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Abstract 

Sepsis is a major global health concern causing high morbidity and mortality rates. Our study utilized a 

Meningococcal Septic Shock (MSS) temporal dataset to investigate the correlation between gene 

expression (GE) changes and clinical features. The research used Weighted Gene Co-expression 

Network Analysis (WGCNA) to establish links between gene expression and clinical parameters in 

infants admitted to the Pediatric Critical Care Unit with MSS. Additionally, various machine learning 

(ML) algorithms, including Support Vector Machine (SVM), Naive Bayes, K-Nearest Neighbors (KNN), 

Decision Tree, Random Forest, and Artificial Neural Network (ANN) were implemented to predict sepsis 

survival. The findings revealed a transition in gene function pathways from nuclear to cytoplasmic to 

extracellular, corresponding with Pediatric Logistic Organ Dysfunction score (PELOD) readings at 0, 

24, and 48 hours. ANN was the most accurate of the six ML models applied for survival prediction. This 

study successfully correlated PELOD with transcriptomic data, mapping enriched GE modules in acute 

sepsis. By integrating network analysis methods to identify key gene modules and using machine 

learning for sepsis prognosis, this study offers valuable insights for precision-based treatment strategies 

in future research. The observed temporal-spatial pattern of cellular recovery in sepsis could prove 

useful in guiding clinical management and therapeutic interventions. 
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Introduction 
Sepsis is a significant global health challenge affecting individuals across socioeconomic 

backgrounds and countries, including low, middle, and high-income nations1. Based on data 

extrapolated from the United States of America, it is estimated that sepsis accounts for 15-19 million 

cases worldwide each year. Given the polymicrobial and heterogeneous nature of sepsis, studying 

specific clinical pathogenic states in particular age groups can provide valuable experimental benefits. 

One such condition is Meningococcal Septic Shock (MSS). MSS, when occurring without meningitis, 

is associated with a higher case fatality rate (CFR), ranging from 16% to 52%2. The rapid progression 

of the disease and the significant CFR of invasive meningococcal disease leading to MSS remains a 

concern, particularly among infants. Additionally, the burden of meningococcal disease is highest 

among young infants, with serogroup B being the most prevalent3. Infants may exhibit a genetic 

predisposition to MSS, with toll-like receptor-4 mutations being associated with invasive 

meningococcal disease in infants under 12 months of age4.  In MSS, the primary focus of treating 

physicians is to provide critical care support that can impact the progression of the disease, 

particularly within the first 48 hours. The exploration of clinical relationships through temporal 

microarray analysis can provide valuable insights into disease mechanisms relevant not only to MSS 

pathogenesis but also to sepsis as a whole. 

Gene expression analysis has proven valuable in sepsis research, providing insights that can 

contribute to patient outcome prediction. Longitudinal studies have investigated the transcriptome in 

both children and adults, highlighting the significance of gene-expression data in sepsis 

prognostication5-7. In a study by Wong et al., microarray analysis was conducted on a pediatric sepsis 

cohort, employing Endotyping to classify patients into three subclasses (Endotype A, B, and C), 

based on underlying pathobiological mechanisms8. The researchers identified 100 genes that 

effectively differentiated between Endotypes A and B in children with septic shock9. They further 

concluded that allocation to subclass A was associated with a poorer outcome. Notably, the study 

also observed the concept of endotype-switching, where patients transitioned from one subgroup to 

another during the course of sepsis. These findings underscore the potential value of utilizing gene 

expression studies to develop precision medicine strategies for future sepsis management. 

Time-series datasets can provide an important perspective with respect to sepsis evolution. By 

treating time-series gene expression data as interconnected geometric clustering networks, one can 
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exploit the inherent interdependency of intra-patient data. Amongst various network analysis 

approaches, Weighted Gene Co-expression Network Analysis (WGCNA) stands out, as it clusters 

based on biological significance, not geometric distance, grouping genes into functional modules10. 

WGCNA also enables module stratification based on clinical parameters, aiding in gene-trait 

relationship studies11. Applications of this modular approach have demonstrated relationships 

between hub genes and long non-coding RNAs (lncRNAs) in sepsis models 12,13, identified key genes 

associated with sepsis prognosis14, and developed gene panels for sepsis diagnosis15. By employing 

a secondary analysis of pediatric sepsis datasets, key hub genes were identified and validated 

through qPCR, indicating potential biomarkers for pediatric sepsis5,16. In a novel approach, WGCNA 

was followed by differential correlation analysis to uncover genes with opposing correlations in 

different conditions17. This exemplifies the evolving application of WGCNA in sepsis research. 

An understanding of how sepsis evolves from a cellular perspective remains deficient. This is 

reflected by the lack of temporal gene expression studies in the clinical literature, especially in 

children. Therefore, we propose a topological modular approach using Weighted Gene Co-expression 

Network Analysis (WGCNA) to analyze a dataset of pediatric patients with meningococcal septic 

shock (MSS). We believe the study dataset employed for secondary analysis was the first multi-

sampling published gene expression series in infants with septic shock18. As researchers with access 

to the original clinical data, we have a unique opportunity to correlate clinical phenotype and gene 

expression to infants with MSS. This dataset provides a chance to undertake a temporal analysis of 

dynamic clinical changes in association with changes in enriched gene function. Insights based on 

time-associated studies could galvanize the field of sepsis research through improved clinical 

application. Another challenge is that Sepsis is not a simple discrete event, but rather a complex non-

linear multi-variable phenomenon, known for its heterogeneity and complexity in the transition from 

infection to clinical sepsis. This complexity, encompassing clinical, immunological, and 

pathophysiological dimensions, contributes to experimental variation making statistical analysis 

challenging. In light of these limitations, Machine Learning (ML) has been used to model crucial 

sepsis end-points, facilitating unsupervised classification and supervised labeling of datasets in 

sepsis19-22. Therefore, in this research study, as well as WGCNA, ML algorithms are employed to 

enhance prognostication. 
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Methods 
The methodology employed in this study comprises two main components: network analysis using 

Weighted Gene Co-expression Network Analysis (WGCNA), as depicted in Figure 1, and Machine 

Learning (ML) techniques. 

Patient recruitment 

Study details were previously published 18 with approval from the Nottingham University ethics 

committee (REC reference 05/Q2403/53). Patients presenting to Nottingham University Hospital 

Pediatric Critical Care (PCC) were recruited after obtaining written informed consent [Table 1]. Patients 

received standard clinical treatment, including appropriate antimicrobial therapy for presumed 

meningococcal sepsis. The children studied had no pre-existing medical conditions. Blood samples 

were collected on admission to PCC (designated 0 hours) and at 4, 8, 12, 24, and 48 hours following 

PCC admission.  

RNA extraction 

The dataset from this secondary analysis was available from the ArrayExpress dataset (E-MEXP-

3850). 

Microarray data analysis And Weighted Gene Co-expression Network Analysis (WGCNA) 

The expression data set contains 30 samples from five patients at six different time points. Patient 4 at 

the 24-hour time point had no expression values and was removed from further analysis, reducing the 

total samples to 29. 33,297 probe sets from 29 Human Gene 1.0 ST Arrays were generated and 

compared. Using R software, the 29 Microarray gene expression sample dataset underwent WGCNA. 

First, a gene co-expression network was constructed after calculating the Pearson correlations between 

pairs of genes across all samples. Next, modules were identified using a hierarchical clustering 

dendrogram and dynamic tree-cut methodology. Densely interconnected gene clusters were 

represented by modules, according to a soft thresholding power β. A soft-thresholding power of 6 was 

chosen. It is the lowest power for which the scale-free topology fit index curve flattens (0.68). A 

clustering dendrogram was generated, assigning colors to the modules. This led to the identification of 

19 modules labeled 0-18, with the number of genes associated with each gene cluster. The label 0 was 
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reserved for genes outside of all modules.  

Module detection 

Clustering was also performed based on the module color and clinical traits of time, age, gender, 

mortality, and weight. Subsequently, modules were related to phenotypic data based on clinical 

variables. Each given module generated a first principal component, the Module Eigengene (ME). 

Clinical trait data were then correlated against the ME, giving a correlation coefficient. Genes from the 

significant modules showing high Module Membership (MM) were filtered and selected (p.MM ≤ 0.05).  

WGCNA Construction and Detection of Disease-Associated Modules 

A quantitative measure of MM was defined for each module as the correlation of the ME with the gene 

expression profile. Modules were related to phenotypic characteristics, such as weight, age, mortality, 

and organ dysfunction (based on the Pediatric Logistic Organ Dysfunction score [PELOD]). An 

adjacency matrix was assembled, with rows corresponding to MEs and columns to clinical traits (Figure 

2). Genes from the significant modules showing high module membership were filtered and selected 

(the probability of module membership was ≤ 0.05). Eigengenes were formulated for each module 

(Module Eigenes) and correlated to phenotypic characteristics (external trait) data. Each association 

was color-coded by the correlation value.   

Gene Enrichment 

WGCNA analysis generated gene lists showing significant module membership. These gene lists then 

underwent pathway enrichment studies. The Fisher exact test was then applied to the gene list. Using 

in-house R script, pathways were generated using Kyoto Encyclopedia of Genes and Genomes (KEGG) 

database annotation with the associated Gene Ontology (GO) terms. The subsequent enriched gene 

list was then imported into Cytoscape 23 and annotated using the enrichment map tool within the 

Cytoscape platform (Figure 3). The Kyoto Encyclopedia of Genes and Genomes (KEGG) database 

provided an interpretation of the enriched gene pathways. This enriched data was then passed into the 

enrichment map software in Cytoscape using a p-value (0.001) and an FDR (0.01) threshold to illustrate 

the enriched pathways. Further, the enriched gene list, using R script, filtered using a p-value (0.001) 

and an FDR (0.01) threshold, generated enrichment dot plots (Figure 2). Dot plots for PELOD 0, 24, 

and 48-time categories were generated using the top 25 significant (p <0.01) pathways for ease of 
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illustration (Figure 4). Dot plots for PELOD 0, 24, and 48-time categories were generated using the top 

25 significant (p-value <0.01) pathways for ease of illustration (Figure 4). The pathways gendered 

according to the dot plots pertained to GO terms and terms from the Reactome database. The WGCNA-

generated gene lists were also enriched by parsing through a gene profiling platform, g: Profiler. The 

significantly upregulated genes (p <0.05) according to the adjacency matrix trait underwent functional 

enrichment analysis using g: Profiler. A p <0.05 for statistical significance and the Benjamini-Hochberg 

FDR (False Discovery Rate) were used to reduce the chance of false positives. As detailed (Figure 5), 

g: Profiler uses a number of client libraries to interpret gene lists from a functional enrichment point of 

view. 
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Machine Learning Data Processing and Methods  

The dataset contained 29 instances of survival class (23) and non-survival class (6), which was an 

unequal distribution of classes. In machine learning, unequal data distribution is one of the major causes 

of decreasing accuracy of classification models. Due to the imbalance instances in the dataset, machine 

learning models could not effectively learn the patterns for survival and non-survival classes. As the 

non-survival class was less in number, the results generated by this class would become ineffective. 

To overcome this challenge, a synthetic minority oversampling technique (SMOTE) was applied to 

handle the imbalanced data24. This popular approach is often used in classification problems of 

imbalanced datasets. SMOTE is considered one of the most powerful, reliable, and adaptable pre-

processing techniques in machine learning 25. After balancing the dataset, it is important to identify 

patterns in the data series and express them so that the similarities and differences can be observed 

and reduce the dimensionality without losing too much information. Principal component analysis (PCA) 

is a multivariate technique to reduce the complexity of the input variables. This analyses extremely 

interrelated components in the dataset and decreases the complexity and dimension. Thus extracting 

the most significant information in the dataset. Therefore, PCA was applied to strip out the low-influence 

features from the dataset. After the preprocessing of data, six popular machine learning techniques, 

Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbor (KNN), Random Forest, Naïve 

Bayes, and Artificial Neural Network (ANN), were applied to understand the impact of each technique 

on the classification of the given survival and non-survival datasets. SVM is a supervised machine 

learning algorithm that identifies different classes by separating the classes with the help of a decision 

boundary known as a hyperplane (a line that distinguishes two classes). DT is a classifier that uses a 

tree-like structure based on knowledge gained on classification. KNN is a classifier technique where 

the training is predicated on “how similar” one dataset is from another based on the distances between 

a point and all the examples within the data, selecting the required number of examples (K) closest to 

the point, incorporating votes for the frequent leading label. The random forest creates many trees that 

achieve their output through ensemble learning methods for classification. Naïve Bayes is a 

classification technique that uses a simple probability that applies Bayes Theorem with high 

independent assumptions. Bayes theorem is used in statistics to calculate the probability of a class of 

each attribute group present to determine which class is optimal. ANN is another classification 

technique that mimics the functioning of a human brain with the basic principle that a number of 
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parameters as inputs are processed in such a way as in the hidden layer (multiplication, addition, 

division, etc.), then processed again in the output layer to produce an output. For these machine 

learning techniques, the pre-processed data were partitioned into training and testing with a ratio of 

70%:30%. The training dataset is fitted to the machine learning classifier, and later predictions were 

obtained using the testing dataset. These six machine-learning techniques were applied, and the results 

were obtained.   
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Results 
Patient Demographics 

All Infants demonstrated clinical phenotype consistent with severe shock and diffuse intravascular 

coagulation consistent with Meningococcal sepsis (Table 1). Patient 1 died and is noted as having 

received a Protein C infusion during treatment.  

Module Trait Associations 

An adjacency network matrix was formulated from the WGCNA of the gene expression data. The 

correlation between eigengenes and traits is depicted as a heat map (Figure 2). Each row corresponds 

to a module eigengene, the column to a trait. Each cell contains the corresponding correlation and p-

value (in parenthesis). Each row and column in the heatmap corresponds to one module eigengene 

(labeled by color) or weight. The highest correlation for PELOD at 0 hours was with the MEmagenta 

module (0.83) with a highly significant p-value of 2e-08. At PELOD 24 hours, MEpurple modules were 

the most significant, with a correlation of 0.74 and a p-value of (4e-05). With PELOD 48 hours, MEpurple 

modules were the most significant, with a correlation of 0.95 and a p-value of (7e-17). 

Pathway Enrichment Studies, Enrichment Map generation  

At PELOD time 0, pathways related to cell nuclear function were seen to be up-regulated (p-value 0.01 

FDR 0.01);   at PELOD 24 hours, cytoplasmic gene function was upregulated (p-value 0.01 FDR 0.01), 

and finally at 48 hours, extracellular gene function upregulated (p-value 0.01 FDR 0.01) (Figure 3). 

Enrichment mapping through the Cytoscape application generated significant pathways at time 0, 

pathways related to cell nuclear function;  at 24 hours, cytoplasmic gene function and at 48 hours, 

extracellular gene function. The Enrichment map node size represents the number of genes in the gene 

set; edge thickness is proportional to the overlap between gene sets. 

Functional enrichment analysis:  

A graphical representation functional enrichment analysis using g: Profile software was undertaken. 

Data was parsed through the g: Profile platform from the WGCNA-generated gene modules for selected 

clinical traits. Generated Manhattan plots according to PELOD 0 hours, 24 hours, and 48 hours are 

shown (Figure 5). The x-axis represents functional terms grouped and color-coded by data sources 

(e.g., Molecular Function from GO is red; the sources not included in the analysis are shown in grey). 

The y-axis shows the adjusted enrichment p-values in the negative log10 scale. The light circles 
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represent insignificant terms (if available). P values in the outputs are color-coded from yellow 

(insignificant) to blue (highly significant or smallest possible p-value). From the Manhattan plots, PELOD 

48 and 24 hours appear to have more enriched genes than PELOD 0 hours. At PELOD 24 hours, GO 

cellular component pathways include a nuclear lumen, intercellular cytosol, organelle, nuclear body, and 

chromatin activity is noted. At PELOD 48 hours, the pattern of GO cellular component pathways is similar 

to that at 24 hours.  

Enrichment Plots 

According to the odds ratio (OR), the innate response, depicted by neutrophil-activation pathways, 

showed more significant expression at PELOD 24 hours (p-value = 2.96e-15 OR= 4.06 FDR =1.07e-

12) and 48 hours (p-value = 4.13e-12 OR= 3.80 FDR 5.35e-09) compared to PELOD 0 hours (p-value 

= 1.27e-21 OR= 2.83 FDR = 1.80e-18)(Figure 4). In addition, the OR at PELOD 24 hours showed. For 

the 48-hour PELOD, OR beyond 5.0, included the TRANSCRIPTIONAL REGULATION by 

RUNX3_REACTOME and Regulation of APOPTOSIS_REACTOME. Pathways present at PELOD 0 

but not at the other time points include GO pathways related to the mitotic cycle and the Golgi sub-

compartment. Pathways present at 24 hours and not at PELOD 0 or 48 hours included GO pathways 

related to the cytoplasmic vesicle membrane, endoscope and import function into the cell.  Regarding 

cytokine signaling, no pathways were seen at PELOD 0 hours, but GO pathways were present at 24 

and 48 hours. 

 

Machine Learning 

The applied machine learning techniques are summarised (Table 2). Among the six algorithms used, 

ANN provided the most accurate prediction. After preprocessing the dataset using SMOTE, PCA was 

employed, which included 99% variance in the dataset used for applying machine learning techniques 

(Figure 6). For the ANN, a three-layer neural network was constructed. The first layer was the input 

layer which contained 16 neurons having “relu” as an activation function. The input layer accepts the 

input from the gene and forwards it to the second layer. The second layer is the inner hidden layer, 

which is used to construct the model, containing eight neurons with “relu” as an activation function. The 

parameter is mapped in hidden layers to one of the most appropriate feature classifications and ends 
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with a predicted output. The third layer is the output layer which contains “sigmoid” as an output function. 

This layer differentiates total values obtained from inner hidden layers into two classes, 1 for yes and 0 

for no. During this process, the loss function binary cross entropy was used, which provided the network 

with gene information to improve its knowledge of the input data. The Adaptive Moment Estimation 

(Adam) optimizer and activation function ReLU was used to improve this by changing the weights of 

each neuron and then trying again to improve prediction. Changing weights alters the extent to which 

the input neurons affect the final result; this implies that some parts of the input data may impact output 

variables more than others. Hyperparameter tuning was employed to reduce errors between the training 

and testing sets for optimal learning. The training and test scores were 100% and 100%, respectively, 

the same for the imbalanced and balanced datasets. 
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Discussion 
Sepsis is a rapidly developing condition associated with systemic instability. Utilizing MSS as a septic 

shock model, a unique temporal microarray dataset from infants with MSS in PICU was scrutinized 

through WGCNA analysis 18. This dataset, with six mRNA sampling points, enabled tracking of sepsis 

progression using WGCNA analysis. Thus allowing PELOD scores at 0, 24, and 48 hours to be 

correlated, represented by a module-trait matrix, to gene expression data (Figure 2). We propose that 

this is the inaugural integration of PELOD, a pediatric clinical scoring system, with transcriptomic data 

to delineate enriched gene expression modules in acute sepsis. The WGCNA analysis revealed a 

dynamic transition in gene function pathway enrichment, from nuclear to cytoplasmic, and finally to 

extracellular, associated with the PELOD times. Gene expression activity consistent with nuclear 

activity in sepsis was also noted by Wong et al. (2010) in pediatric polymicrobial sepsis26. Moreover, 

Walsh et al.(2016) corroborated the utility of WGCNA in unveiling gene-modular relationships in adult 

ICU patients over a longer period (7 days to 6 months); their study demonstrated gene modular 

enrichment for skeletal muscle regeneration and deposition of the extracellular matrix27. Further, our 

study highlights the usefulness of time-series gene expression data, showing an augmented innate 

response associated with higher PELOD scores at 24 hours and 48 hours compared to PELOD 

scores at 0 hours (Figure 2). In sepsis, the dysregulated and disrupted physiological process requires 

the restoration of normal regulatory mechanisms.  Based on our results, we propose the temporal 

pattern of gene function enrichment relates to the spatial recovery of essential cellular functioning. 

Firstly there is the correction of nuclear mechanisms to facilitate clinical recovery; genes are intricately 

involved in cellular regulation and enrichment of associated gene function pathways could be an 

important early indicator of the normalization of cellular function. The temporal analysis then leads to 

the next spatial layer outside of the nucleus, the cytoplasm. Rectifying dysfunction occurring in the 

immediate cytoplasmic area further restores normal cellular processes. The final step, as suggested 

by the temporal pattern in genomic function enrichment, is the restoration of the extracellular 

framework. These steps likely hail the normalization of severe organ dysfunction seen in patients with 

severe sepsis or septic shock. 

Langfelder et al. (2013) compared WGCNA over standard statistical methods for differential gene 

expression28. Here Langfelder investigated the use of WCGNA for hub-gene selection, finding 

WGCNA as an enhancement over standard statistical approaches incorporating the p-value. 
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However, counter to this, Langfelder also found, regarding analytical repeatability using independent 

data sets, that standard statistical methods were an enhancement over WGCNA. However, WGCNA 

methodology is advantaged by minimizing type 1 and type 2 statistical errors. Moreover, WGCNA 

applied to sepsis may show potential beyond traditional clinical biomarkers. For example, LONG et al. 

(2020) combined WGCNA with a machine learning algorithm and applied their workflow to three 

publicly available sepsis datasets29. Hereby applying artificial intelligence methods to WGCNA a 

diagnostic classifier was presented with the potential for early sepsis diagnosis.  

We believe this study (in MSS) to be methodically advantageous over sepsis studies where the 

chosen pathogen is dissimilar. Wong et al (2007) advocated a single-organism approach30; assuming 

similar changing patterns in gene expression minimized experimental variation and simplified gene 

analysis. Another factor affecting the host’s genomic response to sepsis is age. For example, Wynn et 

al. (2011) studied neonates, infants, toddlers, and school-age children within 24 hours of PCC 

admission in septic shock31; demonstrating that developmental age impacts the early whole-blood 

transcriptomic response in sepsis. Furthermore, Raymond et al. (2017) explored age effects on the 

transcriptome, showing infants and children being mostly similar, whereas neonates and adults were 

more different in their responses32.  In our study, recruitment was restricted to infants with no previous 

co-morbidities, thereby minimizing extraneous effects.  

Table 2 reveals that SVM, Random Forest, and DT yield high training scores but disappointing test 

scores, while Naïve Bayes generates comparable scores for both training and testing. KNN achieved 

90% training and 89% testing accuracy on the imbalanced dataset, improved to 94% and 93% 

respectively after dataset balancing with SMOTE. ANN, however, achieved 100% accuracy for both 

training and testing, regardless of dataset balance. The principal components PC1 to PC3 exhibited 

the highest variances (Figure 3). Notably, a hyperplane failed to separate the training and test data, 

making SVM, similar to Random Forest, DT, and Naïve Bayes, unsuitable for this classification. KNN, 

using Euclidean distance to separate classes, could potentially use an oval circle to separate the red 

dots represented by PC1 to PC3, but its train and test scores fell short compared to ANN. Thus, 

considering all factors, ANN, which achieved the highest accuracy (100%) for both training and testing 

datasets, was chosen. ANN excels in capturing non-linear relationships between input features and 

the target variable, which is crucial in the context of sepsis involving complex datasets with intricate 
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interactions33,34. ANN also performs representation learning, automatically extracting meaningful 

features from the data. Additionally, ANN is adaptable and able to handle large amounts of data, 

having the capacity to capture the dataset complexity through its architecture. Hyperparameter tuning 

further enhances ANN's performance, making it superior to other classifiers in the study35. Further, we 

chose to use the SMOTE to address the issue of imbalanced data. SMOTE is a popular and effective 

oversampling method that can generate synthetic samples for the minority class by interpolating 

between existing instances. Thereby alleviating overfitting risk while increasing the representation of 

the minority class and improving the learning capability of the machine learning algorithms whilst 

preserving data integrity.  

A challenge for sepsis studies is in establishing a correlation between clinical manifestations and 

cellular-level processes.  This could be a reason contributing to why a significant therapeutic 

advancement in the field has yet to materialize. In trying to relate clinical variables to those of gene 

expression in the analysis, one limitation was the small sample size. However, for the application of 

WGCNA, a minimum of 15-20 samples are recommended, a criterion which was met in our study (30 

samples) 36. Despite this, the study advances knowledge related to sepsis transcriptomics by linking 

clinical parameters to gene function through the modular approach described. The small sample size 

also presents a challenge for ML. This was circumvented by dividing the data into separate training 

and testing groups, according to a ratio of 70:30, randomly selecting samples into each group. We 

then conducted a 5-fold cross-validation to assess model performance. This mitigates the impact of 

the limited sample size and ensures a robust evaluation of our ML approach. Future scope of 

research could include the application of explainable AI (XAI) helping to narrow down the focus on 

specific genes and molecular pathways, thereby enhancing the interpretability of temporal gene 

expression data. In addition, it is worth considering expanding the future scope of this research to 

encompass a comparison of alternative data reduction techniques beyond that of PCA employed in 

this study. Finally, the study attempted to include therapy information by presenting a trait-gene 

module adjacency matrix (Figure 2). However, due to the methodology employed in this study, there 

were limitations in comparing different therapies and management strategies. This aspect should be 

the primary focus of future research. Additionally, incorporating diagnostic staging could further 

enhance the analysis and provide valuable insights. 
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The temporal aspect of this study capitalizes on the inherent value of time-related gene expression 

datasets. Specifically, each patient's samples constitute a temporal sequence, documenting the 

evolving septic process. This allows network methodologies such as WGCNA to be effectively utilized, 

even in studies with small sample sizes. This led to the discovery of a temporal-spatial gene 

expression pattern that could have future applications in assessing clinical management strategies 

and developing novel therapeutics. However, a temporal limitation of the study relates to the fact that 

although the study included six-time points, there may be other critical time points during the course of 

sepsis not captured. Also, the arbitrary allocation of time points along the sepsis time trajectory could 

affect the analysis of time-dependent changes in gene function. In this study time-labeling of patients 

occurred from Pediatric Critical Care Unit admission onwards, independent of disease trajectory as 

accurate clinical time-profiling is not possible. Further, the idea of temporal sampling and 

compartmentalization in sepsis is complicated by the heterogeneity of sepsis. Moreover, it is difficult 

to time-match gene expression series without a robust objective definition of sepsis. The unknown 

temporal difference between infection and symptom onset in patients, as well as sepsis heterogeneity 

encompassing factors such as symptom onset speed, pathogenesis rapidity, and the ability to seek 

medical assistance, pose numerous challenges. Nevertheless, it is important to highlight that the 

dataset utilized in this study represents a secondary analysis of the first published case series in 

infants with septic shock18. In this dataset, despite potential variances due to the various temporal 

factors, distinct time-associated patterns related to gene function were still discernible. Temporal 

patterns may be attributed to the therapeutic drive for physiological stability, reflecting a clinical impact 

on each transcriptome. Looking forwards, temporal studies of sepsis are suggested especially with 

regard to sepsis management at the bedside and the development of precision strategies. 
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Conclusions  
This study demonstrated the value of time-related trajectory transcriptomic data and gene co-

expression network analysis in understanding sepsis evolution in infants admitted to the pediatric 

intensive care unit. Uniquely, the application of WGCNA was shown to correlate temporal gene 

expression with bedside clinical data, resulting in the elucidation of a recovery pattern of temporal-

spatial gene expression. The approach provided insights into the molecular trajectory of MSS, 

permitting visualization of treatment impacts in relation to genomic modular patterns in MSS. In 

parallel, we conducted a comparative study employing six machine-learning algorithms - SVM, Naive 

Bayes, KNN, DT, Random Forest, and ANN - for sepsis survival prediction. ANN emerged superior, 

offering 100% accuracy for both training and testing datasets. Future work aims to expand the training 

and testing datasets, augmenting the reliability of the resultant ML model. The integration of network 

methods for isolating biologically significant gene modules and machine learning for sepsis 

prognostication heralds a new era for precision therapeutic strategies. Future exploration into the 

temporal correlation of physiological and genomics data remains a promising avenue to enhance our 

comprehension of rapidly evolving sepsis. 
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Abbreviations 

 

Case fatality rate (CFR)  

FDR (False Discovery Rate) 

Gene Complement C3a Receptor 1 (C3AR1) 

Gene Matrix Metalloproteinase-9 (MMP9) gene 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

Long non-coding RNAs (lncRNAs) 

Meningococcal Septic Shock (MSS)  

Module Eigengene (ME) 

Module Membership (MM) 

Pediatric Critical Care (PCC) 

Pediatric Logistic Organ Dysfunction (PELOD) 

p-value for Module Membership (p.MM)   

Quantitative Polymerase Chain Reaction (PqPCR) 

Weighted Gene Co-expression Network Analysis (WGCNA)  
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Figure 1. 

 
Figure 1.  A. Preprocessed data log2 normalized downloaded B. Pairwise correlation of genes 
undertaken for each gene-pair combination. C. Choosing a topological soft threshold value for the 
power of Beta allows the construction of a module-centric network. D. An adjacency network is 
constructed.  The nodes in the network correspond to genes, and the connections are known as 
edges determined by the pairwise calculations in A. The edges are calculated between 0 and 1. E. 
Using a hierarchal clustering, similar genes are grouped in a tree structure with ‘branches’ denoted as 
gene modules. A module consists of a collection of highly interconnected genes with high absolute 
correlation. F. A module-trait matrix is then generated associating traits (horizontal axis) to Module 
Eigenes (Vertical Axis). 

 

Jo
urn

al 
Pre-

pro
of



 
 

20 

 
Figure 2. 
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Figure 2. Module-trait associations heat map representation of adjacencies in the eigengene network (2A 
and 2B). The table is color-coded by correlation according to the color legend. White color represents low 
adjacency (low correlation), red high adjacency (positive correlation) and green represents high adjacency 
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(negative correlation).  
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Figure 3. 

 
Figure 3. Gene-set enrichment results are graphically mapped to the Enrichment Map. The 
enrichment score (the enrichment p-value) is mapped to the node color as a color gradient, with node 
size proportional to the odds ratio. 
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Figure 4. 
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FIGURE 4. Box plot enrichment box plot of significant genes from the WGCNA clusters for PELOD 0hrs A. 
PELOD 24hrs. HALLMARK_INTERFERON_GAMMA_RESPONSE_MSigdb_C2 is seen to be an outlying 
pathway. B.  PELOD 48 hours. C. Enrichment results were filtered using a p-value (0.001) and an FDR 
(0.01) threshold. The plots display the top 25 pathways.   
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Figure 5. 

 
Figure 5. WGCNA generated gene lists for A. PELOD 0hrs, B. PELOD 24hrs, and C. PELOD 48 
hours were then parsed through the g: Profile web application to show the enriched genes. Key is GO 
- Gene Ontology, GO: MF -  Molecular Functions, GO: BP - Biological Process, GO: CC - Cellular 
Component, REAC: Reactome, KEGG - Kyoto Encyclopedia of Genes and Genomes, TF - Transpac, 
CORUM  - CORUM protein complexes, HP - Human Phenotype Ontology, MIRNA – miRTarBase.  
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Figure 6. 
 

 
Figure 6. PCA is applied to the dataset to strip out the low-influence features. The training dataset’s 
first 3 principal component representation is shown (Figure 6A), and the test dataset (Figure 6B). The 
colors red and blue represent different classes. 
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Table 1. 

Table 1. Five children were recruited into the Meningococcal septic shock study. Patient one was 
non-surviving. Also, patient 1 was culture negative with the diagnosis of MSS on clinical grounds. 
All children developed DIC and required mechanical ventilation. GpB = Group B Neiserria 
Meningococcus.  

 
  

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Number of samples 5 5 5 5 5

Age (months) 13 10 22 24 9

Sex Female Female Female Male Male

Weight (Kg) 12 12.9 12 15 8

Duration of PICU admission 
(DAYS)

9 4 3 6 3

No. of organ(s) in failure 4 4 3 6 3

PELOD score on admission 61 31 31 12 11

PELOD Score at 24 hours 52 2 22 22 2

PELOD Score at 48 hours 43 2 31 12 1

Median PRISM  Score at 12 
hours

12 11 17 14 9

Median PRISM  Score at 24 
hours

15 7 15 13 4

Serotype Negative culture*
GpB 

meningococcus

GpB 

meningococcus

GpB 

meningococcus

GpB 

meningococcus

GCS at 24 hours 3 7 3 3 10

Mean Inotrope score on Day 1 38 13 112 27 9

Mortality (at 28 days) Died Alive Alive Alive Alive

DIC Yes Yes Yes Yes Yes

Duration of mechanical 
ventilation (days)

5 4 4 4 4`

* presumed meningococcal sepsis based on clinical grounds
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Table 2. 

 

 Imbalanced Dataset, PCA 99% variance          Balanced Dataset, PCA 99% variance          

 Train Score Test Score Train Score Test Score 

SVM 0.80 0.78 1.00 1.00 

Random Forest 0.95 0.89 0.94 0.93 

Logistic 

Regression 
0.95 1.00 1.00 1.00 

Decision Tree 0.95 0.89 0.88 0.79 

Naive Bayes 0.95 1.00 0.97 0.86 

KNN 0.90 1.00 0.84 0.93 

ANN 1.00 1.00 1.00 1.00 

 

Table 2. Results of different ML Models applied to the dataset. 
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Table 1. 

  Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 

Number of samples 5 5 5 5 5 

Age (months) 13 10 22 24 9 

Sex Female Female Female Male Male 

Weight (Kg) 12 12.9 12 15 8 

Duration of PICU admission (DAYS) 9 4 3 6 3 

No. of organ(s) in failure 4 4 3 6 3 

PELOD score on admission 61 31 31 12 11 

PELOD Score at 24 hours 52 2 22 22 2 

PELOD Score at 48 hours 43 2 31 12 1 

Median PRISM Score at 12 hours 12 11 17 14 9 

Median PRISM Score at 24 hours 15 7 15 13 4 

Serotype 
Negative 

culture* 

GpB 

meningococcus 

GpB 

meningococcus 

GpB 

meningococcus 

GpB 

meningococcus 

GCS at 24 hours 3 7 3 3 10 

Mean Inotrope score on Day 1 38 13 112 27 9 

Mortality (at 28 days) Died Alive Alive Alive Alive 

DIC Yes Yes Yes Yes Yes 

Duration of mechanical ventilation (days) 5 4 4 4 4` 

 
* presumed meningococcal sepsis based on clinical grounds 

 
Table 1. Five children were recruited into the Meningococcal septic shock study. Patient one was non-
surviving. Also, patient 1 was culture negative with the diagnosis of MSS on clinical grounds. All 
children developed DIC and required mechanical ventilation. GpB = Group B Neiserria 
Meningococcus.  
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Table 2. 

 

 Imbalanced Dataset, PCA 99% variance          Balanced Dataset, PCA 99% variance          

 Train Score Test Score Train Score Test Score 

SVM 1 0.78 1 0.5 

Random Forest 1 0.78 1 0.93 

Logistic 

Regression 
1 1 1 1 

Decision Tree 1 0.89 1 0.93 

Naive Bayes 0.97 0.78 0.97 0.79 

KNN 0.9 0.89 0.94 0.93 

ANN 1 1 1 1 

 

Table 2. Results of different ML Models applied to the dataset. 
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