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OBJECTIVE—Dietary factors influence diabetes development
in the NOD mouse. Diet affects the composition of microbiota in
the distal intestine, which may subsequently influence intestinal
immune homeostasis. However, the specific effects of antidiabe-
togenic diets on gut immunity and the explicit associations
between intestinal immune disruption and type 1 diabetes onset
remain unclear.

RESEARCH DESIGN AND METHODS—Gut microbiota of
NOD mice fed a conventional diet or ProSobee formula were
compared using gas chromatography. Colonic lamina propria
immune cells were characterized in terms of activation markers,
cytokine mRNA and Th17 and Foxp3� T-cell numbers, using
real-time PCR and flow cytometry. Activation of diabetogenic
CD4 T-cells by purified B-cells was assessed in both groups.
Immune tolerance to autologous commensal bacteria was eval-
uated in vitro using thymidine-incorporation tests.

RESULTS—Young NOD mice showed a disturbed tolerance to
autologous commensal bacteria. Increased numbers of activated
CD4 T-cells and (CD11b�CD11c�) dendritic cells and elevated
levels of Th17 cells and IL23 mRNA were moreover observed in
colon lamina propria. These phenomena were abolished when
mice were fed an antidiabetogenic diet. The antidiabetogenic diet
also altered the expression levels of costimulatory molecules and
the capacity of peritoneal B-cells to induce insulin-specific CD4
T-cell proliferation.

CONCLUSIONS—Young NOD mice show signs of subclinical
colitis, but the symptoms are alleviated by a diet change to an
antidiabetogenic diet. Disrupted immune tolerance in the distal
intestine may influence peritoneal cell pools and B-cell–mediated
activation of diabetogenic T-cells. Diabetes 59:2237–2246,
2010

D
ietary and microbial factors may be partly re-
sponsible for the increase in type 1 diabetes
incidence. The intestinal mucosa is constantly
exposed to these factors, and it is therefore

important to thoroughly understand how these factors
affect the intestinal immune system.

Evidence suggesting that gut immune disruptions may

trigger type 1 diabetes originated from studies that showed
correlations between a high prevalence of cow-milk anti-
bodies, brief breastfeeding in infancy, and an increased
risk of type 1 diabetes (1,2). This hypothesis gained further
support from the discovery that lymphocytes accumulat-
ing in the islets share homing characteristics with gut-
associated lymphocytes (3–5). Research in both humans
and animals has thereafter lead to an understanding that
type 1 diabetes is associated with increased permeability
and enteropathy in the small intestine (6–9). The impaired
barrier functions of the small intestine may subsequently
cause alterations in antigen responses and thus disrupt the
immunological homeostasis of the intestine. This in turn
could cause intestinal inflammation and induce immune
responses that lead to autoimmunity (7,10,11).

Considerably less attention has been paid to the poten-
tial role of the large intestinal immune system in type 1
diabetes development. The large intestine differs immuno-
logically in several aspects from the small intestine: The
disruptions in small intestinal immunity is linked foremost
to ingested antigens or allergens such as insulin from cow
milk, cereal-based allergens, and other food derivatives.
The most immediate sources of immune disruption in the
large intestine, however, are the vast quantities of bacteria
residing therein. Moreover, large intestinal lamina propria
lymphocytes differ markedly in terms of population dy-
namics and cytokine expression from the lamina propria
lymphocytes of the small intestine (12).

There is some evidence that directly associates immune
responses in the large intestine with the pancreas; lymph
from the transverse colon has been reported to drain
specifically to the pancreatic lymph nodes (13). This could
allow innate immune stimuli to interfere with induction of
peripheral immune tolerance to antigens. Accordingly,
studies in BDC2.5/NOD mice have indicated that dextran
sodium sulfate, which disrupts the barrier functions of the
colonic epithelium, enhances the activation of islet reac-
tive T-cells in pancreatic lymph nodes of NOD mice (14). It
is therefore of interest to further investigate the role of the
colonic immune system in type 1 diabetes.

Dendritic cells as well as macrophages play a major part
in large intestinal mucosal immune counterbalance. Mac-
rophages and CD11b� dendritic cells have been reported
to secrete anti-inflammatory cytokines, such as IL-10,
while CD11b� dendritic cells elicit the production of
proinflammatory IL-17 (15,16). Macrophages, which are
capable of suppressing dendritic cell-induced IL-17 secre-
tion (17), are reduced in numbers in the lamina propria of
mice suffering from colitis, concomitant with a substantial
increase of lamina propria CD11b� dendritic cells (15).
Intestinal macrophages in humans have moreover been
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described as inflammatorily anergic, producing only low
levels of proinflammatory cytokines (18).

The cytokine IL-23 has importance in several inflamma-
tory disorders (19). IL-23 is capable of promoting both
Th17 and Th1 responses in the intestinal lamina propria,
because its absence decreases both Th1- and Th17-type
cytokines in the intestine (20). The exact effects of IFN-�
and IL-17 on type 1 diabetes are nevertheless unclear.
Though increased production of IFN-� has been associ-
ated with type 1 diabetes, NOD mice lacking IFN-� or
IFN-� receptor develop type 1 diabetes to a degree equal to
wild-type NOD mice (21,22). IL-17 promotes pancreatic
inflammation (23) and is upregulated in diabetic mice
(24,25). Furthermore, treatment with IL-25, which inhibits
the Th17 cell population, and with IL-17 neutralizing
antibody, prevent diabetes in NOD mice (26). Treatment
with IFN-� can likewise prevent diabetes in NOD mice,
probably by decreasing the production of IL-17 in the
spleen and pancreas (27). Th17 cells can moreover trans-
form to Th1-like cells under the influence of IL-12, dem-
onstrating a considerable degree of plasticity between the
Th17 and the Th1 cell lineages (28).The results presented
in this study indicate that newly weaned NOD mice suffer
from a mild level of colitis, which alters the colonic
immune cell standing toward a proinflammatory status.
This is moreover associated with a disruption of immune
tolerance toward autologous intestinal microbiota. As
recently reported, NOD peritoneal B cells show a signifi-
cantly higher efficiency in activating insulin-specific T-cell
reactivity than spleen-derived conventional B-cells (29).
Remarkably, most of the abnormalities in the colon and
peritoneal B-cell antigen-presenting activity of young NOD
mice can be abrogated when NOD mice are fed an
antidiabetogenic diet from the time of weaning. The sub-
stantial effects of the antidiabetogenic diet on the colonic
and peritoneal immune system call attention to the impor-
tance of colon immune homeostasis in the development of
type 1 diabetes in NOD mice.

RESEARCH DESIGN AND METHODS

NOD mice were either on a regular diet (CRM-E, SDS, Tapvei) (hereafter
referred to as “NOD” mice) or ProSobee infant formula (Mead Johnson
Nutritionals) (referred to as “PNOD” mice). The ProSobee formula was given
to the mothers from 2 weeks after giving birth and to the offspring immedi-
ately after weaning, and continued throughout the study period. The average
weight of 4.5 week old NOD and PNOD mice was not significantly different;
NOD, 21.0 g (�1.1 g), and PNOD, 19.6 g (�1.2 g). The diet modifications thus
did not impede growth in mice.

Diabetes incidence was assessed through weekly blood tests, and mice
were considered diabetic when blood glucose levels exceeded 14 mmol/l on
two consecutive measurements. NOD and BALB/c mice originating from
commercial breeders have been housed and bred for more than two decades
in the central animal laboratory of Turku University. All animal experiments
were approved by the National Laboratory Animal Care & Use Committee in
Finland and conformed to the legal acts, regulations, and requirements set by
the European Union concerning protection of animals used for research.
Cell proliferation in response to commensal bacteria. Fresh fecal pellets
were collected from individual BALB/c and NOD mice, incubated in PBS (one
pellet/0.1 ml) for 30 min at 37°C, then vortexed and centrifuged to remove
undissolved fibrous pieces. The suspension was further incubated for 2 h at
60°C to inactivate the bacteria and sonicated to produce a suspension of dead
bacterial components. The bacterial density was adjusted using absorbance
measurements relying on a standard curve created on the basis of titration of
colony-forming unit values for different absorbance values. Bacterial sonicate
was added to cell culture plates containing mesenteric lymph node (MLN)
cells (200,000 cells/well) from the same mouse from which the pellets were
collected (bacterial sonicate from autologous intestine) or from a littermate
(bacterial sonicate from heterologous intestine). The cells were incubated at
37°C for 72 h with the addition of [H3] thymidine (0.4 �Ci/ml) during the last
6 h of incubation. Finally, cells were collected using an automatic cell

harvester (Tomtec Harvest 96), and the radioactivity was counted using a beta
counter (Wallac). Each experimental condition was performed in triplicate.
Assessment of intestinal histology. For histological studies of the colon,
mice were killed at the age of 4.5, 6, or 10 weeks. Colons were excised, washed
with PBS, and fixed in 10% buffered formalin. After rehydration, 4–5-�m thick
paraffin-embedded sections were stained with hematoxylin and eosin, and
hyperplasia was assessed by measuring the thickness of the epithelial crypts
using light microscopy (Olympus).
Gas chromatographic analysis of cellular fatty acid profiles of gut

bacteria. The intestinal flora of NOD and PNOD mice were assessed for
overall differences using gas–liquid chromatographic (GLC) techniques. This
method allowed computerized profiling of cellular fatty acids of bacteria in
NOD and PNOD stool samples. Differing fatty acid profiles correlate to
differences in bacterial species because the fatty acid composition is species-
specific (30).

To assess the differences in gut flora, stool samples were collected from
NOD and PNOD mice and stored at �70°C until processing. Before proceed-
ing to GLC analysis, bacterial mass was separated from other fatty acids
present in the feces as described in ref. (31) using sedimentation and
centrifugation steps. The bacterial mass was further saponified and methyl-
ated, and GLC was run as described in ref. (30).
Isolation of lamina propria lymphocytes and myeloid cells. Colons were
excised, washed, and cut into pieces. The pieces were incubated for 3 � 20
min at 37°C in Hanks’ balanced salt solution supplemented with 2% fetal calf
serum (FCS) (Life Technologies) and 2 mmol/l EDTA to remove the epithelial
layer and intraepithelial lymphocytes.

The colon pieces were then washed with RPMI-1640 (Life Technologies) and
digested with Collagenase A (Roche) (0.5 mg/ml) for 1 h at 37°C in RPMI-1640
supplemented with 10% FCS. Undigested pieces were minced and filtered through
a nylon mesh. Leukocytes were purified from the resulting cell suspension using
Lympholyte-M (Cedarlane) gradient centrifugation (1250 g, room temperature)
and thereafter washed twice in culture medium before further use.
Flow cytometry. Anti-CD4 and anti-CD8 conjugated to either fluorescein
isothiocyanate (FITC) or phycoerythrin (PE) were used to detect T-cell
populations. Cell populations were further stained using PE-conjugated
anti-�4 or PE-conjugated anti-CD86 (BD Pharmingen), or FITC-conjugated anti-
CD44, PE-conjugated anti-CD69 or FITC-conjugated anti-CD62L (Immunotools).

Peritoneal washout cells were stained with FITC-conjugated anti-CD11b
(Immunotools) and allophycocyanin conjugated anti-CD45R (Caltag Labora-
tories) to identify B1-cells. PE-conjugated anti-CD40 or anti-CD86 (Immuno-
tools) was used for peritoneal B-cell activation marker detection.

Subsets of myeloid antigen-presenting cells were characterized as follows:
CD11b� F4/80� macrophages, F4/80�CD11b�CD11c� myeloid dendritic cells,
and F4/80�CD11b� CD11c� lymphoid/plasmacytoid DC (all antibodies for this
characterization were either FITC or PE conjugated and purchased from
Immunotools). The samples were run with FACSCalibur and analyzed using
cellQuest software (Becton Dickinson).
Quantitation of colon cytokine gene expression using real-time PCR.

Mouse colon samples were cut into pieces and stored in RNA Later (Qiagen).
Total RNA was purified with RNeasy Mini Kit (Qiagen). RNA purity and
quantity was determined using a Nanodrop spectrophotometer (Nanodrop
Technologies). cDNA was synthesized with DyNAmo cDNA Synthesis Kit
(Finnzymes), using oligo-dT primers provided with the kit. Levels of cytokine
expression in colons of individual mice were evaluated with real-time quan-
titative PCR using Maxima SYBR Green qPCR Master Mix (Fermentas) and
RotoGene cycler (Corbett Research). Ct-values were normalized to the
endogenous housekeeping gene GAPDH and are expressed as copy numbers
relative to the GADPH copy numbers. Primer sequences are given in supple-
mentary Table 1, available in an online appendix at http://diabetes.
diabetesjournals.org/cgi/content/full/db10-0147/DC1.
Analysis of Th17, Th1, and Foxp3 cells in colon lamina propria. Purified
colonic lamina propria lymphocytes (LPLs) were incubated in complete RPMI
1,640 (supplemented with 10% FCS, 2 mmol/l L-glutamine, 100 units/ml
penicillin, and streptomycin) containing 0.1 �mol/l PMA, 1 �mol/l ionomycin,
and 10 �g/ml Brefeldin A (Sigma-Aldrich) for 4 h at 37°C.

Stimulated cells were surface-stained using FITC-conjugated anti-CD4 and
allophycocyanin-conjugated anti-CD25. The cells were then fixed with 2%
paraformaldehyde and permeabilized with 0.5% saponin. Fc block was used to
block nonspecific binding. PE-conjugated anti-IFN-�, PE-conjugated anti-
Foxp3, or PE-conjugated anti-IL-17 and appropriate isotype controls (all
reagents from eBiosciences) were used for the intracellular staining.
B-cell antigen presentation capacity. The antigen presentation assay was
performed using the same experimental settings as in ref. (29); NOD mice
were immunized with 50 �g insulin peptide (Insulin B 9-23, Anaspec)
subcutaneously on the hind flank. Ten days later, spleens were collected from
these animals and the splenic CD4� T-cells were purified using CD4 Mi-
croBeads (Miltenyi Biotec). These purified T-cells were cocultured (175,000
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cells/well) with either NOD or PNOD peritoneal- or splenic B-cells (150,000
cells/well) purified with B220 MicroBeads (Miltenyi Biotech). Purified B-cells
(�93% B220�) were irradiated with 3 Gy before adding to cell culture.
Additionally, either insulin peptide (4 �mol/l; Insulin B 9-23; Anaspec) or
intact insulin (20 �g/ml; 	-Aldrich) was added to the wells in triplicate. The
cells were incubated in 37°C for 72 h with the addition of [H3] thymidine (0.4
�Ci/ml) during the last 16 h of incubation. The cells were harvested and
analyzed as described above.

RESULTS

Lack of tolerance to commensal bacteria in NOD
mice. MLN cells from NOD mice proliferated vigorously in
response to bacterial sonicate from a littermate (heterol-
ogous sonicate). Proliferation was, however, at an equal
level regardless of whether cells were stimulated with
autologous or heterologous bacterial sonicate (Fig. 1A).
Contrarily, in BALB/c mice, high-level proliferation was
observed when the commensal bacteria originated from a
heterologous source (littermate), whereas autologous bac-
terial sonicate failed to induce any significant response
(Fig. 1B). These results are indicative of a state of inflam-
mation in the NOD colon, because loss of tolerance to
autologous commensal bacteria is associated with inflam-
mation and colitis (32,33).
Villous hyperplasia in the colons of NOD mice. A
histological analysis of the colon revealed hyperplasia in
the epithelial crypts of NOD mice at 4.5 weeks of age. The
crypts of NOD colons were thicker than the crypts of
BALB/c colons at 4.5 weeks of age. However, the epithelial
layer of the NOD colon was thinner at 6 and 9 weeks of age
compared with 4.5 weeks. This was in contrast to the
development of BALB/c colons, where a gradual age-
dependent thickening was observed (Fig. 2A). There were
no other signs of frank colitis, such as leukocyte infiltra-
tion, goblet cell loss, or crypt abscesses in the NOD colons.
When NOD mice were kept on ProSobee diet, hyperplasia
was not observed at 4.5 weeks of age, indicating that the
occurrence of hyperplasia in newly weaned NOD mice is
diet related (Fig. 2B).
Differences in NOD and PNOD diabetes incidence and
gut flora. Diabetes incidence was significantly lower in
NOD mice that had been fed ProSobee instead of conven-
tional food (Fig. 3A). The fatty acid profile of NOD and
PNOD did not differ at 3 weeks of age (preweaning).
However, at 5 and 10 weeks of age, GLC analysis revealed
profound differences in the bacterial fatty acid profiles of
NOD and PNOD gut bacteria (Fig. 3B and C).

Mice within the same age and diet group exhibited
consistently similar fatty acid profiles. Moreover, no

significant differences between 5- and 10-week-old NOD
mice were observed. PNOD mice, contrarily, showed
differing fatty acid profiles at 5 and 10 weeks of age. A
summary of P values based on these comparisons is
provided in Table 1. This data demonstrates that diet
has a substantial effect on bacterial species prevalence
in NOD mice.
Inflammatory lymphocytes and dendritic cells in NOD
colon lamina propria. Compared with BALB/c mice,
NOD mice had a higher proportion of CD4� T-cells ex-
pressing CD44 and CD69 in colon lamina propria. Further-
more, L-selectin was downregulated on the majority of
NOD colonic CD4� T-cells. CD4� lamina propria cells
from NOD mice on ProSobee, in contrast, showed the
same level of CD69 and L-selectin expression as BALB/c
mice, and intermediary levels of CD44 expression (Fig.
4A–C). The colons of NOD mice, moreover, contained an
increased fraction of CD11b�CD11c� (myeloid, inflamma-
tory) dendritic cells and a decreased percentage of mac-
rophages and CD11b�CD11c� dendritic cells compared
with BALB/c mice (Fig. 4D–F). PNOD lamina propria
contained both less macrophages and CD11b�CD11c�

dendritic cells, but more dendritic cells with the pheno-
type CD11b�CD11c�. The increase of CD11b�CD11c�

dendritic cells in NOD lamina propria may be indicative of
colonic inflammation because these cells have been re-
ported to increase in mice with colitis (15).
Real-time PCR measurement of colonic cytokine ex-
pression. To further elucidate the inflammatory nature of
NOD colon immune cells, real-time quantitative PCR was
used to measure the expression of different cytokines in
BALB/c, NOD, and PNOD colons. Colons from NOD mice
showed elevated expression levels of IL-17, IL-23, and
IL-10 and decreased expression of TGF-
. IFN-� expres-
sion was also assessed, but all mouse groups only ex-
pressed barely detectable levels of it. Foxp3 was also
upregulated in NOD colonic cells at 4.5 weeks. This may
be a counterbalancing phenomenon to the proinflamma-
tory occurrences. All of the differences observed between
NOD and BALB/c mouse cytokine expression leveled out
with dietary manipulation (ProSobee diet); PNOD cyto-
kine expression for all of the above listed cytokines was
similar to that of BALB/c. (Fig. 5A–F).
Intracellular staining of colonic lamina propria CD4�

lymphocytes. Intracellular staining was performed to
confirm that the differences in IL-17 mRNA expression
correlated with increased IL-17 production in CD4�

T-cells. The results were similar to RT-PCR; a higher
percentage of IL-17 producing CD4 T-cells were present
in the colon of 4.5-week-old NOD than in that of BALB/c or
PNOD mice (Fig. 5I and J). The results for IFN-� and
Foxp3 intracellular staining (Fig. 5G and H, respectively)
likewise coincided with the RT-PCR analysis. For IFN-�
intracellular stainings, the percentages of CD4� IFN-��

cells were higher in NOD than in PNOD lamina propria
cells. The levels, however, were low (Fig. 5H).
Peritoneal B-cell activation markers and antigen-
presenting capacity. NOD peritoneal B1 cells express
abnormally high levels of CD40 and CD86, are more
effective than splenic B-cells at presenting antigen to
diabetogenic T-cells, and migrate at an enhanced rate to
the pancreatic lymph nodes (29). The expression of
costimulatory molecules CD40 and CD80 is significantly
decreased on PNOD peritoneal B1-cells compared with
NOD B1-cells (Fig. 6A and B). Peritoneal and splenic
B-cells from NOD and PNOD were next tested in parallel
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FIG. 1. Lack of tolerance to autologous bacterial flora in NOD. BsA,
bacterial sonicate from autologous intestine, BsH, bacterial sonicate
from heterologous intestine. A: MLN cells from NOD mice; n � 10. B:
MLN cells from BALB/c mice; n � 3. **P < 0.01 as calculated using
one-way ANOVA and Bonferroni post hoc test. ns, no significant
difference.
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for their antigen-presenting efficiency in presenting in-
sulin or insulin peptide (insulin B9-23) to insulin B9-23
primed NOD CD4 T-cells (Fig. 6C–F). In contrast to
NOD mice, peritoneal B-cells from PNOD mice were less
efficient than splenic B-cells at presenting antigen (Fig.
6D and F). It is suggested that the decreased expression
of CD40 and CD86 and the lessened antigen-presenting
capacity in PNOD peritoneal cells is a consequence of
lower activation status in the peritoneum, which in turn

is a result of the lower inflammation level in the colon of
PNOD mice.

DISCUSSION

The evidence presented herein indicates that young NOD
mice suffer from a mild level of colitis, which disrupts the
immune homeostasis of the large intestine. Intolerance to
autologous microbiota, colonic hyperplasia, increased
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FIG. 2. Colon epithelial layer hyperplasia in young NOD mice. A (Left): Representative images of longitudinal sections of colons from NOD (left)
and BALB/c (right) mice at 4.5 (top), 6 (middle), and 10 weeks (bottom), stained with hematoxylin and eosin. The black line represents the
thickness of the NOD colon at 4.5 weeks. (Right): Average crypt depth � SEM for 4.5-, 6-, and 10-week-old BALB/c and NOD mice. n � 4 per group.
B: Longitudinal sections of colons from NOD, BALB/c, and PNOD mice at 4.5 weeks of age. The black lines represent the thickness of the NOD
colon at this age. The bar graph to the right represents average crypt depths � SEM for NOD, BALB/c, and PNOD at 4.5 weeks. n � 4 per group.
***P < 0.001 using Student t test (A) or one-way ANOVA and Bonferroni post hoc test (B).
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numbers of dendritic cells, and increased levels of IL-17
and IL-23 in the NOD colon are all indicative of colonic
inflammatory activity. Remarkably, this condition is alle-
viated if the standard mouse diet is changed to an antidia-
betogenic diet (ProSobee) from the time of weaning. With
respect to human type 1 diabetic patients, an increased
risk of type 1 diabetes in the offspring of mothers diag-
nosed with ulcerative colitis has been observed (34).
Moreover, mucosal inflammation in the small intestine has
been associated with type 1 diabetes in humans (35,36).
However, a mild and perhaps transient colonic inflamma-
tion, like that observed in NOD mice, would easily escape
diagnosis in human type 1 diabetic patients.

The increased levels of IL-17 and IL-23 in the colons of
4.5-week-old NOD mice are a clear indication of an inflam-
matory response. Increased levels of Foxp3 and IL-10,
which were also observed, may demonstrate a counteref-
fect to the ongoing inflammation in the colon. A significant
increase in IL-10 in inflamed mucosa of patients with
ulcerative colitis has in fact already been reported (37).
Similarly, the accumulation of naturally occurring T-regu-
latory cells has been detected in inflamed pancreatic
lymph nodes and in the pancreas (38). Increased numbers
of Foxp3 T cells have also been detected in the small
intestine of children with both celiac disease and type 1
diabetes (39).

FIG. 3. Diabetes incidence and bacterial fatty acid
composition for NOD and PNOD mice. A: Diabetes
incidence for NOD mice that have been raised on
conventional murine food (broken line) and on
ProSobee (continuous line). n � 18 per group. B:
Example of a cluster analysis of fatty acid profiles
from the stool samples. All 16 samples are com-
pared with each other and clustered accordingly. An
index of 100 indicates complete similarity with the
same fatty acids (peaks in the chromatogram)
found in the same concentrations in the samples
compared; an index of 0 indicates complete dissim-
ilarity. C: GLC analysis of fecal bacterial fatty acids
from NOD and PNOD mice. Each peak in the graph
represents an individual fatty acid. Graphs are rep-
resentative of NOD (top row) and PNOD (bottom

row) at 3 weeks (left column), 5 weeks (middle

column), and 10 weeks (right column). n � 13–17
mice per group.
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Though antibiotics alleviate intestinal inflammation
(40), depleting commensal bacteria by antibiotic treatment
has been shown to render the colon more susceptible to
chemically induced epithelial injury in mice (41). Proper
immune recognition of bacteria, rather than just commen-
sal bacteria per se, is thus considered a critical element in
the immune regulation of the colon (41,42). The immune
cells in healthy individuals are hyporesponsive to resident
bacterial flora, but this immune tolerance is broken in
patients suffering from inflammatory bowel disease
(32,33). Moreover, disruption of the balance between
potentially pathogenic and potentially beneficial commen-
sal bacteria may also underlie inflammatory bowel disor-

ders (43,44). BB diabetes-prone and diabetes-resistant rats
differ in the composition of microbial species present in
the gut (45). Moreover, it has been reported that Bacte-
roides fragilis has the ability to suppress IL-17 production
in a model of H. hepaticus induced colitis (44). Recent
studies indicate that intestinal Th17 cells are controlled by
the specific composition of intestinal microbiota and that
the segmented filamentous bacteria with the candidate
name Artromitus are particularly potent inducers of Th17
cells (46). Removal of the MyD88 protein moreover pro-
tects against diabetes by modulating the composition of
gut microbiota (42). It is thus becoming ever more evident
that the composition of the bacterial species in the gut

TABLE 1
Bacterial fatty acid composition comparisons between NOD and PNOD mice at 3, 5, and 10 weeks

Mice, n NOD PNOD
5 weeks 10 weeks 3 weeks 5 weeks 10 weeks

NOD
3 weeks 68.59 � 16.88*** 74.47 � 14.03*** 85.41 � 17.75, ns 47.73 � 12.96*** 50.21 � 9.18***
5 weeks 80.89 � 16.27, ns 34.69 � 11.62*** 49.97 � 13.38*** 52.90 � 9.95***
10 weeks 39.21 � 11.87*** 56.01 � 12.21*** 56.74 � 11.10***

PNOD
3 weeks 53.43 � 17.10*** 69.46 � 20.42***
5 weeks 62.01 � 17.54**

Data are expressed as a similarity index of the fatty acid profile of the grouped samples when compared with the fatty acid profile of the
grouped samples of the other group � SD of individual samples within the group. An index of 100 indicates complete similarity with the same
fatty acids (peaks in the chromatogram) found in the same concentrations in the samples compared; an index of 0 indicates complete
dissimilarity. n � 13–17 mice per group. **P � 0.01; ***P � 0.001; ns, not significantly different.
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profoundly affects the immune homeostasis of the intesti-
nal immune system.

A wheat-free diet reduces the number of microbes in the

intestine (47), and delayed introduction of wheat into the
diet has positive long-term effects on diabetes prevention
in mice (48). It is thought that the intestinal immune
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system of newly weaned individuals may be particularly
sensitive to immune disruption due to the yet immature
immune system, higher permeability of the intestinal wall,
and lower numbers of IgA positive B-cells in infancy (49).
The findings presented herein indicate that a diet change
from standard murine pellet food to ProSobee infant
formula dramatically alters microbial species prevalence
in the intestine. The ProSobee diet moreover brings about
a decline in colonic proinflammatory cytokine levels and
eases the hyperplasia observed in NOD colons. At 6 weeks

of age, differences between BALB/c, NOD, and PNOD had
largely leveled out (results not shown), indicating that the
changes seen in NOD at 4.5 weeks may be transient. This
correlates with the idea that the weaning period is partic-
ularly critical for the development of gut immunity, be-
cause the mice were weaned at 
3 weeks of age.

It has been proposed that the pancreatic lymph nodes
are the primary draining sites for the transverse colon (13).
Furthermore, dextran sodium sulfate, which causes coli-
tis, has been reported to promote T-cell activation in the
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pancreatic lymph nodes (14). Thus, it is possible that a
direct connection exists between NOD colonic immune
interruptions and the onset of autoimmune events in the
pancreatic lymph nodes, which ultimately lead to type 1
diabetes. However, it is also possible that events occurring
in the colonic lamina propria may cause a response in the
peritoneal immune cell pool. Indomethacine, which dis-
rupts the epithelial barrier mainly in the small intestine,
causes rapid changes in the composition of cells in the
peritoneum (50). The peritoneal cavity B-cells in turn
preferentially migrate to the pancreatic lymph nodes (29)
and, hence, may provide the link between gut immune
system disruption and type 1 diabetes onset. The elevated
expression of activation markers CD40 and CD86 and the
enhanced efficiency of NOD peritoneal B-cells to present
antigen to diabetogenic T-cells decline when NOD mice
are fed ProSobee instead of the conventional diet. The
events in the peritoneum of NOD mice thus may be
interlinked with intestinal immune regulation.

The evidence brought forward in this study emphasizes
the importance of the colonic immune system and the role
of microbial prevalence in the development of type 1
diabetes in the NOD model. It is suggested herein that the
antidiabetogenic effects of the ProSobee diet derive, at
least in part, from its capacity to restore colonic immune
homeostasis in NOD, where a proinflammatory bias oth-
erwise prevails. The anti-inflammatory effects of the
ProSobee diet also have implications outside of the gas-
trointestinal immune system, because it changes the prop-
erties of the peritoneal B-cells. It can be proposed that the
colonic immune imbalance in NOD mice reflects on the
peritoneal immune cells, which subsequently aid in initi-
ating an autoimmune response in the pancreatic lymph
nodes, triggering type 1 diabetes development.
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M. Tolerance towards resident intestinal flora in mice is abrogated in
experimental colitis and restored by treatment with interleukin-10 or
antibodies to interleukin-12. Eur J Immunol 1996;26:934–938

34. Hemminki K, Li X, Sundquist J, Sundquist K. Familial association between
type 1 diabetes and other autoimmune and related diseases. Diabetologia
2009;52:1820–1828

35. Westerholm-Ormio M, Vaarala O, Pihkala P, Ilonen J, Savilahti E. Immu-
nologic activity in the small intestinal mucosa of pediatric patients with
type 1 diabetes. Diabetes 2003;52:2287–2295

36. Auricchio R, Paparo F, Maglio M, Franzese A, Lombardi F, Valerio G,
Nardone G, Percopo S, Greco L, Troncone R. In vitro-deranged intestinal
immune response to gliadin in type 1 diabetes. Diabetes 2004;53:1680–1683

37. Matsuda R, Koide T, Tokoro C, Yamamoto T, Godai T, Morohashi T, Fujita
Y, Takahashi D, Kawana I, Suzuki S, Umemura S. Quantitive cytokine
mRNA expression profiles in the colonic mucosa of patients with steroid
naive ulcerative colitis during active and quiescent disease. Inflamm Bowel
Dis 2009;15:328–334

38. Tritt M, Sgouroudis E, d’Hennezel E, Albanese A, Piccirillo CA. Functional
waning of naturally occurring CD4� regulatory T-cells contributes to the
onset of autoimmune diabetes. Diabetes 2008;57:113–123

39. Vorobjova T, Uibo O, Heilman K, Rägo T, Honkanen J, Vaarala O, Tillmann
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48. Flohé SB, Wasmuth HE, Kerad JB, Beales PE, Pozzilli P, Elliott RB, Hill
JP, Scott FW, Kolb H. A wheat-based, diabetes-promoting diet induces
a Th1-type cytokine bias in the gut of NOD mice. Cytokine 2003;21:149 –
154

49. Vaarala O. Is it dietary insulin? Ann N Y Acad Sci 2006;1079:350–359
50. Ha SA, Tsuji M, Suzuki K, Meek B, Yasuda N, Kaisho T, Fagarasan S.

Regulation of B1 cell migration by signals through Toll-like receptors.
J Exp Med 2006;203:2541–2550

OVERPRODUCTION OF IL-17 IN THE COLON OF NOD MICE

2246 DIABETES, VOL. 59, SEPTEMBER 2010 diabetes.diabetesjournals.org

D
ow

nloaded from
 http://diabetesjournals.org/diabetes/article-pdf/59/9/2237/506806/zdb00910002237.pdf by guest on 28 June 2023


