
Vol.:(0123456789)

Journal of Network and Systems Management (2023) 31:52
https://doi.org/10.1007/s10922-023-09744-1

1 3

RESEARCH

4MIDable: Flexible Network Offloading For Security VNFs

Benjamin Lewis1 · Matthew Broadbent2 · Charalampos Rotsos1 · Nicholas Race1

Received: 8 July 2022 / Accepted: 22 May 2023
© The Author(s) 2023

Abstract
The ever-growing volume of network traffic and widening adoption of Internet pro-
tocols to underpin common communication processes augments the importance of
network security. In order to enforce network security policies, network managers
adopt a widening set of middleboxes and network appliances to improve traffic mon-
itoring and processing capabilities. The resource requirements to support network
security appliances are constantly increasing, making efficiency of these systems an
essential aspect. The move toward Software-Defined Networking and programmable
data planes offers a mean to offload traffic processing functionalities to within the
network itself. To this end, we present the 4MIDable framework: a platform that
facilitates the integration of existing middleboxes and monitoring appliances with an
SDN (P4) network infrastructure. We also present P4Protect, a 4MIDable agent that
protects the network from control plane DoS attacks with negligible impact on con-
trol plane latency, and P4ID (P4-Enhanced Intrusion Detection), a 4MIDable agent
that offers stateful processing and feedback to unmodified Intrusion Detection Sys-
tem middleboxes and reduces traffic processing by over 80% without affecting threat
detection rates.

Keywords  P4 · VNF · IDS · SDN

 *	 Benjamin Lewis
	 b.lewis@lancaster.ac.uk

	 Matthew Broadbent
	 m.broadbent@napier.ac.uk

	 Charalampos Rotsos
	 c.rotsos@lancaster.ac.uk

	 Nicholas Race
	 n.race@lancaster.ac.uk

1	 School of Computing and Communications, Lancaster University, Infolab 21, Bailrigg,
Lancaster LA1 4WA, United Kingdom

2	 School of Computing, Edinburgh Napier University, 10 Colinton Road, Edinburgh EH10 5DT,
Scotland

http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-023-09744-1&domain=pdf

	 Journal of Network and Systems Management (2023) 31:52

1 3

 52   Page 2 of 23

1  Introduction

The expanding adoption of network technologies in a widening set of everyday
use cases have increased the need for network resilience. Middlebox devices have
emerged as the de facto solution to improve security and network visibility. They
typically process protocol header information across network layers and in non-
standardized ways, allowing operators to monitor application level statistics, detect
malicious activity and apply access control. Security is a key application domain for
middlebox applications, allowing network administrator to drop access and monitor-
ing enforcement points that is compatible with the existing network configuration.

Traditionally, middleboxes rely on hardware acceleration to ensure support for
line-rate traffic processing, and thus incur a significant CAPEX. Unfortunately,
the increasing size of network infrastructures makes hardware middlebox deploy-
ment economically unsustainable. Advancements in virtualization technologies
have enabled the wider adoption of Virtual Network Functions (VNFs) as a finan-
cially efficient alternative to middleboxes.

VNF appliances provide a great benefit with respect to flexibility and elasticity
over hardware-accelerated middleboxes, but software still cannot match the pro-
cessing speeds of hardware. To bridge this performance gap, the research com-
munity have explored the applicability of Software-Defined Networking (SDN)
mechanisms as a means to offload processing in the network fabric.

OpenFlow [25] was one of the first attempts to design an SDN mechanism for
legacy forwarding devices. Although the research community and even vendors
adopted the protocol, its design aimed primarily to match the existing capabili-
ties of network ASICs and the control abstraction supports limited flexibility and
scalability. This design can reveal limitations when trying to implement security
applications in the data plane, notably in terms of packet-parsing and stateful pro-
cessing without controller intervention.

More recently, focus in the SDN community shifted towards enabling program-
mable data planes, not least in the wake of research into programmable switch chips
that have performance equal to or greater than fixed function data planes [4]. P4 [5],
proposes a Domain-Specific Language (DSL) specification that emerged from these
efforts. The language revisits the design of the SDN abstraction, in an effort to allow
functional requirements of the control plane to be mapped in the data plane. Using
an open-source, high-level language significantly reduces the barrier to entry for
defining network behavior. P4 has since evolved, with support from a number of
hardware [18] and software [29] platforms. The P4Runtime [32] has also been intro-
duced, providing an alternative to the OpenFlow protocol for programming flexible
behavior. Several research efforts [39, 42] have developed new middlebox Domain-
Specific Languages (DSLs) that allow offloading onto a P4 data plane. Nonetheless,
such frameworks limit opportunities to retrofit existing middlebox appliances, while
the design of such DSLs have a strong packet-oriented philosophy that does not
allow an easy fit for complex security applications, like stateful IDS [12].

1 3

Journal of Network and Systems Management (2023) 31:52 	 Page 3 of 23  52

However, security appliances have a varying set of requirements spanning from
simple control of forwarding decision, all the way, to application-layer protocol pro-
cessing. For example, IDS have often focused on a middlebox architecture, sited at
network boundaries between Local and Wide Area Networks. With SDN, the transi-
tions between networks may not be as clearly defined. Appropriate placement of net-
work monitoring functions requires an understanding of physical and logical topol-
ogies, which are abstract concepts in SDN. Further to this, traditional appliances
have finite capacity [14] for traffic processing. Larger, more diverse networks need a
means to route traffic to the appropriate middlebox.

This work proposes 4MIDable; a control framework allowing existing security
middleboxes, appliances and host-based applications to offload traffic processing
and filtering to programmable control and data planes. This is achieved through
the implementation of a translation layer and associated interfaces between the
middleboxes and the SDN switch interfaces. This serves to give the controller
visibility of a wider context and understanding of the network behavior, through
the detection and mitigation of network threats. Our approach is designed around
P4-programmable data planes and enables their capability to be exposed and cus-
tomized to suit individual applications. We evaluate the framework in the context
of two applications built using the framework: P4Protect, a DoS control plane
protection appliance, and P4ID, a system that allows an off-the-self Suricata [38]
instance to offload pre-filtering traffic processing in the data plane. Our evalua-
tion utilizes both hardware and software switches and demonstrates that the plat-
form has a minimal overhead on control plane latency and reduces up to 32% on
average the CPU utilization of an IDS appliance in a common network deploy-
ment scenario. The contributions of this paper are the following:

•	 We define a minimal architecture and an API for traffic monitoring, filtering
and processing, designed to support offloading for security VNFs.

•	 We present the integration of popular applications—including DDoS attack
detectors and the Suricata IDS—with the 4MIDable framework.

•	 We demonstrate that 4MIDable can minimize service degradation for the con-
trol plane during a DDoS attack, and has the ability to reduce the CPU and
traffic volumes required by a Suricata instance, while maintaining high detec-
tion rates.

For the rest of this paper, we elaborate on related efforts (Sect. 2) and present
the design of our 4MIDable system(Sect. 3) and a series of integration scenarios
with popular applications (Sect. 4). Finally, we evaluate the scalability and preci-
sion of our platform (Sect. 5) and conclude our work (Sect. 6).

	 Journal of Network and Systems Management (2023) 31:52

1 3

 52   Page 4 of 23

2 � Related Work

The 4MIDable framework facilitates the offloading of traffic-manipulation opera-
tions to programmable data planes, primarily targeting network security applica-
tions. In this section, we will explore existing work covering these two aspects.

2.1 � Data Plane Offloading

Offloading network processing to programmable network dataplanes and the devel-
opment of application-oriented network control APIs was a key research topic in
the early days of SDN technologies. Relevant attempts extended the functionality of
network applications in the fields of routing [27] intrusion detection [41] and policy
enforcement [22]. Unfortunately, the fixed design of the OpenFlow protocol offered
limited opportunities to scale functionality for real network workloads.

The development of P4 compilers for ASIC-based network devices has rejuve-
nated research efforts to design traffic-processing offloading mechanisms for middle-
boxes. OpenFunction [39] is one of the first attempts to develop middlebox systems
using a DSL, and provides a compiler supporting a wide range of backend plat-
forms, including P4 and DPDK. Gallium [42] is an llvm backend which allows users
to compile Click programs and offload performance-critical code parts into P4 pro-
grams. Relevant efforts aim to develop a holistic framework for middlebox develop-
ment and expects that middlebox functionality should be implemented from scratch,
using the respective DSL language. Our approach remains complementary to these
efforts, aiming to develop an offloading architecture supporting compatibility with
unmodified network appliances by-design.

2.2 � Network Security and SDN

Network programmability has enabled unprecedented opportunities for network
security applications to monitor, filter, and process traffic at line rate. OpenFlow-
enabled switches allowed a wide range of security middleboxes—like firewalls
and address obfuscation—to apply security policies in the data plane with minimal
effort. Nonetheless, security applications that depend on deep packet inspection and
state require the design of hybrid architectures that couple network fabric with soft-
ware processing.

A good example of a complex security middlebox that has motivated the devel-
opment of novel control architecture is the IDS, which inspects packets down to
the application layer, using Deep Packet Inspection (DPI). DPI is not a capability
intrinsically present within any current version of the OpenFlow specification, as it
is focused on packet headers rather than payloads.

CIPA [7], is one of the first attempts to develop a distributed IDS using SDN
technologies. The platform uses OpenFlow rules to apply forwarding decisions

1 3

Journal of Network and Systems Management (2023) 31:52 	 Page 5 of 23  52

regarding malicious traffic in the data plane, and intrusion detection is underpinned
by a distributed neural network implemented in the control plane.

SnortFlow [41] proposes a means to integrate Snort-based intrusion detection
into a cloud environment by running it as part of the hypervisor, using OpenFlow
to provide network re-configurability; though, when their system is under high load,
the detection agent (Snort) will start dropping packets. Whilst our approach also
uses an IDS, the choice of IDS is flexible, and does not need to run as part of the
hypervisor, and can run on bare-metal switches.

TENNISON [12] implements a more pragmatic approach to IDS, using multi-
stage monitoring that filters only traffic determined to be of interest to the net-
work administrator to a software IDS in order to apply DPI processing. However,
unlike our approach, TENNISON relies heavily on the control plane to deter-
mine which traffic should be forwarded to the IDS, due to OpenFlow constraints,
whereas 4MIDable relies on the data plane as much as possible.

The HEX Switch [33] introduces an OpenFlow switch architecture, allowing
users to develop protocol extensions—including IDS features—as part of the for-
warding logic. However, this requires specific hardware platforms and support the
additional OpenFlow security actions.

Emerging technologies, such as P4, have overcome packet inspection limita-
tions with the introduction of further programmability with significantly richer
capabilities [18] [17] [16]. Achieving DPI with P4 remains challenging, as the
focus of the language is on fixed-length bit-fields. While the language [13] does
support variable-length header fields, the support of hardware devices, especially
ASICs to match based on these fields, is limited. Ndonda et al. [28] describe
intrusion detection for Industrial Control Systems with white- or blacklisting
functionality for a specific protocol using P4. However, the work relies heavily
on the control plane for flow processing. By contrast, in our approach, the only
control-plane based processing is to install rules into switches once the IDS has
made a detection. This will then continue to forward malicious traffic to the IDS
or block it.

Gray et al. [14] use P4 switches to extract features for ML processing, achiev-
ing traffic support up to 100Gbps and improving detection rates in comparison to
a Suricata instance. In contrast to our work, where we focus on the existing IDS to
perform the detection role, rather than using P4 to extract metadata features. They
then compare their results to the performance of Suricata, whereas we focus on the
integration of existing appliances.

Dao et al. [9] implement a neural network model into the P4 dataplane, using a
BMV2-based switch. The authors use this model to explore the impact of different
model parameters on applying classifications on incoming traffic.

P4DDPI [1] proposes a Intrusion Detection System for P4 to detect malicious
domain names in DNS requests, and the authors show that it is capable of achieving
line-rate on the Tofino platform. To achieve the full parsing of DNS headers, the
authors rely on a process of recirculation, which can incur performance penalties.

P4-ONIDS [37] explores a similar approach with respect to IDS offloading as
4MIDable. The system allows installation of IDS rules into the data plane, by devel-
oping a compiler for IDS rulesets into 5-tuple matches, as well as, filtering the first

	 Journal of Network and Systems Management (2023) 31:52

1 3

 52   Page 6 of 23

N packets for each flow. The system uses a count-min sketch algorithm, for efficient
lookup memory use, though which incurs slow reconfiguration times.

P4-ONIDS shares the closest similarity with our work, however, they rely partly
on a process of compiling existing Snort rules into 5-tuple rules to be installed into
switches. However, the majority of traffic uses well-known ports, so the rule-based
approach can be overly selective. The authors acknowledge this, and propose their
count-min sketch based approach. Their approach uses less memory than P4ID, but,
is not demonstrated in hardware switches. Ours is evaluated both on the software-
based BMV2 and hardware Tofino platforms. In our approach, we also use the
detection output of the IDS to steer ongoing forwarding decisions.

Table 1 compares a number of the discussed frameworks, and categorises them
based on platform, whether they are designed to be extensible, whether they can
accept feedback from existing security appliances, whether they are open source,
and whether they can operate independently of the control plane.

3 � 4MIDable Framework

The 4MIDable architecture is depicted in Fig. 1, and consists of three layers: the
Data Plane Layer, consisting of the P4 network fabric programmed using the
4MIDable P4 pipeline; the Control Plane Layer, which translates the middle-
box offloading requirement into effective network configurations; and the Appli-
cation Layer, consisting of the middlebox appliances and the adaptation agents.
The 4MIDable framework is implemented in Golang [10]. This offers a number of
benefits for parallel processing and flexibility for the creation and instantiation of
monitoring plugins.

Through the next sections, we will describe each layer of the framework in depth,
using one of our existing plugins to demonstrate how each component of the system
is used.

Table 1   Framework comparison

System name Platform Extensible Appliance
feedback

Open source Control-plane
independence

4MIDable P4 (BMV2/ Tofino) Yes Yes Yes Yes
P4-ONIDS P4 (BMV2) No No No Yes
P4DDPI P4 (Tofino) No No No Yes
CIPA OpenFlow No No No No
SnortFlow OpenFlow No Yes No No
TENNISON OpenFlow Yes Yes Yes No
Gray et al P4 No No No No
Ndonda et al P4 No Yes No No

1 3

Journal of Network and Systems Management (2023) 31:52 	 Page 7 of 23  52

3.1 � Data Plane Layer

One of the key benefits of the P4 language is the ability to push application require-
ments into the switch pipeline organization. 4MIDable exploits this functionality by
designing a reference P4 pipeline supporting generic packet processing (akin to the
approach taken by OpenFlow), and compatible with with the P4 driver of the ONOS
controller. The pipeline supports by design extensions on several points in the pipe-
line that allows individual middlebox appliances to embed custom traffic-processing
operations.

The reference 4MIDable P4 application implements a set of core parsing, lookup
and forwarding functionalities, that allow compatibility with commodity SDN control-
lers. These core functionalities, outlined in Fig. 2, are exposed by providing the SDN
controller the P4Info information associated with the unmodified reference pipeline.
This allows the controller to be compatible with any pipelines that are a superset of
the functionality offered in the reference pipeline. To this end, we have based our pipe-
line on that as used with an off-the-shelf SDN controller, ONOS [31]. By ensuring that
our reference pipeline is compatible with ONOS, we can take advantage of an existing
SDN controller for forwarding and routing.

Control Layer

Monitoring
Agent

Monitoring
Agent

Agent API

Data-Plane API (P4Runtime)

SDN
Controller

API

Control
Plane

Security
Appliance

Middle-box

SDN
Controller

Data Plane

Host-
based
Agent

Detection
Stage

Filtering
Stage

Forwarding
Stage

Interface Legend

Native Interface
gRPC

Local plugin interface
P4Runtime

Application
Layer

Fig. 1   4MIDable framework architecture

Protocol Detection
Tag Protocol

Filtering Stage
Accept/Block

Redirection Stage
Redirect via Security

Applications

Forwarding Stage
Normal Forwarding

Fig. 2   4MIDable reference pipeline architecture

	 Journal of Network and Systems Management (2023) 31:52

1 3

 52   Page 8 of 23

To enable this integration, we use P4 annotations to ensure that identifiers for tables
and actions remain consistent across compiler runs. Using these identifiers enables the
programmer to insert the required functionality at the right stage in their application.

The reference pipeline consists of four stages. The parsing stage extracts headers
fields for common protocols: including Ethernet, IPv4, IPv6, TCP and UDP. Following
this, the detection stage allows the expression of custom stateful monitoring and pro-
cessing functionality, with the use of meters, registers and counters. Applications can
attach actions to packets at this stage to drop or re-direct traffic, which will be applied
at the forwarding and redirection stages. The filtering and redirection stage is designed
to apply encapsulation, mirroring, redirection or drop traffic actions, assigned in the
previous stage. This stage provides a set of fixed packet actions, designed to support
basic traffic-manipulation actions for security middleboxes. The forwarding stage is
inspired by the ‘basic’ ONOS [3] pipeline, and can be used by middleboxes to inject
custom traffic-manipulation logic in the P4 pipeline; for example, adding traffic thresh-
olds using registers or meters. Using this as a reference point offers us information on
the minimum capability required for operation with the SDN controller. This can be
extended further to suit network administrator requirements.

When adding functionality to the reference pipeline, programmers and network
administrators are afforded the flexibility to determine how resources on the network
should be allocated between different resources and stages. In the reference pipeline,
we have described the stages at which programmers would be likely to be adding
this functionality, primarily in the detection and filtering stages. Administrators can
also optionally inhibit other stages of the pipeline from executing for a given packet,
if certain criteria have been met. This however would reduce the SDN controller’s
visibility of particular traffic flows, which may impact upon traffic-management
schemes that are in use on the wider network.

3.2 � Control Layer

1 3

Journal of Network and Systems Management (2023) 31:52 	 Page 9 of 23  52

The Control Layer virtualizes access to the P4 pipeline across multiple middlebox
appliances. The controller connects to all network switches, using the P4Runtime
API and exposes a single Northbound gRPC interface. This single interface encap-
sulates native P4 messages with additional metadata, notably plugin identifiers so
that data can be passed to the appropriate monitoring plugin.

The Control Layer uses an internal state database to store its configuration, allow-
ing the controller to gracefully restart and reconfigure. These configurations include
running plugins installed flow rules, managed switches and their current pipeline
configuration. This state database can also be shared between instances for horizon-
tal scaling.

The SDN Controller Interface is a mechanism to allow 4MIDable developers
to integrate control applications available in modern SDN controller distributions.
It provides a means of integrating 4MIDable pipelines with forwarding behaviour
managed by a commodity SDN controller. With this, we abstract the monitoring and
pipeline management away from the SDN controller, instead presenting a pipeline
equivalent to that described by our reference pipeline.

With the reference pipeline being based on, and compatible with, the ONOS
’basic’ pipeline, this affords us compatibility with any ONOS application with sup-
port for the ’basic’ pipeline. This lowers the barrier of entry for implementing P4ID
in networks already using an SDN controller, while also greatly increasing the capa-
bility of networks using a combination of 4MIDable and ONOS.

To provide this interface, we implement a P4Runtime server, which is the same
interface as used to communicate between a controller and P4 switches. 4MIDable
emulates interfaces for each switch, allowing the controller to discover and manage
network topology. When table entries are sent from the SDN controller, these are
passed to the control plane to be installed into the appropriate section of the running
pipeline. Statistics collection and events are handled in a very similar manner: the
SDN controller will receive the appropriate P4 entities after they have been pro-
cessed by our control layer. This processing is only to ensure that any identifiers or
data are consistent with the reference pipeline. Note that the SDN controller has an

	 Journal of Network and Systems Management (2023) 31:52

1 3

 52   Page 10 of 23

abstracted view of the underlying pipeline, and can only interact with it as though it
is the reference pipeline. This means that the SDN controller does not have access to
any plugin-specific stages, tables, or other entities, so any changes to these will not
impact upon the SDN controller itself, maximising compatibility.

3.3 � Application Layer

A key goal for 4MIDable is to support both unmodified middlebox appliances and
to offer a offloading API that can be invoked by remote middleboxes. For the lat-
ter, 4MIDable offers a rich gRPC northbound API, that allows applications to inject
forwarding decisions in the data plane (e.g. block traffic from a subnet), monitor and
filter traffic (e.g. redirect traffic for port 80 to a middlebox) and process traffic (e.g.
masquerade honeypot traffic). As the API is implemented using Google protobuf, it
is compatible with all major programming languages and integration success essen-
tially depends on source-code modification.

The offloading API provides low-level access to P4 events. These are messages
including Packet-Ins, Digests, Counter and Meter updates: mechanisms essential
to gain precise traffic monitoring information. Access to such APIs is exposed via
interface classes and an application can gain access by registering a handler via
the NBI. Messages are sent to handlers in a sequential way and handler ordering
is achieved during registration using priorities. Listing 2 presents the structure of
handler interfaces, while P4Runtime messages sent to the handler are coupled with
a metadata struct—shown in Listing 1—containing switch information and flags to
control further message processing by other handlers.

Nonetheless, for some appliances, code changes are not possible, either due to
the complexity of the programming model or due to binary formats. In order to sup-
port such systems, 4MIDable uses middlebox agents to link middleboxes with the
framework. Agents are middlebox-oriented and serve two main purposes: to trans-
late middlebox configurations into a set of static offloading configurations during
boot, and to dynamically change offloading configurations based on the middlebox
logging information during run-time. This on-the-fly processing allows plugins to
harness middlebox detections and respond to changes in network conditions. Moni-
toring plugins use the Monitoring API to communicate with the rest of the system.

Agents interact with the rest of the framework using an Agent API, which is used
to manage the life cycle of agents as well as instantiating flow rules in the data plane
and passing traffic and statistics up to 4MIDable agents. Depending on the appli-
ance format, agents can operate either in local mode, where they run as part of the
controller, or in remote mode. Middlebox agents have mandatory and optional inter-
faces. The mandatory interfaces are the Start and Stop interfaces. These are used
to set up and tear down any forwarding rules that are required by a given monitor-
ing plugin. Static configuration can be parsed and installed while this interface is
running. These interfaces are intentionally minimal to offer the greatest flexibility
to plugin authors. Plugin authors can find sample code and documentation on our
GitHub repository [2].

1 3

Journal of Network and Systems Management (2023) 31:52 	 Page 11 of 23  52

Finally, middlebox agents can either be pipeline-agnostic or pipeline-dependent.
Pipeline-agnostic agents are those which can be implemented with no modification
to the reference pipeline. Pipeline-dependent agents require additional functionality
from the data plane. This functionality includes additional packet header process-
ing, data collection and stateful packet processing. Pipeline dependent applications
have the option of either requiring a particular pipeline configuration, or they can
specify ‘tags’ which they require. Pipeline configurations specify the tags they sup-
port. With this, the control layer can reconcile which pipeline configuration to install
to support all applications currently requested.

4 � 4MIDable Applications

To better demonstrate the architecture of 4MIDable, this section presents the design
of two agents, enabling integration with common network security appliances.
Our agent implementations demonstrate that 4MIDable can support the offloading
requirements of a wide range of security appliances and improve both resource utili-
zation and network responsiveness.

4.1 � P4Protect

P4Protect is a native 4MIDable agent, offering protection against control-plane
denial-of-service (DoS) attacks to SDN networks. Such attacks can not only over-
load a switch’s control-plane channel [20], but our evaluations show that they can
render the controller unusable for the duration of an attack. P4Protect is designed to
offer general-purpose DoS protection and can be used in conjunction with any num-
ber of middlebox agents and SDN applications.

P4Protect tracks the rate of new connections recorded in the control plane at any
given time and applies threshold-based rate limiting, using stateful packet process-
ing. This allows the control plane to remediate service delivery during attacks by
black-holing malicious traffic. Communication between the switch and controller
is not interrupted when the P4Protect protection engages, and other middleboxes
or controllers can inspect and modify black-listed hosts by polling register-state to
determine whether traffic is being blocked.

Operating P4Protect in an autonomous mode, where no modification is made
to the controller, requires configuring maximum traffic rates at compile-time. This
trades flexibility for ease of deployment.

4.2 � P4ID

P4ID is one of the most advanced 4MIDable agent designs and allows network off-
loading for unmodified Suricata IDS instances. The plugin reduces the volume of
traffic processed by the IDS, while retaining a level of detection equivalent to no
pre-filtering being in place. P4ID improves middlebox efficiency by exploiting the

	 Journal of Network and Systems Management (2023) 31:52

1 3

 52   Page 12 of 23

principle that an IDS will generate an alert based on a packet or sequence of packets
received near the start of a flow.

The plugin designs extend the based P4 pipeline with additional stages to ena-
ble stateful packet filtering. The new stages track new flow arrivals and forward a
programmable number of packets from the beginning of each flow to the IDS host.
Once the threshold of packets to send has been exceeded, the switch allows traf-
fic to be processed through the switch unimpeded. Furthermore, if the flow triggers
an IDS alert, the pipeline allows the agent to carry on packet delivery to the IDS
or even enable packet drops. Finally, the P4 program maintains a per-flow time-
out value, which is used to repeat packet forwarding to the IDS, when the interval
between two consecutive packets exceeds a programmable threshold.

Flow monitoring is expensive in hardware, and the P4ID pipeline extension
implements an efficient per-flow state management mechanism. Trying to imple-
ment IDS signatures as table entries in the data plane can prove ineffective, as they
typically specify application layer packet contents. P4 data planes can parse the
application layer of a packet using variable-length packet headers, but this increases
parsing and lookup complexity significantly, and is best done in software. Thus, the
P4ID pipeline adopts a more coarse-grain approach to classifying packet flows using
the 5-tuple, which is much more efficient compared to a signature searching for a
specific sequence in a packet payload. If an alert is generated, a flow rule is installed
into the monitoring table, ensuring that any matching packets continue to be sent to
the IDS. This improves accuracy as the IDS continues to receive traffic associated
with an alert.

The pipeline uses a fixed-width register array to maintain flow state, and a 5-tuple
hash is used to associate array entries with flow state. Each flow is assigned two
registers. The first register stores a receipt timestamp for the last flow packet, while
the second register counts the number of flow packets. The packet counter is used to
decide if a packet should be sent to the IDS, by comparing the register value against
the number packet expected to be sent to the IDS. Furthermore, the timestamp reg-
ister is updated on the receipt of every packet and is used to implement the reset
mechanism of the packet filtering mechanisms. If the interval between two consecu-
tive packets is above a threshold, then the program resets the packet counter to zero,
which resets packet filtering.

In order to improve efficiency, a number of optimizations are adopted. Firstly,
register entries are capped to 262144 entries, based on an 18-bit–wide hash. while
this hashing approach is subject to collisions, we believe that this –evident also in
our experiments using real data– has negligible impact on detection rates. Secondly,
the hash uses 104 bits of data, or 2104 possible combinations (Source and Destina-
tion IP addresses, ports and protocol identifier), and generates an 18-bit identifier.
This gives 286 possible combinations where a given hash input would equate to the
same hash output. This flow collision would also have to occur within the time-
out period, otherwise the flow would be directed towards the IDS for monitoring
anyway. Therefore, we put forth that the saving in switch memory is an acceptable
trade-off compared to the potential for collisions. Thirdly, the timeout mechanism in
the flow filtering mechanism ensures visibility of long-lived benign flows, as well as
mitigating against flow collisions. Flow collisions can be mitigated against further

1 3

Journal of Network and Systems Management (2023) 31:52 	 Page 13 of 23  52

by parsing the TCP header, and always resetting the packet threshold if a packet has
the SYN flag set, which signifies the start of a connection. However, this eviction
strategy would only be effective for TCP traffic. Finally, threshold values can be pro-
grammed by the control plane, stored as metadata fields to be used for comparison.
This design choice improves filtering flexibility and allows IDS systems to respond
based on network demands for accurate detection vs traffic loads to the IDS.

In total, the registers used by P4ID occupy 262144 48-bit values at full utiliza-
tion, used for capturing timestamps, and packet counts can use either 8 or 16 bit reg-
isters, depending on requirements. This therefore requires 1.5iMB of memory used
for timestamps, along with a further 0.26–0.52MiB being used in the implementa-
tion for the BMV2 software switch. Note that this can be reduced further by reduc-
ing the accuracy of timestamps or the number of flows. In our implementation for
the Tofino platform for example, we reduce timestamp memory occupancy by 50%,
by truncating a 48-bit nanosecond timeout value to a 32-bit value instead. With this
reduction, we can offer a high-resolution timeout, but with a maximum value of only
4295 milliseconds (the maximum value a 32-bit register in nanoseconds can hold).
The alternative is to reduce accuracy by discarding the lower 16 bits of the value,
equivalent to 0.06 milliseconds.

In order to integrate the Suricata IDS with 4MIDable, the agent uses a log pars-
ing module, to translate Suricata alerts into a 5-tuple table entry into the switch,
used to dynamically decide if further packets should be forwarded to the IDS. Spe-
cifically, the agent monitors the IDS’ “Event”, which produces alerts in a JSON for-
mat. The logging format gives a message with the alert ID, the message associated
with the detected signature, and the 5-tuple of the flow that has been alerted on. This
flow is parsed into the constituent source and destination ports and addresses, and a
Flow Request is inserted in the flow table of the P4ID register table. The agent runs
on the same host as the IDS, and operates proactively, relying solely on IDS alerts.
Threshold values can be programmed from the control plane, and themselves read
into metadata fields to be used for comparison. By using the control plane, rather
than hard-coding the threshold values into memory, the data plane application can
be made more flexible, and can respond based on network demands for accurate
detection vs traffic loads to the IDS.

P4ID demonstrates the ability of the 4MIDable platform to integrate existing
middleboxes without any code modifications. Furthermore, it takes advantage of
Golang’s native support for JSON parsing into objects, in conjunction with an exter-
nal library to monitor file updates. Flow requests based on these alerts are simply
built using helper methods and passed into the control layer.

5 � Evaluation

This section evaluates the 4MIDable framework using two common middlebox
use cases. We begin with P4Protect, demonstrating the ability to mitigate control-
plane volume attacks, with minimal latency overheads. We then demonstrate the
impact of hardware filtering offloading on detection precision and processing load
using the P4ID agent. All experiments run on a Dell server (Intel Xeon 4114, 10C,

	 Journal of Network and Systems Management (2023) 31:52

1 3

 52   Page 14 of 23

32 G RAM) and we use the Mininet [21] emulation platform to realize our topolo-
gies. In our experiments we utilize two P4 switches: The Behavioural Model V2
(BMV2) [29] reference P4 implementation, a tool "primarily designed for develop-
ing, testing and debugging P4 data planes" [30], and the Intel Tofino [18] switch, a
commercially available P4 hardware switch implementation.

5.1 � Latency Evaluation

In order to evaluate the impact of our 4MIDable framework on the control plane,
we measure the impact of the P4Protect agent on an a modified ONOS [3] learning
switch application. For this experiment, we utilize a simple topology consisting of a
BMv2 instance connecting two hosts. One of the hosts executes a control plane DoS
attack, by injecting ARP packets with randomized MAC and IP addresses at a fixed
rate. The attack can reduce control channel responsiveness, when using a reactive
control application [20]. Macias et al., [24] demonstrate that 1218 packets/sec are
sufficient to disrupt the normal behaviour of a controller. Our ARP attack generates
3000 packets/sec (672 kbps), a rate sufficient for a single host to saturate the control
channel between the BMv2 switch and the ONOS controller. The second host gen-
erates an L2 RTT estimation probe with a rate of 1 packet/second and, in parallel,
uses the PCAP library to capture traffic and record the estimated propagation delay.
To measure RTT, each measurement packet contains a special EtherType value, a
timestamp and a unique packet ID. The BMv2 pipeline is configured to forward
all RTT packets to the ONOS controller as PacketIn messages. The controller
appends a receipt timestamp to the packet and retransmits it back through the receiv-
ing switch port using a PacketOut message.

Each experiment runs for 500 sec, with the attack starting 30 s after the start
of the RTT estimation probe and lasts for 300 s. For each experiment, we record
the CPU utilization of the ONOS controller, as well as the latency and packet loss
of the heartbeat probe. We utilize two experimental configurations: an unprotected
configuration, with the switch connecting directly to the ONOS controller; and a
P4Protect configuration, which uses a 4MIDable instance with an P4Protect agent
to process all control plane communications between the controller and the switch.

Figure 3 reports the PacketIn latency and loss, and the average controller CPU
utilization for each experimental setup. Based on the latency and packet loss meas-
urements we highlight that in the unprotected configuration (Fig. 3a), the control
plane RTT rapidly climbs, until responses stop being received by the RTT measure-
ment host due to control channel overload. In parallel, CPU utilisation (Fig. 3c) on
one core remains at maximum, suggesting that the underlying implementation on
the controller may be thread-limited. In contrast, the P4Protect configuration expe-
riences a high utilization and latency only for the first seconds of the attack, but
operation soon returns to normal levels. The initial spike is a result of the time that
P4Protect requires to detect the attack. Finally, we highlight the impact of 4MIDable
on control plane latency is minimal during normal operation. The RTT probe esti-
mates on both configurations a mean RTT value of 50 msec during normal operation
with low variance.

1 3

Journal of Network and Systems Management (2023) 31:52 	 Page 15 of 23  52

In the scenario presented, our filtering is based on individual switch ingress
ports. If an attacker attempts to overload the controller from multiple ingress ports,
they could have a more disruptive impact upon the controller. This is because, with
port-based protection, the threshold has to be met on each port before the protection
engages, which is designed to avoid disruption to hosts connected to other switch
ports. To counter this, it is possible to add a second filtering stage and a set of addi-
tional registers, which ensure that no combination of ports is sending sufficient traf-
fic to overload the controller through a particular switch.

5.2 � Detection Precision Evaluation

In this section we evaluate the precision of the filtering mechanism in 4MIDable
using the P4ID agent with the Suricata IDS. Our experiments evaluate the perfor-
mance of 4MIDable using both hardware (Tofino) and software (BMV2) switch
platforms. Specifically, we use the open-source P4 Behavioural Model, a software
switch that serves as a reference implementation of a P4 switch.

Figure 4 shows the evaluation environment used with the P4ID agent, wherein
we have traffic arriving to the switch which is then flagged or allowed to proceed
as ’bypass’ traffic. For the BMV2-based environment, the switch is connected to a
series of virtual Ethernet (veth) pairs, while the Tofino switch is connected directly
to a series of physical network interfaces connected to the evaluation host. In order

0

20

40

60

80

100

0 100 200 300 400 500

P
ac

ke
tL

os
s
(%

)

La
te
nc

y
(m

s)

Elapsed Time (s)

Latency
Packet Loss

(a) Latency and packet loss (Unprotected
configuration)

0

20

40

60

80

100

0 100 200 300 400 500

P
ac

ke
tL

os
s
(%

)

La
te
nc

y
(m

s)

Elapsed Time (s)

Latency
Packet Loss

(b) Latency and packet loss (P4Protect con-
figuration)

0

50

100

150

200

0 100 200 300 400 500

C
P
U

U
til
is
at
io
n
(%

)

Elapsed Time (s)

P4Protect
Unprotected

(c) CPU utilization (Unprotected and
P4Protect configurations)

Fig. 3   Latency, packet loss and CPU utilization during a DoS attack to the control plane of a switch
while using a learning switch ONOS application with and without the 4MIDable P4Protect agent

	 Journal of Network and Systems Management (2023) 31:52

1 3

 52   Page 16 of 23

to emulate network attacks, we utilize open-source traffic traces, replayed to the
switch’s input interface using the tcpreplay [40] tool. Traffic is captured from the
IDS and Bypass points using the tcpdump tool. We capture all traffic to ensure that
the switch has processed all packets successfully. In each case, the switch is man-
aged using the P4ID agent and the framework uses the P4Runtime switch interface.

In our experiments, we use two popular IDS benchmarking datasets: the ID2T
dataset, which uses the Intrusion Detection Dataset Toolkit (ID2T) tool [8] to inject
artificial attack traffic in legitimate traffic network traces from an office network, and
the CICIDS2017 dataset [35], a contemporary and publicly available dataset.

The ID2T tool offers 6 attack types. The Botnet attack emulates a peer to peer
botnet. The DDoS attack replicates traffic associated with the slowloris [36] attack,
which relies on holding a large number of open connections to a webserver for as
long as possible. The EternalBlue attack emulates the network behaviour of a ran-
somware tool [26]. The Port Scanning attack recreates an NMAP [23] network
scanning session. NMAP can create many new connections in a short period of
time, as it attempts to connect to services on successive port numbers. The Sality
attack recreates traffic that reflect the behaviour of a malware, which can also act
as a peer-to-peer botnet [11]. Finally, the SQL Injection [15] attack, which aims to
damage, gain access to or infiltrate databases. The baseline trace has a duration of
5-minutes, containing 37,000 packets. Our base capture was captured on an office
network running a variety of hosts. The base capture is used to provide consistent
benign background traffic between each class of attack. Table 2 lists the range of the
attacks included within the dataset as well as the number of packets available in each
attach trace.

The CICIDS2017 dataset [35] is a contemporary and publicly available dataset,
comprising of a number of benign packet traces with the attack traffic from a range
of attacks. Each packet trace is named by the day of the week and contains one or
more attacks at specified times in the capture file. The attacks in this dataset include
Botnet, Brute-force, Denial-of-Service and Web-based attacks. Table 2 lists the
range of the attacks included within the dataset, which are the attacks we use to eval-
uate our pre-filtering approach. Table 2 lists the range of the attacks included within
the dataset, which are the attacks we use to evaluate our pre-filtering approach.

For each dataset, we prepare appropriate intrusion detection rules, derived from
the EmergingThreats [34] ruleset. We use publicly available rulesets to demonstrate
that our approach is effective, even with off-the-shelf configurations. We also filter

Forwarding
Stage

Stateful IDS
Tagging Stage

Suricata IDS
P4MID Framework

With P4ID Application

Switch
Flagged Tra c

Alerts

Flow Rules

Tra c IDS Bypass
Tra c

Fig. 4   P4ID experimental topology

1 3

Journal of Network and Systems Management (2023) 31:52 	 Page 17 of 23  52

data-set traces that are undetectable by Suricata using published intrusion detection
rulesets or are not suited to signature-based detection, e.g. in encrypted streams or
when designed to evade signature-based detection [19]. Finally, we run Suricata
against each testing trace and record the total number of raised alerts and signatures,
which reflect the baseline set of alerts and signatures that should be raised by the
P4ID agent.

It is worth highlighting that the two datasets provide unique features to analyse
different aspects of the 4MIDable architecture. The ID2T dataset contains synthet-
ically generated attack traffic that matches the characteristics of real attacks with
small durations. As a result, some rule-sets may misclassify attacks. For example,
the botnet attacks cannot be detected with our ruleset, while the Distributed DoS
attacks are mislabelled as a port-scanning attack, due to a high connection rate. The
CICIDS2017 dataset, on the other hand, contains a trace containing attacks spaced
over the course of 8 h (equivalent to a working day). When replaying attacks, we
have divided the dataset into a series of individual captures representing all traffic
on the network at the time of the attack, and for a fixed period before and after the
attack.

For this set of experiments, we monitor three IDS metrics: the number of attacks
detected by the IDS configuration, the amount of packets processed during operation
and the CPU utilization of the IDS during operation. Our aim is for the 4MIDable
IDS system to raise the same number of Suricata signatures as the configuration that
runs Suricata without any traffic filtering. Furthermore, in our analysis, we distin-
guish between IDS alerts and signatures. A signature describes an attack fingerprint
and it can raise multiple alerts during an attack.

Figure 5 depicts the achieved detection rate when using the P4ID platform
with the ID2T dataset, as well as the ratio of traffic that 4MIDable forwarded to
the IDS. The best possible detection is the closest value to the baseline figure,
where all traffic is sent via the Intrusion Detection System. In every case, the best
possible detection is achieved with a reduction in traffic being processed by the
IDS in excess of 50% on the BMV2 platform, and a traffic reduction of over 70%

Table 2   Attack type and
size used from the ID2T and
IDS2017 datasets

ID2T

Attack (103 ) Packets Attack (103 ) Packets

Benign 37 Port Scan 38
Botnet 37 Sality 37
DDoS 46 SQL Inject 43
EternalBlue 37
IDS2017
GoldenEye 361 Port Scan 1485
SlowHTTPTest 374014 SlowLoris 424
Web Brute-force 1345 SQL Inject 51
FTP Brute-force 6315 Web XSS 233
HeartBleed 427

	 Journal of Network and Systems Management (2023) 31:52

1 3

 52   Page 18 of 23

on the Intel Tofino platform. The figure also highlights that the number of alerts
generated by the IDS is reduced. As mentioned previously, an alert refers to the
number of occurrences of a given signature. In each case where alerts are lower,
we still detect all attack signatures, and each attacker is identified by the IDS
successfully.

The EternalBlue attack [6] is a representative ID2T attack type (network-based
exploit which installs backdoors on vulnerable hosts) with a reduced rate of alerts,
which is still detected in multiple stages. These stages in chronological order are
as follows: (1) the vulnerable protocol in use is identified as is the associated
host; (2) the installation of the DoublePulsar backdoor is then detected, along
with the source and target of that attack; (3) the external address of the attacker
is also provided in the logs; (4) the EternalBlue attack and response are then both
identified by the IDS, along with further traffic associated with the exploitation.
The missing signature is a false positive describing a port-scan on the network.

In all other cases (other than the DDoS), 4MIDable achieves the same level of
signature detection as the baseline ID2T experiment, and in the majority of cases,
we achieve full detection of alerts. We suggest that when using the P4ID to filter
traffic, network administrators should consider whether existing thresholds could
be lowered to suit changes in traffic profiles.

Figure 6 depicts the IDS signature and alert detection rates when using the
IDS2017 dataset in conjunction with the P4ID platform. In general, we see that
the Intel Tofino platform offers the greatest reduction in traffic, with an average
reduction of 67% across all tested datasets. With this reduction, we continue to
detect 97% of attack signatures. BMV2 on the other hand offers a decrease in traf-
fic of 70%, yet signature detection falls to only 91%.

We focus primarily on the number of signatures detected, as this is representa-
tive of the attack patterns and behaviours being correctly detected by the IDS (as
used in conjunction with the P4ID platform).

Figure 6 also shows the number of alerts detected by each platform compared
to the baseline, where all traffic is directed to the IDS. With alerts, we expect
that the number of alerts being generated may be lower, as overall traffic reach-
ing the IDS is reduced. This reduction is particularly prevalent in port scanning

0

20

40

60

80

100

DDoS Etern
alBlue

Port S
canni

ng

Sality
Malwar

e

SQL Inject
ion

%
vs

ba
se

lin
e Traf c BMV2

Alerts BMV2
Signatures BMV2

Traf c To no
Alerts To no

Signatures To no

Fig. 5   Comparison of the number of alerts and signatures raised by a Suricata IDS when using the
4MIDable P4ID agent and the ID2T trace on the BMv2 and the Tofino P4 switch frameworks

1 3

Journal of Network and Systems Management (2023) 31:52 	 Page 19 of 23  52

and denial-of-service attacks, where low volumes of traffic are automatically
whitelisted if individual flows fail to alert.

The Web Brute-force attacks are one case where not all signatures are detected.
In this case, the signature that isn’t detected is a false positive associated with an
application that isn’t running on the network. The HeartBleed attack is another case
where not all signatures are detected when running on the BMV2 platform. The alert
that fails to be detected pertains to a vulnerable client receiving malicious data from
a server. The Tofino platform successfully detects this attack. However, this comes
at a cost: the Tofino implementation re-directs 50% of traffic to the IDS for this data-
set, compared to BMV2 redirecting only 31% of traffic.

When compared to P4-ONIDS, we see that our approach gives us significantly
better alert detections in some cases, the authors do not provide results for signa-
ture detection. With P4-ONIDS, the authors give their headline figure as a traffic
reduction of 60% for accuracy of over 90% in alert detection. In our case, we can
achieve 100% detection of alerts and signatures for the GoldenEye attack, with only
25% of traffic directed towards the IDS on the Tofino platform, or 30% of traffic on
the BMV2 platform. When comparing overall figures, their lowest detections are
approximately 10% of alerts compared to when no filtering is in place. In the same
situation, with a 50 packets per flow, we achieve an average of 70% of alerts and
87.5% of signatures, with an average of 48% of traffic steered towards the IDS.

5.3 � Resource Efficiency Evaluation

The reduction of traffic volumes forwarded to the IDS by our P4ID agent offers
a significant benefit in terms of the the IDS CPU load. To evaluate this platform
aspect, we run the experimental configuration described in the previous section and
increase the traffic rate of our testing host. The high-load scenario uses the benign
dataset from the IDS2017 dataset, replayed at a high rate (450 Mbps), alongside
the malicious attack dataset being replayed in real time. The malicious dataset is
replayed in real-time, to allow IDS rules which rely on timed thresholds to function
correctly. The malicious datasets have a peak rate of 16 Mbps. The increase in traffic

0

20

40

60

80

100

Golden
Eye
SlowH

TTPT
est

SlowL
oris

Heart
bleed

Port S
cans

Web Brute
force

Web SQL
Web XSS

%
vs

ba
se

lin
e

Traf c BMV2
Alerts BMV2

Signatures BMV2
Traf c To no
Alerts To no

Signatures To no

Fig. 6   Precision of the P4ID 4MIDable agent using the IDS2017 traces with the BMv2 and Tofino
switches

	 Journal of Network and Systems Management (2023) 31:52

1 3

 52   Page 20 of 23

volume is essential in order to match a more realistic traffic found in production
networks.

We execute both our baseline and P4ID IDS configurations and record in each
run the average CPU utilisation for the duration of the experiments. Table 3 shows
the difference in average CPU utilisation for each attack dataset between the two
experiments. From the results, we highlight that the CPU utilization of the P4ID
configuration reduces the IDS load by an average of 31.9%, and in all cases, the
IDS continues to detect all attack signatures correctly. It is worth highlighting that
any load reduction depends significantly on traffic characteristics and traffic rates.
For example, a network carrying long-running high-volume flows, can achieve bet-
ter results. The employed dataset consists of mixed workloads, reflecting a mix of
applications typically found in a production enterprise environment.

6 � Conclusion

Middleboxes are increasingly becoming the de facto mechanism to apply secu-
rity polices in networks. Recent advancements in network programmability enable
unprecedented opportunities to improve the efficiency of middleboxes by offloading
traffic processing and filtering to the network fabric. P4 is the latest advancement in
the field of SDN, allowing applications to map processing requirements in the net-
work fabric, using a dedicated DSL.

4MIDable is a middlebox framework supporting traffic processing and filtering
offloading on programmable data planes from unmodified security middleboxes.
The platforms offers a versatile offloading API, that can be used with both native
network appliances, as well as, unmodified applications with the agent of 4MIDable
agents. In parallel, the 4MIDable platform virtualized access to the P4Runtime, thus
allowing middlebox appliances to co-exist with existing control applications running
on a P4 controller. To demonstrate the capabilities of the platform, we present two
4MIDable agent implementations: P4Protect offers a DoS protection service, and
P4ID allows traffic filtering offloading from unmodified Suricata IDS instances. Our
evaluations show that 4MIDable has minimal impact on data plane latency, while
PAID can reduce traffic being processed by an IDS by over 70%, while maintaining
high detection rate of attacks and network threats.

Our future work includes developing further novel applications, including Denial-
of-Service mitigation, as well as furthering the development of the 4MIDable

Table 3   CPU reduction for Suricata with offloading

Dataset CPU Average Delta Dataset CPU Average Delta

GoldenEye (DoS) −26.4% Web - Bruteforce −25.8%
SlowHTTPTest (DoS) −33.4% Web - SQL −28.4%
Slowloris (DoS) −25.3% Web - XSS −25.3%
Heartbleed −28.6% Port Scans −34.5%

1 3

Journal of Network and Systems Management (2023) 31:52 	 Page 21 of 23  52

framework itself. At present, network administrators must assemble pipelines to suit
the applications they are using; our next step will be to automate pipeline assembly
from a series of artifacts.

Author Contributions  BL is the primary author of this paper. NR, MB and CR contributed to the study
conception and design. The first draft was written by BL, and all authors commented on previous ver-
sions of the manuscript. All authors read and approved the final manuscript.

Data Availability  Not applicable.

Code Availability  The code for 4MIDable is available on GitHub.

Declarations 

Competing interests  The authors have no competing interests to declare that are relevant to the content
of this article.

 Ethical Approval  Not applicable.

Consent to Participate  Not applicable.

Consent for Publication  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 AlSabeh A, Kfoury E, Crichigno J, et al (2022) P4ddpi: Securing p4-programmable data plane net-
works via dns deep packet inspection. In: Proceedings of the 2022 Network and Distributed System
Security (NDSS) Symposium, pp 1–7

	 2.	 Benjamin Lewis (2017) 4MIDable agent GitHub Repository. https://​github.​com/​p4lang/​PI
	 3.	 Berde P, Gerola M, Hart J, et al (2014) Onos: towards an open, distributed sdn os. In: Pro-

ceedings of the Third Workshop on Hot Topics in Software Defined Networking, pp 1–6,
10.1145/2620728.2620744

	 4.	 Bosshart, P., Gibb, G., Kim, H.S., et al.: Forwarding metamorphosis: fast programmable match-
action processing in hardware for sdn. ACM SIGCOMM Comput. Commun. Rev. 43(4), 99–110
(2013). https://​doi.​org/​10.​1145/​25341​69.​24860​11

	 5.	 Bosshart, P., Daly, D., Gibb, G., et al.: P4: programming protocol-independent packet processors.
ACM SIGCOMM Comput. Commun. Rev. 44(3), 87–95 (2014). https://​doi.​org/​10.​1145/​26568​77.​
26568​90

	 6.	 Boyanov, P.: Educational exploiting the information resources and invading the security mecha-
nisms of the operating system windows 7 with the exploit eternalblue and backdoor doublepulsar.
Assoc. Sci. Appl. Res. 14, 34 (2018)

	 7.	 Chen, X.F., Yu, S.Z.: Cipa: a collaborative intrusion prevention architecture for programmable net-
work and sdn. Comput. Secur. 58, 1–19 (2016). https://​doi.​org/​10.​1016/j.​cose.​2015.​11.​008

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/p4lang/PI
https://doi.org/10.1145/2534169.2486011
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1016/j.cose.2015.11.008

	 Journal of Network and Systems Management (2023) 31:52

1 3

 52   Page 22 of 23

	 8.	 Cordero CG, Vasilomanolakis E, Milanov N, et al (2015) Id2t: A diy dataset creation toolkit for
intrusion detection systems. In: 2015 IEEE conference on communications and network security
(CNS), IEEE, pp 739–740, 10.1109/CNS.2015.7346912

	 9.	 Dao TN, Hoang VP, Ta CH, et al (2021) Development of lightweight and accurate intrusion detec-
tion on programmable data plane. In: 2021 international conference on advanced technologies for
communications (ATC), IEEE, pp 99–103

	10.	 Donovan, A.A., Kernighan, B.W.: The Go programming language. Addison-Wesley Professional
(2015)

	11.	 Falliere, N.: Sality: Story of a Peer-to-peer Viral Network, p. 32. Symantec Corporation, Rapport
technique (2011)

	12.	 Fawcett, L., Scott-Hayward, S., Broadbent, M., et al.: Tennison: a distributed sdn framework for
scalable network security. IEEE J. Sel. Areas Commun. 36(12), 2805–2818 (2018). https://​doi.​org/​
10.​1109/​JSAC.​2018.​28713​13

	13.	 Foundation ON (2020) P416 language specification. https://​p4.​org/​p4-​spec/​docs/​P4-​16-​v1.2.​1.​html
	14.	 Gray N, Dietz K, Seufert M, et al (2021) High performance network metadata extraction using p4

for ml-based intrusion detection systems. In: 2021 IEEE 22nd international conference on high per-
formance switching and routing (HPSR), IEEE, pp 1–7, 10.1109/HPSR52026.2021.9481849

	15.	 Halfond WG, Viegas J, Orso A, et al (2006) A classification of sql-injection attacks and countermeas-
ures. In: Proceedings of the IEEE International Symposium on Secure Software Engineering, IEEE,
pp 13–15

	16.	 Harkous H, Jarschel M, He M, et al (2019) Towards understanding the performance of p4 programma-
ble hardware. In: 2019 ACM/IEEE symposium on architectures for networking and communications
systems (ANCS), IEEE, pp 1–6

	17.	 Ibanez S, Brebner G, McKeown N, et al (2019) The p4 netfpga workflow for line-rate packet process-
ing. In: Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pp 1–9, 10.1145/3289602.3293924

	18.	 Intel Corporation (2021) Intel tofino series programmable ethernet switch asic. https://​www.​intel.​com/​
conte​nt/​www/​us/​en/​produ​cts/​netwo​rk-​io/​progr​ammab​le-​ether​net-​switch/​tofino-​series.​html

	19.	 Jazi, H.H., Gonzalez, H., Stakhanova, N., et al.: Detecting http-based application layer dos attacks on
web servers in the presence of sampling. Comput. Netw. 121, 25–36 (2017). https://​doi.​org/​10.​1016/j.​
comnet.​2017.​03.​018

	20.	 Klöti R, Kotronis V, Smith P (2013) Openflow: a security analysis. In: 2013 21st IEEE international
conference on network protocols (ICNP), IEEE, pp 1–6, 10.1109/ICNP.2013.6733671

	21.	 Lantz B, Heller B, McKeown N (2010) A network in a laptop: rapid prototyping for software-defined
networks. In: Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks. Asso-
ciation for Computing Machinery, New York, NY, USA, Hotnets-IX, 10.1145/1868447.1868466

	22.	 Lara, A., Ramamurthy, B.: Opensec: policy-based security using software-defined networking. IEEE
Trans. Netw. serv. Manag. 13(1), 30–42 (2016). https://​doi.​org/​10.​1109/​GLOCOM.​2014.​70369​03

	23.	 Lyon, G.F.: Nmap network scanning: the official Nmap project guide to network discovery and secu-
rity scanning. Insecure. Com LLC (US) (2008). https://​doi.​org/​10.​5555/​15385​95

	24.	 Macıas SG, Botero JF (2019) Performance evaluation of the onos controller under an ddos attack. In:
9th Latin American network operations and management symposium (LANOMS 2019)

	25.	 McKeown, N., Anderson, T., Balakrishnan, H., et al.: OpenFlow: enabling innovation in campus net-
works. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008). https://​doi.​org/​10.​1145/​13557​
34.​13557​46

	26.	 Mohurle, S., Patil, M.: A brief study of wannacry threat: ransomware attack 2017. Int. J. Adv. Res.
Comput. Sci. 8(5), 1938–1940 (2017)

	27.	 Nascimento MR, Rothenberg CE, Salvador MR, et al (2011) Virtual routers as a service: the routeflow
approach leveraging software-defined networks. In: Proceedings of the 6th International Conference
on Future Internet Technologies. Association for Computing Machinery, New York, NY, USA, CFI
’11, p 34-37, 10.1145/2002396.2002405

	28.	 Ndonda GK, Sadre R (2018) A two-level intrusion detection system for industrial control system net-
works using p4. In: 5th International Symposium for ICS & SCADA Cyber Security Research 2018 5,
pp 31–40, 10.14236/ewic/ICS2018.4

	29.	 Open Networking Foundation (2016a) Behavioural model version 2. https://​github.​com/​p4lang/​behav​
ioral-​model

	30.	 Open Networking Foundation (2016b) Performance of BMV2. https://​github.​com/​p4lang/​behav​ioral-​
model/​blob/​main/​docs/​perfo​rmance.​md

https://doi.org/10.1109/JSAC.2018.2871313
https://doi.org/10.1109/JSAC.2018.2871313
https://p4.org/p4-spec/docs/P4-16-v1.2.1.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://doi.org/10.1016/j.comnet.2017.03.018
https://doi.org/10.1016/j.comnet.2017.03.018
https://doi.org/10.1109/GLOCOM.2014.7036903
https://doi.org/10.5555/1538595
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model/blob/main/docs/performance.md
https://github.com/p4lang/behavioral-model/blob/main/docs/performance.md

1 3

Journal of Network and Systems Management (2023) 31:52 	 Page 23 of 23  52

	31.	 Open Networking Foundation (2022) Basic.p4. https://​github.​com/​openn​etwor​kingl​ab/​onos/​blob/​mas-
ter/​pipel​ines/​basic/​src/​main/​resou​rces/​basic.​p4

	32.	 P4 Language Consortium (2017) P4Runtime GitHub Repository. https://​github.​com/​p4lang/​PI
	33.	 Park T, Xu Z, Shin S (2018) Hex switch: Hardware-assisted security extensions of openflow. In:

Proceedings of the 2018 Workshop on Security in Softwarized Networks: Prospects and Chal-
lenges. Association for Computing Machinery, New York, NY, USA, SecSoN ’18, p 33-39,
10.1145/3229616.3229622

	34.	 Proofpoint Inc (2021) Emerging threats documentation. https://​doc.​emerg​ingth​reats.​net/
	35.	 Sharafaldin I, Lashkari AH, Ghorbani AA (2018) Toward generating a new intrusion detection dataset

and intrusion traffic characterization. In: ICISSp, pp 108–116, 10.5220/0006639801080116
	36.	 Shorey T, Subbaiah D, Goyal A, et al (2018) Performance comparison and analysis of slowloris, gold-

eneye and xerxes ddos attack tools. In: 2018 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), IEEE, pp 318–322, 10.1109/ICACCI.2018.8554590

	37.	 Tavares K, Ferreto T (2021) P4-onids: A p4-based nids optimized for constrained programmable data
planes in sdn. In: Anais do XXXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Dis-
tribuidos, SBC, pp 434–447, 10.5753/sbrc.2021.16738

	38.	 The Open Information Security Foundation (2022) https://​suric​ata.​io/
	39.	 Tian, C., Munir, A., Liu, A.X., et al.: Openfunction: an extensible data plane abstraction protocol for

platform-independent software-defined middleboxes. IEEE/ACM Trans. Netw. 26(3), 1488–1501
(2018). https://​doi.​org/​10.​1109/​TNET.​2018.​28298​82

	40.	 Turner A (2005) Tcpreplay: Pcap editing and replay tools for ∗ nix. http://​tcpre​play.​synfin.​net/
	41.	 Xing T, Huang D, Xu L, et al (2013) Snortflow: a openflow-based intrusion prevention system in cloud

environment. In: 2013 Second GENI Research and Educational Experiment Workshop, IEEE, pp
89–92, 10.1109/GREE.2013.25

	42.	 Zhang K, Zhuo D, Krishnamurthy A (2020) Gallium: automated software middlebox offloading to
programmable switches. In: Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication on the Applications, Technologies, Architectures, and Protocols for Com-
puter Communication, pp 283–295,10.1145/3387514.3405869

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Benjamin Lewis  is a PhD Student within the School of Computing and Communications at Lancaster
University. His research interests revolve around network programmability and dataplane offloading and
their application to network security.

Matthew Broadbent’s  research interests are broadly focused around the intersections of computer net-
working, security and multimedia. The research he has conducted in these areas has focused on the appli-
cation of software-defined networks and flexible infrastructures; an emerging research topic that has gar-
nered much attention from both academia and industry.

Charalampos Rotsos  is a senior lecturer at Lancaster University. His research interests include service
management and orchestration, network programmability, and cloud operating systems.

Nicholas Race  is Professor of Networked Systems at Lancaster University. His research focuses on devel-
oping future networking services built upon Software Defined Networks and Network Functions Virtuali-
sation. This includes new techniques to enhance the Quality of Experience of media streaming and sup-
port for the detection and remediation of network anomalies. He leads the EPSRC Prosperity Partnership
“Next-Generation Converged Digital Infrastructure” (NG-CDI) with BT, developing a future network
that is “autonomic”, with the capability to react and reconfigure infrastructure accordingly with mini-
mal human intervention. He is also the lead at Lancaster of the EPSRC Prosperity Partnership “Future
Personalised Object-Based Media Experiences Delivered at Scale Anywhere” with the BBC, which is
building an intelligent network compute platform enabling the efficient utilisation of network compute
and delivery resources at scale.

https://github.com/opennetworkinglab/onos/blob/master/pipelines/basic/src/main/resources/basic.p4
https://github.com/opennetworkinglab/onos/blob/master/pipelines/basic/src/main/resources/basic.p4
https://github.com/p4lang/PI
https://doc.emergingthreats.net/
https://suricata.io/
https://doi.org/10.1109/TNET.2018.2829882
http://tcpreplay.synfin.net/

	4MIDable: Flexible Network Offloading For Security VNFs
	Abstract
	1 Introduction
	2 Related Work
	2.1 Data Plane Offloading
	2.2 Network Security and SDN

	3 4MIDable Framework
	3.1 Data Plane Layer
	3.2 Control Layer
	3.3 Application Layer

	4 4MIDable Applications
	4.1 P4Protect
	4.2 P4ID

	5 Evaluation
	5.1 Latency Evaluation
	5.2 Detection Precision Evaluation
	5.3 Resource Efficiency Evaluation

	6 Conclusion
	References

