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For improving the classification accuracy of the classi-
fier, a novel classification methodology based on artifi-
cial bee colony algorithm is proposed for optimal fea-
ture and SVM parameters selection. In order to bal-
ance the ability of exploration and exploitation of tra-
ditional ABC algorithm, improvements are introduced
for the generation of initial solution set and onlooker
bee stage. The proposed algorithm is applied to four
datasets with different attribute characteristics from
UCI and efficiency of the algorithm is proved from the
results.
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1. Introduction

Classification is a data mining function that assigns
items in a collection to target categories or classes after
obtaining classification model represented as classifica-
tion rules or mathematical formula [1,2].

For the classification of data which consists of sev-
eral samples within different features, the first step is fea-
ture selection. Generally speaking, the corresponding re-
searches could be categorized into filter method and wrap-
per method [3]. The filter method, including minimum-
redundancy-maximum-relevance (MRMR) [4], double in-
put symmetrical relevance (DISR) [5], joint mutual infor-
mation (JMI) [6], conditional infomax feature extraction
(CIFE) [7] applies a statistical measure to calculate scores
of each feature, then ranks and selects to build model by
the scores. For wrapper method, different feature combi-
nations are evaluated according to the predictive classifi-
cation accuracy on test data with the help of classifier [8].
But the premise is that an efficient global search technique
should be adopted for optimal feature selection in such a
large feature space. A vast variety of algorithms have been
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explored and used especially in the intelligent algorithms,
work in [9-11] used different genetic algorithm to exam-
ine and evaluate simultaneously candidate features. Se-
quential backward/forward selection methods were used
and compared with genetic algorithm (GA) in [12]. The
swarm intelligent algorithms such as particle swarm op-
timization (PSO) [8], binary bat algorithm [13], fire fly
algorithm [14], ant colony algorithm (ACO) [15], elitist
quantum inspired differential evolution [16] are also ap-
plied and have proved to be effective.

Based on the selected feature subset, classifier should
be obtained for further recognition. Different methods
such as decision tree, naive Bayes [17], extreme learning
machine algorithm (ELM) [11], and proposed optimum-
path forest method (OPF) [13] has been explored. As
a state-of-art classifier, support vector machines (SVM)
were frequently used whose quality of generalization and
ease of training are far beyond the capacities of the tradi-
tional methods [18]. What should be noted is the effec-
tiveness of SVM depends on the selected parameters such
as penalty parameter C thus optimization problem about
how to select the optimal parameters should be solved.
PSO [19], ACO [20], gene selection [21], neural fuzzy in-
ference system [22] were introduced for optimization of
SVM with different kernel function.

For improving the performance of classification, lim-
ited researches considered the two optimization prob-
lems which are the minimum number of selected features
and best SVM parameters simultaneously, such as novel
gravitational search algorithm (GSA)-SVM method [23],
PSO-CSVM model which combined the discrete PSO and
the real-valued PSO [24], direct search and features rank-
ing technology [25], ACO-based algorithm [26].

For this complex optimization problem which has large
search space, in order to obtain near-global optimum solu-
tions, novel artificial bee colony (ABC) algorithm which
is proposed by D. Karaboga [27] is introduced in this
paper. It employs fewer control parameters than other
swarm intelligence algorithms, and possesses the ability
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to get out of a local minimum [28]. Meanwhile, consid-
ering the existing fact that ABC algorithm is better at ex-
ploration but poor at exploitation [29], corresponding im-
provements for ABC algorithm will be adopted.

This paper is organized as follows. Fundamentals about
classification algorithm are introduced in Section 2. In
Section 3, the optimization methodology with the pro-
posed improved ABC algorithm (IABC)-SVM classifi-
cation method is given. Subsequently in Section 4, ex-
perimental results for four University of California Irvine
(UCI) datasets and discussions are presented. Finally, the
conclusion is drawn in Section 5.

2. Classification Algorithm

Based on the pre-processed data including filtering and
normalization, optimal features are selected from the orig-
inal features for simplifying classifier models, and en-
hancing generalization by reducing over fitting [30], and
then SVM based classifier could be applied to classifica-
tion.

For a training set of instance-label pairs, the objective
of SVM is to find hyper-plane or classifier based on the
solution of following optimization problem [18]:

1 4 :
-0 0+C f

B i ’;é (D

st yi (0" -Zi+b) >1-§,

E>0, i=1,...,1

Here training vector x; are mapped into a higher dimen-
sional space by the function ® as Z; = ®(x;). C > 0 is the
penalty parameter of error term.

Then ® = Zle 04y;®(x;) and the nonlinear SVM clas-
sifier could be constructed as follows:

f(x) = sign(@" ¢(x) +b)
i
= sign (ZaiyiK(xi,x)+b> N ))
i=1

Considering the fact that the Gaussian kernel can approx-
imate most kernel functions if the parameter is chosen ap-
propriately, this paper will focus on it and the form could
be expressed as follows:

K(xixj)=exp(=Ylli—x;|*) . . . ... 3

where 7 is the kernel parameter [21].

Obviously, the two parameters of SVM classifier,
penalty parameter C and the kernel parameter Y, should
be optimized to obtain the optimal predictive accuracy.

3. Optimization Methodology for Classification

For data classification problem based on wrapper fea-
ture selection method and SVM classifier, two objectives
which are minimum number of selected features and best
SVM parameters should be satisfied, and improved arti-
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ficial bee colony (IABC) algorithm will be introduced to
solve the problem in this paper.

3.1. ABC Algorithm

As one of the most recent swarm intelligence ap-
proaches, ABC algorithm simulates the foraging behavior
of honeybee swarm where the possible solution is repre-
sented by the position of food source in ABC algorithm,
the quality of associated solution is equal to the nectar
amount of food source [27]. The algorithm begins with
randomly distributed initial population generation:

Xi,j = Xmin,j + rand(O, 1)(Xmax,j - Xmin,j) ce (4)

where i is the number of solutions as well as food source.
Xunin,j and Xynay ; are the lower and upper limits of the
Jj-th dimension of the i-th solution respectively. And then
repeated search cycles will be executed to generate the
population of solutions. During the cycles, the employed
bee probabilistically produces a neighbor food source X; ;
around X, ; as Eq. (5) and updates the solution based on
its fitness value.

Xij=Xaj+Xej—Xaj)oij (aFk) . . . (5)

where ¢; ; is an random number between —1 and 1. And
then onlooker bee chooses a food source based on the
probability calculated with roulette method and so on, and
updates new solutions around it based on Eq. (5). If a so-
lution does not improve for several iterations, the solution
will be abandoned, the associated employed bee becomes
scout bee and random search will be performed [31].

3.2. Improved ABC Algorithm

ABC algorithm is relatively simple and it has been
proved to be able to produce good results at a low compu-
tational cost. But the algorithm still faces the problem that
itis good at exploration, but poor at exploitation where the
two indices contradict each other. In order to balance the
two indices to obtain more accuracy solutions, two im-
provements will be proposed.

As mentioned above, the initial solution set is gener-
ated randomly as Eq. (6), the solutions are not uniformly
distributed, or can’t cover the search space of the opti-
mization problem, the quality of optimal solution and the
convergence of the algorithm will be affected. Thus the
variable of rand(0,1) in Eq. (4) could be replaced by a
set of numbers which are created by extended integer tent
maps method [32] as shown in Eq. (6).

When i is even,

2ri+1 ri € [0,2571]
Vi1 =
T2 -1-n) e @2k

when i is odd,

(6)

2r; r; € 10,281
Fiy1 =
T2 1) 41 e (@ 20—

The range of generated sequential is [0,2%+ 1] and it could
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Fig. 1. Flowchart of classification based on IABC.

be converted to [0, 1] with y = r/ryuax Where rpg, is the
generated maximum number.

Obviously the periodic points, which are chaotic and
random distributed, are generated, the corresponding di-
versity of the initial population could be improved.

Meanwhile, considering the task of onlooker bee is to
exploit local search region around the selected solution
and obtain more precise solutions from limited solution
space, XGpest,j Which is j-th dimension of the best solution
so far is introduced to replace the term in Eq. (5):

Xij =X+ Xepest,j —Xa,j)@ij (a#i) . . (1)

where X, ; is a selected solution different from X; ;. ¢; ;
is a random number between —1 and 1, which could be
selected to adjust the evolution direction and the distance
between X, ; and Xgpes, j. With Eq. (7), the searching pro-
cess could be concentrated around the optimal solution
and the ability of exploitation could be improved.

3.3. IABC-SVM Classification

In order to obtain higher classification accuracy with
less selected features, IABC will be introduced and com-
bined with traditional SVM algorithm. The flowchart of
the proposed algorithm is shown as Fig. 1, where the data
set corresponding to the pre-selected features is used to
train SVM classifier with the pre-selected parameters C
and gamma firstly, then the solution will be evaluated and
adjusted until obtaining the optimal performance of clas-
sification. Finally, with the selected feature subset and
parameters, the classifier could be trained and the classi-
fication task will be completed.
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4. Experiments and Results

In order to verify the effectiveness of the proposed al-
gorithm, corresponding experiments and analyses will be
done.

Four datasets with different attributes characteristics as
shown in Table 1 are selected from UCI datasets, and then
scaled to [—1,1]. Subsequently, the training data and test
data are selected randomly at the ratio of 3 : 1 and 10 fold
cross-validation technique is used to evaluate predictive
classification models.

The parameters of ABC and IABC used for optimiza-
tion are set as follows: population size is 80, the number
of optimized parameters Dim = 2 4 x where x represents
the number of feature of different dataset, maximum iter-
ations is set to be 200, and the limit for the introduction of
scout bee is 20. The upper and lower bounds of the opti-
mized SVM parameters are set to be 20 and 0, the bounds
of selected features are [0, 1] where the optimized value
which is no less than 0.5 represents selected and the one
whose value is smaller than 0.5 isn’t selected. The evalua-
tion criterion of optimization problem could be described
as Eq. (8):

. 1
fit=0-Cpe+(1—-0)-— . . . . . . . (B
Ny

where Ny is the number of selected features and C, rep-
resents the cross-validation results with the selected fea-
tures and SVM parameters, and the value of weight used
to balance the proportion between the two indices is set to
be 0.95.

For the four datasets, Figs. 2-5 show the comparison
between the results of fitness values during optimization
process with ABC and TABC respectively. Obviously,
ABC and improved ABC algorithm could fulfill the task
of optimal SVM parameters selection and feature subset
selection for four datasets. And the improved ABC algo-
rithm possesses higher classification accuracy and faster
convergence speed than traditional ABC algorithm for the
same dataset, where the optimal solution could be ob-
tained in the 61st iteration which is 124 iterations ahead
of traditional ABC algorithm for Abalone dataset, and the
fitness values is increased by 0.98%, 3.4%, 0.23%, and
0.68% respectively for the four datasets.

The related characteristic of selected feature/SVM pa-
rameters/classification accuracy are shown in Tables 2
and 3. The feature number could be reduced by 27.3%
of the original dataset at least. Based on the fact that
fitness values are combined cross-validation values with
feature number as shown in Eq. (8), maximum fitness val-
ues which is the optimization objective doesn’t mean pos-
sessing more feature number. So from Tables 2 and 3, for
WDBC/Abalone datasets, there are more features selected
based on IABC algorithm compared with ABC. Accord-
ing to Table 4, the proposed classification method with
IABC possess higher classification accuracy and no more
feature numbers than the four filter methods for all the
datasets.
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Table 1. UCI dataset.

Heart WDBC  Red wine quality Abalone
Number of instances 303 569 1599 4177
Number of attributes 14 32 11 8
Number of classes 2 2 11 28
Attribute characteristics ~ Categorical, Integer, Real Real Real Categorical, Integer, Real
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Fig. 2. Heart dataset. Fig. 3. WDBC dataset.
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Fig. 4. Red wine quality dataset. Fig. 5. Abalone dataset.

Table 2. Classification results with ABC-SVM.

Methods Heart WDBC Red wine quality Abalone
Number of selected feature 6 11 8 4
SVM parameters 1.47/6.35 12.55/0.36 1.09/18.99 16.02/7.21

Classification accuracy 83.52% (76/91)  97.32% (145/149)  57.75% (298/516)  29.55% (302/1022)

Table 3. Classification results with IABC-SVM.

Methods Heart WDBC Red wine quality Abalone
Number of selected feature 6 13 8 5
SVM parameters 3.24/9.29 11.44/0.19 3.67/14.56 4.76/8.09
Classification accuracy 85.71% (79/91)  98.66% (147/149)  59.11% (306/516) 31.01% (317/1022)
Improve 2.19% 1.34% 1.36% 1.46%
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Table 4. Classification results with different filter method.

Improved Artificial Bee Colony Algorithm

WDBC

Red wine quality

Abalone

97.32% (145/149)
97.32% (145/149)
96.64% (144/149)
95.30% (142/149)

56.01% (289/516)
55.43% (286/516)
52.91% (273/516)
50.78% (262/516)

27.98% (286/1022)
27.98% (286/1022)
27.98% (286/1022)
26.81% (274/1022)

Methods Heart

mRMR 81.32% (74/91)

IMI 80.22% (73/91)

DISR 81.32% (74/91)

CIFE 75.82% (69/91)
Remarks 7 features selected

13 features selected

from 13 features from 30 features

8 features selected

5 features selected

from 11 features from 8 features

5. Conclusion

In this paper, ABC algorithm was applied to the selec-
tion of optimal feature subset and SVM parameters, and
several improvements were proposed to balance the abil-
ity of exploration and exploitation of ABC algorithm. The
experiment results demonstrated that the proposed algo-
rithm could achieve higher accuracy compared with the
traditional ABC-SVM method as well as other filter meth-
ods. But the problems that it will cost more time to per-
form the task of optimization should be solved for future
work. Also multi-objective ABC algorithm could be ap-
plied to obtain better optimization results.
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