
Natural Dynamics and Neural Networks: Searching 
for Efficient Preying Dynamics in a Virtual World 

Peter Andräs 

Department of Psychology, University of Newcastle 
Newcastle upon Tyne, NE1 7RU, United Kingdom 

Eric Postma and Jaap van den Herik 

Department of Computer Science/IKAT, Universiteit Maastricht, Ρ OB 616, 
6200 MD Maastricht, The Netherlands 

ABSTRACT 

Since the 1970s, the chaotic nature of environmental dynamics of animals 
is a challenge for computer-science researchers. The intriguing question is how 
can we develop an effective means for predicting future states? In this paper we 
assume that animals possess control structures exhibiting chaotic dynamics that 
can deal with chaotic environmental dynamics. Based on that assumption, we 
describe a novel model that is characterized by predicting future states through 
a recursive application of an input-output mapping generated by natural 
dynamics (the internal chaotic dynamics) and chaotic environmental dynamics. 
For comparison, we evaluate two neural networks that control the prediction 
behavior of an agent (for example, an animal) in a dynamical environment. 
The inspirational source of our simulated environment is the preying dynamics 
of the frog—fly interactions. First we examine a non-chaotic direct-prediction 
network that predicts future states by mapping the input in a single step to the 
output. Then we develop and investigate a chaotic recursive-prediction network 
that predicts the future in a recursive manner, using iterations of small-step 
predictions. Our experiments show that the recursive-prediction network clearly 
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outperforms the direct-prediction network in the sense of the number of 

accurate predictions. The experimental tasks involved the prediction of future 

states of a chaotically moving target. The result is also explained in terms of 

complexity of the underlying function-approximation task. From our 

observations that recursive-prediction networks are better than direct-

prediction networks in dealing with chaotic environments, and f rom the 

performance of the recursive-prediction network, we tentatively conclude that 

our model can serve as a chaotic-deterministic component in the procedure of 

predicting future states. 
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1. INTRODUCTION 

In nature, adaptation to the complex natural dynamics is a prerequisite 

for survival. Processes that are characteristic for a natural environment are 

chaotic and turbulent. Animals employ efficient strategies for the prediction 

of future events to react adequately (for example, Barnsley, 1993). As a case 

in point, we see that birds and butterflies cope successfully with unpredictable 

variations in the amplitude and direction of air streams (Able 1973, Alestam 

& Hedenström, 1998, Sparks 1999, Spieth et al„ 1998). Birds even use wind 

parameters to determine an optimal flight direction (Able, 1973, Alestam & 

Hedenström, 1998). Apparently, animals possess special control structures for 

dealing with environmental dynamics. Modeling such control structures 

enhances our knowledge of the underlying principles and may lead to novel 

applications in process control (for example, Balaram, 2000; Battersby, 1997; 

Weber et al., 1999). In recent years, several models for controlling actions 

have been proposed (Chown, 1999; Goetz and Walters, 1997; Leow, 1998; 

Prescott & Redgrave, 1999; Sun & Peterson, 1998, 1999). These methods 

range from recurrent networks that are applied to behavior modeling (Goetz 

& Walters 1997) to reinforcement learning that is applied to multi-agent 
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systems (Sun & Peterson 1998, 1999). A handicap of all these models is that 

they do not take into full account the chaotic nature of the environment. 

This paper presents a novel type of control structure that is inspired by the 

dynamic reconstruction of chaotic processes (Haykin, 1999). Our approach is to 

equip the animal (henceforth called 'agent') with internal dynamics that match 

the external environmental dynamics. To support our model, we analyze briefly 

the complex dynamics characterizing the flight patterns of the house fly (Musca 

domestica) in the Appendix of this paper. Building upon Freeman's (1987) 

work, we assume that internal chaotic dynamics are required to cope with the 

chaotic environment. Below, we begin describing our new type of control 

structure in the form of a new model mimicking the behavior of the animal 

agent. Then we compare our new recursive-prediction network with a traditional 

direct-prediction network. The fundamental difference between the two 

networks is that recursive-prediction networks function on the basis of chaotic 

dynamics, whereas direct-prediction networks exhibit fixed-point dynamics. The 

recursive-prediction networks make long-term predictions by recursive use of 

small-step intermediate predictions, whereas the direct-prediction networks 

perform long-term predictions in a single step. The recursive use of small-step 

predictions enable the recursive-prediction networks to fit the underlying 

dynamics of the environment. We evaluate the performances of both types of 

controllers on a prediction task involving a chaotic environment. In addition, 

we analyze the underlying causes of the results obtained. 

Our work has implications for research in situated robotics (Clancey, 

1997, Duchon et al., 1998), decision modeling (Bather, 2000), and cognitive-

process modeling (Clarck & Grush, 1999). Our approach is a new way of 

dealing with environmental dynamics through the incorporation of internal 

matching dynamics. In particular it shows how to create matching dynamics 

using recursive-prediction networks. 

1.1 Related Research and Applications 

Our approach is closely related to the approach of system identification 

applied in the control of non-linear systems (Cichocki & Ubenhauen, 1993; 

Haykin, 1999; White & Sofge, 1992). Typical system identification methods 

build explicitly a model of the observed system—for example, an input/output 
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model that matches the existing functional relation between the inputs and 

outputs of the system (White & Sofge, 1992). Our method differs from the 

system-identification approach in that we do not require the explicit 

identification of the dynamics of the environment (namely, the analog of the 

controlled non-linear system). Instead, we require only the generation of a 

matching dynamics. When matching dynamics extract relevant information from 

the environment, they allow agents to deal with their dynamic environment. 

An example of an application domain for modeling and controlling 

dynamical environments is the control of helicopter rotors. Several papers report 

on difficulties related to the complex, turbulent airflow dynamics caused by the 

movements of a rotor (for example, Gulieri & Celi, 1998; Leishman & Bagai, 

1998). Our approach is an alternative to explicit dynamical modeling. The 

generation of matching dynamics of the environment may outperform 

approaches that are based on explicit dynamical modeling. 

1.2 Outline of the Paper 

The outline of the paper is as follows. In Sec. 2 we describe the model and 

the experimental set-up. In Sec. 3 we present the experiments performed and 

analyses our results. Then in Sec. 4 we examine the structural complexity of the 

neural networks we used and the causes of the errors that occurred. Finally, Sec. 

5 is a summary of our discussion and concludes, amongst others, by stating that 

internal chaotic dynamics are beneficial in dealing with a chaotic environment. 

2. MODEL AND EXPERIMENTAL SET-UP 

Our experiment is inspired by the predator-prey behavior of the frog and 

fly, respectively, and by Beer's (1996) study of an active object-recognition 

agent. During predating, a frog watches the movements of a fly. The frog 

captures the fly with its tongue when within reach (Alcock, 1993; 85). The frog 

typically waits for the approach of the prey in a camouflaging environment with 

minimal movements until a prey approached near enough to be captured with 

a rapid tongue movement. By minimizing its movements in an environmental 

camouflage, the frog largely avoids to be detected by the motion-sensitive visual 
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systems of flies and other insect preys (Juusola & French, 1997). We assume the 

erratic flight pattern of the fly to be an expression of the chaotic nature of (a 

part of) the frog's environment. In the Appendix we provide an analysis of the 

flight pattern of the house fly as supporting evidence. 

2.1 The Model 

Our model is composed of two parts: a dynamic environment (the fly) 

and an agent (the frog). The dynamic environment is a two-dimensional world 

containing a chaotically moving fly. The agent is a flycatcher that catches its 

prey by predicting the position of the fly upon reaching the ground level. Fig. 

1 illustrates the model. 

The flycatcher moves along a line defined as the ground level. The fly 

moves chaotically in the direction of the ground level. The flycatcher has to 

predict the future positions of the fly in order to catch the fly when it arrives 

at the ground level. In our models, the flycatcher predicts the ground-level 

position of the fly using either a direct-prediction or recursive-prediction 

neural network'. In the following the fly and the flycatcher are discussed in 

more detail. 

Fig. 1: Illustration of the model containing the fly and the flycatcher. The xF and yF 

are the horizontal and vertical coordinates of the f ly 's position, and x c is the 

horizontal coordinate of the flycatcher's position. 
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2.2 The Fly 

The co-ordinates xF and yF represent the position of the fly in a two-

dimensional world. Two types of fly movement are defined: random-position 

(RP) and random-walk (RW) movements2. In RP movements, the next 

horizontal position of the fly (x„ewF) is determined by the current position xF 

through the logistic map (Hale & Kocak, 1991): χηε„ρ=λχρ( 1-xF) . In RW 

movements, the next horizontal position xnewF of the fly is determined by its 

current position xF and its movement ωρ, through the following formula: 

XnewF=xF+®newF, with ωη ε«Ρ =λ(0.25-(ωρ) 2 ) -0 .5 . The value of the parameter λ 

is set to a value for which the logistic map exhibits chaotic behavior (Hale & 

Kocak, 1991). In both the RP and the RW movements, the new vertical 

position of the fly is defined as yIiev,F=yF-ctjxncw' -xF|, where yF is the current 

vertical position of the fly. The value of α is chosen to have a number of steps 

that is sufficient for the fly to meet the ground level (yF<0, where θ is a small 

constant). Fig. 2 illustrates both types of fly movements. 

To model the random effects of the air stream, the position of the fly is 

perturbed by a small random component ε, i.e., χ effective ~~ ^ ε, with ε 

having a zero mean normal distribution with variance σ ε . 

2.3 The Flycatcher and Flycatching Strategies 

The flycatcher deals with the environmental dynamics by observing the 

fly and by moving in the appropriate direction. In doing so, it employs a 

RP movements RW movements 

Fig. 2 : Illustration o f random-position (RP) and random-walk ( R W ) fly movements. 
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strategy depending on the type of fly movements (RP and RW). The critical 

part of our model is the control mechanism of the flycatcher that determines 

its actions, given the necessary information about the environment. The 

movements of the flycatcher are determined according to a fly-catching 

strategy. In both cases the flycatcher uses the available relevant information 

to predict the landing position of the fly. At each moment of observation it 

makes a prediction and moves toward the predicted landing position. The 

difference between the strategies stems from the type of the relevant 

information (namely, the position of the fly in the RP case and the position 

and the last move of the fly in the RW case). For RP movements, given the 

current position of the fly, the expected ground-level position of the fly is 

predicted, and the flycatcher moves toward the place. For RW movements the 

flycatcher uses the position and the movement of the fly for predicting its 

ground-level position and subsequently moves to this place. Below we discuss 

the control mechanisms in some detail. 

2.4 Control Mechanisms 

In all cases, RBF-type neural networks were used. Fig. 3 shows an R B F 

network with five neurons. The networks were trained with standard squared 

error based training (Haykin, 1994) adapted to the particular control 

mechanism. 

INPUT 

Fig. 3: Illustration of a typical neural network. 
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For evaluating the ability of both types of networks (direct-prediction and 

recursive-prediction networks) to deal with environmental dynamics, we 

defined two control mechanisms. The first control mechanism applies the 

trained network in a feedforward or direct manner. The second control 

mechanism applies the trained network recursively. For explanatory reasons, 

we describe the latter network in iterative terminology. 

The direct-prediction network is trained to predict the ground-level 

position of the fly (Xgroun/) given the fly' current position (xF, yF) or the fly's 

current position and movement (xF, yF, coF) for RP and RW movements, 

respectively. Using the same inputs, the recursive-prediction network is 

trained to predict the new horizontal position of the fly (xnew
F), instead of the 

final ground-level position. Both networks are made up of artificial neurons 

with a Gaussian activation function defined as 

ll'-dl2 

f ( t ) = e 2'2 (1) 

with c the center and r the width of the Gaussian function. Using this activation 

function the direct-prediction network generates a prediction of the form: 

\UF.yF )'ck\\2 

r " 2? for RP movements: χ g r o u n d F F = r" (2) 
k=\ 

/ 1 /• . 2 
(ω .y )-ck 

.. F " 2r2 
for RW movements: χgrounili/,·/.· = χ + Y j a k e (3) 

k=l 

The ck-s are two-dimensional vectors, representing the centers of the Gaussian 

functions. 

Fig. 4 shows in graphic form the functioning of the direct-prediction neural 

network. 

For RP movements, the recursive-prediction network generates predictions 

according to: 
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(ip-d„)2 

2s; 
xP+\ ~ Y j b k e • ( 4 ) 

k=1 

yP+1 = y P - a \ x p + \ - x p 

in which ρ represents the p-th application of the network to generate a new 

intermediary output, and d^ is a real number representing the center of the 

Gaussian function, and 

Equation (4) is applied iteratively, until the predicted value of y is at 

the ground level, that is, 

y P < e (6) 

x F , < / 

ft 

Direct-prediction 
network 

Xgrcrund 

Fig. 4: The prediction mechanism of direct-predict ion networks. 
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Then the prediction of the ground-level horizontal position is 

xg round,R xp (7) 

Similarly, for RW movements the predictions are generated according to 

k=l 

2s 

Χρ+ι=Χρ+άρ+ι, (8) 

yP+\=yP-a\«>p+\\ 

where dk is the real-valued centre, and 

F ωχ=ω , 

i,=xF, (9) 
F y\=y 

The application is iterative and terminates when 

y p < 6 (10) 

yielding the predicted ground-level position 

* ground, R *p (11) 

Figure 5 illustrates the functioning of the recursive-prediction neural 

network. The flycatcher makes a prediction of the fly's ground-level position at 

each time step. After making the prediction, the flycatcher moves in the 

direction of the predicted position, or if it is possible, it moves to the predicted 

position (namely, if its maximum speed is sufficiently high to move to that place 

in one time step). 
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χ ,y 

t = 1 

xt=xF.yt=yF.®t=<»F 

a 
xt. yt. ®t 

II 
Recursive-prediction 
network 

ϋ 

a 

yt.i < θ 

IJ· 

t = t + l 

A 

N O 

xS«jund — 

^gjound 

Fig. 5: The prediction mechanism of recursive-prediction networks. 

3. EXPERIMENTS AND ANALYSIS 

In this section we report our experimental observations in the simulated 

world of fly and flycatcher. Furthermore, we analyze and interpret these 

observations. We start by describing the experimental conditions. 

3.1 Experimental Conditions 

The experiments evaluate the performances of the agents under four 

experimental conditions. The two control mechanisms (direct-prediction and 

recursive-prediction networks) are combined with the two types of fly movements 

(RP and RW movements), making four experimental settings possible. These were 

assessed for a range of maximum-speed values of the flycatcher. 
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In all settings flies start from the initial vertical position yinjtjaiF = 40. 

Moreover, in all experiments, the fly-movement parameters discussed in Section 

2.2 were set to λ = 3.891 and α = 2.53. The first experiment ignored random 

effects by setting ε = σ ε = 0. The initial horizontal position and movement of the 

flies were set to random values within the interval [0,1]. We defined separate 

ranges of admissible speed values ν for RP and RW movements, i.e., 0.015 < ν 

< 0.05, and 0.06 < ν < 0.2, respectively (the speed value is defined as maximum 

distance that the flycatcher can make between two consecutive observations of 

the fly). 

Denoting the position of the flycatcher by x c , a fly is caught if both |xF-

x c |<p and yF<0 . Considering the rules defining the RP and RW movements 

and the initial distance of the flies from the ground level, we can determine 

the range of the Xgroun/ values in both cases. We get that in our case for RW 

movements XgrOundFe[0,8], and for RP movements XgroundFe[0,l]. Taking into 

account the range of values for x ^ o n / the ρ value is larger for RW move-

ments than for RP movements, namely, p=0.2 and p=0.02, respectively. The 

fly arrives at the ground level (and in potential reach of the flycatcher) if 

yF<e, with θ = 0.5. 

In all settings, the networks contained five neurons, later on established 

as optimal (see Sec. 4). The networks were first trained and then tested. Each 

simulation run comprises a complete trajectory of a fly from its starting point 

to the ground level. At the start of each run, the flycatcher is set to its initial 

position Xjnmai0 = 0.5. We used 1000 runs training and 200 for testing the 

networks. We measured the percentage of caught flies during the testing 

phase. Performances are based on averages over twenty replications for each 

maximum-speed value. 

3.2 Experimental Observations 

The graphs shown in Fig. 6 (RP movements) and Fig. 7 (RW 

movements) present the average performances of both networks as a function 

of (maximum) speed. For both RP and RW movements the recursive-

prediction network outperforms the direct-prediction network over the entire 

range of speed values. The performance of the recursive-prediction network 
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increases with the speed, whereas the performance of the direct-prediction 

network is hardly affected by the speed of the flycatcher. The variance of the 

performances in all cases is much smaller than the average value (less than 

20% of the average). 

3.3 Analyses and Discussion 

We analyze two aspects of all observations. First, we analyze the nature 

of the prediction processes realized by the two kinds of neural networks. 

Second, we compare the current observations with those obtained by ever-

simpler prediction techniques. 

Fig. 6: The average performance of the flycatchers for RP movements. Error bars 

show 99% confidence intervals. 

Fig. 7: The average performance of the flycatchers for RW movements. Error bars 

show 99% confidence intervals. 
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The nature of the predictions: The results can be interpreted in terms of 

differences in complexity of the approximation task for both networks. The 

direct-prediction network tries to approximate the 30 th to 40 th iteration of the 

logistic function governing the f ly 's flight pattern. This function is veiy 

complex. It is a polynomial within a degree of more than a million that 

t ransforms the [0,1 ] interval onto itself. As an illustration Fig. 8 shows the 8 th 

iteration that has 255 minima and maxima. 

Generally, the p-th iterate of the logistic function has 2P-1 extreme points 

within the [0,1] interval for properly chosen λ values, i.e., λ ε ( 0 , 4 ) . 

0 . 2 0 . 4 Ο . ί 0 . 8 ι 

Fig. 8: The graph of the 8 th iteration of the logistic function. 

Fig. 9: The graph of the logistic function. 
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Consequently, a small direct-prediction network may not be able to 

approximate such a complex function. In contrast, the recursive-prediction 

network appropriately approximates the simple logistic function, which has a 

single peak only (see Fig. 9). 

One may argue, therefore, that the performance on the fly-catching task is 

directly related to the complexity of the associated approximation task. The 

recursive-prediction network predicts the final position by recursive 

application of the approximating function. For our choice of λ the recursive 

application of the approximated logistic map behaves chaotically. Consequently, 

small approximation errors may be amplified yielding a large prediction error. 

Apparently, in our experiment the simpler approximation outweighs the 

amplification effects of the recursive calculations. In other words, the 

recursive-prediction network splits the prediction task into a separate approx-

imation and prediction task, which turns out to be beneficial for the prediction 

performance. 

Comparison with simple techniques. Hale and Kocak (1991) note that the 

iterative application of a logistic function with chaotic dynamics yields a 

distribution of values (namely, the distribution of the values x„ where x 0 e[0, l ] , 

and χ,+1=λχ,(1-χ,)) approximately equivalent with the β( 1/2,1/2) distribution, 

independent of the initial value. For our study this implies that the conditional 

expectation of the ground-level position is independent of the initial condition 

and is equal to the mean value of a random variable with the β( 1/2,1/2) 

distribution. Consequently, taking into account the horizontal catching condition 

(|XgroundF"XC| < P). we can calculate the performance of a statistical prediction 

technique. Applying this technique yields a prediction performance of 8.03% 

and 21.98% for RP and RW movements, respectively. For high maximum-

speed values, the recursive-prediction network outperforms the statistical 

prediction in all settings. The direct-prediction network performs worse than 

the statistical prediction for RP movements (<5%). For RW movements, the 

direct-prediction performance is approximately equal to the statistical 

prediction performance. 

Another way to deal with the prediction task is to make one-step 

predictions of the position of the fly and then move toward that position. In 

this case it is possible to predict the new position of the fly very accurately. 

The problem, however, is that the fly moves much faster than the flycatcher. 
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The delayed correct response of the agent yields a bad performance. For 

instance, if the last movement of the fly is large, the flycatcher is not able to 

move to the appropriate position. As the maximum speed of the agent 

increases, the performance of the flycatcher increases steadily. Nevertheless, 

the performance of the flycatcher with one-step predictions and low speed is 

worse than the performance with final-position prediction. As the speed 

increases, the one-step prediction flycatchers outperform those with direct-

prediction networks, whereas their performance falls short when compared to 

the performance of the recursive-prediction flycatchers. 

We limited our comparisons to simple techniques. We note that there 

might be other control techniques that might lead to better performance than 

these simple methods; for example, extended-Kalman filter control (Haykin, 

1999). We believe that to cope effectively with complex environmental 

dynamics, it is essential that the control technique allows the construction of 

some kind of internal matching dynamics, as is the case in our recursive-

prediction networks. 

3.4 The Effect of Noise 

A potentially disturbing aspect of recursive processes is their sensitivity 

to initial conditions (Schuster, 1988). As a result, small initial errors may be 

amplified to large errors. To study the effect of noise on the prediction 

performances, we added noise to the fly's position. The effect of noise is 

modeled as: 

x new = xnew ε (12) 

The noise has an additive effect in the short run but gets a highly 

worthwhile and multiplicative effect in the long run: 

/ ( / + 2 ) = λ2 (xF(t) ( 1 - / ( 0 ) +s(0)(l-Ax' (t) ( 1 - / ( 0 ) - s ( t ) )+ £ ( t+l) (13) 

Figures 10 and 11 show the average performances, in the presence of 

noise (σε = 0.2), of both networks as a function of (maximum) speed, for RP 

and RW movements, respectively. 
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We see that although the performance of the recursive-prediction 

network is altered by the presence of noise, the relative performances of both 

networks are not changed. The reason for this is that the recursive-prediction 

networks perform approximation and prediction separately (see Sec. 3.3). 

The performance of the direct-prediction networks is hardly affected by 

noise. This result agrees with the result of our analysis that the direct-

prediction networks provide basically a pure statistical estimation of the mean 

expected arrival position of the fly. The zero-mean noise does not have an 

effect on the mean arrival position of the fly. 

R e c u rs ive 

-m- D ire c t 

Fig. 10: The average per formance of the f lycatchers for RP movemen t s of noisy 

flies. Error bars show 99% conf idence intervals. 

-

• / * . \i—J J 

—Φ R e c u rs ive 

• D ire c t 

• / * . \i—J J 

- 0.06 speed 0.2 

Fig. 11: The average per formance of the f lycatchers for R W movements . Error bars 

show 9 9 % conf idence intervals. 
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4. THEORETICAL ANALYSIS 

This section provides an analysis of two aspects of our experimental 

results. First we analyze how the complexity of the neural networks affects 

the performance of the flycatchers. Second we analyze the performance of the 

recursive-prediction network in terms of its errors. 

4.1 Com plexity of Neu ral Networks 

In this subsection we intend to determine the minimal complexity of a 

neural network fit for our task (fly catching) performed in a chaotic 

environment. To measure the effect of the complexity of the networks on the 

fly-catching performance, we systematically vary the number of neurons that 

represent the basis functions. Each network was tested with 1, 3, 5, 7, and 10 

neurons for both types of fly movement. For each network and type of 

movement we performed five experiments and calculated the average and the 

variance of the performances. Figures 12 and 13 illustrate the performance of 

neural networks comprising three (instead of five) neurons. By comparing the 

graphs of these figures to those of Fig. 6 and 7 (which show the performances 

for five-neuron networks), the detrimental effect of reducing the network 

complexity is evident. For both the RP and RW movements, there is an 

apparent drop in performance. 

- » - R e c υ rs ive 

-m- D ire c t 

Fig. 12: The average performance of the flycatchers with 3 neurons for RP movements. 

Error bars show 95% confidence intervals. 
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Figures 14 and 15 show performances as a function of complexity 

(number of hidden neurons) for a fixed maximum-speed level, for RP and 

RW movements respectively. Both graphs illustrate the beneficial effect of 

increasing the complexity of the recursive-prediction network. With more 

neurons, the network makes a better approximation of the underlying 

function. Hence, a better performance is obtained with more complex 

recursive-prediction networks. For the direct-prediction networks, a positive 

effect of network complexity could not be established for the range of 

neurons tested. Apparently, even with 10 neurons, the underlying function is 

too complex to be approximated4. 

0.06 speed 0.2 

Fig. 13: The average performance of the flycatchers with 3 neurons for RW movements. 

Error bars show 95% confidence intervals. 

Fig. 14: The performance of flycatchers with varying number of neurons for flies 

with RP movements, flycatcher speed = 0.025 
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The graphs shown in Fig. 16 illustrate the dependency of network 

performance as a function of the speed (horizontal axes) and the number of 

neurons (vertical axes). Each graph is partitioned into several shaded areas 

representing levels of performance. Fig. 16A reveals the performance of 

flycatchers with recursive-prediction neural networks (RP movements) 

improved by both the flycatcher's speed and the network's complexity. A 

similar result is observed for RW movements (see Fig. 16B). We note that the 

top performance is achieved starting from networks with five neurons. This is 

observable in Fig. 15, as well. The performances for the direct-prediction 

network (Figs. 16C and 16D for RP and RW movements, respectively) do not 

reveal such a clear dependency on flycatcher speed and network complexity, 

although there is a positive effect of increased speed on performance for RW 

movements. 

Taken together the results indicate that the question of finding minimal 

complexity network structure with high performance has sense only in the 

case of recursive-prediction networks with RW movements. In this case, the 

results show that we can achieve the maximal performance with networks 

with only five neurons, and that the performance does not significantly 

increase by adding more neurons to the network. 

Fig. 15: The performance of flycatchers with varying number of neurons for flies 

with RW movements, flycatcher speed = 0.1. 
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4.2 Error Analysis 

In this subsection we analyze the error of recursive prediction networks 

when approximating a logistic function. 

Our analysis employs the following notation. 

f(x) the logistic function 

f*(x) the approximation of f(x) 

gn(x) = f ( x ) for n>l the iterated logistic function 

gn*(x) the approximation of g(x) 

ei the approximation error of f* with respect to f 

en the approximation error of gn* with respect to gn 

The following relations hold. 

f*(gn*(x)) = f ( g n ( x ) + e„) + e, 

= λ g„(x) -A(gn(x)f - 2/1 eng„(x) + Aen+ex- λ en
2 

Taking into account that g„(x)e [0,1 ] for all x e [0,1 ], we get 

I f*(g„* (x)) - f ( g n ( x ) ) l<3Aen +Ae„2 + e, 

So, we can write 

en+\ <3Ae„+Ae„2 

There exist numbers e'„ such that en < e'„, e' | = e t , and we have that 

e'n+i=3Ae'„+Äe'„2+e\ 

It is apparent that e'n grows to infinity with n. Nevertheless, taking into 

consideration the construction of the functions represented by the neural 

networks (finite combinations of localized Gaussians), it is evident that the 

absolute values of recurrent applications of these functions are bound by some 

value Μ > 0 (practically Μ « 1). Consequently, Μ bounds the values of e„ too. 

Considering e'n values well below Μ and imposing a more strict limit on the 

values of en, we aim at determining a range of error values e, for which e'n 

remains significantly below 1 for η = 10 to 15. Numerical simulations show that 
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to have e ' 1 5 « l (ranging from 0.01 to 0.1), the initial error should be e1<10"15. 

Consequently, if the initial approximation of the logistic function is sufficiently 

close (namely, ε ι=πΐ3χ|Ρ(χ)-ί(χ)|<10-15), the 10th to 15th iterate of the 

approximating function is a good approximation of the iterated logistic function. 

Of course, e'n is a coarse approximation of e„, so less precise approximations of 

the logistic function may be sufficient. Taking into consideration that neural 

networks can make arbitrarily good approximations of a continuous function 

(Park & Sandberg, 1991), we conclude that recursive-prediction networks 

approximate the iterates of the original approximated function well. 

5. CONCLUSIONS AND CONSEQUENCES 

In the introduction we stated that dealing with chaotic natural dynamics 

requires an internal dynamics that matches the environmental dynamics. 

Thereafter, we presented an experimental set-up that is simple and realistic, 

contains the relevant natural dynamics and is analyzable. We studied the 

behaviour of simulated flycatcher animats in our simple model world, in 

which natural chaos was represented by a chaotically flying fly. We analyzed 

whether direct-prediction or recursive-prediction neural-network architectures 

fit best to our simulated dynamic natural environment. Our results show that 

recursive-prediction networks outperform direct-prediction networks even in 

the case of stochastic noise. The power of the recursive-prediction networks 

stems from the knowledge that these networks separate the prediction and the 

approximation processes, while the latter are not separated in the case of 

direct-prediction networks. In this way, the recursive-prediction networks build 

up accurate predictions by using small-step intermediate approximations. 

In situated robotics (Clancey 1997), the embedding of an agent in a 

realistic environment is taken as a starting point for artificial intelligence. 

Commonly, the animats used in the situated approach incorporate direct-

prediction neural networks for the sake of simplicity and ease of analysis 

(Srinivasan & Venkatesh, 1998). Although our recursive-prediction networks 

did not appear as evolutionary results of the considered environment, the 

results presented here show that they offer a better architectural setting to 

evolve successful solutions in an environment having complex nonlinear 
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dynamics. Our results suggest that for building anticipating robots, recurrent 
neural networks are more suitable than non-recurrent types of neural networks. 
Nevertheless, their application to effective situated robotics requires our 
results to be extended to recurrent neural networks operating and interacting 
in real time (cf. Beer, 1996; Freeman, 1987). 

Our work also has implications for decision modeling (Bather, 2000) and 
cognitive process modeling (Clarck & Grush, 1999). Recent proposals suggest 
that these models should take account of the environmental factors, and 
particularly environmental dynamics (for example, Kuniyoshi & Berthouze, 
1998). In our view, this approach can be done successfully by incorporating 
generic dynamical components into the models that can develop internal 
dynamics matching the external dynamics of the environment. In accordance 
with our results, an effective way to do this is to use recursive-prediction 
models, namely, the recursive-prediction networks analyzed here. We suggest 
that decisional and cognitive process models incorporating matching internal 
dynamics should be validated using real data (for example, data from animals 
performing decisional tasks) to determine the optimal application and 
practical limits of the methodology. 

We conclude by stating that our approach opens new perspectives on 
dealing with dynamic environments by agents. Our future work aims at 
investigating the viability of our approach in more realistic cases. One of our 
intended ways to do this is to analyze the preying behavior of real animals 
(for example, real frogs) and to compare that with the results provided by our 
simulated animats. 

APPENDIX 

Analysis of the flight pattern of the house fly 

The flight of the house fly (Musca domestica) is analyzed using a video 
camera. Flies were captured in a glass box and filmed using a Sony camera 
(DCR-TRV 110) firmly mounted on a tripod. Using a capture card (FAST 
AVMaster version 2.2) we digitized four sequences of 60 to 180 seconds of 
recorded flights. The digitized video sequences were pre-processed by a digital 
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video-processing program developed by the first two authors. The pre-

processing yielded eight sequences of three-dimensional fly movements 

projected onto a two-dimensional plane. Each sequence comprised 15 to 34 

snapshots of fly positions. Typical examples of horizontal and vertical position 

sequences are shown in Fig. 17 (x positions) and Fig. 18 (y positions), 

respectively. The position is expressed in pixels and the time in video-capture 

frames. To analyze the flight pattern, we started by calculating the so-called 

difference series of the flight data, namely, u', = u',+\ - u„ where u, denotes 

Fig. 17: The horizontal positions of the fly as a function of time (the time is 

measured in video-capture frames). 

Fig. 18: The vertical positions of the fly as a function of time (the time is measured 

in video-capture frames). 
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the position at time t in the original series. Subsequently, we analyzed the 

difference series by calculating the correlation dimension (Basar, 1990; 

Granger & Teräsvirta, 1996; Peters 1996) to determine if it contains a chaotic 

component. If the data series is random than we should see that the 

correlation dimension increases as we increase the embedding dimension. 

If the data series has a dominating linear relationship among consecutive 

data values, the correlation dimension should saturate5 at an integer number, 

that is, the same as the dimensionality of the linear relationship. If the 

correlation dimension saturates at a non-integer value, it is likely that the data 

series contain a complex nonlinear relationship between consecutive members 

of the series6. 

We performed these calculations separately for horizontal and vertical 

difference series. Furthermore, the effective correlation dimension was 

determined by calculating the correlation dimension for a range of embedding 

dimensions. We found that the correlation dimension saturates around 3.4 for 

the X-values and around 5.4 for the Y-values (see Figs. 19 and 20). 

Supported by these results, we suggest that the fly flight data contain a 

chaotic component. Consequently, the erratic flight pattern of the fly is an 

example of the chaotic nature of the frog 's environment 
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Fig. 19: Correlation dimension of the horizontal position difference series. 
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Fig. 20: Correlation dimension of the vertical position difference series. 
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Notes: 
'For the sake of simplicity we kept the vertical movement of the fly as a simple 
function of its horizontal movement. In a more complex case the fly's vertical 
position could vary similarly as its horizontal position in our simulation, and the 
flycatcher could be required to make correspondingly more complex predictions. 

2We note that the use of the word 'random' does not mean that these movements are 
truly random, but that their distribution is similar to that of a random series. 

3The λ determines the chaotic nature of the flight patterns of the simulated fly. If λ is 
close to 4 and λ<4 the flight pattern is likely to be chaotic. The λ=3.891 is a 
particular choice which gives chaotic flight patterns. For other values of λ the flight 
pattern might have a periodic or fixed point dynamics. For details on the dependence 
of the chaotic nature of the logistic function on the λ parameter see Hale and Kocak 
(1991). The α determines how many iterations are before the fly hits the ground 
level. The bigger the a , the less iterations are calculated, and the easier are the 
predictions. 

4Looking at Fig. 8, we see how complicated is the underlying function after only 8 
iterations. This suggests that we need a very large number of neurons in the network 
to have a good direct approximation of such iterated functions. Furthermore, the 
number of necessary neurons depends on the number of iterations. Too many 
neurons may lead to over fitting, if the number of practical iterations turns to be 
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smaller than the ideal one. Too few neurons may lead to low performance if the 
number of practical iterations is higher than the ideal one. As the number of practical 
iterations may vary, it is hard to find a good direct-prediction network for this task, 
even if we do not limit the number of the neurons of the network. 

5The correlation dimension is said to saturate if it does not change with increasing 
embedding dimension. The value of the correlation dimension at the saturation is 
defined as the effective correlation dimension. 

6 We note that this test is not an absolute test, and it is possible to construct 
counterexamples for the method (Basar 1990). 
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