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Abstract 
Environmental factors that determine ecological niches, for 
example natural boundaries formed by mountains, rivers, 
deserts, contribute to the speciation among animals. Similar 
factors have been proposed to be important for the emergence 
of cultural and technical innovations in human populations in 
the pre-state stages of societies. Here we describe a social 
simulation aimed to investigate this issue. The simulation uses 
two environmental features, mountain ridges and the fertility of 
the land. The results show that indeed these environmental 
factors matter for the emergence of successful innovative 
populations. The defenses provided by mountain ridges 
facilitate the emergence of many populations with moderately 
successful innovations. The fertile lands are where the 
populations with the most successful innovations emerge, 
however in most cases these populations can trace their origins 
to innovative populations emerging under the defense of 
mountain ridges. This simulation study provides experimental 
support for the relatively speculative theories about the 
importance of environmental factors for the emergence of 
cultural and technical innovations. 

Introduction 
The emergence of cultural – technical innovations in human 
populations determined the dynamics of locally and globally 
dominant cultures across history (Bouckaert et al, 2012; 
Chiaroni et al, 2008; Diamond and Bellwood, 2003; Mellars, 
2006). The factors that promote the emergence of such 
innovations are not well established and there are several 
theories that aim to explain these events (Diamond, 1997; 
Diamond and Bellwood, 2003; Fukuyama, 2014). In general 
such innovation give a competitive advantage to the 
populations that adopt them in the context of their physical 
and social environment, making these populations grow faster 
than others or have better chance of winning in battles – 
consider for example the emergence of agriculture, the 
domestication of cows and horses, the flexible use of fast light 
cavalry by migratory populations in Europe and Asia in the 
middle ages, or the introduction of cannons in the late middle 
ages in Europe, Asia and North Africa (Diamond and 
Bellwood, 2003; Fukuyama, 2014; Mellars, 2006).  
 Considering early human populations some areas of the 
Earth stand out as relatively frequent sources of major waves 
of culturally – technically dominant populations and others 
stand out as the most culturally diverse areas. For example, 
the area between the Altay Mountains and the Fergana Valley 
in Central Asia has been the source of several waves of 
radiation of culturally – technologically dominant populations 

that went on to control, rule and dominate large parts of the 
world – e.g. Mongols, Turkic populations that established 
empires in Western and South Asia and regularly threatened 
or even conquered China (Fukuyama, 2014). Examples of 
high linguistic and cultural diversity include the highlands of 
Papua New Guinea (Reesink et al, 2009) and the Caucasus 
(Bulayeva et al, 2003). 
 In the case of animals and plants speciation is driven by the 
emergence of functional innovations that give a competitive 
fitness advantage to individuals having these innovative 
features in the context of some ecological niche (Barraclough 
et al, 1998; Warren et al, 2008). Examples include shrinking 
of size in island populations of animals, ability to access and 
digest new sources of food, or the emergence of the ability to 
glide and fly. In these cases the physical boundaries (e.g. large 
mountains or rivers, deserts) and features of the environment 
(e.g. humidity, aridity, temperature, light conditions) often 
play an important role in the definition of the environmental 
niche where the functional innovations may convey fitness 
advantage (Barraclough et al, 1998). 
 It has been proposed that environmental factors, such as 
mountain and rivers barriers, land fertility, presence of disease 
vectors (e.g. mosquitoes, flies), matter for the likelihood of 
emergence of cultural – technical innovations in human 
populations (Fukuyama, 2014). For example, many relatively 
isolated and hard-to-access valleys in highland areas may 
facilitate the maintenance of many separately developing 
populations providing them sufficient protection from 
neighbors to develop and perfect potentially advantageous 
cultural and technical innovations. Or, proximity to fertile 
lowland areas may facilitate the expansion and the 
development of further advantageous innovations in growing 
populations emerging from protected valleys, which already 
have some cultural –technical advantage over other 
neighboring populations. 
 However, these theories and proposals rely to a good extent 
on speculations constrained by the available historical and 
archaeological evidence. Naturally, there is relatively little 
objective evidence to confirm these theories. One possible 
approach for gathering more supporting evidence is to build 
simplified simulations of evolution and spreading of human 
populations including the simulation of emergence of cultural 
– technical innovations and test assumptions about the roles of
environmental factors through analysis of the outcome of 
these simulations. 
 Here we describe a simulation of evolution and spreading 
of human populations, including the simulation of natural 
boundaries as mountain ridges and the variability of the land 
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fertility as environmental factors with expected impact on the 
emergence of cultural – technical innovations. The simulated 
human populations are enabled to generate cultural – technical 
innovations that change their fitness for growth. We analyzed 
the impact of the considered two environmental factors on the 
emergence of these innovations by considering populations 
that are successful in maintaining themselves over 
considerable simulated time and in achieving sufficiently 
large relative size among the simulated populations. 
 Our results show that the proximity of mountain ridges that 
protect from conquest by neighbors and the low land fertility 
of the area correlate with innovations that confer large 
positive changes in the competitive fitness of the simulated 
human populations. The results also show that the most 
dominant populations originate from fertile lowlands, 
however in all cases the roots of these populations go back to 
places close to mountain ridges. Overall, the simulation 
results confirm the importance of the considered 
environmental factors for the emergence of cultural – 
technical innovations. 
 The rest of the paper is organized as follows. First we 
review the related research. Then we describe in detail the 
simulation of evolution of human populations constrained by 
environmental factors. Then we present the simulation results 
and their analysis. The paper is closed by a discussion and 
conclusions section.   

Related Works 
The emergence and evolution of animal and plant species and 
their spreading across areas of the Earth has been researched 
for long time. In general, ecological niches provide the setting 
for the emergence of new species and the species spreads 
territorially and to other ecological niches by outcompeting 
other species resident in these spaces (Barraclough et al, 1998; 
Warren et al, 2008). The role of environmental barriers, such 
as mountain ridges, deserts, sea, large rivers and lakes and 
vast and dense forests, has been studied in the context of 
ecological niche formation (Barraclough et al, 1998; Warren 
et al, 2008).  
 The evolution of human populations and the emergence of 
cultural or technical innovations that give an advantage to a 
population in comparison with neighboring populations have 
been considered as an intriguing question by many researchers 
(Diamond, 1997; Fukuyama, 2014). There is increasing 
volume of data, e.g. archaeological data, population genetics 
data, linguistic data, that can be used to support theoretical 
proposals in this area of research (Bouckaert et al, 2012; 
Chiaroni et al, 2008; Der Sarkissian et al, 2013; Diamond and 
Bellwood, 2003; Reesink et al, 2009). However, the limited 
nature of all these data means that often it is difficult to decide 
about the validity of these theoretical proposals.  
 In general it is assumed by many researchers that 
environmental factors such as well separated highland valleys, 
or alluvial valleys of large rivers, or lack or abundance of 
fertile land, contribute to the chances of human populations 
inhabiting such areas to survive, become dominant in a larger 
area, and to develop successful cultural or technological 
innovations (Diamond and Bellwood, 2003; Fukuyama, 2014; 
Mellars, 2006). For example, protected highland valleys may 

allow the co-existence of many culturally / technologically 
different human populations, which may try out many 
potentially successful innovations. Some of these innovations 
may confer sufficient competitive advantage to the inventor 
population to conquer other populations over extended areas 
that offer less natural protection if such areas are available not 
too far from the original location of the inventor population. 
Some argue about the importance of alluvial valleys or fertile 
land for the expansion of the population, which is required as 
a pre-requisite for the later conquest of other populations and 
areas (Fukuyama, 2014). 
 The modeling of spreading of populations has a well 
established mathematical theory rooted in the study of 
reaction – diffusion equations (Garcia-Ramos and Rodrigues, 
2001; Petrovskii et al, 2002). The general equation of this 
theory describes the spatio-temporal diffusion of the 
population combined with a reaction term that represents the 
impact of external factors, for example the local growth of the 
population as a function of available resources and efficiency 
of use of these resources. The equation is as follows: 
 

∂ u(x,t)/ ∂ t = ∇(D(u,x)⋅ ∇u(x,t))+F(u,x,t) (1) 
 
where u(x,t) is the size of the population at spatial position x 
and at time t. The term D(u,x) describes the diffusion of the 
population at location x, and F(u,x,t) is the reaction term that 
describes the change in the size of the population at spatial 
location x and at time t due to the external factors. In general 
this equation cannot be solved, but solutions of particular 
cases can be found. Another approach is to solve step-by-step 
a discretized version of the equation. 
 It has been shown that population dispersion described 
through equation (1) leads to wavefront propagation 
phenomena and Turing patterns of waves (Cheng et al., 2014; 
Jeltsch et al, 1997; Lambin et al, 1998). The wavelength of 
these patterns depends on the diffusivity of the population, the 
quicker is the diffusion the shorter is the wavelength of the 
patterns, and in general the wavelength is proportional to the 
square-root of the diffusivity value (Ouyang et al, 1995). 
 Simulation based modeling of population spreading follows 
from the discretized version of equation (1). Computer 
simulations have been developed to model particular cases of 
population spreading (e.g. spreading of certain invasive 
species) (Cheng et al, 2014; Garcia-Ramos and Rodrigues, 
2001). The simulations often assume homogeneous 
diffusivity, i.e. the same diffusivity everywhere. The 
assumptions about the reaction term are based either on some 
reproduction and death dynamics (i.e. a combination of 
adding and subtracting a number of individuals on the basis of 
an equation describing this population size dynamics) or on 
interactions with one or more other species. The simulations 
of population spreading produce the expected Turing patterns 
of traveling waves (Cheng et al., 2014; Petrovskii et al, 2002). 
The Turing patterns are generated in a uniform manner, as the 
reaction terms usually apply uniformly across the whole 
simulated space. The patterns observed in the simulations are 
similar to the actual observation of spreading of species in 
cases where sufficient data is available (Jeltsch et al, 1997; 
Lambin et al, 1998). 
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 The spreading of innovations across populations has been 
studied for decades (Mahajan and Muller, 1979). These works 
focus on how innovations spread through adoption by 
populations and the results are similar to the spreading of 
infectious diseases (Delre et al, 2010; Macy and Willer, 
2002). In this paper we do not consider the adoption of 
cultural and technical innovations by imitation across 
populations. 
 

Simulation of the Evolution of Human 
Populations 

The simulated world is a 2-dimensional grid of 100 × 60 
spatial locations. Each location has a height and a harshness 
value. The height gives the altitude of the location and the 
harshness is the opposite of the land fertility. The height value 
is an integer between 0 and gmax = 100. The harshness value is 
a real value between 0 and 1, larger value meaning harsher, 
less fertile, spatial location. The height values are set such that 
the locations arranged along lines have the same height value 
– these locations together form a simulated mountain ridge. 
Each simulated world has m = 20 mountain ridges of variable 
length. Each simulated world also has n = 10 low fertility or 
harsh areas as well. The low fertility areas are circular areas 
set such that their centre is located on one of the mountain 
ridges. At the centre of these areas the harshness value is 1 
and it is decreasing proportionally with the square of distance 
from the centre. The radius of low fertility areas is set 
randomly between d0 = 50 and dmax = 100. If a location 
belongs to multiple low fertility areas the harshness value of 
the location is the sum of the harshness values implied by 
each low fertility area to which the location belongs, capped at 
the maximum value of 1. Figure 1 shows an example of the 
simulated world with mountain ridges and low fertility areas. 

Each simulation starts with a random number of simulated 
human populations, such that a proportion around χ = 1.5% of 
all spatial locations have exactly one distinct human 
population on them, while all others are empty at the start, i.e. 
the number of simulated populations in our simulations is 
around 90 at the beginning. 

Each population is characterized by a set of abstract 
cultural and technical features represented by an ability string 
A of 0-s and 1-s, where the 1-s indicate the presence of a such 
feature. Here we chose the length of ability strings to be L = 
100. The ability string determines the resource utilization 
efficiency of the population. If A=(a1,…,aL) is the ability 
string of a population then the resource utilization efficiency 
of this population is 
 

r=Σk=1,L1Σj=1,L2 aL1⋅(k-1)+j⋅2j (2) 
 
where L1⋅L2 = L and in our case L1 = L2 = 10. This 
definition of resource utilization efficiency allows multiple 
cultural and technical features to contribute equally to the 
efficiency of the population, which is the case of real world 
human populations. 
Figure 1. Distribution of land fertility in a simulated world. 
Brighter locations indicate harsh, low fertility land, darker 
locations indicate less harsh, more fertile land. 

 

Figure 2. Mountain ridges in a simulated world. The darkness 
indicates the height of the ridge, darker locations are higher. 
 
 Each population may be spread over a number of space 
locations and each space location may house representatives 
from at most Nmax (in our case this is 8) populations. The 
resource availability at each location is limited and is 
characterized by the harshness value of the location. Each 
population at each location have a basic death rate θ which is 
set in our case to 0.005. Each location has a maximum 
population size limit for each population residing in that 
spatial location and this depends on the resource utilization 
efficiency of the population and the harshness of the land at 
this location. The maximum size of a population with resource 
utilization efficiency r at a location (x,y) with harshness h(x,y) 
is assumed to increase logarithmically with r and to be 
inversely proportional with the harshness and it is set to be  
 

pmax=(10+ln(1+r)) / h(x,y)  (3) 
 

The populations at a given space location compete for the 
use of resources. The growth rate of the population at a space 
location is determined by the resource utilization efficiency of 
the population, the land fertility of the location, and the 
competition with other populations in terms of resource 
utilization efficiency. The growth rates of the populations are 
assumed to grow logarithmically with the resource utilization 
efficiency, to be inversely proportional with the harshness of 
the area and to be proportional with the level of 
competitiveness of the population. The death rate is 
considered as a subtracted element in the growth rate 
calculation. Assuming that there are N different populations at 
a given spatial location (x,y), and ri, i=1,…,N are the resource 
utilization efficiency values for these populations the growth 
rates of populations are calculated as 
 

ρi(x,y)=γ⋅(1+0.1⋅ln(1+ri)) ⋅ηi / h(x,y) – θ  (4) 
 
where h(x,y) is the harshness value at location (x,y), ηi are the 
competitiveness factors, θ is the basic death rate. The 
competitiveness factor for each population depends on the 
ratio between the resource utilization efficiency of the 
considered population and the sum of the resource utilization 
efficiencies of all present populations and follows a sigmoidal 
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curve as a function of this ratio, i.e. saturating both for very 
and high and very low values of the this ratio. For this 
simulation ηi are calculated as  
 

ηi=1/(1+exp(α⋅(0.5-ri / (Σk=1,N rk))) (5) 
 
γ and α are parameters characterizing the default population 
growth and the level of competition – our choices were γ=1.4 
and α=10. Higher values of γ imply quicker default 
population growth, higher values of α imply more 
competition between the populations. 
 If the size of a population at a given location grows beyond 
the allowed maximum size for the population at this location, 
the population size gets capped at the maximum allowed size. 
If the population size goes below zero the population 
disappears from this location. If the number of population at a 
location goes above the maximum limit for the number of 
different populations at a given location, the population with 
the smallest size gets removed.  
 The simulated human populations generate cultural / 
technical innovations randomly with ε = 0.008% chance in 
each time turn of the simulation – we assume that there is no 
cost associated with the development of these innovations. 
These innovations are implemented as a random flipping of 
cultural / technical feature indicator in the ability string A 
from 0 to 1 or reverse. This naturally changes the resource 
utilization efficiency of the newly generated descendant 
population in comparison with the resource utilization 
efficiency of the parent population. A proportion of the parent 
population converts to the descendant population and this 
proportion is determined by the two resource utilization 
efficiency values in a similar manner that we used above for 
the calculation of the competitiveness of populations. If rp and 
rd are these values for the parent and descendent populations 
first we determine 
 

ηp/d=1/(1+exp(α⋅(0.5-rp/d / (rp+ rd))) (6) 
 
then the ratio of the population converted to the new 
population is 
 

w=ηd /(ηp +ηd) (7) 
 
 The populations spread across the simulated world by 
moving from one space location to neighboring space 
locations, i.e. through a diffusion process. The spreading from 
one location to a neighboring location depends on the height 
value of the location from which the spreading may occur. Let 
us consider Qi(x,y,t) the number of individuals belonging to 
population i at location (x,y) at time turn t, the equation for the 
update of Qi(x,y,t) is the following 
 

Qi(x,y,t+1) = 
Σ(τ,υ)∈T(ϕx+τ,y+υ,-τ,-υ,t,i⋅ Qi(x+τ,y+υ,t) –ϕx,y,τ,υ,t,i⋅ Qi(x,y,t)) 

+ρi(x,y) ⋅ Qi(x,y,t) 

(8) 

 
where T={(-1,0),(1,0),(0,-1),(0,1)}, ϕx+τ,y+υ,-τ,-υ,t,i and ϕx,y,τ,υ,t,i are 
stochastic diffusivity parameters, and ρi(x,y) is the growth rate 
calculated according to equation (4). The stochastic diffusivity 
parameters are set as follows 

 
ϕx+τ,y+υ,-τ,-υ,t,i =ψ  if   

Qi(x,y,t) > max{g(x+τ,y+υ),g(x,y)} 
otherwise 

ϕx+τ,y+υ,-τ,-υ,t,i =0 

(9) 

 
where g(x+τ,y+υ) is the height value at location x+τ,y+υ, 
with (τ,υ)∈T ∪ {(0,0)} and ψ is a random value from the 
interval [0,ω] with ω<1 (in the simulations we used ω=0.4). 
This setting means that the populations can spread into the 
neighboring spatial locations either to the left or right or to up 
or down relative to the current location of the population and 
in any of these directions spreading happens only if the 
population is sufficiently large in comparison with the height 
of the current and neighboring locations. Note that the ω 
parameter influences the speed of diffusion (or diffusivity) of 
the populations, larger ω implying quicker spreading of the 
populations. 
 As described above the simulation starts with a number of 
distinct populations (around 90), which spread around in the 
simulated world. Populations compete with each other for the 
use of resources, the available amount of which is determined 
by the level of harshness of the spatial location (the opposite 
of land fertility). The spreading of populations is constrained 
by the presence of simulated mountain ridges. Spreading 
across such mountain ridges is difficult and the difficulty rises 
with the height of the simulated mountains. The populations 
randomly spawn new populations which are characterized by 
a cultural – technical innovation that changes their resource 
utilization efficiency compared to the parent population. In 
general these innovations may increase or may decrease the 
resource utilization efficiency. The simulated world evolves 
through a large number of time turns (we used 30,000 time 
turns for each simulation). 
 The simulations are analyzed in order to determine the 
dominant populations. The dominance of a population is given 
by the size of the population across all spatial locations 
relative to the size of all populations across all spatial 
locations of the simulated world, i.e.  
 

πi(t) = (Σ(x,y) Qi(x,y,t)) / (ΣiΣ(x,y) Qi(x,y,t)) (10) 
 
All populations for which πi(t) > π0 = 0.005 are considered 
sufficiently dominant populations and considered for further 
analysis, i.e. these populations represent at least half percent 
of the total inhabitants of the simulated world. 
 We aim to test three hypotheses based on the observation of 
spreading of animal and human populations in the context of 
environmental constraints. 
 Hypothesis 1: Being close to mountain ridges offers 
relative protection from invasion by other populations and 
allows the relatively frequent development of innovations with 
positive effect on the resource utilization efficiency in 
populations residing in such spatial locations. It is expected 
that the closeness to simulated mountain ridges in general 
allows the relatively long survival of innovating populations 
with both useful and harmful innovations. Out of these 
populations the ones with useful innovations are expected to 
have sufficient time to grow and then expand elsewhere due to 
the protected nature of their origin location. 
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Hypothesis 2: Existence at locations with low land fertility 
(harsh locations) facilitates the development of significant 
positive innovations. It is expected that if innovations occur in 
populations living in harsh conditions these innovations must 
be considerably positively useful in order for the innovating 
population to survive. Innovating populations that have 
harmful innovations from the perspective of their resource 
utilization efficiency are expected to die out quickly in the 
harsh environment. In such environment it is also expected 
that populations with useful innovations quickly outcompete 
populations which have lower resource utilization efficiency. 

Hypothesis 3: The most dominant populations originate 
from locations with high land fertility (low harshness). It is 
expected that populations expand most quickly in high land 
fertility environments and developing useful innovations in 
such environments equips already large populations with the 
useful innovations which spread even more extensively than 
their parent population. On the other side it is also expected 
that populations that gain dominance on in high fertility 
environments must have had an earlier time when they 
benefited from the development of successive innovations 
relatively unperturbed by invaders, in line with Hypothesis 1. 

To test these hypotheses we track all populations and select 
for further analysis those that are sufficiently dominant (see 
equation (10)). For the selected populations we consider their 
location of origin and the location of origin of their ancestors. 
For these locations we consider the harshness of the location 
and the distance of the location from the closest simulated 
mountain ridge. Considering the populations along their 
existence we measure the length of existence of the population 
(population persistence time), the peak share of the population 
out of all inhabitants of the simulated world, and the value of 
the innovation that sets the population apart from its 
immediate ancestor populations (i.e. the difference between 
the resource utilization efficiency of the two populations). 
Following the simulation we analyze the relationships 
between the ridge distance and harshness of the locations of 
origin of the considered populations and the measured 
features of the populations. The analysis is repeated for 
multiple (10 – 20) simulations to gather large volume of data. 
We also varied the values of ) and + which characterize the 
default population growth and the level of competition among 
populations residing at the same spatial location in order to 
assess the impact of these parameters on the evolution of the 
simulated populations. 

Results and Discussion 
Each simulation was run for 30,000 time turns. The simulation 
parameters were set as indicated in the description of the 
simulations in the previous section. Each population was 
identified by an identification number. For each time turn we 
recorded the details of all extant populations, including their 
location of origin, the identification number of their 
immediate ancestor population, the ability string of the 

Figure 3. Turing patterns of population spreading in the 
simulated worlds for different values of the diffusion 
parameter 3: A) 3=0.9 – fast spreading; B) 3=0.4 – medium 
speed spreading; C) 3=0.03 – slow spreading. White indicates 
no presence of the considered population, the level of 
darkness indicates the extent of population presence, darker 
meaning the presence of higher number of individuals 
belonging to the considered population. 
 
population, the total size of the population across all spatial 
locations and the share of the population out of the total 
number of inhabitants in the simulated world at the given time 
step. The primary analysis of the simulation data was 
performed as described in the previous section in order to 
gather the information relevant for the testing of the 
hypotheses.  

The simulations show that patterns of spreading of 
populations follow Turing patterning. Varying the diffusion 
speed parameter 3 we can vary the wavelength of the 
populations follow Turing patterning. Varying the diffusion 
speed parameter 3 we can vary the wavelength of the 
population spreading patterns, which according to the theory 
should be proportional with the square root of the local 
diffusivity value (Ouyang et al, 1995). Note that given the 
presence of simulated mountain ridges and low land fertility 
areas the diffusivity of the populations varies across the 
simulated world. Figure 3 shows examples of spreading 
patterns of populations for different settings of the diffusion 
speed parameter 3. Similar Turing patterns have been 
observed in the context of patterns of spreading of animals. In 
the case of human populations it is less clear the evidence for 
such patterns. However during fast migratory periods such 
patterns might have emerged, for example consider the cases 
of two (or more) Hungarian and Bulgarian states in the middle 
ages, one in the area of the current countries and another 
(possibly more than one) in the area what is today Eastern 
Ukraine and South Russia (the latter fell apart during the 
Mongol invasion) (Tomory et al, 2007; Johanson, 2000). 
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Figure 4. The relationships between the ridge distance of the 
location of origin of populations and the resource utilization 
efficiency, peak share of total population, level of innovation, 
and time persistence of simulated populations. The horizontal 
axis in all cases is the ridge distance of the population origin. 

 
We analyzed the relationship between the distance of the 

location of origin of populations from the closest simulated 
mountain ridge (i.e. ridge distance) and the measured 
population performance indicators. For this purpose we 
pooled data from 20 simulations and calculated the average 
population persistence time, peak population share, resource 
utilization efficiency, and innovation value for each value of 
the ridge distance for which we found with an origin location 
having this value of ridge distance. The further analysis was 

done by considering only those ridge distance values for 
which we found at least 12 populations across all simulations. 
 We found that there is significant positive correlation 
(p<0.05) between the ridge distance and the average resource 
utilization efficiency (c=0.4926) and the peak share of the 
total population (c=0.6263). We found significantly negative 
correlation (c= – 0.2793; p<0.05) between the ridge distance 
and the level of innovation (i.e. difference in resource 
utilization efficiency compared to the immediate ancestor 
population). Finally we found no significant correlation 
between the ridge distance and the persistence time of the 
population. The data is shown in Figure 4 – error bars are not 
shown to avoid cluttering of the figures, the error bars are in 
general around 10 – 30% of the average values. 
 These results indicate that Hypothesis 1 is confirmed in the 
sense that being close to simulated mountain ridges has a 
positive impact on the level of innovation in terms of resource 
utilization efficiency by newly emerging populations. The 
data does not show whether this effect is due to the protection 
against invasion by other populations by the mountain ridges, 
which are expected to slow down the spreading of 
populations. The results also show that populations with 
higher resource utilization efficiency and higher peak share of 
the total population emerge further away from mountain 
ridges. 
 To analyze the relationship between land fertility of the 
location of origin of populations and the population 
performance indicators we pooled the data from 20 
simulations. We calculated the average performance 
indicators for all values of land fertility that we found and 
considered for further analysis those averages that were 
calculated from at least 12 instances of populations. The data 
are presented in Figure 5. 
 We found that there is a significant (p<0.05) positive 
correlation between the harshness value (the opposite of land 
fertility) of the location of origin and the level of innovation 
of populations (c=0.4146 – note however the wavy nature of 
the relationship) and a significant negative correlation 
between the harshness value and the population’s peak share 
of total population (c= – 0.9275). These two results confirm 
the validity of Hypotheses 2 and 3. The first result shows that 
indeed, the likelihood of high positive innovation increases 
with the harshness (low land fertility) of the location of origin 
of the population among populations that become sufficiently 
dominant. The second result shows that higher land fertility 
(lower harshness) of the location of origin of the population 
implies higher chance for the population to become highly 
dominant. This analysis of the data does not provide the 
definite explanation for these results, but the data allows 
further analysis, which may provide support for the 
hypothetical explanations that we provided in the previous 
section. 
 In terms of the relationship of the harness of the location of 
origin and the resource utilization efficiency and the time 
persistence of the population we found an unexpected 
relationship with three peaks at a two lower and a higher mid-
level harshness value. The triple peak nature of the 
relationship also applies to the level of innovation as well. 

To understand better the finding about the relationship of 
the harshness of the location of origin and the resource 
utilization efficiency and the time persistence of the  
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Figure 5. The relationships between the harshness of the 
location of origin of populations and the resource utilization 
efficiency, peak share of total population, level of innovation, 
and time persistence of simulated populations. The horizontal 
axis in all cases is the harshness of the population origin. 

 
population we varied the values of the parameters γ and α, 
which characterize the default population growth and the level 
of competition among populations residing at the same spatial 
location. We considered γ values in the range of 0.8 to 1.7, 
and α values in the range of 6 to 12. We found that the 
behavior of these two relationships shows a wave-like nature 
with a number of peaks in general – see Figures 6 and 7. Note 
that these waves are not spatial waves in the simulated world,  

Figure 6. The average resource utilization efficiency of 
sufficiently dominant populations as function of the harshness 
of the location of origin – A) α=6; B) α=8; C) α=10; D) 
α=12; the lines connect the data points.  

Figure 7. The average time persistence of sufficiently 
dominant populations as function of the harshness of the 
location of origin – A) γ=0.8; B) γ=1.1; C) γ=1.4; D) γ=1.7; 
the lines are the moving averages. 
 
but waves depending on the harshness of the location of origin 
of the population. 

Considering equation (1) that describes the general process 
of population spreading, the result about the wave-like 
dependence of the resource utilization efficiency and time 
persistence on the harshness of the location of origin suggests 
that reaction term of equation (1) – F(u,x,t), which depends on 
the land fertility of the location, plays an important role in 
determining which locations are more likely to give birth to 
the longest existing and most resource efficient populations. 
These locations are consequently relatively over-represented 
among the locations of origins of populations that are 
sufficiently dominant. A possible explanation is that there is 
some interference between the wave like nature of population 
spreading (see the Turing patterns above in Figure 3) and the 
land fertility dependent reaction term of the population 
spreading equation, which constrains location of origin of the 
most resource efficient and longest existing populations to 
certain bands of land fertility values and locations which have 
such land fertility. 

The implication of this result is that it is possible that for 
real human, animal, and plant populations as well, the 
locations of origins of most populations may not be the most 
fertile and supportive lands, but rather places with 
intermediate level of land fertility (or environmental 
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supportiveness in general in the case of animals and plants), 
which match in some sense the wavelength of the waves of 
spreading of these populations. 

Conclusions 
In this paper we investigate the role of environmental factors 
in the emergence of cultural and technical innovations in 
human populations through simulation based analysis. We did 
not consider the possibility of copying of innovations by co-
located populations and neither the possible impact of 
available excess resources. We used a relatively simple 
simulated world with simulated mountain ridges and low 
fertility land areas to analyze the impact of these factors on 
the successful spreading and survival of simulated human 
populations. The results show that both environmental factors 
matter for the emergence of successful populations. 
 Our results show that in the simulated world being close to 
mountain ridges correlates with the development of 
innovations with significant positive effect on the resource 
utilization efficiency in populations originating from such 
spatial locations. This matches well with the observation that 
several highland areas with mountain protected valleys 
facilitate the existence of many distinct human populations, 
each developing different cultural and technical innovations 
(Bulayeva et al, 2003; Reesink et al, 2009). Our simulations 
suggest that such areas are likely to lead to the emergence of 
cultural and technical innovations that give a significant 
competitive advantage to a local human population in 
comparison with neighboring populations and these 
populations are likely to spread out form these valleys and 
may become dominant populations in larger areas.  
 The results show that populations originating from 
locations with low land fertility are likely to develop 
significant positive innovations. The underlying reason may 
be that other populations originating from such areas that do 
not develop such significant positive cultural and technical 
innovations simply do not survive. The implication of this 
finding is that it can be expected that human populations with 
the most beneficial cultural and technical innovations may 
originate from areas that are particularly challenging 
environments. 
 Finally, we found that the most dominant simulated human 
populations originate from locations with high land fertility 
within the simulated worlds. This finding matches well with 
the evidence that shows that historically many of the most 
successful human populations get established in high land 
fertility areas (e.g. the fertile alluvial valleys along large rivers 
such as the Nile, Tigris, Euphrates, Huang He, Yangtze) 
(Fukuyama, 2014).  

The three key findings in combination suggest that possibly 
the most successful human populations may have roots in 
harsh lands, possibly protected by mountain ridges, where 
their ancestors developed key cultural and technical 
innovations. The descendants of these ancestral populations 
may become really successful following migration and arrival 
to fertile land areas where they can expand and take full 
benefit of their competitive advantage relative to other 
populations, which is due to their cultural and technical 
innovations.   
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