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Abstract 

Cooperation among selfish individuals provides the 
fundamentals for social organization among animals and 
humans. Cooperation games capture this behavior at an abstract 
level and provide the tools for the analysis of the evolution of 
cooperation. Here we use the Rock-Paper-Scissors (RPS) game 
with positive and negative draw outcomes (i.e. when the draw 
outcome has a positive or negative impact on the players) to 
study the evolution of cooperative behavior in communities of 
simulated selfish agents. The agents communicate to each other 
using a probabilistic language and the cooperation game is set 
in an uncertain resource generation context. The offspring of 
the agents may clump together or may spread out, simulating 
the easy and difficult identification of possible cooperation 
partners. The results show that more uncertainty leads to more 
cooperation both in positive and negative draw games. 
Surprisingly we found that in negative draw games the level of 
cooperation is statistically significantly higher, although close 
to, the level that would be expected from random choice of 
RPS decisions. We also analyzed language complexity 
correlates of cooperation. The agent-based simulations and the 
results described here are applicable to social institutions or 
ecological systems with more than two, non-transitively 
comparable, decision states that can be described abstractly as 
RPS games.   

Introduction 

Cooperation is very important in human society as it is at the 
foundation of all social institutions (Smaldino, 2018; Pletzer 
et al, 2018). In general, cooperation among selfish individuals 
is found in the context of many animal communities and even 
among plants (Moscovice et al, 2017; Callaway et al, 2002). 
Mechanisms that aim to explain the emergence and evolution 
of cooperation include classical and stochastic inclusive 
fitness leading to various forms of kin-selection (Kennedy et 
al, 2018), direct and indirect reciprocity (Rand and Nowak, 
2013) and other approaches. 
 The majority of theoretical and experimental studies of 
cooperation use games with two outcomes, e.g. Prisoner’s 
Dilemma game, as tools of abstract conceptualization of the 
interactions that may lead to cooperation decisions (Rand and 
Nowak, 2013). However, in real world scenarios often the 
case is that individuals participate in interactions that have 
multiple outcomes of varying utility for the involved 
participants (e.g. contracts between firms, 
rewarding/punishing employees, participation in rituals).  
 To model multiple outcome real life scenarios we can use 
multiple-outcome games. One such game is the Rock-Paper-

Scissors (RPS) game with three outcomes, where ‘rock’ beats 
‘scissors’, ‘scissors’ beat ‘paper’ and ‘paper’ beats ‘rock’, and 
the three draw options can be considered as equivalent of 
cooperation (of possibly three different kinds). There are 
many examples in the natural world, which follow the RPS 
rules. For example, several predator-prey systems with three 
or more species follow RPS (or extended RPS) dynamics 
(Edwards and Schreiber, 2010; Kerr et al, 2002), pricing and 
market-share games between firms may follow RPS rules 
(Kovac and Schmidt, 2013; Hopkins and Seymour, 2002). 
Other examples that can be conceptualized using the RPS 
framework include volunteering in the context of provision of 
public goods (Semman et al, 2003), choice of mating behavior 
in lizards (Sinervo et al, 2007), and dynamics of species 
diversity (Reichenbach et al, 2008). 
 While in many real world realizations of RPS games the 
focus is on the dynamics of the three decision or behavior 
options, in some cases the draw options play the central role. 
For example, in pricing games, the draw options may 
represent stable prices (Cason et al, 2012) or in species 
interactions the draw options of self-restraint may represent 
the stable growth path for all participants (Nahum et al, 2011). 
In these cases the RPS game is played as a cooperation game, 
with the draws representing the cooperation decisions, e.g. 
self-restraint in growth or in pricing. An important difference 
between RPS games played as cooperation games and those 
which are played differently is that the outcome associated 
with the draw is sufficiently positive, i.e. beneficial for the 
participants, although not as much as the winning outcome. In 
other RPS games the outcome associated with the draw may 
be more negative than the outcome of losing a game. We note 
that in some natural cases of RPS game the draw is never an 
option, e.g. competition between different sub-species, where 
each one has only one behavioral option (Kirkup and Riley, 
2004). 
 Here we use and agent-based simulation environment to 
explore the evolution of cooperation in the context of RPS 
games. The agents in our environment communicate their 
intentions and play an uncertain resource game, where the 
actual outcome of the game is drawn from a probability 
distribution over a range of possible outcomes. The agent’s 
lifespan and number of offspring depend on the amount of 
resources that they accumulate. The asexually produced 
offspring inherit the communication language and inclination 
to cooperation decisions of the parent with minor random 
variations.  

We explored games with positive draw outcome, where we 
expect high level of cooperation and also games with negative 
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draw outcome, where we do not expect much cooperation (i.e. 
above the default level corresponding to random choice of 
agent decisions). We also investigated the impact of clustered 
and spread-out arrangement of the offspring of the agents, 
which represents the easy and difficult identification of likely 
cooperation partners (i.e. cooperation is more likely among 
the offspring of an agent, which had high inclination to make 
cooperative decisions). 
 The rest of the paper is structured as follows. First we 
review briefly the relevant literature. Next expand the 
discussion of cooperation in the context of RPS games. Next 
we describe the simulation environment in details. Then we 
present the results and discuss the implications of these. 
Finally the paper is closed with the conclusions. 

Background 

The RPS game originates in East Asia (China and Japan) and 
has been played for many centuries. RPS became popular in 
Europe in the 1920s (Schwab, 2015). Today it is one of the 
early strategy games that children learn in school and there are 
also championships organized for adult players. The game has 
been studied in the context of game theory and its 
applications, for example in biology, economics and social 
institutions (Cason et al, 2012; Semmann et al 2003). 
 There are several examples of RPS games in nature and in 
social context. In side-blotched lizards (Uta stansburiana) 
males may have three different variations of their throat color, 
orange, blue and yellow, each corresponding to a different 
mate choice strategy (i.e., aggressive defense of large 
territory, defense of small territory, sneaking through 
territories with a female-like look) (Sinervo and Lively, 1996; 
Sinervo et al, 2007). The three strategies form an RPS-like 
game, according to data from field experiments, orange is 
better than blue, yellow is better than orange and blue is better 
than yellow and the frequency of male lizards with these 
behavior features changes from year-to-year accordingly 
(Sinervo and Lively, 1996). Another example is the case of 
Escherichia coli bacteria, which may produce an antibacterial 
toxin (colicin) at some metabolic expense (variant C), may 
have resistance to this toxin with somewhat less metabolic 
expense (variant R), and may be sensitive to the toxin, but 
grow quicker than the other two versions (variant S) (Kirkup 
and Riley, 2004). The S variant grows quicker than the R 
variant (S wins against R), the R variant grows quicker than 
the C variant (R wins against C), and the C variant kills the S 
variant (C wins against S) (Kirkup and Riley, 2004). In the 
context of product pricing with well informed and not well 
informed buyers, a medium price may beat a high price and a 
low price may beat a medium price, but a high price may beat 
the low price (i.e., the price may switch to become a quality 
indicator) (Cason et al, 2012; Hopkins and Seymour, 2002).  
 RPS games have been analyzed mathematically to reveal 
key strategies (Sandholm et al, 2008). One such strategy is the 
replicator dynamics, when agents replicate the choice of the 
last opponent. Another strategy is the projection strategy, 
when an agent changes its choice depending on the inverse of 
the popularity of its own latest decision choice (Sandholm et 
al, 2008). RPS games have been analyzed in many formal 
settings, e.g. on networks (Alesina and Levine, 2011), with 

spatial constraints (Reichenbach et al, 2008), with extended 
state set (Peltomaki and Alava, 2008). 
 Cooperation may emerge in RPS games if the draw options 
have sufficiently positive outcomes (Nahum et al, 2011; 
Reichenbach et al, 2008). In such cases playing a draw leads 
to less benefit than winning a game, but also to more benefit 
than losing a game and the joint benefit of both partners is 
larger in the case of the draw than in the case of a winner – 
loser combination. For example, in the case of growth 
competition between behavioral variants of a species, the draw 
may allow on balance quicker growth for the whole 
population than the case when some are winning while others 
are losing through the interaction games (Nahum et al, 2011; 
Reichenbach et al, 2008). In the context of social games, 
restraint may bring more benefits at the community or 
institutional level then the playing of the game in winner – 
loser manner (Nahum et al, 2011). 
 RPS games have been studied extensively through 
modeling and simulations (Cliff and Miller, 1995; Schreiber 
and Killingback, 2012; Lubachevsky and Kanemoto, 2010). 
Most of these studies focus on the cyclical behavior of the 
agent community through playing the RPS game with 
alternating behavior/decision choices becoming dominant. In 
terms of analysis of the emergence of cooperation the 
computational studies focus on the role of spatial constraints 
in promoting restraint through clustering of individuals 
playing each decision/behavior option (Reichenbach et al, 
2008). 
 Recently there have been several studies reporting on 
experimental RPS game playing with human players (Batzilis 
et al, 2014; Semmann et al, 2003). These investigated mainly 
RPS games in economic and social setting (e.g. pricing games, 
public goods games) documenting how real humans play in 
more realistic and non-abstract settings (Batzilis et al, 2014; 
Semmann et al, 2003).  
 Studies aimed to uncover the mechanisms that underlie 
cooperation among selfish individuals have considered the 
role of uncertainty (Andras et al, 2003; Andras, 2016). It has 
been shown that in the context of Prisoner’s Dilemma type 
games more uncertainty leads to higher level of cooperation, 
but this has not been studied yet in the context of cooperation 
in RPS games. Natural world examples confirm that higher 
level of environmental uncertainty leads to more cooperative 
behavior among animals and plants (Callaway et al, 2002; 
Moscovice et al, 2017). 
 The ease of identification of prospective cooperation 
partners contributes also to the setting of the level of 
cooperation (Andras, 2016). It has been shown through agent-
based simulations that more clustering of cooperators 
increases the level of cooperation, where clustering of 
cooperator is a way of representing the ease of identification 
of cooperators. Studies of cooperation in RPS games also have 
shown that spatial segregation of individuals with similar 
decision preferences favors the increase of the level of 
cooperation (Nahum et al, 2011; Reichenbach et al, 2008). 
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Cooperation in the Rock-Paper-Scissors 

Game 

We noted above that RPS games can be used to study the 
evolution of cooperation if the draw outcomes are positive and 
possible. This setting aims to replicate cases of natural and 
social situations where the decisions or behavior that may be 
chosen by the actors are such that the draw is a possibility, 
e.g. spatial segregation of species (Nahum et al, 2011; 
Reichenbach et al, 2008), price choices of firms (Kovac and 
Schmidt, 2013). The RPS game is formulated using a pay-off 
matrix as shown in Table 1: 
 

Table 1. Pay-off matrix of an RPS game 

 Player 2 Decision 

P
la

y
er

 1
 

D
ec

is
io

n
  R P S 

R (a,a) (d,e) (f,g) 

P (e,d) (b,b) (h,k) 

S (g,f) (k,h) (c,c) 

such that e > d, f > g, k > h, e > a, f > a, k > a, e > b, f > b, k 
> b, e > c, f > c, k > c. In order to specify an RPS with 
incentive for cooperation we also need to have a > d, a > g, a 
> h, b > d, b > g, b > h, c > d, c > g, c > h and that 2a > 
d+e, 2a > f+g, 2a > h+k, 2b > d+e, 2b > f+g, 2b > h+k, 2c 
> d+e, 2c > f+g, 2c > h+k – this is called positive outcome 
for draws or positive draw outcome RPS. The settings can 
also be turned around to favor the avoidance of draws if a < d, 
a < g, a < h, b < d, b < g, b < h, c < d, c < g, c < h – this is 
called negative outcome for draws or negative draw outcome 
RPS. In general we do not have further constraints. However, 
to simplify the game, we may assume that a = b = c, e = f = 
k, d = g = h, the corresponding pay-of matrix is shown in 
Table 2. 
 

Table 2. Pay-off matrix of a simplified RPS game 

 Player 2 Decision 

P
la

y
er

 1
 

D
ec

is
io

n
  R P S 

R (a,a) (d,e) (e,d) 

P (e,d) (a,a) (d,e) 

S (d,e) (e,d) (a,a) 

In such case positive draw outcome is satisfied if e > a > d, 
2a > e+d and negative draw outcome is satisfied if e > d > a. 
 In the social context, cooperation games can be considered 
as abstract conceptualization of social institutions (Goist and 
Kern, 2018; Kube et al, 2014). RPS games can be seen as 
abstract representation of social games with multiple decision 
options, which are non-transitively comparable, i.e. if option 1 
is better than option 2 and option 2 is better than option 3 then 
it does not follow that option 1 is better than option 3, but 
rather the opposite of the latter applies. There are many 
examples of such settings in social institutions, for example, 
political parties may offer non-transitively comparable 
solution options to currently high priority socio-economic 
problems; different parts (e.g. directorates) of an organization 
may push for different priorities, which are non-transitively 
comparable, in terms of growth and investment focus; 
companies may try to sell non-transitively comparable goods 
or services to their potential clients, emphasizing different 
advantages of their products. Understanding how RPS games 

support the evolution of cooperative behavior can help the 
understanding, design and management of such social 
institutions. 
 In general we expect that in a positive draw RPS game that 
is played repeatedly the benefits of the draw option may 
attract actors towards playing this option due to the assumed 
drivers of cooperation (i.e. kinship, direct or indirect 
reciprocity, environmental uncertainty) (Rand and Nowak, 
2013). However, there is always a temptation to play the 
decision option that trumps the recently played option and 
there is always a risk that the next game partner will play the 
trumping decision option. One possibility is the spatial 
segregation and low mobility of actors, such that segregated 
actors stick to the decision option that they play and do not 
succumb to the temptation of playing a winning option 
(Schreiber and Killinback, 2012; Reichenbach et al., 2008). 
However, this may not be practical in social institutions. An 
alternative may be the maintenance of a social compromise for 
a period, followed by a relatively quick shift to alternate social 
compromise. To some extent the validity of this process is 
supported by the evidence of periodic shifts in government or 
investment and growth focus in companies. Experimental 
investigation, for example, through computational simulations 
can help elucidate factors that drive and influence the 
maintenance of such processes. 
 In certain social situations a losing option gives more 
benefit to the actor choosing this option than the choice of a 
decision option that would lead to a draw. Ending up as loser 
in an interaction may trigger a compensation benefit, which 
might be psychological (e.g. learning a lesson from a loss), 
economic (e.g. compensation payment or investment) or social 
(e.g. providing a compensatory mean of influence in the 
institutional decision making processes). At the same time 
ending with draw as a result of the interaction, involves the 
same cost of emotional, economic or social investment as the 
loss, but will not trigger the compensatory benefit. An 
example is when political parties negotiate by deciding to not 
join the forming of a government, offering support for or 
forming a minority or low majority government and forming a 
grand coalition government. The three options may trump 
another in a non-transitive manner, while at the same time the 
matching options may bring less benefit to the parties than the 
option where they are on the losing end, due to different kinds 
of benefit (e.g. government posts and ability to criticize more 
or less freely the government in place). State provided 
subventions and economic interventions are often forms of 
compensations for losing firms in the context of competitive 
economies, while the ability to carry on the competition 
between firms in an undecided draw does not trigger the 
willingness of the state to intervene and provide compensation 
for the loser.  

Setting a minimum wage by the state can also be seen as a 
compensation for a loss or perhaps rather a prevention of a 
drawn out playing of a draw between employers and 
employees. Here the draw happens by employees holding out 
without taking low paid jobs and employers holding out by 
not offering higher pay, leading to high unemployment and 
low level of production. Preventing this draw, by rewarding 
the loser through the imposition of a minimum wage, the 
employees are kind-of bribed into accepting lower than 
preferred wages in combination with a wage floor and 
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employers are made to accept a cut in their profit and a 
reduction of their production potential.  

In some countries political organizations of minorities may 
gain some level of representation if they clearly lose their 
electoral battles, but may not qualify for this is they gain 
sufficient number of votes and are rather seen as achieving a 
regular draw in the political arena against other non-minority 
political organizations. Similarly state provided funding 
arrangements for such organizations may provide more 
support to those who are clearly on the losing end in open 
competition. 
 In the case of negative draw RPS games we expect that in 
all conditions there is no increase in the level of draws 
compared to what is the result of random effects on the 
decision choices. However, it is still interesting to see if this 
expectation is confirmed by computational simulations and 
also to see if any factor in the setting of negative draw RPS 
games may influence the level of accidental cooperation in 
these games. 
 In our computational simulation study we analyze the role 
of environmental uncertainty and ease of identification of 
potential cooperators (implemented through agent offspring 
mobility: clustered offspring representing easy identification 
of potential cooperators; spread-out offspring representing the 
difficult identification of potential cooperators) on the level of 
cooperation in the context of positive and negative draw RPS 
games. Both factors have been shown to influence the level of 
cooperation in Prisoner’s Dilemma games, so it is expected 
that they have an influence in the context of RPS games as 
well (Andras, 2016).  
 In addition to the level of cooperation we also aim to use 
language complexity correlates of cooperation (Andras, 2008; 
Andras, 2016) to analyze the impact of uncertainty and ease of 
cooperator identification on the level of cooperation in RPS 
games. The language complexity metrics that we use are the 
average length of communications and the average variability 
of the use of language rules among the agents. In general we 
expect that in the case of positive draw RPS games, where 
cooperation is preferred, the language complexity metrics will 
decrease with increasing uncertainty of the environment. In 
the case of negative draw RPS games we do not expect a 
systemic variation of the language complexity metrics with 
environmental uncertainty of variation of the ease of 
identification of potential cooperators. 

Rock-Paper-Scissors Simulation Environment 

Our agent-based simulation environment works in a torus-like 
flat space (i.e. the opposite edges of a rectangle are joined 
together). The agents move in this environment randomly 
following a Brownian motion. The same spatial position may 
be occupied by multiple agents. 
 The agents communicate with each other about their 
intentions. In each time turn, each agent tries to pick a partner 
from its neighborhood of agents. Agents that find a partner 
play an uncertain resource generation game with their partner 
such that they reach their game decisions through their 
communications. If the communications last too long (too 
many symbols are produced before reaching the decision) the 
agents disengage. 

 The language of the agents is defined using a set of 
probabilistic production rules 

R: (own, other)  (new,1; p1),…, (new,k; pk) (1) 
where own and other are the last communication symbols 
produced by the agent (own) and its partner (other), and new,i 
and pi are the i-th communication symbol, which may be 
produced next and the probability of the production of this 
symbol – the probabilities pi sum up to 1. The symbol set is 
common across all agents and includes the following symbols 
with the corresponding meaning ‘0’ – wait, ‘s’ – start 
meaningful communication, ‘i’ – continue communicating, ‘y’ 
– ready for decision making, ‘n’ – does not want to 
communicate, ‘h’ – ‘rock’, ‘t’ – ‘paper’, and ‘r’ – ‘scissors’. 
Each agent has a willingness (probability) to produce as their 
decision ‘rock’, ‘paper’ or ‘scissors’ following the reaching of 
the state, when both agents communicated the symbol ‘y’ to 
each other. The probabilities for the production rules are 
specific for each individual agent. The agent’s decision 
(‘rock’, ‘paper’ or ‘scissors’) and the communication length 
required for the decision making depend on their 
communication language. This agent language builds on 
earlier work used for simulation of Prisoner’s Dilemma games 
and further details about it can be found in earlier papers 
(Andras, 2003; Andras, 2008). 
 The uncertain resource game is played by the agents 
according to a pay-off matrix like the one shown in Table 2. 
However in this case the pay-offs are uncertain and they are 
sampled from uniform distributions for which the mean value 
is given by the pay-off matrix and the half-width of the 
distribution (corresponding to the standard deviation) is given 
by the uncertainty of the environment, , multiplied by the 
length of the communications that took place between the 
agents participating in the game until they reached their 
decision. The mean values in the pay-off matrix depend on the 
amount of resources the agents have. Higher uncertainty  and 
longer decision reaching communications imply larger half-
width for the distribution, which means higher chance to get 
much smaller or much larger values than the mean as the pay-
off of the actual game played by the agents.  
 We had two kinds of settings for the pay-off matrix: 
positive draw RPS and negative draw RPS, in order to be able 
to investigate both kinds of RPS games. The function that 
determines the mean values for the pay-off matrix is set such 
that the values in the pay-off matrix always satisfy the 
inequalities required for the two kinds of RPS games (the 
setting is different for the two kinds of RPS games). 
 The agents live for 60 time turns at most – they may die 
earlier if they run out of resources (existence in each time turn 
costs a fixed amount of resources). At the end of their life, if 
they have at least the average amount of resources, 
considering the current agent population, the agents produce 
offspring asexually. The offspring share equally their parent’s 
resources and their number depends on the available resources 
of the parent agent according to the following equation 

Nnew = [  (( – m)/ s) + ] (2) 
where Nnew is the number of the offspring, , m, s are the 
amount of resources of the parent agent, the mean amount of 
resources and the standard deviation of the resource amounts 
in the current agent population, and  and  are parameters. 
The offspring inherit the language of their parent, including 
their willingness to produce the decisions ‘rock’, ‘paper’ and  
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Figure 1. Typical variation of the three decision choices 
(‘rock’, ‘paper’, ‘scissors’) for two simulated agent worlds: A) 
positive draw RPS with clustered offspring; B) negative draw 
RPS with spread-out offspring. The horizontal axes show 
time, the vertical axes show the frequency of the decision 
choices. 
 
‘scissors’, with minor changes of the probabilities of the 
language production rules. 
 The offspring may start in a clustered manner form the 
location of the parent agent or may be dispersed randomly 
throughout the whole space of the simulation. The clustered 
starting setting of the offspring corresponds to the easy 
identification of prospective cooperator agents, i.e. the 
offspring of an agent have similar preferences for producing 
the ‘rock’, ‘paper’, ‘scissors’ decisions, so being clustered 
they are likely to play a draw – cooperate – if any of the three 
decisions is more preferred by them than the other two 
decisions, which is usually the case. The spread-out, 
dispersed, offspring represents the difficult identification of 
prospective cooperators, since the offspring are not clustered 
and it is not predictable the decision making preference of the 
neighboring agents. 
 The agent world evolves through time turns. In each time 
turn the agents pick partners, communicate and play the 
resource game. The agents that reach the end of their life 
produce their offspring if they have sufficient resources. As 
agents inherit their parent’s language and decision preferences 
with minor random changes, the evolution may lead to the 
emergence of a stable pattern of the level of cooperation. 
 We measured the level of cooperation as the percentage of 
agents reaching a draw decision, within the current agent 
population. We also measured correlates of cooperation: the 
average length of agent communications as the average 
number of symbols produced by the agent until they reached 
their decision in the resource game; and the language 
variability measured as the average standard deviation of the 
distributions of the probability values associated with 
language production rules across the current population of the 
agents. 
 
 
 

Figure 2. Evolution of the level of cooperation (A), average 
communication length (B) and language variability (C) during 
the last 2000 time turns of the simulations with positive draw 
RPS games with clustered offspring. The horizontal axes 
show the time and the vertical axes show the measured 
metrics. The uncertainty levels are indicated by the line colors 
blue – 0.3, red – 0.5, green – 0.7. 

Results and Discussion 

The simulated agent worlds ran for 3000 time turns. Each 
simulated world started with around 1800 agents with 
randomly set language probabilities. We considered three 
levels of environmental uncertainty ( = 0.3, 0.5 and 0.7). 
Each simulation setting was run 20 times and we calculated 
the average level of cooperation, communication length and 
language variability for each time turn. We analyzed these 
averaged data. The standard deviations of the data are small 
compared to the averages and these are not shown in the 
figures to avoid cluttering. 
 We also measured the frequency of ‘rock’, ‘paper’ and 
‘scissors’ decisions to check whether these alternate across the 
simulations as expected from the RPS game. Figure 1 shows  
two typical cases, one for the positive draw RPS with 
clustered offspring (A) and the other for negative draw RPS 
with spread-out offspring (B). In both cases, initially some of 
the agents do not produce any of these decisions as they do 
not reach the decision sufficiently quickly (at this stage 
around a quarter of the agents produces each of three decision 
options and around a quarter of the agents do not reach any of 
these decisions). The data in Figure 1 shows that indeed, the 
three decisions alternate in their frequency. In the case of 
positive draw RPS with clustered offspring the alternation is 
much slower than in the case of the negative draw RPS with  
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Figure 3. Evolution of the level of cooperation (A), average 
communication length (B) and language variability (C) during 
the last 2000 time turns of the simulations with negative draw 
RPS games with clustered offspring. The horizontal axes 
show the time and the vertical axes show the measured 
metrics. The uncertainty levels are indicated by the line colors 
blue – 0.3, red – 0.5, green – 0.7. 
 
spread-out offspring. We also note that in the positive draw 
RPS the dominant decision choice is much more frequent than 
in the negative draw RPS, which is in line with the draws 
being beneficial in the former and not so in the latter. 

The evolution of cooperation and the communication length 
and language complexity metrics for positive draw RPS 
games with clustered offspring are shown in Figure 2. The 
results show that similar to results about Prisoner’s Dilemma 
games in uncertain environments, we find that more uncertain 
environments imply higher level of cooperation. The results 
also show that the more uncertainty is consistent with longer 
communications and with lower variability of the language 
rule probabilities among the agents. We also note the upward 
trends of the language complexity metrics over time. 
 In the case of simulations with negative draw RPS games 
and clustered offspring we found that the differences are small 
between the levels of cooperation (all a bit over 0.33, which is 
the expectation for random choice of the three decision 
options) for the different levels of uncertainty, but these 
differences are statistically significant (the difference between 
the average level of cooperation for the last 2000 time turns 
for the highest and lowest level of uncertainty is 0.0095, 
which is shown by the t-test to be statistically very significant, 
p-value = 0). Again we found that the language variability is 
lower for higher environmental uncertainty for these games 
and for all levels of uncertainty there is growth trend over 
time for this metric. We also found that for these games the  

Figure 4. Evolution of the level of cooperation (A), average 
communication length (B) and language variability (C) during 
the last 2000 time turns of the simulations with positive draw 
RPS games with spread-out offspring. The horizontal axes 
show the time and the vertical axes show the measured 
metrics. The uncertainty levels are indicated by the line colors 
blue – 0.3, red – 0.5, green – 0.7. 
 
average communication length is lower for more uncertain 
environments and for this metric the trend is further reduction. 
The results are shown in Figure 3. 

For the case of positive draw RPS games with spread-out 
offspring the results are shown in Figure 4. We found that the 
level of cooperation increases with the level of uncertainty, 
although to less extent than in the case of clustered offspring 
level of cooperation increases with the level of uncertainty, 
although to less extent than in the case of clustered offspring 
(this is as expected). The results show that the average 
communication length is longer and the language variability is 
smaller in more uncertain environments, both also having an 
upward trend over time. The average communication lengths 
are smaller than the corresponding lengths for simulations 
with clustered offspring and the corresponding language 
variability measures are larger than in the case of clustered 
offspring. 
 Finally, in the case of negative draw RPS games with 
spread-out offspring we found that the levels of cooperation 
are similar and close to 0.33 (the expectation for random 
choice of the decisions), but the averages over the last 2000 
time turns are still statistically significantly different for 
different uncertainty levels (the matching difference noted 
previously is 0.0024, which is statistically very significant 
according to the t-test with p-value = 3x10

-123
). The language 

metrics behave in a similar manner like in the case of negative 
draw RPS games with clustered offspring, the only difference 
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Figure 5. Evolution of the level of cooperation (A), average 
communication length (B) and language variability (C) during 
the last 2000 time turns of the simulations with negative draw 
RPS games with spread-out offspring. The horizontal axes 
show the time and the vertical axes show the measured 
metrics. The uncertainty levels are indicated by the line colors 
blue – 0.3, red – 0.5, green – 0.7. 
 
being that in this case the values are larger both for the 
average communication length and the language variability. 
The results are displayed in Figure 5. 
 Our results show that the language variability follows the 
same ordering by uncertainty and the same trend over time for 
all considered cases, irrespective of whether the RPS game is 
with positive or negative draw, or whether the offspring of the 
agents are clustered or spread-out. This suggests that lower 
communication uncertainty combines with higher 
environmental uncertainty to reduce the combined objective 
uncertainty. This is further reduced in terms of experienced 
uncertainty by higher level of cooperation associated with 
higher level of environmental uncertainty (Andras et al, 2006).  

We also found more language variability for simulations 
with spread-out offspring than for those with clustered 
offspring. This is expected given the more mixing of the 
agents with different versions of the language in the former 
case compared with the latter one. This is also expected in 
natural RPS games where the identification of potential 
cooperators / non-cooperators is more difficult and 
consequently the game playing language is more diverse than 
in cases where this identification is easier. 
 The ordering of the length of communications graphs gets 
reversed between positive and negative draw RPS games and 
the trend over time gets also reversed (upward for positive 
draw and downward for negative draw RPS). This shows that 
this aspect of language complexity relates more to the nature 

of the games (positive vs. negative / preferred vs. un-preferred 
draw). When draws are preferred it takes longer to reach the 
game decisions, while when draws are un-preferred, game 
decisions are reached more rapidly. Comparing these graphs 
between the cases of spread-out and clustered offspring 
simulations we find that the communications take longer in 
the former case for negative draw RPS games, but the 
situation is less clear cut in the case of positive draw RPS 
games. 
 The reverse ordering of the communication length graphs 
compared to the ordering of the language variability graphs, in 
the case of positive draw RPS games is puzzling. This 
ordering indicates that reaching the game decisions takes 
longer, making the outcomes more uncertain, as the 
environmental uncertainty grows. The previously discussed 
uncertainty considerations would suggest that the opposite 
should happen, as it is in the case of negative draw RPS 
games. This finding suggests that possibly the benefits of 
cooperation in reduction of the experienced uncertainty 
outweigh the negative impact of increased uncertainty due to 
the longer time that it takes to reach the game decisions. 
Given that cooperation is less beneficial in negative draw RPS 
games, we do not see this effect in the case of these games.  
 As an example of the positive draw RPS game, we may 
consider a version of coalition decision making in politics, 
with offering coalition, demanding more gains and breaking 
the coalition being the three options on both sides and positive 
outcomes associated with the draw situations. Our results 
discussed above suggest that in such cases, the range of topics 
that are not easily agreed gets reduced as the economic-social-
political environment gets more uncertain. At the same time, 
the length of coalition negotiation gets extended as the 
environment gets more uncertain (Martin and Vanberg, 2003).  
 As expected, we find less cooperation for the case of agent 
societies with spread-out offspring than for those with 
clustered offspring. Interestingly, we found that there is 
significantly more cooperation in more uncertain 
environments even for negative draw RPS games (i.e. when 
cooperation representing draws are un-preferred). For the case 
of spread-out offspring with negative draw RPS the 
cooperation levels get very close to the level expected for 
random choice of game decisions, but still they are 
statistically significantly above this. This is a puzzling result, 
which perhaps indicates that the uncertainty reduction effect 
of cooperation is beneficial even if cooperation in itself leads 
to relative losses. These losses are relatively certain compared 
to the more uncertain gains. This suggests that in natural 
social realizations of RPS games with negative draws we can 
still expect some level of intentional cooperation above what 
can be expected purely by chance.  

Conclusions 

In this paper we report about computational experiments 
exploring the evolution of cooperation in the context of RPS 
games, where cooperation is interpreted as the draws in the 
game. We used an agent based simulation, with 
communicating agents playing a resource generation game in 
an uncertain environment, with or without dispersion of the 
offspring of the agents. The results show that higher 
environmental uncertainty is associated with higher level of 
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cooperation in all cases, including those when draws imply a 
negative outcome in the RPS games. We also found that 
spreading-out of the offspring (an implementation of the 
difficult identification of potential cooperators) reduces the 
level of cooperation. In terms of language complexity 
correlates of cooperation we found that the language 
variability decreases as environmental uncertainty increases, 
but the average communication length follows this pattern 
only in the case of negative draw RPS games. In the case of 
positive draw RPS the results suggests that the benefits of 
cooperation outweigh the uncertainty increasing effect of 
lengthier communications. 
 The results reported here are interesting because they allow 
the computational analysis of social institutions and biological 
interaction systems (e.g. animal communities, multi-species 
bio-systems), that can be conceptualized abstractly as RPS 
games where cooperation is implemented as draws. This goes 
beyond the usual computational models of cooperation that 
use Prisoner’s Dilemma or similar two option games and 
expand the range social and biological systems that can be 
studied from the perspective of the emergence, evolution and 
maintenance of cooperation. In particular in the case of social 
institutions RPS games (and possible further extensions of 
them) can capture multi-choice decision making with non-
transitive comparability of the decision options, which 
characterizes many real world social institutions. 
 Future work will look at the use of agent-based models of 
RPS games with cooperation to study the formation and 
behavior of social institutions. In this setting, we will look at 
the role of social learning (Andras, 2016) in RPS games and 
the use of this combination to capture more fully the behavior 
of social institutions. 
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