicate analyses) and hence in line with the expectations for HPLC. 281 

Subsequently, the data was converted to RI. This such as to allow easier method transfer and instrument 282 

independent model implementation. Although, this still imposes usage of the same stationary and 283 

mobile phase and to some extent gradient slope, it does allow disconnection from the column 284 

dimensions, flow rate, instrument and e.g., connection types used (Rigano et al., 2018). While the use 285 

of linear RI is an established approach, strongly supporting the identification of unknowns in gas 286 

chromatography, the field of HPLC has been mostly hindered by a lack of standardization on this issue. 287 

The latter is partially driven by the aspect that the relationship between RI and the carbon number in 288 

HPLC is quasilinear and not rectilinear as in GC (Rigano et al., 2018; Smith et al., 1987; Weitzel et al., 289 

2011). Due the more complex elution process in RPLC in which the compound hydrophobicity is the 290 

main, but not the only, parameter controlling the elution, it is challenging, if not impossible, to identify 291 

a homologues series of detectable solutes generally depicting a completely linear behaviour over the 292 

entire elution range covered by the gradient. Problematic therein is that mere presence of a UV-293 
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chromophore or API-MS compatible functional group in the calibration series affects linearity and 294 

hence limits the broadest possible implementation. Depending on the application in RPLC different 295 

types of calibration series have been proposed including alkan-2-ones, alkyl aryl ketones or 1-296 

nitroalkenes (Baker, 1979; Baker and Ma, 1979; Bogusz and Aderjan, 1988; Bogusz and Wu, 1991; 297 

Smith, 1982). In this work the former ones are used (from 2-propanone to 2-dodecanone)(Baker and 298 

Ma, 1979). This because the alkyl aryl ketones comprise aromatic groups which are complicating the 299 

linearity between carbon number and retention.  Also, the nitroalkenes are only incrementally useful 300 

for mapping the very polar solutes, a zone in which a hydrophobicity based predictive model is anyhow 301 

less performant (Baker and Ma, 1979; Bogusz and Aderjan, 1988; Smith, 1982). Because there has also 302 

been a lack of standardization in terms of the equation to be used to calculate the RI, the RI vs. carbon 303 

number plots were constructed for the alkan-2-ones ladder according to the various possible 304 

linearization methods (Figure S1). While none of the plots allows complete linearity it can be seen that 305 

over 90% of the plot excellent linearity is obtained and that only in the very low, below 2-butanone, or 306 

high retention regime, above 2-nonanone, a deviation is occurring. Considering that additionally 307 

linearity is a preferential but not an essential prerequisite for the use of RI, this data illustrates that use 308 

of RI in the proposed strategy and in RPLC is certainly a viable approach. Because several equations 309 

led to the same degree of linearity and/or the conventional gradient Kovats retention index Equation 310 

SE1 led to the highest correlation coefficient (0.97), to simplify the approach the latter was consequently 311 

used (Arigò et al., 2021).  312 

3.4 Selection of a model and descriptor types 313 

A QSRR method allows linking the molecular properties of an analyte to the chromatographic 314 

retention under given stationary and mobile phase conditions. Both linear models such as multiple linear 315 

regression (MLR) or Partial Least Squares regressions (PLS) or, nonlinear models, such as neural 316 

networks, have extensively been used for this purpose (Cirera-Domènech et al., 2013). ANN approach 317 

can be more flexible for modelling when using both linear and non-linear functions, but compared to 318 

MLR, the infrastructure is more complex (Ruggieri et al., 2005b). In the current work MLR modelling 319 

was selected as it allows obtaining robust, easy to reproduce via freely accessible software and therefore 320 
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more transferable, models. A retention relationship (a linear equation) is thereby constructed between 321 

a dependent variable (RI), and multiple independent variables, comprising a limited number of 322 

molecular descriptors. The identities and weight of the optimal descriptors are selected during the 323 

construction of the model. During model usage the actual value of each descriptor is then a priori 324 

calculated via software for each structural formula to allow subsequent retention time/index prediction 325 

by simple completion of the linear MLR equation. The contemporary availability of over 5000 chemo-326 

informatics based molecular descriptors makes selection of the most suitable ones an increasingly 327 

challenging task, whereby models can easily lead to erroneous predictions when descriptor selection is 328 

suboptimal. Note that if too many of the available descriptors are used when creating a model, this does 329 

not lead to better and higher accuracy, but to overfitting, narrowing down the implementation range of 330 

the equation instead of making it generic (Sagandykova and Buszewski, 2021). A variety of 2-331 

dimensional (2D), 3-dimensional (3D) molecular descriptors or other descriptors (such as scaffolds and 332 

fingerprint types) can today be directly obtained through online chemical databases. In order to allow 333 

selection from the broadest possible and most recent set of molecular descriptors available, in this work 334 

they were obtained through the AlvaDesc application. Therein 1879 descriptors were selected in the 335 

initial pool providing structural information such as molecular topology, flexibility, geometry. 336 

3.5 Optimized descriptors selection and model construction 337 

The MLR model construction and subsequent descriptor selection was performed through the 338 

VEGA ZZ software, which also allowed obtaining up-front model validation information. The initial 339 

screening of descriptors involved evaluating zero variance, which means removing any feature that has 340 

the same value for all the samples, as it does not add any information for the model. The second step 341 

involves conducting a single-variable regression analysis, which helps in identifying the features that 342 

are most relevant to the output variable, where poorly correlated ones were excluded (r2<0.1). 1800 of 343 

the 1879 descriptors were removed in this way as unable to contribute usefully to a combined MLR 344 

model. After conducting an evaluation of the variance inflation (VIF), it was determined that the 345 

remaining set contained collinear descriptors, leading to a reduction of the set to 37 relevant descriptors. 346 

The chemometrics used for feature selection in this study are commonly employed for high-dimensional 347 
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data to eliminate descriptors with no variation and identify strongly correlated descriptors, while more 348 

advanced methods like principal component analysis, partial least squares, or random forest regression 349 

may be needed to capture complex relationships and non-linear interactions between descriptors 350 

(Danishuddin and Khan, 2016). 351 

The most suitable MLR model was then obtained through the leave-one-out (LOO) optimization 352 

algorithm, including calculation and ranking of the figures of merit of each possible equation. The most 353 

excluded compound corresponded to a steroid testosterone undecanoate. The software itself allows 354 

models with up to 8 regressors, and all were tested.  Finally, the best-optimized model (n-1), depicting 355 

a correlation r² = 0.93, was chosen comprising 7 variables, showing the lowest standard error of 356 

prediction (SE=58). Another algorithm (r² = 0.90) with 3 regressors was also observed and was suitable 357 

for the same purposes of this work but with a slightly larger deviation (Equation SE2). Note that, using 358 

high number of regressors can seemingly lead to enhanced models, but this could cause overfitting, and 359 

hence lead to a less generically applicable model and errors. Furthermore, using a single global model 360 

provides computational efficiency, simplified interpretation and implementation, versatility in handling 361 

various analytes, and the ability to identify trends and patterns across multiple analytes, outweighing 362 

the potential limitations of using local models and structurally similar training sets. In this way the 363 

following Equation 1 was obtained allowing implementation for the predicting the RI values of all 364 

possible hypothetically possible structural formulas for a given experimentally observed solute. 365 

𝑅𝐼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  = 489.9565 +  358.6790 𝐴𝐿𝑜𝑔𝑃𝑆𝑙𝑜𝑔𝑃 −  465.4977 𝐴𝐿𝑜𝑔𝑃𝑆𝑙𝑜𝑔𝑆 −  249.3834 𝑃𝑠𝑖𝑖𝐴
+366 

 465.8030 𝐶ℎ𝑖𝐺 +  304.7962 𝑅𝐵𝑁 +  150.6071 𝑇𝐷𝐵06𝑝 +  144.8038 𝐿𝑂𝐶                (1) 367 

The model comprises 7 descriptors from which 2 ALogPS (ALogPS_logP and ALogPS_logS) and 368 

5 AlvaDesc (Psi_i_A, Chi_G, RBN, TDB06p, and LOC). Unsurprisingly, a first descriptor selected 369 

therein is ALogPS_logP, representing the logarithm of the n-octanol/water partition coefficient. With a 370 

correlation of r2 value of 0.78, in the single variable regression, it illustrates that indeed the hydrophobic 371 

retention on a highly endcapped silica based C18 column is mostly, but not only, based on compound’s 372 

lipophilicity. Although, logD might be a more expected solution if other elements such as nitrogen were 373 

also comprised, the full protonation of carboxylic groups under the used conditions ensures compound 374 
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neutrality and hence the same result as one would expect with logD, while allowing use of the simpler, 375 

and hence somewhat more robust logP calculations (Dong et al., 2009). ALogPS_logS, another 376 

descriptor with high correlation value (0.63) represents aqueous solubility of a compound. As expected, 377 

more water soluble compounds proved less retained. Although, a collinearity with ALogPS_logP could 378 

be reasonably expected, statistically this was not the case (VIF<5) (Sun, 2004). Psi_i_A (intrinsic state 379 

pseudoconnectivity index – type S average), a third descriptor of the model from a group of topological 380 

indices, with an r2 value of 0.62, was also withheld. These 2D descriptors (distance-, degree-, and 381 

spectrum-based), also known as connectivity indices, are based on the intrinsic and the 382 

electrotopological state values, which have shown beneficial correlations multiple times in literature 383 

when building  QSAR, QSPR, or QSRR models (Chu et al., 2021; Ling et al., 2019). Furthermore, it 384 

was observed for Chi_G (Randic-like index from geometrical matrix, a 3D matrix-based descriptor, 385 

with r2=0.34), that with increasing retention, the value drops. This descriptor could assist in 386 

distinguishing cyclic molecules (higher values) from more branched ones (lower values), as it contains 387 

the information of degree of branching as well as the molecular folding (Eichenlaub et al., 2022). The 388 

RBN (number of rotatable bonds) parameter, describes the number of any single bonds allowing the free 389 

rotation and is related to the size and flexibility of the molecule (Falcón-Cano et al., 2022). TDB06p 390 

(3D Topological distance based descriptors – lag 6 weighted by polarizability), a 3D autocorrelation 391 

type of descriptor, r2=0.21, describing the shortest length distance between two atoms in a molecule 392 

with an emphasis to the polarizability of the molecule. Previous research showed that polarizability of 393 

a molecule can highly affect the elution order in RPLC (Andrade-Eiroa, 2011; Klein et al., 2004). 394 

Finally, the LOC (lopping centric index) descriptor belonging to the group of topological indices (with 395 

a correlation of 0.11) was the final descriptor selected in the model. Furthermore, it can represent the 396 

molecular branching degree, where the value increases with more branching graphs (Todeschini and 397 

Consonni, 2010; Yu, 2019). 398 
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 399 

Figure 3. Linear fit displays RI predicted vs. RI experimental (a) for training set and (b) test set.  400 

3.6 Model performance assessment with known environmentally relevant solutes 401 

In Figure 3a the predicted RI as obtained via Equation 1 is represented versus the experimental RI 402 

for all 101 compounds, delivering a plot depicting a correlation of r2 = 0.93. Only 4% of data points did 403 

not fit into ±2σ, and 74% fit ±1σ, where σ (SE=58) is the standard deviation of the errors (Table S3). 404 

In order to assess the predictive accuracy of the model with unrelated molecules from outside the 405 

training set, it was subsequently tested with 14 compounds of environmental and pharmaceutical 406 

relevance (Figure S3). An overlay of the thereby obtained predicted and experimental RI is shown in 407 

Figure 3b, where obtained results fitted the 95% confidence margin, except one compound, 2,6-di-tert-408 

butyl-4-methyl phenol (BHT). The latter solute was, however, eluting after the latest eluting reference 409 

compound from the ketone ladder (2-dodecanone), and is therefore too retained to fall into the 410 

applicability range of the developed algorithm. The diverse test set were selected to span the molecular 411 

space as represented in Figure 2. As can be seen in Figure 4 representing the experimental vs the 412 

predicted retention (Table S8), 13 out of the 14 compounds meet the deviation margin, except for BHT 413 

depicting a larger error due to above-mentioned reason. Although, for BHT, the real RI is impossible 414 

to calculate, this was done by estimating the elution time of the next ketone elution in order.  In general, 415 

it can, thus be concluded that for solutes falling into the range for which the model was designed 416 

(comprising only C, H, O, MW<500 and eluting between acetophenone and 2-dodecanone) that a 417 

predictive deviation ±2σ or ±116 RI is a realistic reliability threshold, which can be used in the structural 418 

elucidation work (Section 3.7). 419 
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 420 

Figure 4. Overlay of the experimentally obtained retention of 14 solutes not used during the model 421 

design with the predicted values. Peak identity: 1) phenol; 2) 2,7-dihydroxy naphthalene; 3) toluic acid; 422 

4) propylparaben; 5) 1,3 butanediol diacrylate; 6) bisphenol A; 7) testosterone; 8) trans-2-hexenyl 423 

acetate; 9) 3-tert-butyl-4-hydroxyanisole (BHA); 10) 4-ter-butyl benzoic acid; 11) diphenyl carbonate; 424 

12) 4-hexylbenzoic acid; 13) butyl phenyl ether; 14) 2,6-di-tert-butyl-4-methyl phenol (BHT). 425 

3.7 Implementation of the model to assist in de novo structural identification of unknown 426 

solutes by RPLC-HRMS 427 

The actual goal of this work is to implement such models to support the structural elucidation 428 

process of unknowns for which the elemental compositions and experimental retention times/indices 429 

were obtained. The rationale is thereby that the developed model should be able to predict the retention 430 

index of every hypothetic structural formula that can be drawn for a given elemental composition, 431 

whereby the proposed structures eluting outside the ±2σ margin can be excluded upfront. The 432 

challenges therein are the astronomical number of possible structures that can be drawn for a given 433 

atomic composition and the current absence of embeddable algorithms allowing both generation of all 434 

structures and incorporation in the proposed workflow. Another approach can be the use of the publicly 435 

available libraries, which contain a number of possible known structures. While the former strategy is 436 
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ideally preferential, in order to demonstrate the current possibilities of the model, the proposed 437 

hypothetic structures were in this case obtained from the ChemSpider database (Pogliani, 2000). 438 

This approach was tested with all 14 compounds used in section 3.6 and 6 out of 14 were presented 439 

in the text below: phenol, propylparaben, diphenyl carbonate, BHA, p-toluic acid and 1,3 butanediol 440 

diacrylate (for the remaining 8 solutes see Table S9). These were used as “unknowns”, for which 441 

predicted elemental compositions were obtained. Using ChemSpider as a database source, for the 442 

phenol case, the elemental composition (C6H6O) led to 83 hypothetical structures. When plotting the 443 

corresponding RI for the obtained structures and definition of the ± 116 RI error margin zone above 444 

and below the experimental RI of the unknown (Figure 5a), it can be seen that only 17% of the proposed 445 

structures is eliminated. Specifically, the number of 83 possible structures thereby dropped to 69, one 446 

of which indeed corresponded to the predicted RI of phenol. The predicted RI (539) of the correct 447 

phenol structure thereby deviated 24 RI from the experimental value (515). While this illustrates that 448 

the proposed 1-D HPLC based predictive modelling method cannot on itself allow for sufficient attrition 449 

of all the incorrect structures, the proposed tool can be powerful in combination with the other available 450 

structural elucidation information. The structure of phenol can therefore, from the shortlisted of 69 451 

solutes, subsequently be obtained via e.g., mass (MS/MS) and UV spectrometric information, via 452 

comparison with standards, but also through chemical stability assessments (as most, if not all, of the 453 

non-aromatic hypothetic structures are highly reactive). The database delivered 3576 possible structural 454 

formulas for the elemental composition (C10H12O3) of propylparaben. It can be seen in Figure 5b that 455 

all structures deliver a RI <588 and >820, after applying the model, elimination of the erroneous 456 

structures obtained was 42%. The left over indeed comprises the correct structure of propylparaben 457 

depicting a ΔRI=55 between the experimental (704) and predicted (759) RI value. In a fully analogous 458 

way, all RI for the possible structural formulas corresponding to C13H10O3 are represented in Figure 5c. 459 

Subsequent comparison with the experimental RI illustrates that the correct structure of diphenyl 460 

carbonate is included in a shortlist comprising only 136 of the 985 structures, corresponding to removal 461 

of 86% of the incorrect structures. Furthermore, Figure 5d shows another successful removal of 67% 462 

of impossible tentative structures for C11H16O2, where 279 out of 849 remain for identification of BHA. 463 
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Somewhat less removal was obtained for p-toluic acid case, C8H8O2 (Figure 5e). Out of 582 possible 464 

structures generated, 28% can be eliminated. While the predictive accuracy for this solute is good 465 

(ΔRI=12) the large number of possible RI in the vicinity of the correct structures leaves the user with 466 

(too) many remaining possible solutions. Lastly, for the following elemental composition, C12H18O4, 467 

database comprised 2886 possible structural compositions. After applying a model, remaining 917 were 468 

left for further identification of 1,3 butanediol diacrylate allowing up to 68% of elimination (Figure 5f). 469 

This limited number of examples illustrates the potential of the approach while proving the concept. 470 

A remaining hurdle with easy implementation of the ChromaRIM approach is the need to develop 471 

integrated software which can automatically generate all possible structures for a given atomic 472 

composition (or link to the public databases), calculate the corresponding descriptor values, generate 473 

the corresponding RI and eliminate all impossible (or at least improbable) ones in single automated 474 

procedure. While such integrated software is under development, the current work is mainly intending 475 

to introduce the principle, workflow, and an already applicable protocol to accept or exclude possible 476 

structures using ChromaRIM website (“Home page - ChromaRIM,” n.d.). It should be stressed that with 477 

the provided information the reader is already having all the required information to implement the tool 478 

for structural elucidation purposes. To assist this process, a user friendly standard operating procedure 479 

is therefore added with the supplementary information (section S5) to help the user in implementing the 480 

current model. Our website also contains an application allowing automated calculation of the RI based 481 

on the provided retention times, which will be further enhanced towards automated library search as 482 

this work is further progressing. Ideally in the future such an algorithm could be embedded in the LC-483 

HRMS software for fully automated implementation. 484 
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 485 

Figure 5. Representation of the calculated RI for all obtained structures from ChemSpider for (a) 486 

phenol, (b) propylparaben, (c) diphenyl carbonate, (d) 3-tert-butyl-4-hydroxyanisole (BHA), (e) p-487 

toluic acid, and (f) 1,3 butanediol diacrylate. The zone eliminated by a ±2σ or ±116 RI deviation above 488 

and below the experimental value of the elution time (converted to RI) is indicated together with the 489 

experimental elution index and the predicted one for the correct structure. 490 

4. Conclusions 491 

In this work a QSRR methodology is developed to assist in the structural elucidation of unknown 492 

solutes composed of carbon, hydrogen, and oxygen with a molecular weight of up to a 500 g mol-1. The 493 

methodology was specifically developed to be instrument-independent and hence fully and easily 494 

transferable and reproducible on any (U)HPLC-HRMS system. For this purpose, the predictive 495 

algorithm was developed on a broadly used reversed phase column (Kinetex, core-shell C18) with 496 

generic water/acetonitrile + 0.1% formic acid gradients covering the full range in eluotropic strengths. 497 

By data conversion to RI (with a ketone ladder) transferability is facilitated. An optimized multiple 498 

linear regression-based model was developed based on the retention of 101 training solutes, whereby 499 

an initial number of 1879 possible descriptors were screened. The latter were fine-tuned down to 7 500 
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remaining most influential descriptors in a linear equation allowing optimal prediction for all training 501 

solutes. This offers a model which can effectively be used for the prediction of the RI of unknowns 502 

within the predefined separation space. While, due to the sheer number of molecules in the latter is 503 

impossible to test the model with all solutes, the accuracy of the latter proved to allow correct RI 504 

prediction within a ±2σ range (mostly ±1σ) for all test solutes not included in the training set and eluting 505 

within the ketone ladder. This suggest that broad implementation of the model is foreseeable. The 506 

applicability of the model is demonstrated through the correct elimination of large fractions of all 507 

possible structural formulas for a given elemental composition, effectively simulating the situation one 508 

would be confronted with when performing LC-HRMS. In all the six treated examples the model 509 

allowed correct elimination of a significant percentage of the incorrect structural formulas, whereby the 510 

RI of the correct structure was always within the remaining possible structures. The tool therefore 511 

appears applicable to support the identification of unknown C, H, O containing solutes < 500 g mol-1. 512 
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Highlights 

▪ Chromatographic Retention Index Model (ChromaRIM) in RPLC-HRMS  

▪ Structural elucidation of small environmental solutes assisted by developed model 

▪ Supporting unknown identification of CxHyOz molecules < 500 Da 

▪ The model implementation was demonstrated with 6 relevant compounds 

▪ Elimination of a significant % of the incorrect structural formulas was achieved 
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