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Abstract: Historically, threat information sharing has relied on manual modelling and centralised
network systems, which can be inefficient, insecure, and prone to errors. Alternatively, private
blockchains are now widely used to address these issues and improve overall organisational security.
An organisation’s vulnerabilities to attacks might change over time. It is utterly important to find a
balance among a current threat, the potential countermeasures, their consequences and costs, and the
estimation of the overall risk that this provides to the organisation. For enhancing organisational
security and automation, applying threat intelligence technology is critical for detecting, classifying,
analysing, and sharing new cyberattack tactics. Trusted partner organisations can then share newly
identified threats to improve their defensive capabilities against unknown attacks. On this basis,
organisations can help reduce the risk of a cyberattack by providing access to past and current cyber-
security events through blockchain smart contracts and the Interplanetary File System (IPFS). The
suggested combination of technologies can make organisational systems more reliable and secure, im-
proving system automation and data quality. This paper outlines a privacy-preserving mechanism for
threat information sharing in a trusted way. It proposes a reliable and secure architecture for data au-
tomation, quality, and traceability based on the Hyperledger Fabric private-permissioned distributed
ledger technology and the MITRE ATT&CK threat intelligence framework. This methodology can
also be applied to combat intellectual property theft and industrial espionage.

Keywords: blockchain; smart contract; Hyperledger Fabric; privacy-preserving; Interplanetary File
System (IPFS); threat intelligence sharing; MITRE ATT&CK framework; cyber hunting

1. Introduction

It is mandatory for organisations to protect themselves from a wide range of cyberat-
tacks that are constantly expanding. Legacy applications often introduce vulnerabilities
and need to be considered now more than ever. As organisations struggle to keep their
systems up to date, they also face major challenges in this digital era due to the increasing
number and diversity of digital technological artefacts, as well as the broadening of the
attack surface. The traditional methods for threat analysis are normally manual, which
can be time-consuming and prone to errors [1]. Threat intelligence is a powerful tool that
organisations can use to protect their digital infrastructures against new cyberattacks while
generating meaningful reports. However, the effectiveness and efficiency of the existing
threat intelligence solutions often vary in their ability to cover a wide range of attack tactics
and techniques.

Slow advancements in threat intelligence sharing come from stakeholders who are
resistant to providing their threat information due to the potential consequences of revealing
their private data. Attracting and convincing stakeholders to employ threat intelligence
technologies is, thus, a current priority. Thus, the trust and quality of threat information
sharing are often important factors in convincing users and stakeholders to share their
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private data. In addition, other factors are relevant to the scale-up of the data quality
that can attract stakeholders and practitioners to apply threat information sharing in
their organisations. These metrics may include dependability, correctness, and timeliness.
Therefore, by having such system qualifications, practitioners can generate high-quality
automated and meaningful reports about existing and emerging threats that can help
reduce the risk of possible threats. Organisations cannot defend themselves in isolation
from the threat landscape due to the emerging threats [1]. However, threat information
sharing raises a massive concern about creating a trusted system around validity, security,
privacy, and traceability.

Conventional network systems for information sharing are often centralised and
controlled by a single entity over the Internet using a location-based approach (URL—
Universal Resource Location) to reach resources. As a result, data are often vulnerable to a
single point of failure and are prone to a denial-of-service attack (DoS), which represents
the major concern of the centralised networking system [2]. In contrast, a decentralised
system, which is the core concept of our proposed infrastructure (an infrastructure is the
set of components), is leveraged to prevent centralised system problems. For example, DLT
(distributed ledger technology) is a decentralised system that can increase data security
without requiring the intervention of a third party. Data are then handled in a distributed
manner. Furthermore, any participant nodes can have a replica of a global ledger.

With a public ledger, no permissions are required for new users to join the network.
To restrict access, we can use a private blockchain, where only authorised users can read,
write, and be engaged in the consensus process to validate the new transactions. Table 1
shows a comparison of different DLT types.

Using Hyperledger Fabric, threat intelligence can be shared and stored in a sharding
manner through a secure replication to all nodes. This is delivered over a reliable, scal-
able, and efficient infrastructure. Additionally, the private and permissioned nature of
Hyperledger Fabric supports pluggable and flexible identity systems, distributed smart
contracts, and a permissioned-access control approach to private data [3]. The permis-
sioned approach ensures that private information stored in the ledger is not accessible to
unauthorised users and that only approved participants can access it using their authorised
identity certificates [4]. On this basis, one can enhance privacy-preserving methods for
threat information sharing.

Table 1. Comparison of different blockchain types.

Comparison Features Public Blockchain (Permissionless) Private Blockchain Permissioned Blockchain

Read
It is an open network, no permission needed,

anyone can download protocol and read

Only specific participants in the organisation

can read, verify, and add new nodes

Under a legal contract, the public

and participants are permissible

Write
It is an open network, no permission needed,

anyone can download protocol and write

Only specific participants in the organisation

can write

Participants are permissible under

some legal contracts

Consensus Operational
No conditions are needed to join consensus; the

process needs more energy and resources.

Only those who are pre-selected can conduct

the consensus within the organisation
Pre-selected nodes within consortium

Examples Bitcoin Ethereum Hyperledger Fabric

Network Permissionless Permissioned or Permissionless Permissioned

Classification Public Public or Private Private

Governance Decentralised Ethereum Developers Linux Foundation

Currency Yes Yes - Ether To-kens (smart contract) Non-Currency Tokens (chaincode)

Operation Pattern Order–execute Order–execute Execute–order–execute

Cost Yes, Satoshi (It is synonymous with Bitcoin). Yes, Gas (the amount of computational power). None

Smart Contracts No Smart Contracts (Solidity, Serpent, LLL) Chaincodes (Go, JavaScript, Java, and more)

Consensus Algorithms Proof of Work Proof of Work or Proof of Stake (new versions) Normal operation or Practical Byzantine Fault Tolerance (PBFT)

Encryption of transaction data No No Yes

TPS 3.3–4.6 15 Up to 5000

Block Size 1–2 MBs 4 MB SegWit (Segregated Witness) 20–30 KB By default: 512 KB (Preferred), 98 MB (Absolute Maximum)

Transactions per Block 3500 70 10 (default)

Block Time 10 min 15 s 1 s

Currency Capitalisation 21 million 5 every 14 s No Currency

Current Block Reward 12.5 BTC 3 ETH N/A

Applications Track ownership of Digital Currency (Mostly) DApps (Games, IoT, Fintech, Supply Chain, and so on) Private Blockchain requires high performance, resiliency, and privacy



Entropy 2022, 24, 1379 3 of 32

1.1. Problem Statement

This section outlines some of the concerns around areas of threat analysis and sharing.

1.1.1. Centralisation of the Public Key Infrastructure

The issues associated with the centralisation of the public key often develop when the
participating node volume increases and users attempt to execute huge transactions simul-
taneously, which may cause bottlenecks and reduce the system’s scalability. To address this
issue, we suggest the use of decentralised identities [5].

1.1.2. Trust and Lack of Interest

Establishing a threat intelligence sharing partnership demands stakeholders’ trust [6,7].
Trust is critical to a cyber threat intelligence (CTI) exchange ecosystem and is challenging
to maintain. A third party is often used to establish a trusting relationship between
stakeholders. In contrast, this method can be prone to leaking sensitive information. Threat
intelligence sharing may include information that should only be disclosed to trusted
partners or to no one, such as information related to personally identifiable information
(PII) unrelated to creating situational awareness [8]. The lack of interest and sharing
is seen to impact organisational security negatively, which represents a major concern.
Stakeholders, too, often do not trust threat information sharing infrastructure, which might
reveal their sensitive data. Consequently, a new threat information sharing framework
could provide privacy-preserving mechanisms based on private and permissioned DLTs
through a smart contract without a trusted third party involved to address these concerns.

1.1.3. Privacy and Anonymity

Despite the fact that a threat-sharing infrastructure is commonly provided by a third
party, it is often deemed insecure where anonymity is critical for cooperation [7]. Or-
ganisations must thus prioritise user privacy by counter threat intelligence with trusted
stakeholders or anonymising data to maintain data privacy. Thus, data anonymity using
threat intelligence and encryption techniques is suggested to ensure secure data-sharing
and that data are unrevealed to unauthorised users.

1.1.4. Legal Consideration

Another critical part of threat information sharing is understanding any legal issue [9].
Therefore, before disclosing any information, one must be aware of all applicable rules
and regulations to prevent the committing of an offence or unintentionally engaging in
illegal activity. For example, threat intelligence sharing can contain personally identifiable
information, and sensitive data should be often sanitised before exchange. In addition,
executive and legislative bodies can restrict the information that an organisation shares.
Appropriate restrictions are necessary, but unreasonable ones often reduce the quality of
shared data.

1.1.5. Data Quality

Data dependability, correctness, and timeliness are all factors that contribute to high
quality. Because cyber security cannot rely on outdated and inaccurate data, maintaining
data quality is critical. When the number of stakeholders and associated data sources
often grows over time, quality issues develop [10,11]. Instead, before acting on threat
information, an organisation must ensure that it is authentic and relevant, along with the
risks being properly identified [6].

1.1.6. Lack of Automation

The lack of an automated sharing mechanism and data quality both act as obstacles
to information sharing [11]. Unlike modern technologies, the most traditional approaches
to the analyses of threats are done manually, which raises considerable concerns over
inaccurately and erroneously generated results. Thus, one can address this issue by using
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automated threat technologies to get adequate threat assessment results. Therefore, we
proposed using automated threat analysis instead of the conventional approaches.

1.1.7. Inevitable Costs

Using computationally expensive resources makes monetary and personal information
sharing quite unattractive. Commercial threat analysis solutions are often costly and
difficult to manage, while open-source alternatives can be hard to manage. According to
Ponemon’s investigation, overall running costs are cited by 21% of respondents as a factor
for not engaging in an exchange program [12]. As a result, organisations that prefer not
to engage in exchange programs can slow down the efforts to share information, which is
often fundamental to cyber security. Our approach aims to address these shortcomings and
encourage information sharing.

1.2. Contributions and Paper Structure

The following are the primary contributions of this paper:

• Creating a new framework based on permissioned blockchain technology for privacy-
preserving and trustworthy threat intelligence sharing.

• Demonstrating how threat intelligence is conducted in practice: analysing the detected
threats and generating meaningful reports while increasing data quality.

• A proof-of-concept implementation of the proposed solution along with a security
analysis to verify the feasibility of our solution.

• Performing experiments with Hyperledger Fabric and measuring the network capabil-
ities during transaction execution: transaction rate, latency, and throughput.

The rest of this paper is organised as follows: Section 2 briefly presents the background
needed around threat intelligence, blockchain technology, scalability, the Interplanetary
File System (IPFS), and Hyperledger Fabric. Section 3 provides references to the related
literature while discussing the existing data sharing solutions. Section 4 presents the pro-
posed solution while covering a wide range of problem statements and system executions.
Section 5 details our implementation by presenting data logs, threat analyses, threat file
encryption and storage, and threat information sharing technologies. The security con-
sideration, anonymity consideration, and latency scalability throughput are discussed
in Section 6. Finally, Section 7 draws the conclusions while providing some pointers for
future work.

2. Background

This section introduces the essential technologies and principles of our proposed
solution while focusing on the most effective tools related to threat analysis. We provide a
quick overview of threat intelligence, blockchain and Hyperledger Fabric, the creation of
an efficient way for threat sharing, a privacy-preserving method, and a proactive defensive
threat analysis tool, and Big Data processing.

2.1. Cyber Threat Intelligence

In the threat landscape, threat hunting, cyber threat intelligence (CTI), and incident
response (IR) are deeply correlated, although they often use different techniques and proce-
dures to achieve their goals. Threat intelligence is also known as cyber threat intelligence
(CTI). CTI can be thought of as a starting point for threat hunters. The next step after
security breaches have been detected is incident response.

Threat intelligence is evidence-based information about existing or emerging threats
or hazards to assets, including context, mechanisms, indications, consequences, and ac-
tionable recommendations, which may be used to make decisions about an organisation’s
or individual’s reaction to that threat or hazard [13]. Sharing threat intelligence is seen as
a proactive way to defend against attacks and improve an organisation’s overall security
by making it easier to predict attacks and stop them before they happen. Threat intelligence
technology is used to analyse adversarial behaviour based on evidence, since it must be
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trusted. The threat intelligence life cycle often includes a sequential process that starts
by detecting threat data and classifying, analysing, and sharing them. As a result, it can
generate informative reports about historical and new threats aimed at an organisation’s
assets [14], which may help them mitigate the risk of a cyberattack. Threat intelligence
can support the automated and comprehensive vision based on accumulative knowledge.
Consequently, it gives detailed insights into factors such as the nature, motive, timing,
and how an attack could be carried out. As a result, threat intelligence helps organisations
and companies make quicker, more informed security options and upgrade their behaviour
from reactive to proactive in order to combat the threat [15].

2.2. Blockchain

Blockchain is a decentralised, distributed ledger technology that has gained a solid
reputation among current security techniques, especially in increasing trust levels for
transactions. As a result, it has been implemented with great success in systems that respect
privacy [16]. Blockchain was initially built for immutable (tamper-proof) records to protect
bitcoin transactions from alteration and to ensure transaction integrity. Additionally, it has
gradually proven both transaction validity and system efficacy in various areas. There are
key features that make blockchain a good candidate for various security applications, such
as features of immutability, transparency, and traceability, while providing a trusted method
whereby verification and validation are done without the need for trusted signers or third
parties. To achieve the latter, blockchain requires consensus algorithms [17]. Although most
of blockchain’s characteristics are beneficial, it still has some shortcomings in scalability,
latency, and privacy concerns. Blockchain, too, can have limited data storage and a small
processing capacity. Moreover, the consensus mechanism is relatively slow due to the
time-consuming negotiation process amongst nodes to add a new transaction block to the
chain. All blockchains, permissioned or permissionless, have specific operational phases,
which follow the order–execute pattern. Regarding the transaction execution process,
the blockchain follows the order–execute pattern. With this, the transactions are executed in
sequential order, which is considered the main reason for bottleneck issues that occur when
the number of transactions increases. Additionally, these issues contribute to decreased
throughput and increased delay. The use of an external off-chain data store can help to
tackle some of the blockchain scaling concerns. With this, blockchain systems could be
integrated with other technologies to enable large data scales, such as double blockchains
or by using the Interplanetary File System (IPFS) to store data off-chain.

2.3. Scalability Solution

Most blockchains are incapable of handling large amounts of data because of their
limited storage space on the chain. The most common solutions involve the following.

2.3.1. On-Chain Storage

We might think that it is normal to execute data on the blockchain. However, blockchain
often has limited storage capacity, and this is referred to as on-chain data. As a result,
it may be necessary to seek an external solution in order to store large amounts of data.
However, it is impossible to analyse large amounts of data and maintain them on the chain
without increasing storage capacity. Some alternatives for dealing with big data, such as
storing information off-chain using low-cost open-source approaches, are compatible with
blockchain technology. This includes using a double blockchain and the IPFS.

2.3.2. The Interplanetary File System (IPFS)

The IPFS is an open-source, peer-to-peer file protocol that has a decentralised nature. It
is frequently used in combination with blockchains to store data off-chain. When used with
a blockchain, the IPFS shows a significant capability of storing large amounts of data in an
off-chain manner. Within the IPFS, data are stored in a distributed manner using key-value
data storage management [18]. In the IPFS network, any participant node can retrieve the
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data due to the IPFS’s public-nature network. One can maintain data confidentiality by
using encryption techniques to protect data disclosure by an unauthorised user. In other
words, users can access stored threat information, retrieve private data, and then decrypt
them if the user is authorised to do so. In addition, the IPFS has the key advantage of
storing files in a distributed manner, which provides a more resilient approach to storing
data than conventional centralised approaches.

2.3.3. The Content Identifier (CID)

The initial step of the IPFS’s mechanism starts when a file is uploaded and then split
into blocks or chunks. Each chunk is associated with a unique identifier called a Content
Identifier (CID). The CID represents a unique value or hash-key of content inside the IPFS.
A CID is a 256-bit self-describing [19] identifier. The following is an example of a CID.

QmQwhiK1YqjSswTJTLcYiA6TtnQrbua3aceeqEbeK8s2sP
This value is highly likely to differ whenever the content changes. In addition, the

IPFS uses the CID to share and retrieve the file content from different places that represent
the content’s addresses.

2.3.4. Off-Chain Storage

Off-chain refers to the capacity to transport, store, and process data outside the
blockchain. Smart contracts running on a blockchain can engage with off-chain data and
carry out sharing activities. Using the IPFS, one may deal with two different approaches.
The first is when data are transferred off-chain and used in the IPFS, and then moved
back on-chain and committed to the blockchain via a consensus mechanism. Furthermore,
off-chain transactions are recorded on a side-chain through distributed ledger technolo-
gies, thus enabling quick execution. For example, such an approach is reasonable when
we need to execute 10,000 fast transactions, combine them into one transaction, and then
bring that one transaction back on-chain to be submitted to consensus and committed
to the blockchain. Notably, a Merkle tree combines the transactions into a single trans-
action, which is then posted on-chain for a consensus and commitment to the primary
blockchain [20]. Merkle trees are a data structure that maps objects and links the contents to
their address. Thus, it can use a Git repository as a version control system and to exchange
objects. Another acceptable approach is when transaction data are stored on-chain and the
original data are saved off-chain. One can then obtain the content’s CID, which specifies a
content address within the IPFS. Then, the CID is sent to the targeted users. As a result,
the trustworthy user retrieves the data from the IPFS using the obtained CID.

2.4. Components and Workflow of Hyperledger Fabric

Hyperledger Fabric is a private-permissioned blockchain framework that was chosen
to develop a proof of concept for threat information sharing that aims to share threat infor-
mation efficiencies amongst trusted organisations. An organisation needs to share threat
intelligence by communicating the data securely over encrypted or private channels or a
trusted infrastructure to upgrade their threat detection capability. However, these channels
must be tamper-proof and allow access only to trusted partners. Hyperledger Fabric has
been developed to be extremely modular, scalable, and general purpose, offering privacy,
confidentiality, and scalability. Hyperledger Fabric’s operation phases include execute–order–
validate patterns rather than order–execute, as in the blockchain. The blockchain has several
concerns related to scalability, latency, and throughput. On this basis, this novel pattern of
execute–order–validate is used to address the limitations of the order–execute approach men-
tioned above. Additionally, the privacy policy in Hyperledger Fabric is basically applied in
two main components.

2.4.1. Chaincode

Chaincode represents the Hyperledger Fabric’s smart contract, which is executed in a
distributed manner on nodes if business logic is met. In other words, chaincode includes
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the business rules that govern trusted partners’ interactions. Java, Go, and JavaScript are
all general-purpose programming languages that can be used to write chaincode.

2.4.2. Endorsement Policies

Endorsement policies are rules that describe which peers can perform transaction
endorsement and approve a particular chaincode invocation. Endorsing peers manage
the validity of chaincode execution findings by giving a signature for those results. These
policies govern all public and private data in the world state database. A collection-level
endorsement policy may control private data collection specifically. The endorsement poli-
cies are expressed logically as AND (Org1, OR Org2, OR Org3). Examples of endorsement
policies include the following: 1-of-any means that any node from any organisation can
endorse the proposed transaction, and 2-of-any means any two nodes of an organisation can
endorse the proposed transaction through their validation of their identities. Hyperledger
Fabric’s private and permissioned nature provides a flexible identity system, chaincode,
and a robust privacy policy for accessing private data. It assures that only authorised users
have access to private data by requiring them to provide their identity certificates, which
are issued by the membership service provider. Hyperledger is a private and permissioned
modular architecture distinguished by its pluggable components, including a membership
service provider, chaincode, and consensus.

2.5. Transaction Workflow Through Hyperledger Fabric’s Architecture

Hyperledger Fabric’s architecture (architecture is a word used to describe the way in
which a collection of parts function as a whole) consists of multiple organisations, each
of which includes a number of peer nodes, which run smart contracts known as chain-
code. Furthermore, the chaincode can query ledger data, endorse transactions through
the endorser’s nodes, and interact with applications. To execute a transaction, a unique
identifier known as a “txid” is issued, and it should have a creator known as a “transac-
tion creator” [21]. The Hyperledger Fabric has three phases: execute, order, and validate
patterns, as illustrated in the transaction workflow shown in Figure 1. (1) The membership
service provider (MSP) validates all identification certificates for network users. (2) The
authenticated user first sends the transaction proposal to be endorsed. (3) The endorsed
transactions will be collected (4) and then submitted to an ordering service component
through the channel. (5) The ordering service includes the consensus mechanism that is
held on the orderer nodes. Orderer nodes do not have smart contracts or ledgers; instead,
their nodes are in charge of validating the transactions, ensuring consistency, and ordering
the transaction sequence inside the block. Validation can be performed when the orderer
service broadcasts the validated transactions to all network peers and membership service
providers who issued their identities to be a certificate authority. All peers validate the
received transactions and can then add them to the new block. (6) Each peer will use the
execution results to update the world state if all transactions are acknowledged. Each
peer adds the new block to its local blockchain when all transactions have been validated,
(7) and then the notifications will be sent to the SDK (software development kit).



Entropy 2022, 24, 1379 8 of 32

Figure 1. Hyperledger Fabric’s transaction flow.

2.6. Hyperledger Fabric’s Features

Hyperledger Fabric includes several features. The following are the most notable
among them:

1. Permissioned blockchain: Unlike a public blockchain, where nobody needs permission
to join the network, Hyperledger Fabric requires an identity and certificate authority
for any user or node to join the network [22].

2. Privacy and confidentiality of transactions: Channels allow a subset of nodes through
the anchor node to link different organisations, which make up the consortium.
The ledger of a channel can be accessed only by organisations that are part of the
channel. Therefore, participants can only see network features based on this aspect.

3. Highly modular and configurable architecture: Hyperledger Fabric enables plug-and-play
ordering, membership, endorsement, and validation services. A pluggable consensus
algorithm also improves the platform. The ledger supports the LevelDB and CouchDB
databases [22].

4. Efficient data query: By using CouchDB, it could execute queries that are more ef-
ficiently compared to other relational databases with less latency and with more
simple queries.

5. High-transaction-throughput performance: Hyperledger Fabric is scalable. Peer nodes
are liberated from ordering (consensus) responsibilities, while transaction execution
is independent of ordering and commitment. The division of labour relieves the
ordering nodes of transaction execution and ledger maintenance.

6. Low latency of transaction confirmation: Hyperledger Fabric is considered the fastest
amongst all the permissioned blockchains and can be generated within only a few
organisations, thus contributing to a reduction in the latency. Furthermore, it does
not have a mining process as in a blockchain, which it makes the system fast when
verifying and committing the transactions.

7. Offering multiple languages in which to write smart contracts: One can write smart
contracts in different programming languages, such as Java, Go, or Node.js [22,23].

8. No cryptocurrency: Unlike public blockchains and several other technologies, Hyper-
ledger Fabric does not involve a cryptocurrency [22].

3. Related Work

In the work of Bawane et al. [24], the authors introduced the Ethegram architecture
to address common social media issues caused by system centralisation. The authors
employed the Ethereum blockchain and the IPFS (Interplanetary File System) peer-to-
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peer file system to disseminate the stored material and overcome single-point-of-failure
problems. Furthermore, the proposed decentralised network addresses centralised system
concerns by utilising scattered peers rather than relying on a trusted intermediate. However,
because the selected blockchain contains a cryptocurrency, adoption of this architecture
may be difficult. As a result, transactions may be costly.

In the work of Havelange et al. [25], the authors established the LUCE framework,
a novel means of data management that considers data accountability and licensing condi-
tions. This system makes use of a blockchain ledger to incentivise data sharing and reuse by
making it easier to comply with licensing restrictions, such as registering data consumption
and purposes. The primary goal of developing the LUCE framework was to enable indi-
vidual data to be amended and destroyed following legislation such as the GDPR’s rights
to access, alteration, and deletion. This effort is analogous to our proposed infrastructure
regarding GDPR compliance, licensing conditions, and rewarding data sharing; however, it
does not consider using the IPFS to scale up data storage to address scalability issues.

In the work of Wang et al. [26], the authors developed a unique architecture to address
difficulties with data sharing, such as security, openness, and traceability. The proposed
approach allows for the simultaneous usage of two blockchains. One blockchain is used to
store the original data, while the other is used to store the transactions. This architecture
aims to securely transfer data while also providing characteristics such as linkability and
traceability. Furthermore, this infrastructure is connected with another proxy encryption
technology to improve the system’s privacy and security. This article advocated for the use
of dual blockchains to address the previously identified difficulties; nevertheless, this alone
is insufficient to protect the confidentiality of the stored data, especially as this system was
designed to enhance the traceability of the stored data.

In the work of Politou et al. [27], the authors merged the blockchain and IPFS technolo-
gies. They integrated a blockchain with the IPFS data sharing technology to provide a larger
data scale and off-chain storage of personal data. To prevent data censoring and comply
with the General Data Protection Regulations (GDPRs) and the Right to be Forgotten (RtbF),
the original data are shared and replicated through IPFS nodes rather than the blockchain.
The European Union adopted the GDPR to safeguard personal data within the EU and any
linked businesses in the same context.

In the work of Preuveneers et al. [28], the proposed system was called TATIS. With TATIS,
only authorised users can access sensitive data throughout their transport to and from
other threat intelligence systems. This paper has been fully implemented in a distributed
manner atop the Malware Information Sharing Platform using distributed ledger technol-
ogy (DLT) to control access to CTI data, share encrypted CTI data (based on the CP-ABE
cryptographic scheme), and account for and manage CTI data provenance in order to
reinforce trust (MISP).

In the work of Grundstrom et al. [29], their proposed system included an anonymous
protocol that adheres to the IPFS concept of removing any personally identifiable informa-
tion (PII) from data distributed amongst IPFS nodes and ensuring that an erasure request
reaches all nodes via the delegated deletion method. Aside from that, only the owner
or their delegates can delete the original material. As stated by the authors, this method
for erasing data does not affect system efficiency; therefore, it offers strong security and
adequate performance for producing content-dependent keys.

We conclude that most previous and existing works employ a centralised network
system or public-blockchain-based infrastructure to share information and increase con-
fidentiality. However, unlike ours, these works do not support the large data scale and
privacy-preserving threat information sharing addressed in our work.

Table 2 shows how our work stands apart from the rest of the existing results in the
same context. It proposes combining private-permissioned blockchain technology with the
IPFS to store and share threat information between distributed peers. This combination
assures the anonymity of the stored content while also providing outstanding performance
in network latency, transaction throughput, and central processor unit (CPU) and memory
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use. Along with that, we deploy a decentralised identity management system to assure
distribution identification in a safe, trustworthy, and accessible manner.

Table 2. Comparison of the related literature with our work.

Related Work Type of Blockchain Governance Cost Scalability Privacy Integrity Anonymity

Bawane et al. [24] Ethereum No Yes Yes, IPFS No Yes No

Havelange et al. [25] Public Blockchain No No No No Yes No

Wang et al. [26] Public Blockchain No Yes Yes, Blockchain Yes Yes Proxy Encryption

Politou et al. [27] Private Blockchain No Yes Yes, IPFS Yes Yes Encryption

Preuveneers et al. [28] Distributed Ledger Yes Yes Yes Yes No CP-ABE

Grundstrom et al. [29] Hyperledger Fabric Yes None Yes, IPFS Yes Yes User Identity

Our Work Hyperledger Fabric Yes None Yes, IPFS Yes Yes User Identity + Self-Encrypted

The MITRE ATT&CK framework is an open-source threat intelligence tool that in-
volves a comprehensive knowledge base of cyberattack tactics and techniques gathered
from actual observations of adversary behaviour that has already affected organisations in
the past [30]. The MITRE ATT&CK framework is compatible with the other infrastructure
components that we propose. It uses the STIX language for information sharing to enable or-
ganisations to share threat intelligence with their trusted partners in a manner that enhances
their defensive capabilities, including collaborative threat analysis, automated threat infor-
mation sharing, automated detection and response, and more [31]. The MITRE ATT&CK
threat information format is a JSON file that consists of tactics, techniques, and mitigation
in the form of IDs. It provides a variety of colours and scores that can be used to implicitly,
concisely, clearly, and comparably depict the attackers’ behaviour. The threat match-up
depiction is retrieved in JSON file format and shared with a trusted end-user. The MITRE
ATT&CK navigator serves as the user interface for trusted partners, allowing threat infor-
mation sharing to be examined and contrasted to identify mitigation and effective defence
points. A partner is defined by their node identification in order to download the sharing
file on the local system and then easily upload, evaluate, and compare the threat dataset on
the MITRE ATT&CK navigator.

4. Proposed Solution

This section demonstrates the techniques used in our research, along with the configu-
rations and decision making. We also refer to the implementation details that drove our
tests on the network model.

4.1. Outline

We used the MITRE ATT&CK framework, Hyperledger Fabric, and the Interplanetary
File System for threat analysis and sharing across a trusted infrastructure. This infras-
tructure enables organisations to communicate information with one another quickly and
makes the process more flexible, automated, and secure. Due to the necessity of imple-
menting threat intelligence sharing in our organisations, the criteria listed below reflect
solutions that, ideally, solve challenges and attract stakeholders.

4.1.1. Security and Trust

Private data may leak while traversing the public network when sharing threat infor-
mation. Consequently, utilising a public blockchain system to share sensitive information
is improper, insecure, and untrustworthy, since any participant node may reveal private
information. Thus, the private and permissioned nature of Hyperledger Fabric provides
flexible identities, enforces privacy policies, and implements smart contracts to ensure that
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unauthorised users do not access sensitive data, which are only allowed for those identified
as authorised users [22].

4.1.2. Business Logic

Hyperledger Fabric’s smart contracts, as previously stated, are known as chaincode
and are used to handle business logic [23]. As a result, organisations may perform transac-
tions by executing their business logic in any general-purpose programming language.

4.1.3. Integrity and Accountability

Data need to be protected from unauthorised access, modification, or deletion. Main-
taining data integrity ensures privacy and prevents unauthorised users from altering the
data. In threat information sharing, unauthorised parties should not be allowed to modify,
delete, disclose, or damage threat information. On this basis, using immutable hashed
blocks in a blockchain and decentralised storage can ensure data integrity [22].

4.1.4. Privacy and Confidentiality

Private channels are one approach to achieving privacy and confidentiality in Hyper-
ledger Fabric [22]. They are communication routes that are exclusive to specific subgroups
of network members and may only be used for transactions between those subsets of
network users. Sharing threat information requires data privacy. To comply with the
need-to-know principle, organisations must share threat information with partners. Our
approach allows multiple parties to communicate through channel-based division, sharing
different kinds of threat data while utilising the same infrastructure.

4.1.5. Governance

Governance involves managing technical artefacts and controlling data and smart
contracts inside a blockchain network [32]. Governance models are a vital technical com-
petence. Policies in Hyperledger Fabric define these models. A policy specifies who may
invoke a chaincode or add an MSP (membership service provider) to a channel. They are
adaptable and may be configured as required.

4.1.6. Availability

Organisations may need to quickly share the new threat information with trusted
partners, which could help them respond to any potential similar cyberattacks in a timely
manner. On this basis, it is very important that data and the network are available at the
right time. Hyperledger Fabric is appropriate for ensuring ledger availability due to the
distributed ledger and decentralised nature [22].

4.1.7. Efficient Processing

Hyperledger Fabric provides synchronisation and parallelism by dividing network
responsibilities based on the node type [22]. This feature alone will improve network speed
by threading transactions for quicker processing in a Fabric network. As a result, only a
subset of the network has to know the business logic, which frees up resources for the rest
of the network to use. One does have to make it available to everyone on one’s network if
one does not need it.

4.1.8. Anonymity Consideration

Hyperledger Fabric contains an MSP entity for identity management, which can
provide transaction anonymity by default. Decentralised identities are regarded as more
secure than centralised identities. Additionally, the client’s private key is encrypted and
signed by a trusted third party. This makes the data transactions private and keeps them
from being revealed (identity management). It is also important to note that, as part of
our design, threats (JSON) are encrypted before they are stored in the IPFS. This makes
the data more secure and anonymous. TLS also establishes a secure channel for encrypted
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communication between parties. An authorised user should collect enough endorsements
to submit the transaction for validation [22], which is regulated by the endorsers’ rules,
without releasing or revealing the transaction details.

4.1.9. Modular and Extensible

As previously stated, Hyperledger Fabric has a modular and extensible design that
allows it to adapt to changes while sharing common components with other networks [22].
With a modular design, Fabric will become a blockchain architecture that any industry in
the public or private sector may use.

4.1.10. Latency

In the blockchain, a consensus mechanism is used to add blocks to the chain. Con-
sensus is the mechanism used to verify the new transactions to be added to the chain,
which takes time for agreement and causes transaction delays. To shorten this period,
the consensus negotiation time must be reduced. One can find a takeaway for this issue,
since Hyperledger Fabric has three execution phases; each is separate from another, rather
than using two order–execute patterns, as in a blockchain [22].

4.1.11. Caliper Benchmark Tools

Caliper is an open source software tools that is used to measure the Hyperledger
network performance during transaction execution through several indicators such as send
rate, latency, throughput and more [33]. We can specify the number of parameters against
which the platform will be tested.

4.1.12. Automation

Cyberattacks are often time-sensitive and require excessive automation [28]. Therefore,
data automation must be done quickly, depending on standardised and structured data.
The key aim of exchanging data in a structured way is that machines can easily use
them. The threat intelligence file standard that we used in our solution was in JSON
format. We used this standard when we transferred threat behaviour to tactics, techniques,
and procedures (TTPs) by using the MITRE ATT &CK framework, then encrypted it and
stored threat information in the distributed ledgers of the IPFS. Another feature of our
solution is chaincode, which makes it easier to do important things for one’s business,
as we used node.js.

4.2. System Design

Organisations use threat intelligence approaches to develop their threat-hunting
methodologies, with MITRE ATT&CK serving as a good tool and foundation of their
systems. Threat intelligence methodologies differ from threat-hunting methodologies,
but they can make them more effective and help them achieve their goals more quickly.
The fundamental goal of threat hunters is to reduce the dwell time, which is the time frame
between when the attack happens and when it is detected. Threat information sharing
involves data processing, which starts with bringing the detected behaviours from data
logs, and then classifying and mapping them to MITRE ATT&CK tactics and techniques, as
shown in Figure 2. The MITRE ATT&CK framework contains cumulative comprehensive
knowledge based on previous cyberattack tactics and techniques derived from attackers’
behaviours [34]. MITRE ATT&CK is a well-known threat intelligence tool that is used to
analyse threat events and create helpful information reports. Furthermore, the MITRE
ATT&CK framework can provide threat intelligence data in multiple file formats, such as
JSON, SVG, and Excel [34]. As a result, upgrading the system detectability for emerging
threats and sharing them with a trusted partner might be valuable, particularly for the
organisation itself, as shown in Figure 3. As a result, JSON is used due to its nature as an
open standard, ease of interpretation, and popularity in web technology. Then, the file is
encrypted using self-encryption in the following step. Before storing and saving the threat
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information file in the IPFS, it is divided into chunks and encrypted using AES 256 or any
other sort of encryption technique.

Figure 2. Threat analysis.

Figure 3. New threat information sharing through Hyperledger Fabric.

To utilise the Hyperledger Fabric network, a peer must be a member. Furthermore,
the user’s node must be a registered member and have an identity through the MSP
to be able to use the Fabric network. Figure 3 presents the detailed workflow of the
implemented framework between the trusted users, starting with the threat intelligence
tools for preparing meaningful information about a new or existing threat, file encryption,
off-chain storage in the IPFS, and, finally, sending the threat information by traversing
Hyperledger Fabric’s network infrastructure.

4.2.1. Threat File Encryption

We proposed the use of encryption techniques that apply a sort of data anonymity,
namely, self-encryption. Self-encryption is a type of convergent encryption that includes
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an obfuscation stage. It is a one-of-a-kind encryption method, since it has no independent
keys, unlike other encryption methods, which typically have a separate public key and
private key. It encrypts by using its file as the key. In this study, we proposed the use of the
Maidsafe [35] self-encryption library.

The threat file (JSON file) generated by MITRE ATT&CK is encrypted via self-encryption,
in which the file is divided into many pieces that are encrypted and stored in the IPFS,
as explained in the following steps: First, the file is divided into at least three chunks, with the
number of pieces increasing as the file size grows. Then, using AES 256, each file chunk is
encrypted. Finally, the file chunks are obfuscated by performing an XOR operation between
an encrypted chunk and another chunk’s randomly selected hash value, omitting its hash
value.

4.2.2. Off-Chain Threat Storage

It would be quite costly to keep the threat information sharing events that we would
like to share between the trusted partners on-chain. It is vital to store threat information in
a decentralised and controlled way. Hyperledger Fabric comes with CouchDB, a key-value
database that allows the storage of a large amount of data, but it is still not big enough for
big data, unlike the IPFS.

The IPFS can indeed be integrated with a distributed ledger technology, and it can
also store data in an encrypted format off-chain. Despite all of the features that the IPFS
has, it has privacy concerns. Because the IPFS is open to the public, anyone who joins the
network can access any content saved in the IPFS and retrieve it.

To address the aforementioned problem, we used data anonymity for storage off-
chain in the Interplanetary File System (IPFS). Data are encrypted before uploading to the
IPFS to avoid unauthorised disclosure and prevent information from being transferred
to unauthorised users. The sender can use a smart contract through the instantiate and
invoke functions to share the CID, representing the encrypted content address inside the
IPFS. The intended receiver can invoke the chaincode by using their authorised identity
certificate to get the CID.

4.2.3. Threat File Storage and Retrieval Steps

There are two users engaged in this implementation: A and B. A is a sender who
uploads the file, and B is a receiver who requires the file. They must both be able to use
the IPFS to download or retrieve the file. In our case study, we used a self-encryption
library. Notably, self-encryption is just a choice, but one could use another encryption
technique. The main purpose of encryption is to encrypt the threat information files (JSON)
before they are uploaded to the IPFS to maintain privacy due to the IPFS’s public nature.
In self-encryption, both the file chunks and the data map should be uploaded to the system.

The data are uploaded to the IPFS, as previously stated. As seen in Figure 4, the en-
crypted file is uploaded and a CID to be shared with the trusted partner is obtained.
The CID is then sent to the user who wishes to retrieve the file (User B). User B can access
the data map using this CID, as illustrated in Figure 5. Finally, User B can obtain the JSON
file and then decrypt it.
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Figure 4. Files containing threat intelligence are shown here, along with the IPFS locations from
which their respective CIDs were generated.

Figure 5. This image depicts the retrieval of the threat information using the obtained CID.

4.2.4. Threat Sharing

The proposed infrastructure for threat information sharing has been validated to be
highly secure and trusted while providing a large data scale by using Interplanetary File
System, encryption techniques, and distributed ledger. Hyperledger Fabric is a distributed
ledger, and it represents the proposed ecosystem’s backbone. The steps for developing and
running a Hyperledger Fabric network infrastructure are shown in Figure 3.

The participants’ nodes are linked through Hyperledger Fabric’s channels. Each au-
thenticated user keeps track of their peers through the chaincode and ledger. This consists
of two organisations. Org1 and Org2 are connected through one channel, and each organi-
sation contains two peers, peer 0 and peer 1, as shown in Figure 6. Organisations possibly
include different nodes that are connected through one channel or more. Notably, nodes
could have multiple chaincodes for storing the transaction data in an immutable ledger.
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Figure 6. Simple Hyperledger Fabric network that consist of two organisations.

The client submits the transaction proposal (encrypted JSON file) for endorsement.
The transaction is executed by invoking the chaincode functions. Then, the client transac-
tions are endorsed and verified by nodes; only the endorsed transaction is stored in the
ledger, and the state of the database is updated. By default, the ledger storage is LevelDB
in order to save the ledger’s state, which is available at each peer. In addition, CouchDB is
an alternative option that is more efficient for running heavy queries.

The function of each part of the framework and the implementation flow of the system
is illustrated in Figure 3 and explained as follows:

1. New threat information is brought from data logs and analysed, classified, and
mapped using MITRE ATT&CK. Then, the JSON file is generated. The JSON file is
encrypted using self-encryption.

2. User A uploads the encrypted file (chunks) to the IPFS.
3. User A obtains a CID from the IPFS.
4. User A sends the CID to a trustworthy partner. User A (sender) submits the transaction

with the CID using their own identity. The sender must be registered and validated
using chaincode and endorsement.

5. The trusted partner, User B, must pass the authentication check through the chaincode
before obtaining the CID via their identity.

6. User B will use the CID to look for threat files in the IPFS.
7. User B retrieves the desired threat file from the IPFS using the CID.
8. User B decrypts the file to get the JSON file containing threat information.
9. The trusted partner displays the threats events (JSON file) on the MITRE ATT&CK

navigator.

We propose our framework that integrates Hyperledger Fabric, IPFS, and MITRE
ATT&CK in order to address concerns related to existing and previous threat-sharing
frameworks. In response, the proposed ecosystem can securely share threats in a trusted
way, since we use encryption techniques and Hyperledger Fabric. Furthermore, the com-
bination of Hyperledger Fabric and the IPFS works to scale up the data storage capacity
off-chain. Finally, all of these features make our proposed framework lightweight, and
it can accomplish transactions quickly, since we share the hash key (CID) rather than a
full-sized threat file embedded within the chaincode of a few asset numbers, as shown in
Figure 3.
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5. System Implementation

The execution of our suggested framework includes the design of use cases, as well as
the integration of network infrastructure components. MITRE ATT&CK, the encryption
methods, the IPFS storage system, the Hyperledger Fabric network, and smart contracts
(chaincode) are the five essential components of the prototype. Consequently, the im-
plemented prototype can be deployed in several phases, as defined in the following
subsections.

5.1. Threat Intelligence Production Using MITRE ATT&CK

MITRE ATT&CK, as a vital knowledge base, enables cyber security teams to evaluate
and compare attacker activities and then identify the best protection solutions. MITRE
ATT&CK is used as a navigator in order to map an attacker’s behavioural data after
classifying them to provide valuable information and generate threat intelligence based
on past attackers’ tactics and techniques, as shown in Figures 7–9, with the following
descriptions:

• Tactics: the goals that an attacker is attempting to reach (the column’s title).
• Techniques: the many methods by which cyberattackers can achieve a tactic’s goal

(the details under the column).
• Sub-techniques: information that explains the attacker’s technique in further depth.
• Procedures: A process is the particular manner in which a threat actor performs a

given technique or sub-technique. A single method can be subdivided into several
techniques and sub-techniques.

The overall purpose of employing the MITRE ATT&CK framework is to analyse threats
by converting the attacker’s events from data logs into threat information and then into
intelligence (tactics, techniques). The MITRE ATT&CK navigator then includes mapping,
scoring, and colouring for more straightforward conceptualisation and comprehension. In
addition, the MITRE ATT&CK navigator is used to generate a new layer of the threat sce-
narios, and this layer is downloaded as a JSON file by following the simple aforementioned
conceptualisation. Using the MITRE ATT&CK navigator, one can display and review the
existing layer, which displays the attacker’s tactics and techniques [34]. These tactics and
techniques are included in a JSON file format, which is opened in a layer that shows the
threat information contained in the file, as shown in Figure 7. Furthermore, one can inte-
grate two layers of different threats into one layer to analyse them and find the overlapping
of varying threat tactics and techniques. For example, the colour orange depicts the overlap
between red, yellow, and green. The overlapping layer helps the security analysis team
find the most common and repeated tactics and techniques that are being used by attackers.

5.1.1. How Is MITRE ATT&CK Used in Practice?

Stakeholders: We need to identify whether threat modelling is acceptable for stakehold-
ers’ use cases. We used tactics and techniques from MITRE ATT&CK to map the events in
Figures 8 and 9. A real dataset was used as real evidence, and its resources were collected,
classified, and analysed to transfer unstructured data to structured data. Figure 7, shows
examples of various threat tactics and techniques that were produced after conducting the
data collection and analysis.
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Figure 7. MITRE ATT&CK navigator: The orange colour represents overlapping between multiple
threat layers (red, yellow and green).

Figure 8. Uncovering new patterns and TTPS through PowerShell.
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Figure 9. Uncovering new patterns and TTPS through Sysmon.

5.1.2. System Logs

System logs are the log files in which the system events generated by the components
of the operating system are recorded. Their information might range from configuration
changes, errors, and updates to device changes, service startup, shutdown, and more. In this
context, we will overview a couple of the most prominent monitoring systems at present,
PowerShell and Sysmon, as shown in Figures 8 and 9; they are used to convert unstructured
data into structured data by transferring them to tactics and techniques by using knowledge
based on the MITRE ATT&CK navigator. In order to accomplish automatic and high-
quality threat information sharing, several technologies and protocols have emerged for the
definition and connection of many different kinds of CTI objects that aim to find a unified
language and threat ontology platform. Artificial intelligence (AI) and statistical methods
are used to analyse real-time threat event data and convert them into actionable information
while considering the unified platforms for trusted partners to share their threat information
in an automated and timely manner [28]. MISP is an open-source platform for collecting,
storing, analysing, and sharing malware threat information [36]. It used to be called the
Malware Information Sharing Platform [37]. MITRE CRITs (Collaborative Research Threats)
is a repository for malware and other threats that uses various open-source software tools
to form a beneficial and unified program for threat defence analysts and specialists [38].
On top of that, the MITRE Corporation has created the Structured Threat Information
Expression (STIX) to assist in the standardisation and sharing of threat information [39].
STIX is discussed as a high-level standard protocol for delivering actionable CTI about
threats in the JSON format, making them easy and readable for customers, whether human
or machine [40]. Patterns written in the STIX patterning language are more compact and
easier to read, since it incorporates additional concepts as they are needed. TAXII is an
application-layer protocol for sharing threat information in a simple and scalable manner.
TAXII stands for Trusted Automated Exchange of Indicator Information [31]. However, it
is not compulsory to use an existing terminology. Therefore, dedicated threat data formats
are needed. Integration into current CTI formats will enhance comprehensiveness and
efficacy. Thus, threat information sharing and incident response might be fully automated.



Entropy 2022, 24, 1379 20 of 32

In light of the above, we conclude that the threat information cycle includes data
collection, analysis, and production in order to transform data into information and then
into intelligence to generate meaningful reports and disseminate them. According to the
numbering of the tactics and techniques of the new threats reported on the MITRE ATT&CK
navigator, one can upgrade the current detection system to be able to deal with the new
type of threat. In addition, the system can then export the JSON files that include new
threats in order to share them with a trusted partner, as shown in Figures 2 and 3.

The MITRE ATT&CK framework is used to navigate, evaluate, and contrast attacker tactics,
techniques, and procedures, as well as to identify the appropriate options for mitigation and
countermeasures. Regarding the use-case design, an adversary’s behaviour after being detected
is stored in the data log source, then classified to be mapped on the MITRE ATT&CK navigator.
These processes aim to transform the data into information and then into intelligence.

5.2. Threat Information Sharing through Hyperledger Fabric and Performance Analysis
5.2.1. Environment Setup and Test Configurations

This section includes network performance and functionality tests. First, fabric binaries
are installed by using a command line interface to create a two-organisation network, with
each having two peers that are connected via a private channel. Then, the benchmark
engine interacts with chaincode to deploy, run, analyse, and generate network performance
reports, as shown in Figure 10.

The Hyperledger Fabric network setup has prerequisites, as listed in Table 3. (1) The
Fabric binary package version 2.2.0 was installed on (2) Ubuntu version 20.04. (3) Docker,
version 20.10.7, and (4) Docker Compose, version 1.25.0, were used to generate and operate
the entities in the network. Most notably, Hyperledger Fabric, by default, comes with three
different optional languages: Golang, Java, and JavaScript. We built the chaincode (smart
contracts) using JavaScript (Node.js version 10.19.0).

Table 3. Setup of the Hyperledger Fabric Network.

System & Tools Version

Operating System Ubuntu 20.04

Hyperledger Fabric 2.2.0

Docker 20.10.7

Docker-compose 1.25.0

Node.js 10.19.0



Entropy 2022, 24, 1379 21 of 32

Figure 10. Topology of the benchmark test of Hyperledger Fabric Caliper.

5.2.2. Interaction System Implementation

The implementation extended the asset-transferbasic/chaincode-javascript formula-
tion by using a Solo consensus mechanism in the Ordering Service, which was provided by
Hyperledger Fabric and the test network. This performance tested the smart contract on a
Fabric network by using Caliper. The basic workflow of this whole system is detailed as
follows.

Implementation of Smart Contracts: We used Hyperledger Fabric’s smart contracts as
a proof of concept (chaincode). The Hyperledger Fabric network was selected because
of the features mentioned in the paragraph on the suggested solution. We employed
the JavaScript programming language to deploy smart contracts in Hyperledger Fabric’s
systems. Finally, we tested it by installing it, approving its definition, committing it to the
channel, and invoking the chaincode. By executing the given chaincode, interactions of
trusted partners within the Hyperledger Fabric ledger were feasible. Notably, multiple
smart contracts could be deployed on the user node.

The chaincode is in charge of dealing with various data queries. As a result, the system
implementation began by defining certain chaincode operations, such as querying and
retrieving the data lineage. To solve the constraint of threat information sharing in terms
of communication speed, storage, and processor power, it was necessary to use the hash
key that identified the content address in the IPFS in the implementation of a lightweight
chaincode for endorsing peers. The chaincode allowed the trusted partner to get the CID by
using their identity to retrieve threat files from the IPFS. In other words, threat information
in the IPFS is only accessible to people who have been given permission to use it, since the
chaincode can only give out the hash key after a user has been verified. The chaincode is
intended to facilitate various data and traceability processes inside the ledger and storage
attached to the chain. The proposed system’s chaincode-specific operations include storing
data on an item’s world state, querying item checksums, retrieving an object with the
relevant transaction ID, extracting the version of an object based on its transaction ID,
retrieving the lineage of the data item, retrieving the history of a data object, querying the
key range of the list of items (AssetsID), retrieving the threat information, and providing
a specific version of an object. Assets represent the variable value of items that may be
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exchanged on blockchain platforms during transaction execution. The batch size of assets
included in the chaincode requested by the others could affect the transaction latency.
The key concern is to make the chaincode lightweight so that that the limitation of the
file size in threat information sharing can be addressed. Accordingly, we share the hash
key and allocate a significant portion of the functionalities to the client applications, such
as the Organisation, Owner ID, UserID, CID, Comment, and Colour. The implemented
system is made up of distributed peer nodes that serve as the hub for communication
among the network parts. The suggested model’s performance was tested in terms of
system throughput, send rate, latency, and resource usage (memory, CPU, and network).
The scope of the investigation was expanded to examine the latency and scalability of
different transaction loads, transaction durations, TPS, and asset batch sizes.

The benchmark involved evaluating ’getAssetsFrom- Batch’ gateway transactions for
a fixed-asset smart contract; the endorsement policy was established as a 1-of-any policy,
and the network was implemented within the LevelDB and CouchDB state databases.
Fabric supports two alternatives for key-value storage; CouchDB and LevelDB were used
to maintain the current state. Both are key-value stores; while LevelDB is an embedded
database, CouchDB uses a client–server model (accessed using REST API over a secure
HTTP) and supports a document/JSON data model. Each transaction obtains a collection of
assets from the world state database, which is comprised of a random selection of available
UUIDs (universal unique identifiers).

The measurements were carried out with a command-line interface (CLI) by con-
figuring the Caliper benchmarking tool and using the benchmark workspace, network
module, and workload to monitor the system’s performance. The test was carried out by
simulating a transaction load of 100–2500 through Org1 (“User A”) and Org2 (“User B”),
as described in Figure 3. The edge server saved the identities of all connected nodes and
authenticated them inside a trustworthy Hyperledger Fabric environment by applying
the mutual authentication mechanism described in the Section “II. E. 1”. The suggested
model’s performance was evaluated for a variety of workloads and environmental condi-
tions. Furthermore, a diverse set of interaction performances were observed to investigate
the improvement or deterioration induced by different model parameters and setups.
The benchmarking operations were carried out by using Caliper benchmarking tools that
were set to be executed on client nodes, as shown in Figure 10. Because different techniques
differ in terms of associated factors and phases, stakeholders frequently need to determine
which benchmarking model is appropriate for their applications and specific use cases. We
evaluated Hyperledger Fabric V2.2.0 for benchmarking; real-time data reporting and re-
source consumption statistics were gathered and monitored. The following steps provide
examples of various functions through the configuration of the Hyperledger infrastructure
and network performance benchmarking.

• Bring up the test network and create the channel.
• Package and install the smart contract.
• Approve a chaincode definition.
• Commit the chaincode definition to the channel.
• Invoke the chaincode, as shown in Figure 11.
• Run the Caliper benchmark and get the network performance report by monitoring

network latency, send rate, and throughput, as shown in Figure 12.
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Figure 11. Chaincode invocation with majority endorsement peers.

Figure 12. Running the Caliper benchmark and getting the network performance report.

6. Evaluation

Our paper’s focus is on building a reliable ecosystem for disseminating threat infor-
mation via the use of a permissioned ledger’s data-sharing infrastructure. We tested for
aspects such as latency, scalability, security, and anonymity.

As the key performance metrics for Fabric, we investigated throughput and latency.
The pace at which transactions are committed to the ledger is referred to as the throughput.
Latency is defined as the time spent between an application submitting the transaction
proposal and the transaction commit, and it is comprised of the following latencies [41]:

• Endorsement latency—the time it took the client to gather all proposal submissions
and endorsements.

• Broadcast latency—the period between a client placing an order and the orderer
acknowledging it.

• Commit latency—the amount of time it took the peer to verify and commit the transac-
tion.

• Ordering latency—the time spent at the ordering service. This delay is not shown,
since the ordering service is not examined in this paper. We also specify three latency
blocks:
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• Validation system chaincode (VSCC): The validation latency at the VSCC is the time it
takes to verify all transactions’ signatures against the policy.

• Multi-version concurrency control (MVCC): The validation latency at this stage is the
amount of time required to validate all transactions in a block using multi-version
concurrency control.

• Ledger update latency: The latency during the ledger update is the time it takes to
update the world state database and create a write-set of all valid transactions in
a block.
Observation 1: Figures 13 and 14 show the analysis of the performance and readings
of the Hyperledger Fabric network during transaction executions, as illustrated in
Tables 4 and 5. The send rate was greater than the throughput, and this was a fact.
Furthermore, the maximum latency was greater than the average latency, which was a
fact too. As shown Figures 15–17, when using the LevelDB, throughput (throughput
= send rate – packet loss rate) was greater than when using the CouchDB database.
This means that the throughput in the LevelDB was better than that in the CouchDB.
In contrast, the CouchDB’s latency of reading and writing queries (key value) was
better than that of LevelDB.
Observation 2:
We can see from Figures 18 and 19 that when we conducted less than 1500 transac-
tions, the latency was better with CouchDB than with LevelDB. However, when we
conducted more than 1500 transactions, CouchDB’s latency started to rise sharply and
was greater than that of LevelDB.
Observation 3: We observed from Figure 20 and the resultant Table 6 that, with the
increase in the TPS range, the throughput increased linearly, as expected, until it
flattened out at a range of 175 to 250 TPS. The saturation point was 175. The latency
increased slightly when the arrival rate was close to or above the saturation point,
where it flattened. One can conclude that the number of ordered transactions in
the validation system chaincode (VSCC) queue increased quickly during validation,
and the commit latency increased. This was due to the fact that the execution phase
was independent from the validation phase. In other words, since the VSCC only
employed a single virtual central processor unit (vCPU), new transaction proposals
relied on additional vCPUs at the peer for simulation and validation. As a conse-
quence, the validation process was the only one that became a bottleneck. We can
summarise several positive, valuable points from our experiments through our three
observations, which could help us find answers to the questions being raised, such as
that of the transaction load that would lead to the bottleneck issue at the validation
phase. Undoubtedly, the answer will help software developers work on this issue
and understand the best parameters, databases, processors, memory, and consensus
algorithm types to determine the best practices and provide better performance for
our network regarding the send rate, latency, and throughput.

Table 4. Transaction load using the LevelDB state.

Transaction
Load

Send
Rate
(TPS)

Max
Latency
(s)

Min
Latency
(s)

Avg
Latency
(s)

Throughput
(TPS)

100 78.4 1.16 0.01 0.44 78.4
500 98.6 4.59 0.02 1.87 98.5
1000 91.5 9.30 0.01 4.75 91.4
1500 86.6 13.87 0.01 7.88 86.0
2000 137.8 18.52 0.03 10.93 109.3
2500 112.9 22.28 0.03 11.81 106.0
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Table 5. Transaction load using the CouchDB state.

Transaction
Load

Send
Rate
(TPS)

Max
Latency
(s)

Min
Latency
(s)

Avg
Latency
(s)

Throughput
(TPS)

100 78.2 1.29 0.01 0.44 78.2
500 84.8 4.22 0.01 2.17 84.7
1000 91.0 9.07 0.01 4.78 90.9
1500 93.7 13.23 0.01 7.50 93.7
2000 102.9 18.50 0.05 9.70 98.7
2500 102.7 23.20 0.03 13.02 101.6

Table 6. Performance analysis using the LevelDB database for a fixed TPS rate of the transaction load
and 10 assets with a range (txDuration) from 25 to 250.

Transaction
Duration

Send
Rate

Max
Latency

Min
Latency

Avg
Latency Throughput

25 106.3 13.96 0.02 7.04 93.3
50 96.4 14.96 0.01 7.83 96.3
75 95.1 13.26 0.03 6.60 95.1

100 97.4 13.16 0.02 6.26 97.4
125 92.5 13.63 0.02 6.44 92.5
150 89.8 13.39 0.01 6.39 89.8
175 103.5 12.80 0.02 5.51 103.5
200 103.7 14.66 0.03 5.62 103.7
225 103.0 14.78 0.01 5.46 103.0
250 104.4 12.22 0.02 5.34 104.4

Figure 13. Transaction load using the LevelDB state.
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Figure 14. Transaction load using the CouchDB state.

Figure 15. Transaction load creation throughput using the CouchDB and LevelDB databases.
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Figure 16. Transaction load creation send rate using the CouchDB and LevelDB databases.

Figure 17. Transaction load creation send rate using the CouchDB and LevelDB databases.
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Figure 18. Transaction load creation average latency using the CouchDB and LevelDB databases.

Figure 19. Transaction load creation average latency using CouchDB and LevelDB databases.
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Figure 20. Performance analysis using the LevelDB database for a fixed TPS rate of the transaction
load and 10 assets with a range of TPS from 25 to 250.

6.1. Security and Availability Considerations

Our proposed design is a distributed network that is resistant to DoS attacks, since
there is no central server. Instead, data are equally distributed among all nodes. Further-
more, Hyperledger Fabric offers transaction encryption and chaincode, which control the
interactions between trusted users while providing transaction authentication and data
secrecy. Every user must pass an identity verification process; otherwise, their transaction
will be denied. Furthermore, as part of Hyperledger Fabric, which provides certificate
authority and identity management, we employ the MSP entity, which is one of the core
components that provides system authentication. This entity offers unique identities for
all nodes and channels, allowing transactions between interacting users to remain private
and confidential while traversing the network. The system is secured against unauthorised
users by default. The human factor might be a possible risk in our suggested system, since
users’ credentials could be intentionally or unintentionally hacked.

Accordingly, the certificate authority is the third party that establishes a trusting
relationship between the interacting parties by its signature being used as evidence of
identity. If one of the parties in a transaction is compromised, that party might ask the
certificate authority to revoke all of their previous transactions. As a result, an attacker
attempting to access Hyperledger Fabric via reading or writing queries will be exposed,
since it needs system IDs. The only way is to breach the identity of an authorised user.
Another possible issue is that adversaries may target blockchain ledgers, since they are
distributed across participating nodes, preventing normal users from accessing them.

6.2. Anonymity Considerations

Because it contains the MSP entity, which is in charge of identity management, Hyper-
ledger Fabric provides transaction anonymity by default. Furthermore, this component
is pluggable, which means that each organisation can establish its own MSP. Transaction
data anonymity is derived from transaction data encryption, which is performed with
the client’s private key and signed by a trusted third party (identity management) and
the transport-layer security cryptographic protocol (TLS), which is used to encrypt com-
munication between interacting participants. An authorised user will be recognised in
the chaincode and will need to collect enough endorsements to be qualified to send the
transaction for validation, which is regulated by the endorsers’ rules, without releasing or
revealing the transaction details.
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The authors of [42] suggested an anonymous endorsement system with a threshold
endorsement policy in their work. Several considerations led to the development of a
novel ring signature scheme known as Fabric’ Constant-Sized Linkable Ring Signature
(FCsLRS) with transaction-oriented linkability for concealing the identities of the endorsers.
Furthermore, by altering the RSA (Rivest–Shamir–Adleman) modulus size, this study
built the signature technique in Golang and examined its security and performance. An
empirical study backs up the viability of the implementation. The production of signatures
and tags is relatively quick. Furthermore, a given RSA modulus value remains constant
regardless of the message length or endorsement set size, provided that all endorsers create
their signatures in tandem.

6.3. Latency, Scalability, and Throughput

The latency of reading and writing queries in Hyperledger Fabric is similar to that in
traditional centralised systems, such as standard databases (PostgreSQL), rather than in
public blockchain systems, such as Bitcoin. It is important to note, however, that our chosen
architecture outperforms standard local databases in terms of efficiency as transaction
volumes increase [3].

Hyperledger Fabric leverages Docker containers as blockchain nodes, making it readily
scalable to cloud infrastructures, such as Kubernetes clusters. This significantly increases
the stated use cases by combining several peers and organisations to build complicated
situations. Furthermore, the actual records can be replicated through IPFS nodes in our
suggested ecosystem, extending the situation even further.

The ordering service determines our system’s transaction throughput and is limited
by the network and ordering node capacity. However, the transaction throughput may be
enhanced by simply increasing the number of ordering nodes. RAFT and KAFKA ordering
clusters are two examples of the addition of extra nodes [22].

7. Conclusions and Future Work

Threat hunting is primarily a proactive countermeasure to identify and safeguard IT
systems from hostile behaviour by monitoring emerging and existing threats. As a result,
a reliable and secure infrastructure for sharing threat information is required. The use of
data logs created by systems, network devices, or security applications, such as intrusion
detection/prevention systems, can assist in achieving this aim by deploying trusted com-
puting technologies for adversary detection and privacy protection. Our study presented a
trusted threat information sharing solution that uses the IPFS system and a permissioned
ledger to maintain the security, privacy, and anonymity of stored data while achieving
a fast throughput and huge scalability. Hyperledger Fabric is the permitted distributed
ledger technology of our choice, since it satisfies all of the standards mentioned above and
achieves the goals of our work. When a set of defined conditions are met, our proposed
infrastructure effectively implements threat information sharing by utilising the MITRE
ATT&CK framework, pluggable certificate authorities, and self-executing chaincode, en-
abling trust between the interacting trusted parties and enhancing the overall security
of the system. As a result, our ecosystem assures that the stored information remains
anonymous. The Hyperledger Fabric technology has security flaws. These limits might be
overcome. Future research may incorporate malicious nodes that would affect our model.
Solo may not be secure enough for production usage. In the near future, we plan to develop
a comprehensive proof-of-concept in a cloud architecture utilising a Kubernetes cluster to
increase the system’s throughput and scalability. We will also increase the system workload
by expanding the number of participating nodes and the number of transactions.
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