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Abstract

Automatic Speech Recognition (ASR) systems are increasingly powerful and more accurate,
but also more numerous with several options existing currently as a service (e.g. Google, IBM,
and Microsoft). Currently the most stringent standards for such systems are set within the
context of their use in, and for, Conversational AI technology. These systems are expected to
operate incrementally in real-time, be responsive, stable, and robust to the pervasive yet peculiar
characteristics of conversational speech such as disfluencies and overlaps. In this paper we evaluate
the most popular of such systems with metrics and experiments designed with these standards in
mind. We also evaluate the speaker diarization (SD) capabilities of the same systems which will
be particularly important for dialogue systems designed to handle multi-party interaction. We
found that Microsoft has the leading incremental ASR system which preserves disfluent materials
and IBM has the leading incremental SD system in addition to the ASR that is most robust to
speech overlaps. Google strikes a balance between the two but none of these systems are yet
suitable to reliably handle natural spontaneous conversations in real-time.

1 Introduction

Automatic Speech Recognition (ASR) is one of the first important milestones of deep learning (Seide et
al., 2011) and the standard evaluation metric for ASR systems, the Word Error Rate (WER), has been
consistently improving to impressive levels (Saon et al., 2016; Saon et al., 2017; Xiong et al., 2017). But
with a few notable exceptions discussed below, the suitability of these state of the art ASR systems for
Conversational AI (henceforth SDS for Spoken Dialogue System1.) is rarely evaluated.

To be truly natural and responsive, SDS architectures have had to be redesigned (Schlangen and Skantze,
2009; Schlangen et al., 2010; Schlangen and Skantze, 2011; Baumann and Schlangen, 2012) to take
into account the inherently time-linear and incremental nature of human language processing (see Purver
et al. (2009); Healey et al. (2011) & Kempson et al. (2016) among many others). These incremental
architectures impose additional evaluation criteria and further constraints on the output required of ASR
systems:

First, ASR hypotheses should be produced incrementally, word by word, with minimal latency. This
means that downstream processing (e.g. for Natural Language Understanding (NLU)) can begin before
a turn is complete. This has been shown to lead to dialogue systems which feel more natural (Aist et
al., 2006; Skantze and Hjalmarsson, 2010) and more satisfying to interact with (Aist et al., 2007). ASR
hypotheses should furthermore be stable through time (minimising ‘jitter’ in the output) (Selfridge et al.,
2011; Baumann et al., 2011; Baumann et al., 2016).

Second, incremental detection and processing of disfluent speech is crucial for robust Natural Language
Understanding (Hough, 2015; Hough and Schlangen, 2015; Shalyminov et al., 2018). And people are not
only capable of processing disfluencies, but they exploit them in the understanding that results (Brennan
and Schober, 2001). But Baumann et al. (2016) observe that disfluency structure and its constituent tokens
such as edit terms (e.g. “sorry”, “I mean”) are often removed or rewritten by the ASR system.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

1We do not use CA here to avoid confusion with the common acronym for Conversation Analysis.

http://creativecommons.org/licenses/by/4.0/
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Furthermore, in multi-party settings involving an SDS, people often interact directly with each other
without using the simpler and more fluent language they tend to use when interacting with a computer
(Shriberg, 1996; Fischer, 2006). Another crucial challenge in multi-party settings is that conversational
overlaps impact the ASRs performance as speech inputs combine. Speaker Diarization (SD), partitioning
an input audio stream into speaker-labeled segments, can be combined with ASR (Shafey et al., 2019) but
must also work incrementally if we are to produce naturally interactive SDSs.

In this paper, we evaluate three of the most well-known ASR services, namely IBM Watson Speech to
Text2 (Saon et al., 2017), Google Speech to Text3, and Microsoft Azure Speech to Text4 (Xiong et al.,
2017). The incremental performance criteria and metrics we use were first introduced in Selfridge et al.
(2011) & McGraw and Gruenstein (2012), used by Baumann et al. (2011), and detailed below in Sec. 2.
For this evaluation, we have used the Switchboard corpus of dyadic telephone conversations (Godfrey et
al., 1992b) because it is open-domain (with speech overlaps) and contains high quality annotations of
disfluency structure (Meteer et al., 1995).

Both IBM Watson and Google’s platforms include SD components that we also evaluate on the
Switchboard corpus in this paper. As the Switchboard corpus is strictly dyadic however, we additionally
evaluate these SD systems on a second corpus, called AVDIAR (Gebru et al., 2017), containing multi-party
conversations with up to four speakers.

Results show that Microsoft has the most responsive, stable, and accurate incremental ASR system
which also preserves disfluent materials. IBM and Google both filter filled pauses but even though all
systems are impacted by speech overlaps, IBM is the most robust to them. IBM also has the leading
incremental SD system which suggests it’s fitting for multi-party settings. Google is a neat balance
between the two others but all three of the systems are not yet adequate to reliably handle natural
spontaneous conversations in real-time.

To aid experiment reproducability and future research in this area, we will release our incremental ASR
code for audio processing5 and framework for evaluation6. Alongside this framework, we will also release
the Switchboard transcripts we have generated as part of the speech disfluencies experiment detailed in
Sec. 4.2.

2 Incremental ASR Performance Criteria

Figure 1: Incremental ASR output: (a) ideal; (b) unstable; (c) not incremental but timely; (d) not
incremental and late - from Baumann et al. (2016)

As outlined in the introduction, incremental SDS architectures such as those in Schlangen and Skantze
(2011); Eshghi (2015) & Eshghi et al. (2017) require ASR components to be word by word incremental,

2https://www.ibm.com/uk-en/cloud/watson-speech-to-text
3https://cloud.google.com/speech-to-text
4https://azure.microsoft.com/en-gb/services/cognitive-services/speech-to-text/
5https://github.com/wallscope-research/incremental-asr-processing
6https://github.com/wallscope-research/incremental-asr-evaluation

https://www.ibm.com/uk-en/cloud/watson-speech-to-text
https://cloud.google.com/speech-to-text
https://azure.microsoft.com/en-gb/services/cognitive-services/speech-to-text/
https://github.com/wallscope-research/incremental-asr-processing
https://github.com/wallscope-research/incremental-asr-evaluation
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i.e. that they should produce word hypotheses in a time-linear fashion (see Fig. 1). This incrementality in
ASR output imposes a set of performance metrics, in addition to the standard turn or utterance-final WER,
which Baumann et al. (2016) nicely present. We describe these below.

2.1 Latency

Word hypotheses should be timely with minimal latency. There are two kinds of latency:

First Occurance (FO) latency (not to be confused with F0, zero, the fundamental frequency of a
speech signal) is the time it takes from the appearance of a word in the gold input signal, to the first time
the word hypothesis appears in the output. This is the first hypothesis time minus the time that the word
started to be uttered. As this is timed from the beginning of the word, FO latency cannot be negative.

Final Decision (FD) latency is how long it takes for the system to make a final decision on a word
hypothesis such that thereafter the hypothesis does not change in the output. This is the final hypothesis
time minus the time that the word finished being uttered. As this is timed from the end of the word, FD
latency can be negative if the final hypothesis is output before the word has finished being spoken.

Referring to example (b) in Fig. 1, the third word was first hypothesised as “right” before the system
replaced that hypothesis with “red”. The FO latency for the third word in this example is the time that
“right” was hypothesised minus the start of “red” being uttered. The FD latency for the third word however
is the time that “red” was hypothesised minus the end of “red” being uttered. For clarity the FO latency is
positive in this case, whereas the FD latency is roughly zero.

2.2 Stability

Stability (Selfridge et al., 2011) is a measure of how stable word hypotheses are, i.e. how likely it is that
the ASR system changes its mind or revokes a word later by edit steps (substitution or deletion) in the
output. In other words, stability measures how committed the system is to a hypothesis.

For this measure, following Baumann et al. (2016), we report on the Word Survival Rate (WSR) of
word hypotheses after a certain ‘age’ (time passed from when the hypothesis was created). At a given
time, a higher WSR shows that a system is more stable as a larger percentage of the hypotheses will
survive (remain unchanged).

2.3 Fidelity to disfluent material

Conversation is rarely a clean sequence of sentences stringed together (Purver et al., 2009; Hough, 2015;
Howes and Eshghi, 2017). It is instead full of pauses, filled pauses (e.g. ‘uhm’), stops and starts, restarts,
repetitions, and mid-constituent self-corrections, all the while the conversation is going smoothly. As
noted in the introduction, capturing these phenomena in an SDS is essential for robust incremental Natural
Language Understanding (Hough and Schlangen, 2015; Eshghi et al., 2017; Shalyminov et al., 2018).

Here, in an experiment that is the same in spirit as that in Baumann et al. (2016), we measure: (1) how
well ASR systems preserve different types of disfluency token - specifically we look at the preservation of
edit terms and filled pauses; and (2) how well the structure of self-corrections (aka self-repair (Schegloff et
al., 1977)) is retained in the output, instead of rewritten to a clean, sentential form by the ASR component.
We discuss examples of (1) and (2) below in Sec. 3.

We report on these measures as the gain or loss in WERs by the different ASR systems in different
experimental conditions, created using the disfluency annotations in the Switchboard Corpus (Meteer et al.
(1995); see Sec. 3) to automatically rewrite (or ‘clean’) the corpus into different gold versions7. Some
with and some without the presence of the annotated disfluency phenomena, such as edit terms and filled
pauses. For self-corrections, the same annotations can be used to rewrite the original gold corpus to a
version in which self-corrections have been rewritten to a complete constituent form - see (1) below; and
see Sec. 4.2 for a more detailed description and subsequent discussion.

7https://github.com/wallscope-research/incremental-asr-processing/tree/master/
swbcorpustools

https://github.com/wallscope-research/incremental-asr-processing/tree/master/swbcorpustools
https://github.com/wallscope-research/incremental-asr-processing/tree/master/swbcorpustools
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Disfluency WER gain Relative to ASR performance against the original gold corpus with all disfluent
material intact, WER gain in a condition where some disfluent material is removed or rewritten reveals that
the system is preserving disfluent material, i.e. that the ‘cleaned’ ground truth is now less like the system
output. A loss in WER shows the opposite - the ‘cleaned’ ground truth is more like the system output
and reveals that the system is itself ‘cleaning’ disfluent material. The magnitude of the loss indicates its
accuracy in doing so. In order to utilise natural speech in downstream components (with the aim to tackle
challenges that SDSs face in healthcare (Addlesee et al., 2019) for example) we promote the preservation
of disfluent material and consider gains in WER a positive. For other use cases, such as live captioning in
video calls, cleaning disfluent material may be of value.

2.4 Robustness to speech overlaps

In natural everyday conversations, especially those in multi-party settings, speakers often interrupt each
other which leads to frequent speech overlaps.

Overlap WER gain To measure how robust an ASR system is to speech overlaps, we measure the
difference between the system’s overall WER on a single, combined audio stream consisting of speech
from all speakers on the one hand; and the WER of the same system on individual channels each carrying
speech from a single speaker. A smaller Overlap WER gain would suggest that the system is more robust
to overlaps.

For reasons which we discuss in Sec. 3, we have in this instance used Maximum Overlap WER gain for
Switchboard. We define this modified metric in Sec. 4.3.

3 The Switchboard Corpus (SWB)

The Switchboard Corpus (SWB; originally: Godfrey et al. (1992a)) is a large corpus of human-human
dyadic conversations in English over the phone on a wide range of topics. The corpus can therefore
be described as open-domain. For evaluation of ASR systems, SWB has become the de facto standard
through its NIST 2000 evaluation test set/subcorpus8 - see Saon et al. (2016) & Xiong et al. (2017) among
many others.

Here we use Switchboard-19, together with its more recent dialogue act and disfluency annotations
(Meteer et al., 1995)10 to evaluate both ASR and SD systems’ incremental performance for use in Spoken
Dialogue Systems (SDSs). We choose SWB for two main reasons: (1) more recent versions of the corpus
contain accurate and fine-grained annotations of disfluency material (Meteer et al., 1995) enabling our
disfluency fidelity experiments below in Sec. 4.2; and (2) existence of separate channels for each speaker
allowing us to study the robustness of ASR systems to speech overlaps.

The disfluency annotations in SWB contain tags for our phenomena of interest in this paper: edit terms
〈e/〉, filled pauses 〈f/〉, as well as the detailed structure of self-corrections. (1) shows an example of how
self-corrections are annotated in SWB:

(1) [with︸ ︷︷ ︸
reparandum

+ uh
〈f/〉

I mean︸ ︷︷ ︸
〈e/〉

without]︸ ︷︷ ︸
repair

any strings attached

Here, ‘uh’ is a filled pause, ‘I mean’ is an edit term; ‘without’ is the repair signalling substitution of
‘with’, which is the reparandum. In self-corrections in general, the reparandum can be deleted, substituted
by the repairing phrase, or simply repeated as in (2):

(2) [it’s a︸ ︷︷ ︸
reparandum

+ it’s a]︸ ︷︷ ︸
repair

fairly large community

As noted above in Sec. 2.3, these annotations allow us to create controlled experimental gold test sets
where edit terms or filled paused are filtered out; or where self-corrections are rewritten to their ‘clean’,
complete constituent form; e.g. (1) would be rewritten simply to “without any strings attached”.

8https://mig.nist.gov/MIG_Website/tests/ctr/2000/h5_2000_v1.3.html
9https://catalog.ldc.upenn.edu/LDC97S62

10The Switchboard Dialogue Act corpus: http://compprag.christopherpotts.net/swda.html

https://mig.nist.gov/MIG_Website/tests/ctr/2000/h5_2000_v1.3.html
https://catalog.ldc.upenn.edu/LDC97S62
http://compprag.christopherpotts.net/swda.html
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Switchboard’s audio files are stereo with each channel representing one of the two speakers. For our
system comparison in Sec. 4.1, we report overall incremental WER on the audio with the channels merged
together. This more closely resembles the common dyadic dialogue setting as the speech inputs are not
separate in a dyadic conversation or a multi-party setting in which one interactant is an SDS.

In order to run the experiments in Sec. 4.2 and 4.3, we separated Switchboards stereo files into their
individual channels that each represent one speaker and therefore do not contain speech overlaps. These
channels do have audio channel bleeding however so both speakers can sometimes be heard in a single
channel. The isolated WERs are increased due to a mismatch between the single speaker gold transcript
and the system’s output containing both speakers. This is crucial to note but does not impact the findings
of our experiments as explained within each experiment description.

4 ASR System Evaluations

For this paper we experimented with three of the most well-known, production-level ASR systems with
the ability to transcribe audio incrementally. These were mentioned in Sec. 1 and from now on we will
refer to them by their company names - namely: Microsoft, IBM, and Google. We used the most up to
date systems as of May 2020. The underlying system architectures are undisclosed but, if access was
granted, it would be useful to tie them to our metric findings.

Microsoft Azure Speech to Text: Microsoft supports continuous speech recognition which, as the
name suggests, is their incremental ASR. It processes an audio stream continuously and can output its
current hypothesis upon request. We requested hypotheses every 0.05s and there were often differences in
hypotheses at that frequency.

IBM Watson Speech to Text: IBM has a HTTP interface but using their websocket interface is required
in order to receive interim results. IBM notes that this feature returns intermediate hypotheses that are
for interactive applications and real-time transcription. These intermediate results are returned by the
system as soon as they are generated and they are notably less frequent than the other systems, usually
returning increments spanning more than one word. This is an important characteristic of the IBM system
in explaining our latency and stability results to which we return below.

Google Speech to Text: Google returns incremental speech recognition requests via their ‘stream-
ing recognize’ cloud API method when interim results are requested in the config. As Google provides an
option of four standard ASR models, we selected and used the ‘phone call’ model as the Switchboard
corpus is a collection of dyadic conversations over the phone. Similarly to IBM, interim results are
returned as they are generated. Unlike IBM however, these are returned much more frequently.

4.1 Overall Incremental ASR Performance

For each of the production-level incremental ASR systems detailed in Sec. 4, we transcribed the
Switchboard corpus (Sec. 3) using the performance criteria described in Sec. 2.

We first present each systems incremental WER in table 1 and as explained in Sec. 3, the two audio
channels were merged to imitate the setting of an SDS. The overall WER is the mean incremental WER
across the Switchboard corpus per system. We then present each system’s FO latency, FD latency, and
stability in Fig. 2.

Service Microsoft IBM Google
Incremental WER (%) 32.89 35.55 33.62

Non-Incremental WER (%) 5.1 5.5 6.8

Table 1: Overall WER of Incremental ASR Systems on Switchboard

Overall Incremental WER: The overall system WERs are all roughly the same (range of 2.66%) but
Microsoft does perform better than the others with Google following in close second.
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Figure 2: From left to right we have charts (a), (b), and (c). Charts (a) and (b) show the distribution of (a)
the first occurrence of words and (b) the final decision of words. (c) shows the survival rate of a word
hypothesis, i.e. what percentage of hypotheses are stable after a duration of time.

Microsoft, IBM and Google have all reported significantly lower non-incremental WERs on the
Switchboard corpus than we report here. Microsoft has achieved a WER of 5.1% (Xiong et al., 2018),
IBM has achieved a WER of 5.5% (Saon et al., 2017), and Google has achieved a WER of 6.8% (Johnson,
2019). The results are incredibly impressive but these bidirectional models are not designed to be used in
real time11 - there is no way for a system to use future words to predict the current one. This comparative
lack of information is likely the main reason that the incremental WERs we report are much larger. This
difference between incremental and non-incremental performance is not limited to ASR. For example,
incremental disfluency tagging is also a more challenging task than its non-incremental counterpart for
the same reason that the model is unable to exploit future tokens (Shalyminov et al., 2018).

If we inspect charts (a), (b) and (c) in Fig. 2, we start to see some major system differences.

FO Latency: Firstly in chart (a), 0s on the x-axis represents the start of the word being uttered and the
first occurrence (FO) time is the time that the word was first hypothesised.

We can see that Microsoft almost always hypothesises a word a mere fraction of a second after it begins
to be uttered. This is extremely responsive and much faster than the other two systems. Google usually
hypothesises a word less than a second after it begins to be spoken (which is of course still adequately
quick) and is often as responsive as Microsoft. IBM however has a more even spread of FO latency times,
often hypothesising a word over 1.5s after it begins to be spoken. It does sometimes hypothesise words
sooner but generally IBM is not very responsive.

As mentioned in Sec. 4, Micorosft allows you to request the current hypothesis as often as desired.
Google and IBM however only send you hypotheses as they are generated. IBM sends hypotheses
significantly less frequently which is illustrated in this result.

FD Latency: A low FO latency is desirable for an incremental and responsive system but if the system
continues to change its hypothesis, downstream components would be constantly changing their selected
actions too. We want a system to update their hypothesis as a word unfolds but how long after a word has
finished being uttered does each system finally decide on that word? In chart (b) we begin to inspect this.

All the systems frequently decide on a final hypothesis before the word has even finished being spoken.
Both Microsoft and Google are both very responsive, chart (a), and usually decide on a final word
hypothesis before it has finished being spoken. This is ideal behaviour for an incremental ASR system.
IBM on the other hand is less responsive and frequently changes its hypothesis seconds after it has finished
being spoken. This is again a result of its less-frequent hypothesis outputs as it doesn’t output them word
per word. If the system changes its hypothesis on a single word, it is only output as part of a much larger
hypothesis - seconds later.

Stability: Finally, we investigated how stable a system’s hypothesis is. As previously mentioned,
incremental ASR systems can change their hypotheses on the fly and it is inconvenient for downstream
components if this happens over a long duration of time. Chart (c) displays the percentage of hypotheses

11In response to a anonymous reviewer, bidirectional models could potentially be used incrementally if the model is applied to
progressively longer segments of the signal as it appears. However, the system would still have significantly less information
than a non-incremental system, so the improvement in WER would likely not make up for the increase in latency and instability.
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that are finalised at a given ‘age’ (FD hypothesis time minus FO hypothesis time). It is important to
note that the y-axis does not start at 0 and the point at which the line cuts this axis is the percentage of
hypotheses that do not ever change.

Beginning with Microsoft, we can see that roughly three quarters of the system’s predictions do not
ever change. Hypotheses stabilise fast however with about 95% of them becoming stable after just half a
second. From one second onwards, almost all of Microsoft’s predictions are stable.

IBM on the other hand rarely changes its hypotheses with over 90% of its predictions remaining
unchanged. As illustrated in chart (a), IBM takes longer to output its hypotheses and this is likely a design
choice to achieve this high initial stability. As with the FD latencies in chart (b), the step in survival rate
is again due to IBM’s less-frequent prediction rate. This focus on initial stability doesn’t just impact its
latencies, Microsoft with its lower initial stability has more stable hypotheses after just a fraction of a
second.

Google changes the largest percentage of its hypotheses but nevertheless, almost 65% of its initial
predictions remained unchanged. Even with more frequent prediction rates than IBM, Google has a
smaller percentage of surviving hypotheses at any ‘age’. After 2.5s, over 5% of Google’s hypotheses were
still not finalised.

As just touched upon, the step in IBMs word survival rate depicts the system’s slow hypothesis rate.
Conversely, even though the number of hypotheses is not explicitly represented in this chart, Microsoft’s
extremely smooth word survival rate confirms that it does indeed change its hypothesis more frequently
than Google. It is necessary to point out that the number of word hypotheses does not indicate that a
system is unstable, the duration of this instability is the concern.

4.2 Experiment 1: Fidelity to Disfluencies and Self-corrections

As discussed in Sec. 2.3, to determine whether a system is preserving disfluent material (or not) we will
report the gain (or loss) in WERs. An increase in WER reveals that the ‘cleaned’ ground truth is now less
like the system output, therefore the system must be preserving disfluent materials. Inversely, a decrease
in WER shows that a system is also ‘cleaning’ its output.

Condition Microsoft IBM Google
Orig 67.48 73.42 68.17
SC 72.32 (+4.84) 78.44 (+5.02) 71.69 (+3.52)
ET 67.79 (+0.31) 73.77 (+0.35) 68.40 (+0.23)
FP 69.65 (+2.17) 73.58 (+0.16) 67.96 (-0.21)

Table 2: Disfluency WERs on Split Switchboard Dataset. We report results over three conditions: SC -
rewritten/cleaned self-corrections; ET - filtered edit terms; FP - filtered filled pauses

Explained above in Sec. 3, we run this experiment on the Switchboard corpus but with the speakers
isolated into their individual channels. Audio channel bleeding increases the original WER from the
WERs reported in Sec. 4.1 but this does not impact this experiment. The system outputs are the same
throughout so loss or gain in WER can only come from the ‘cleaning’ of the gold transcripts.

Reading table 2, all of the systems have a similar increase in WER after self-corrections are rewritten
(row SC). Rewriting self corrections would be a sophisticated operation to perform incrementally so it is
unsurprising to see that no systems appear to do this.

Similarly, all of the systems have a slight increase in WER when edit terms are filtered (row ET). As
the increase is small, it is possible that the systems are all filtering these but not exceptionally well. As the
three systems perform so similarly however, it is more likely that none of the systems do this at all.

Finally, after filtering filled pauses (row FP), Microsoft has an increase in WER of over 2%. IBM
however has a tiny increase in WER and Google even manages to decrease its WER on the filtered ground
truth. This indicates that Microsoft preserves filled pauses whereas IBM and Google both filter these on
the fly. This behaviour by Google and IBM is presumably by design, as discussed in Sec. 2.3, but we
promote the preservation of disfluent materials to aid downstream components.
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4.3 Experiment 2: Robustness to Speech Overlaps
In this experiment, we wish to measure and compare the ASR systems’ robustness to speech overlaps. In
general, the most natural way of doing this is to compare system WERs on a single combined channel
containing speech from both parties to WERs on the mean of the split individual channels each containing
speech only from one party. However, as detailed in Sec. 3, there is often a lot of audio bleeding from
one channel to the other in Switchboard. Our initial investigation showed that the systems were in
fact performing worse for some of the dialogues on the individual channels compared to the combined
channel. Further investigation of these individual dialogues showed that they indeed did contain significant
bleeding.

Thankfully, audio channel bleeding is not present in every case, so to tackle this issue we will report
the maximum WER improvement (MWERI) for each system across all dialogues. That is, the difference
between the merged audio WER and the mean WER of both speakers on the split channels on a single
dialogue. For complete clarity, the dialogues leading to maximum improvement can be different for
different ASR systems but for a single system the WER improvement is calculated per dialogue. Max
WER Improvement is defined in Eq. (1):

MWERI = max(WERcombined − WERspeakerA +WERspeakerB

2
) (1)

Inspecting Table 3 it is evident that IBM is the most robust to overlaps with the smallest MWERI. That
is, when overlaps were removed from the audio input, the improvement was the smallest and therefore the
system was initially accurate with the overlaps present. Microsoft and Google perform similarly on this
experiment but are considerably less robust to speech overlaps than IBM.

Service Microsoft IBM Google
Max WER Improvement (%) 19.82 14.76 20.09

Table 3: Robustness to Speech Overlaps
Handling speech overlaps is necessary in multi-party settings in which one interactant is an SDS. These

scenarios are not uncommon now as more and more people have SDSs in their home.

5 Speaker Diarization (SD) System Evaluations

Here we present our evaluation of the Google and IBM SD systems - Microsoft does not currently include
a SD service. We evaluate both systems within a real-time (i.e. incremental) multi-party setting. For both
systems, we therefore only take into account the interim results via a streaming method instead of the
final results, although we acknowledge that the final result usually performs better than the interim ones.

Google Cloud SD: In the past three years or so, Google have presented several SD models. Of these,
Zhang et al. (2019) achieves the lowest Diarization Error Rate (DER) of 7.6% on the NIST Speaker
Recognition Evaluation benchmark (LDC2001S97) compared to their previous models (Wang et al., 2018;
Garcia-Romero et al., 2017; Zhang et al., 2018)12. For our experiments below, we cannot ascertain which
model is currently deployed on the cloud service. Of the different models within the Google Cloud
Services to support different types of audio stream, we evaluate the ‘video’ model only below.

IBM Watson Speaker Diariztion: Dimitriadis and Fousek (2017) present the first online, real-time,
production level SD system within the IBM cloud Speech-To-Text (STT). The deployment proceeds in two
stages: (1) an unsupervised audio segmentation to the homogeneous segments per speaker; and (2) speaker
labelling. Since extracting acoustic representations from audio within non-speech sessions may affect SD
performance, Dimitriadis and Fousek (2017) move the ASR module forward in their architecture, where
ASR results are used as input to the segmenter to separate different speaker chunks, and to improve the
overall SD performance without dropping the ASR quality. It is this SD system which we evaluate below,
noting that it operates together with ASR.

12In a recent Google paper, Shafey et al. (2019) introduce a joint ASR+SD model with acoustic and linguistic cues that learns
to jointly transcribe speech and predict speaker labels; but they compare their performance only to their own baseline
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5.1 Experiment 3: Speaker Diarization
Data Unlike ASR, SD systems are affected by the number of speakers involved in a multi-party
conversation in a real-time, streaming setting as we do here. Therefore, in addition to the Switchboard
data (see Sec.3), we also use AVDIAR (Gebru et al., 2017): a multi-party audio-visual diarization data set
consisting of 23, up-to-four speaker conversations in both audio and video form; though in this paper we
only use the audio data.

Metric We use the Diarization Error Rate (DER) as a performance metric for this experiment. DER
was first introduced by NIST in their Rich Transcription (RT) benchmarks (Fiscus et al., 2006), which
consists of three factors: (a) Speaker Error rate (SER) measuring the percentage of time with incorrectly
predicted speaker labels; (b) False Alarm Speech rate (FASR) indicating the proportion of time during
which non-speech regions are incorrectly identified as containing speech; and (c) the Missed Speech rate
(MSR) (the opposite of FASR). We, here, employ the d-score toolkit13 for with a forgiveness collar of
0.25 seconds (Ortega et al., 2016).

Switchboard Results Table 4 shows the performance of Google and IBM SD services on the Switch-
board data set: with 15.33% DER, IBM Watson performs considerably better than Google with a
43.93% DER; in large part due to incorrect speaker labels (SER) from Google.

Service MSR (%) FASR (%) SER (%) DER (%)
Google 17.35 0.39 26.15 43.93
IBM 12.96 0.73 1.64 15.33

Table 4: Performance of SD Systems on Switchboard

AVDIAR Results Since the data set contains conversations involving up to four speakers, we compare
performance of the two services across conversations with different number of speakers (see Table 5). In
this table, we only present Google’s score from 18 out of 24 audio streams, since Google can’t recognise
any speakers from the rest of the audio files (including all 4-person conversation streams). In general, both
Google (68.79% DER) and IBM (48.94% DER) show considerably worse performance on AVDIAR
than than on Switchboard, even when we only consider the dyadic conversations (Google: 66.43%DER;
IBM: 41.89% DER). Performance on dyadic conversations is also not considerably better than the
overall performance. This might be because the audio in AVDIAR is of a lower quality/amplitude because
speakers stand further from the microphone. And it is likely this lower audio quality that leads Google to
misidentify speech session very often (57.99% MSR overall), while at the same time showing a more
stable performance on speaker labelling (10.07% SER overall). In contrast, IBM Watson on AVDIAR
shows much higher Speaker Error rate overall (21.24%) than in Switchboard.

Num of Speakers Service MSR (%) FASR (%) SER (%) DER (%)
Google 49.62 0.00 6.45 56.06

1
IBM 25.47 0.51 13.14 39.12

Google 57.48 0.98 7.97 66.43
2

IBM 23.95 2.05 15.88 41.89
Google 60.74 0.57 13.91 75.22

3
IBM 28.14 1.07 20.41 49.62

Google - - - -
4

IBM 29.65 0.85 36.82 67.32
Google 57.99 0.73 10.07 68.79

Overall
IBM 26.31 1.39 21.24 48.94

Table 5: Performance of Speaker Diarization Systems on AVDIAR (Gebru et al., 2017)
Overall, IBM shows considerably better performance than Google across both data sets. But we note

that the AVDIAR setting is a lot more similar than Switchboard to a real-life human-robot interaction
13https://github.com/nryant/dscore

https://github.com/nryant/dscore
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scenario, in which we expect audio quality and intensity to vary as speakers move away or closer to the
robot, and as ambient noise changes. Overall it is evident that neither Google nor IBM SD systems are
ready to cope with natural, spontaneous conversation with real humans, especially in multi-party settings.

6 Conclusion

Looking at only each system’s incremental WERs, which are all very similar, it is impossible to distinguish
which system is best for a certain use-case. Using the additional metrics and further experiments detailed
in this paper however, we have carried out a more sophisticated analysis.

Microsoft has the most responsive, stable and accurate incremental ASR system, while preserving
disfluent material but does not have a real-time SD system. IBM and Google both filter filled pauses but
even though all systems are impacted by speech overlaps, IBM is the most robust to them. IBM also has
the leading real-time SD system which suggests it’s a better fit for multi-party settings. Google is a neat
balance between the two others. All of the systems report impressive WERs on the Switchboard corpus
using non-incremental (bidirectional) models but this does not mean that this challenge is complete. None
of these systems are yet adequate to reliably handle natural spontaneous conversations in real-time.

We hope that by releasing our evaluation framework, we will encourage future assessment of such
systems and promote the design of speech recognition and diarization systems with the above metrics in
mind.
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