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The Web of Data (WoD) has experienced a phenomenal growth in the past.
This growth is mainly fueled by tireless volunteers, government subsidies,
and open data legislations. The majority of commercial data has not made
the transition to the WoD, yet. The problem is that it is not clear how
publishers of commercial data can monetize their data in this new setting.
Advertisement, which is one of the main financial engines of the World Wide
Web, cannot be applied to the Web of Data as such unwanted data can easily
be filtered out, automatically. This raises the question how the WoD can (i)
maintain its grow when subsidies disappear and (ii) give commercial data
providers financial incentives to share their wealth of data. In this paper, we
propose a marketplace for the WoD as a solution for this data monetization
problem. Our approach allows a customer to transparently buy data from
a combination of different providers. To that end, we introduce two differ-
ent approaches for deciding which data elements to buy and compare their
performance. We also introduce FedMark, a prototypical implementation of
our marketplace that represents a first step towards an economically viable
WoD beyond subsidies.

Keywords: Pricing Data, Market Models, Federated SPARQL, Integer Program-
ming, Data Bundling.

1 Introduction

Inspired by the WWW’s characteristics, the Web of Data (WoD) is a decentralized
repository of data, where many data tenants publish and manage interlinked datasets
whether indexed or not. Its goal is to provide a globally distributed knowledge base
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where query engines can mix-and-match data from various, distributed data-sources
towards answering queries. Most current datasets on the WoD are freely available, either
subsidized by governments via data access laws and research grants or maintained by
enthusiasts. Some provider of datasets will be able to maintain funding for their datasets
and continue to be open. Right now, however, only a third of the public SPARQL
endpoints have an uptime of 99% and above [8]. Without financial incentives, many
promising datasets will be poorly maintained or unavailable as there is no one willing to
invest time and money to keep the data up-to-date and the endpoint running [34].

Unfortunately, most incentive mechanisms from the WWW do not translate to the
WoD, as data is queried by machines rather than humans. Consequently, WoD query
results often do not contain any attribution to the original source and algorithms can
simply filter out any contained advertisement removing most non-monetary benefits from
the publisher. Hence, the many motivations typically entailed in authoring a web page—
fame, money through advertisement, acknowledgment, or recognition—do not carry over
to the WoD. Even though provenance techniques exist, such meta-information will not
be shown to the user if not explicitly requested.

Example 1. Consider an Intelligent Personal Assistant (IPA)—a computer program
assisting a user by automatically searching the WoD for relevant information and in-
teracting with other computer programs—which searches the WoD on a daily basis for
relevant information regarding error messages that occur while working with computers
(akin to paring osquery1 with an error recognition and suggestions database extracted
from stackoverflow). The IPA uses context information about the program throwing the
error, the operating system, and other relevant data to find articles, comments, and other
pieces of information that can help understanding and solving the problem which caused
the error. Unlike a keyword-based search in the WWW, the IPA could find information
that is much more specific to the context of the error and provide different suggestions
without any interaction needed by the user.

IPAs like the one presented above are one of the big promises of the Web of Data [6].
However, the question we raise in this paper is how people can be motivated to create the
content needed to enable such a vision. In our example, many of the articles, comments,
etc. about problems are written by fellow users, who already encountered the problem and
are now sharing the gathered knowledge. In the WWW, such fellow users are credited
when giving a helpful answer and are usually thanked by others. The website hosting
the platform for this knowledge exchange makes money by showing advertisement and
job offers to the users. As we can see, there are two incentive mechanisms which keep
the knowledge exchange platform alive: (1) acknowledgement and reputation incentivize
users to share their knowledge and (2) money from advertisements and job offers help
to finance the platform.

In our IPA scenario, however, the users creating the knowledge and the platform
offering the knowledge are transparent to the end-user who is consuming the knowledge
through the IPA. In fact, the lack of any end-user interaction required is one of the big
advantages of having an IPA in the first place. But how can such a scenario work if we

1https://osquery.io
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remove the incentive mechanisms which were used in the WWW to create the necessary
knowledge?

Due to the above-mentioned reasons, we believe that in the long-term many providers
of semantic data have to charge fees (directly or indirectly) for accessing their data in
order to finance their services. However, as soon as users are charged for the data they
consume, economic considerations play an important role during query planning. In
particular, the users (or programs acting on behalf of the users) have to decide to which
data sources they buy the right for accessing. This decision, in turn, depends on how
much the bought data can contribute to a specific query. As we showed in [15], it is very
difficult to decide before query execution how much a certain source can contribute to a
query answer. However, after query execution it is too late to decide against the inclusion
of some sources, as the data is already bought. Whilst data synopses can sometimes help
in deciding which data sources might be worth accessing for a specific query, our analysis
showed that there is no universal approximation method which can consistently yield
good enough results to judge the economic utility of a source for a specific query. These
findings question the practicability of a scenario, where data providers charge customers
directly for accessing their data.

Alternatively, one might argue, the nature of data will lead to natural monopolies
and we should concentrate on building one large centralized database. Such a database
would allow the maintainer to extract monopolistic fees for its usage, which could pay
for the data maintenance. For example, data services such as Bloomberg, LexisNexis, or
Thomson Reuters charge customers high fees for accessing their data primarily using a
subscription-based model. These sellers can price their services by calculating a quasi-
monopolistic price on their whole data offering [4]. Indeed, most non-monopolistic set-
tings struggle to find a good pricing-scheme. The Azure DataMarketplace [1], e.g., closed
in March 2017, due to the lack of attraction. The Copenhagen City Data Exchange is
still trying to figure out how to find a good way to price their data sets.2 However, none
of these solutions provide their data in a way such that they can be queried in a federated
fashion. They do not provide the means to join datasets from multiple providers and
access can only be purchased in an all or nothing approach, thereby forgoing the comple-
mentarities the WoD would enable. This is a serious drawback, because customers are
often interested in a specific combination of data from different providers that are joined
in a certain way. Also, as Van Alstyne et al. [34] argue, the incentive misalignments in a
federated system based on these principles may lead to significant data quality problems.
Finally, some users may not be prepared to pay for the large bundles of data sold by
these monopolists as they are only interested in occasional or very partial access. These
are left out of these markets. Hence, the central question of this paper is how can we
facilitate a financial sustainable and decentralized WoD without government subsidies or
federation-averse centralization and fulfill the promise of the data economy [2]?

This paper proposes FedMark, a marketplace for data following the WoD prin-
ciples of federated querying. In contrast to the settings described above, FedMark
allows a user (or customer) to submit a query and decide after query execution which

2https://www.citydataexchange.com/, personal communication
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data should be bought without accessing the data (and incurring the moral hazard of
not wanting to pay for already seen data). To this goal, FedMark acts as a mediator
between the customer and various data providers. FedMark executes the query but does
not pass the query answer to the customer, yet. Based on a summary of the full query
answer, the customer can decide which parts of the query answer to buy. This selection
of a subset of the query answer—which we call an allocation—can be done either man-
ually by composing the query answer based on personal preference or automatically by
using an allocation rule, which automatically determines how the query answer should
be composed based on the available information. As manual composition is impractical
in most large settings, allocation rules are crucial tools to deal with the exponentially
growing number of possible allocations.

FedMark introduces a new paradigm towards querying and pricing the WoD relying on
a market-based approach and principles of federated querying. This paradigm enables
data providers to finance their wealth of data without relying on subsidies but on per-
query fees. Our approach has the following advantages:

• A customer can buy a query answer from a combination of different data providers
in a transparent way.

• Given a customer’s query, our marketplace creates a query answer based on all
available datasets from which a customer can allocate his most preferred subset.

• The price for the allocation depends only on the data contributing to the allocation.
Especially, the price is independent of query execution (in particular, the order of
joins) and size of underlying datasets. Hence, FedMark compensates data providers
for the value of the data they contribute for the specific query answer.

Our contributions are, hence:

• the introduction of a market-based paradigm towards querying and pricing,

• the presentation of two different allocation rules for such a marketplace,

• the introduction of a prototype system FedMark implementing this paradigm, and

• the thorough evaluation establishing the practicality of our approach in terms of
run-time overhead and utility maximization.

In the following, we start with some preliminaries about the Web of Data. We con-
tinue with the discussion of related work and then introduce our data market concept.
This leads the way to our prototype implementation FedMark and the introduction of
two allocation rules. Next, we perform an empirical evaluation of the runtime of the
introduced allocation rules. We close with a discussion of the limitations of this study
and an outlook for future work.
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Figure 1: An example RDF graph describing a hotel.

2 Preliminaries

In the Web of Data, relations between resources are modelled using the Resource De-
scription Framework (RDF) [9], using resources and literals. A resource can denote
anything, e.g., a website, an image, a physical thing, or an abstract entity. A literal is
a string of characters with an optional datatype associated to it. The relations between
resources and literals are modelled as statements consisting of a subject, object, and
predicate linking the former two. A statement in RDF is also called a triple. Fig. 1
shows an example of how different information about a hotel can be modelled using
such triples. Subjects and objects are illustrated with circles, predicates with arrows
pointing from subjects to objects. Labels with quotation marks indicate literals, other
labels indicate resource identifiers.

Users interested in the data represented in an RDF graph can use the query language
SPARQL [17]. Listing 1 shows an example of how a user could ask for images of a hotel
named ”Hotel California”. Identifiers starting with a ”?” indicate variables. Each line
ending with a ”.” indicates a triple pattern, which can be matched to triples inside a
graph. Such triple patterns can be used to form more complex graph patterns, which
can be combined with other operators like filter expressions, joins, and unions. The
answer to a SPARQL query, which we refer to as query answer, consists of bindings to
the variables of the graph pattern after the WHERE clause projected to the variables
specified after the SELECT clause. A SPARQL endpoint is a web address which accepts
SPARQL queries and returns query answers based on the RDF graph stored in the
back-end.

Table 1 shows the bindings which would be returned as query answer if the SPARQL
query from Listing 1 would be executed against the RDF graph from Fig. 1. Each row
in the table represents a single solution mapping to the query. A solution mapping is
one possible set of bindings of variables to resources or literals which correspond to the
queried RDF graph. A query answer is a set of such solution mappings. A query answer
can contain one, multiple, or no solution mappings, depending on the RDF graph against
which the query was executed [17].

It is possible to execute a query against multiple RDF graphs. Different RDF graphs

5



Listing 1: A query which asks for images for a hotel named “Hotel California”.

PREFIX ex: <http :// example.com/>

SELECT ?image

WHERE {

?hotel ex:depicts ?image .

?hotel ex:name "Hotel California" . }

Table 1: Result of the query in Listing 1.

?image

example.com/hotelCA1.png
example.com/hotelCA2.png

can be made available on a single SPARQL endpoint or on different endpoints. In the
latter case, a SPARQL query must be split up into subqueries which must be executed on
the different servers. In this case, the different endpoint can be combined into a federation
of SPARQL endpoints. The (partial) query answers returned from the different machines
must be joined together to form the final query answer.

3 Related Work

Our approach is based on standardized federated querying on the WoD [7]. As such, it
relies on basic techniques of SPARQL querying [26]. Here, we very succinctly discuss
the most recent federated querying techniques before elaborating on previous attempts
of pairing market-based ideas in data management.
Federated Querying on the WoD: The traditional concepts for federated RDF query-
ing provided integrated access to distributed RDF sources controlled by the query engine
[18, 27, 13]. The drawback of these solutions is that they assume total control over the
data distributions—an unrealistic assumption in the Web. Addressing this drawback,
systems were proposed that do not assume fine-grained control: some exploit perfect
knowledge about the rdf:type predicate distribution [23] while others proposed to ex-
tend SPARQL with explicit instructions controlling where to execute sub-queries [38].
Often, however, the query writer has no ex-ante knowledge of the data distribution.

SPLENDID [14] proposed to exploit service descriptions and VoID statistics about
each endpoint, to perform source selection and query optimization. HiBISCuS [29], on
the other hand, maintains an index of authorities for certain URIs. FedX [31] uses no
knowledge about mappings or statistics about concepts/predicates. It consults all end-
points to determine if a predicate can be answered (caching this information for the
future). Fed-DSATUR [35] is an algorithm for SPARQL query decomposition in fed-
erated settings without relying on statistics, indices, or estimates for source selection.
Forgoing any ex-ante knowledge about data sources and any requirements on data stor-
age, Avalanche [5] proposes an approach that combines data-source exploration followed
by extensive parallelized and interleaved planning and execution.

6



Following another avenue, Hartig et al. [19] describe an approach for executing
SPARQL queries over Linked Open Data (LoD) based on graph search. LoD rules,
however, require them to place the data on the URI-referenced servers—a limiting as-
sumption, e.g., when caching/copying data.

Whilst these approaches provide a solid foundation for federated WoD querying, none
of them considers the economic viability of their proposed solutions. Hence, we will
extend this foundation with a market-based allocation approach to ensure economic
viability.
Market-based Approaches towards Resource Allocation in Computational
Systems: The idea to use markets to allocate computational resources is almost as
old as computers. Already in the 1960s, researchers used an auction-like method to
determine who gets access to a PDP-1, the world’s first interactive, commercial computer
[33]. Since then, many market-based approaches for computational systems have been
proposed.

Early research on market-based scheduling focused on the efficiency of computational
resource allocation. The Enterprise system [24] introduced a market for computational
tasks. It efficiently allocated the tasks to multiple LAN-connected nodes, where task
processors broadcast requests for bids and bid on tasks. Likewise, Spawn [36] utilized
a market mechanism to optimize the use of idle resources in a network of workstations.
More recently, [22] proposed Tycoon, a distributed computation cluster, featuring a
resource allocation model. The authors claim that an economic mechanism is vital
for large scale resource allocation—a common problem on the Web. Furthermore, [3]
demonstrates how profit-aware algorithms outperform non-profit aware schedulers across
a broad range of scenarios.

In data processing centric scenarios, [21] applied market-based optimizations to real-
time query answering systems. [32] proposed a WAN-scale Relational Database Man-
agement System with a market-based optimizer instead of a traditional cost-based one.
[10] proposed a market-based approach for cloud cache optimization taking into account
a user’s value for getting an answer to a query. However, their approach focuses on the
cost-side of cloud computing.

For relational databases, markets for SQL queries were proposed which sell data in-
stead of computational resources for answering queries and use arbitrage-free pricing
schemes to calculate payments [11, 20]. [37] proposed an auction mechanism for data
which considers the negative externalities of allocating data to different buyers. How-
ever, they do not consider the possibility of joining datasets from different providers,
which is an important aspect of the scenario we are investigating. To the best of our
knowledge, none of these systems considers partial answers due to budget constraints
or the possibly differing valuations of various users/queries, which is very typical in the
WoD.

As a precursor to our research, we conducted a pilot study simulating a market plat-
form for the WoD [39]. This paper here represents a significant rework of the old pilot as
it proposes a complete model, an improved market analysis, and a prototype implemen-
tation instead of a simulation. In [25], we introduced the idea of using a double-auction
for the WoD and showed the deficiency of the threshold rule in this setting together
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with three ways to correct them. However, our approach assumed that we have access
to accurate join-estimates to produce satisfying results – an assumption which might be
hard to enforce in the WoD. In [16], we presented our vision of a marketplace which
allows customers to buy data from decentralized sellers in an integrated way. In this
paper, we fulfil this vision and present our implementation of a federated marketplace
for such decentralized data.

4 Market Concept

We begin to describe our market concept by continuing Example 1 from Section 1.
Throughout this paper, we will extend this example to show how to decide which solution
mappings to include in the customer’s query answer and how much the customer must
pay for it.

Example 2. Consider a user who encounters the error message "0x12345678" while
working with the (fictive) Integrated Development Environment (IDE) “Hack IDE” on a
Java program. The IPA will recognize that the problem occurred and search for sugges-
tions to fix the problem related to the error message. The IPA will order the different
suggestions to the problem by their success rate. The IPA will use other information
available, like the operating system, to refine the search and to get only relevant sug-
gestions. Listing 2 shows how a SPARQL query generated by the IPA might look light.
Each row of the query answer represents one possible suggestion to the problem with the
corresponding success rate.

We assume that at least part of the data needed to answer the query requires a pay-
ment from the user. In order to autonomously retrieve the query answer, the IPA buys
the required data on behalf of the user in our marketplace. The marketplace finds the
providers that offer datasets to answer this query. There might be multiple combinations
of providers that would yield a non-empty query answer. Some of them might provide
only suggestions without success ratings; others might provide only success ratings for
suggestions, and some might provide both. As a result, there are multiple different combi-
nations of datasets which produce (possibly) different query answers. Some of the query
answers may contain only a few suggestions and ratings, whereas others may contain
many, or none.

Listing 2: A SPARQL query asking an IPA can use to retrieve suggestions to a problem
indicated by an error message.

PREFIX ex: <http :// example.com/>

SELECT ?suggestion ?rate WHERE {

?suggestion ex:success_rate ?rate .

?suggestion ex:err_code "0x12345678" .

?suggestion ex:program ex:hack_ide .

?suggestion ex:language ex:java .

?suggestion ex:os ex:os_x .

} ORDER BY DESC(?rate)

8



At the core of FedMark lies the ability for a customer to join data from different
providers to buy solution mappings to a given query. Instead of buying all the solution
mappings contained in a query answer, FedMark allows a customer to select a subset of
the solution mappings—which we call an allocation—and only paying the price of the
allocated solution mappings.

Note that an allocation is also a query answer. We will refer to the result of the
query execution as query answer and the result of the allocation process as allocation to
emphasize the difference.

For a specific query, different combinations of providers’ data might result in different
(even empty) query answers. Our marketplace needs to (1) enable the customer to make
an informed decision about which solution mappings to include into the allocation and
(2) decide how much money has to be paid to each provider.

We use the following definition throughout the paper to denote single solution map-
pings, query answers, and allocations:

Definition 1 (Solution Mapping and Query Answer). We denote as Ω the set of all
possible solution mappings. We denote as ω ∈ Ω a single solution mapping. A query
answer ρ ⊆ Ω is a set of solution mappings.

Definition 2 (Allocation). An allocation a ⊆ ρ is a set of solution mappings which are
chosen from the query answer ρ.

We now introduce the four different entities our market concept brings together,
providers, hosts, customers and the marketplace, all depicted in Fig. 2. In the fol-
lowing, we further elaborate on these entities before introducing an operationalization
of our marketplace in Section 6.

4.1 Provider

A provider is the originator of some data, which is used in the production of a query
answer. Providers can group their data into different data products having different
prices per triple. On the data level, a data product is just a collection of RDF-graphs,
which are accessible under the same license. In addition to the price, data providers can
specify other meta-data that might be relevant for customers such as terms/conditions
of access, recentness, or origin of the underlying raw data. Providers are responsible for
the quality of data, including recentness, consistency and accuracy [12].

Definition 3 (Data Products and Prices). We will denote data products with P1, . . . , Pk

and their price with π1, . . . , πk. Each Product Pi consists of a collection Gi of RDF
graphs.

The providers set the optimal price based on market conditions. This price can be
learned, e.g., using reinforcement learning. The price π1 of the data product Pi indicates
the payment that is involved when using an RDF-Triple contained in the data product
for an allocation. This is an important aspect of our market concept: A provider is
only payed for those triples which are allocated. Triples which are accessed during query

9
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Query Execution

Query Answer Allocation
Rule

Figure 2: Customer, Host, and Provider in the marketplace.

execution but not allocated, do not receive a payment from the customer. The reasons
for FedMark to only charge for allocated triples are the following:

(1) If customers would have to pay for all the accessed triples, allocated or not, they
would “loose” some of the paid triples by operations like joins, projections, and
filters. Hence, it could be more beneficial to omit filters and projections and perform
(left) outer joins to get as much data as possible for the same price. This would
incentivize customers to obtain data they do not need and optimize the query for
the best data yield for a given price. We do not believe that it is desirable to create
a market where such meta-optimizations are required from a customer to maximize
the utility they can get out of our market.

(2) If providers would be compensated for accessed triples, the same query could yield
very different revenue for a seller depending on query execution. Especially in join-
operations, constraints from previous joins can vastly reduce the data that has to
be accessed. This means that providers whose data is accessed earlier during query
execution have the tendency to sell more data. In extreme cases, the price of an
allocation is mainly dominated by the provider who is accessed first which, in turn,
also receives the majority of the revenue. We believe that this potential for very
unbalanced vending of data is not desirable.

10



(3) Compensating accessed triples would create wrong incentives for the data providers:
they would be able to increase revenue by increasing the amount of accessed triples,
even if those additional triples do not contribute in any way to the final query
answer. Providers would basically be encouraged to produce as much “dead weight”
data – data which is not really useful but has to be accessed during query execution
because their lack of any use is only discovered after query execution – as possible
to maximize revenue.

(4) Charging for accessed triples adds an additional layer of complexity for query plan-
ning and optimization. In particular, the marketplace would have to estimate how
many triples have to be accessed to calculate the price of a specific allocation prior
to query execution. However, as we have shown in [15], such estimations can be
very unreliable. A high discrepancy between estimated price and actual price can
be very devastating for such a marketplace.

Note that providers do not serve their data; this is done by separate entities, the hosts.
The separation between host and provider allows for more flexible business models for
data provision, as some providers might have an initial budget to create some data
(e.g., government subsidies) but do not have the funds to cover the operating costs for
running a SPARQL endpoint or may have other reasons to outsource the actual data
provision. Providers can decide to act at the same time as a host for their own and/or
other provider’s data. Nevertheless, the market distinguishes between the two different
roles, provider and host, and treats them as separate entities.

Data providers rely on the hosts to make their data available to the marketplace and
thus, enable customers to buy their data. Similar to a Webhost for traditional Web
content, the hosts in our market concept are paid by the provider based on some service
agreement. Hence, the providers have to include the hosting costs into their pricing
decision.

Similar to other digital goods such as software, eBooks, or digital music, the customer
does not buy the good itself but buys the right to use it under certain terms. For
example, most usage rights for digital goods do not allow their resale to third parties. It
is, however, the task of the provider to specify the exact terms under which the specific
good is sold.

We elaborate on the role of providers in the following example:

Example 3. Data providers who want to contribute data to the query introduced in
Example 2 must offer data products which include data about suggestions to the pro-
gramming problems or success ratings of those suggestions. Every query answer that
requires data from one or several such data products results in some payments for the
data providers.

Consider a data product PA with a price of $0.10 per triple providing success ratings
for suggestions. This means that PA can offer triples matching the first triple pattern
in Listing 2. PA is basically running a service where users are reporting on the failure
or success of certain suggestions. Consider further two data products PB and PC with
prices of $0.02 and $0.03 per triple, respectively, providing a database with the actual

11



suggestions to various problems. PB and PC both can offer triples matching all but the
first triple pattern in Listing 2.

In this example, we assume that PB and PC do not have overlapping data regarding
suggestions. However, PA has overlapping data with both PB and PC , which means PA

provides success ratings to the suggestions provided by PB and PC . This means that there
are two different ways how a solution mapping can be obtained to the query in Listing
2. Either the data from PA is joined with the data from PB, in which case the solution
mapping would cost $0.18 (1 triple from PA for $0.10 and 4 triples from PB for $0.02),
or the data from PA is joined with the data from PC , in which case the solution mapping
would cost $0.22 (1 triple from PA for $0.10 and 4 triples from PB for $0.03).

4.2 Host

Hosts operate computers that run SPARQL endpoints for querying data products. They
provide the computational and network resources needed to query the providers’ data
products. Hence, they ensure the reliability, availability, security, and performance,
which are usually specified as Quality of Service [12].

Like cloud service providers, hosts incur the fixed cost of operating the infrastructure,
possibly some variable cost relative in the size of the data they store, and some marginal
cost in form of the computational resources involved for each query they execute. The
host’s marginal costs occur whenever the providers’ data are queried, independently of
whether any data product will eventually get allocated or not. Similar to a Webhost
for traditional Web content, the hosts in our market concept have to charge the data
providers to cover their costs and make some profit.

Note that a host can store data from multiple data providers and that some data
providers may choose to act as their own host. A host has to make sure that nobody
can access the data without agreeing to the terms defined by the providers.

4.3 Customer and Allocation Rule

A customer is a person, or a program acting on behalf of a person, who has a SPARQL
query and wants to buy an allocation of solution mappings to this query. Depending on
the marketplace, the customer might have the choice to use his or her own allocation
rule, use one of the marketplace’s built-in allocation rules, or use an allocation rule
provided by a third party.

The allocation rule sits between the marketplace and the customer. Conceptually,
the allocation rule is an independent entity which takes a query answer as input and
produces an allocation as output. Practically, the allocation rule can be (1) a part of the
marketplace, in which case the user has to provide the marketplace with the necessary
parameters for the specific allocation rule to run the allocation process, (2) a part of
the the customer, in which case the customer has to inform the marketplace about the
chosen allocation, (3) or, an independent entity, in which case this entity has to get the
necessary parameters for the specific allocation rule from the customer, has to inform
the marketplace about the allocation decision, and has to forward the allocation to the

12



customer once the payments are done. The third option is in particular useful if the
allocation process is computationally expensive.

The marketplace will not deliver the full query answer to the allocation rule but will
anonymize the query answer such that the allocation process has enough information to
choose an allocation. Once the allocation rule informs the marketplace about the chosen
allocation and the payments are done, the marketplace will deliver the actual data. In
Section 5 we will discuss the process of anonymization and in Section 6 will discuss the
allocation process in detail.

4.4 Marketplace

The role of the marketplace is to coordinate the exchanges between the customers posing
queries and the hosts serving answers based on the providers’ data products. As such
it can be seen as an extension of a traditional federated query engine with economic
considerations.

The marketplace allows a customer to buy an allocation made from the data providers’
triples. For this, the market needs to determine the solution mappings which can be
allocated. Based on our previous work in [15], it is unlikely that an allocation based
on some data synopses will produce satisfying results for the customer. Hence, the
marketplace has to execute the customer’s query to create the solution mappings which
could be potentially allocated. The marketplace can either run the query on all, for
the query relevant, data products or rely on some source selection and join-prediction
service (see [28] for a survey) to preselect a set of the most promising data products.

The customer’s payment for an allocation is independent of the query execution. Con-
sequently, the marketplace can optimize the query execution based on traditional feder-
ated query optimization techniques without having to consider the prices of the different
data products. After the query execution, the customer has to decide which of the
obtained solution mappings to buy. Either the customer decides based on an alloca-
tion rule or directly chooses a set of solution mappings. This means that the market
might execute the query on some data products’ triples which might not be included
in the customer’s allocation, eventually. The customer has to pay the price for all allo-
cated solution mappings to the marketplace, which redirects the money to the respective
provider.

As discussed before, the providers will pay the hosts for their services. In addition, the
providers also have to pay the marketplace a certain fee to keep it operational. Since the
hosts and the marketplace are financially compensated by the providers, the providers
will include these payments into their pricing decision. In addition, the market can
use part of the generated revenue to subsidize providers which did not get allocated.
However, if a provider fails to get allocated over a longer time, the provider’s data
might simply not be relevant at all, and the market can decide to stop subsidizing
such providers. The payment to the host and the payment to the marketplace are
transparent to the customer. Hence, the customer’s allocation rule has to consider only
the prices indicated by the data providers and not any additional payments to the hosts
or market. Fig. 3 illustrates the money flow between marketplace, providers, hosts,
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and the customer. The solid arrows indicate payments which are inflicted whenever
an allocation is delivered to a customer. The customer pays the marketplace which
in turn pays the contributing providers. Note that in Fig. 3, only one provider is
contributing to the allocation and hence, only this provider is payed. All the providers
in the marketplace have to pay service fees to the marketplace and the hosts, indicated
by the dashed arrows, which are payed independent of the payment from the customer
to the marketplace and to the providers.

Host

Data
Product

Data
Product

Marketplace Customer

Provider Provider

Host

Data
Product

Data
Product

Provider

Payment
Service Fee

Figure 3: The customer pays the marketplace which forwards the money to the providers.
The providers pay the marketplace and the hosts a certain fee for their services.

5 Implementation: FedMark

In this section, we present our implementation of FedMark. FedMark is based on the
federated querying engine FedX [31]. The core idea of FedMark is that each data product
is represented as RDF statements, which describe the RDF data the product contains
and any meta-information about the data. This allows one to access the necessary
information about all data products as well as their contents with a single, federated
SPARQL query. Additionally, it is possible to restrict the query answer including only
providers having specific properties by changing the query, accordingly. We will now
show how a SPARQL query can be rewritten to (1) extract the necessary additional
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information about the product and (2) exploit the information about a product to restrict
the query answer.

In traditional federated SPARQL query execution, a SPARQL query is split up into
subqueries which are sent to different endpoints. Combining the (sub-)query answers
from the different subqueries results in the final query answer. Instead of sending the
subqueries directly to the endpoints, FedMark replaces each occurrence of a triple pattern
inside a subquery by a more complex graph pattern. This new graph pattern encloses
the triple pattern into a GRAPH graph pattern. A GRAPH graph pattern uses the GRAPH-
keyword to refer to the (named) RDF-graph which contains the matched triple pattern.
FedMark also adds another triple pattern to refer to the product which contains the RDF-
graph. Listing 3 shows the general form of such a graph pattern. The ?graph variable
will be bound to the name (URI) of the graph which contains the triple matching the
original triple pattern. If a product contains a certain RDF graph, this is expressed by
the statement ?product market:contains ?graph, where ?product will be bound to
the URI of the product. By referring to the URI of the product by using the variable
?product, one can extract further information, e.g. the price, from the data product or
restrict the query answer, e.g. by allowing only products having a rating greater than
8.0 (Listing 4).

Listing 3: A Graph Pattern used for the execution of subqueries in FedMark.

GRAPH ?graph {

[original triple pattern]

}

?product market:contains ?graph .

Listing 4: Additional information about a product are extracted and filtered.

?product market:price_usd ?price .

?product market:rating ?rating . FILTER (? rating >= 8)

Once the query is rewritten as described above, FedMark can execute the new sub-
queries on the available endpoints and create the query answer. This query answer is
the basis on which the allocation rules can now decide which solution mappings to al-
locate. To prevent revealing the actual data before payment, FedMark does not give
the actual query answer to the allocation rule. Instead, FedMark anonymizes the triples
used to form the different solution mappings and reveals to the allocation a summary
which contains (1) the anonymized triples which are needed to form a specific solution
mapping and (2) all meta-data available for these anonymized triples.

Table 2 shows an example of such a summary. Each row in the left table represents one
solution mapping of the query answer. The right table illustrates potential meta-data
which could be available for the triples.
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Table 2: Example Summary for the Allocation Rule

Solution Mapping Triples

1 t1, t2
2 t1, t3
3 t2, t3

Triple Price Quality

t1 $0.01 ?
t2 $0.02 ? ? ?
t3 $0.03 ? ?

6 Allocation Rules

As introduced in the last section, a customer can use an allocation rule to instruct a
program which solution mappings should be allocated and returned. In contrast to a
manual selection, an allocation rule allows a customer to automatize the whole process of
buying an allocation. This possible automatization is an important aspect of a machine
processable WoD, as it allows a customer to instruct a program to buy and process
semantic data as needed without any interference from the customer.

The allocation rule is not part of the core concept of FedMark, as our marketplace
does not have to know how the customer decided for a specific allocation. The only
important information is which solution mappings are allocated by the customer. Hence,
the allocation rule is transparent to FedMark and only its outcome is important. However,
implementations of our FedMark concept can provide helpful interfaces and predefined
allocation rules to support customers with formulating and implementing an appropriate
allocation rule. Eventually, it is the responsibility of the customer to make a good
allocation decision or come up with a good allocation rule to benefit most from the data
FedMark can offer.

In the following, we want to present different allocation rules which could be imple-
mented by the customer. As mentioned before, FedMark does not natively provide or
constraint the allocation rule. Hence, the presented allocation rules are just a selection
of possible allocation rules. We decided to discuss these allocation rules because they
illustrate an interesting trade-off between optimality of the allocation and scalability
with respect to the number of available solution mappings.

All allocation rules which we will present here have in common that they try to
find an allocation which maximizes the customer’s utility. We assume that the utility
is quasilinear. This means that the utility of an allocation is the value a customer
has for this specific allocation minus the price the customer has to pay for it. The
customer’s value indicates how much the customer is maximally willing to pay for a
specific allocation.

The price of an allocation is just the sum of the prices for each triple, as indicated by
the data providers. The value of an allocation, however, is a private knowledge of the
customer and needs to be defined with a function, the valuation. The valuation is used
by the allocation rule to assert the value of a specific allocation. In the following, we will
restrict ourselves to valuations which are linear with respect to the solution mappings,
this means that the customer’s value for an allocation is the sum of the values of the
solution mappings contained in the allocation. The valuation is used to discriminate
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between different possible allocations containing different solution mappings.

Definition 4 (Linear Valuation). A linear valuation is a linear function V : P(Ω) →
R+ that assigns a value to each allocation a ⊆ ρ. The valuation has the form a =

{ω1, . . . , ωn} 7→
n∑

i=1
v(ωi), where v(ωi) =: vi is the customer’s value for solution mapping

ωi.

Definition 5 (Customer’s Utility). The customer’s utility u ∈ R for an allocation a is
the difference between the customer’s value v = V (a) of the allocation minus its payment
Π(a), where Π : P(Ω) → R+ is a function defined by the marketplace that determines
the customer’s payment for the allocation.

In addition to the valuation, the customer has the possibility to add a budget con-
straint. A budget constraint acts as a cap on the payment for the customer and allows
the customer control over the maximal amount spent for an allocation.

Returning to our example, we include the customer’s valuation:

Example 4. A customer might be willing to pay up to $0.25 for any solution mapping
to the query in Listing 2, but is willing to add an additional $0.10 if all triples originate
from a reliable source. In this case, every solution mapping to the query in Listing 2 has
a value of $0.25, if at least one of the sources is not considered reliable by the user, and
a value of $0.35, if all sources are considered reliable.

In Section 7 we will compare different allocation rules and show under which circum-
stances which of them should be preferred.

6.1 Integer Programming Allocation Rule

The Integer Programming Allocation Rule maximizes the customer’s utility given a
customer’s query q, the valuation function V (·), the prices π1, . . . , πn, and the budget
constraint s. Hence, the allocation rule describes an optimization problem. We will
now show how we can express this optimization problem as an Integer Programming
Problem:

Let τj ∈ {0, 1} with j ∈ {1, . . . , n} be a binary variable indicating whether the triple tj
is bought, πj the price associated with buying the triple, ri ∈ {0, 1} with i ∈ {1, . . . , k}
a binary variable indicating whether the solution mapping ωi can be obtained from the
current allocation of triples, where k is the number of all possible solution mappings,
and vi := v(ωi) the value for the solution mapping ωi. Let further s be the budget of
the customer which acts as a cap on the total payment.

The objective is to find values for τ1, . . . , τn and r1, . . . , rk which maximizes the utility
u(τ1, . . . , τn, r1, . . . , rk), that is the sum of the values of the allocated solution mappings
minus the price of the necessary triples:

u(τ1, . . . , τn, r1, . . . , rk) =

 k∑
j=1

rj · vj

−( n∑
i=1

τi · πi

)
(1)
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In addition to the objective, we also have constraints which have to be respected by
the solution of the Integer Programming Problem.

The first constraint is that for a solution mapping ωj ∈ Ω all the nj = |Ij | relevant
triples {ti | i ∈ Ij} have to be allocated to include that solution mapping into the
allocation, where Ij is the index set of the indices of the relevant triples. This means
that the binary variable rj can only be set to one when all the variables τi with i ∈ Ij
are set to one. We can enforce this with the following linear constraint:∑

i∈Ij

τi − nj · rj ≥ 0 (2)

It is possible that multiple data products offer the same triple, in this case, only the
cheapest triple will be considered. If multiple data products offer the same triple at the
same price, one of the triples is randomly chosen as the relevant triple.

The second constraint is that the price of the allocation does not exceed the budget
s:

n∑
i=1

τi · πi ≤ s (3)

Equations 4 show the general form of the Integer Program for this optimization prob-
lem:

Objective: max

(
k∑

j=1
rj · vj −

n∑
i=1

τi · πi

)
(4)

Subject to:
∑
i∈I1

τi − n1 · r1 ≥ 0

...∑
i∈Ik

τi − nk · rk ≥ 0

n∑
i=1

τi · πi ≤ s

Bounds: r1, . . . , rk ∈ {0, 1}
τ1, . . . , τn ∈ {0, 1}

In Example 5 we show how such an Integer Programming Problem for our scenario
could look like.

Example 5. We extend Example 4 by assuming that provider PA can contribute triples
t1, . . . , t5, provider PB triples t6, . . . , t17, and provider PC triples t18, . . . , t25. Further,
assume that the query answer consists of the solution mappings with their respective
value according to Table 3.

In this case, the Integer Programming Problem has the following form:

Objective: max($0.25 · (r1 + r5) (5)
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Table 3: Solution mappings, their required triples, and the value.

Solution Mapping Triples Value

ρ1 t1, t6, t7, t8, t9 $0.25
ρ2 t2, t10, t11, t12, t14 $0.35
ρ3 t3, t14, t15, t16, t17 $0.35
ρ4 t4, t18, t19, t20, t21 $0.35
ρ5 t5, t22, t23, t24, t25 $0.25

+ $0.35 · (r2 + r3 + r4)

− $0.10 · (τ1 + · · ·+ τ5)

− $0.02 · (τ6 + · · ·+ τ17)

− $0.03 · (τ18 + · · ·+ τ25))

Subject to: τ1 + τ6 + τ7 + τ8 + τ9 − 5 · r1 ≥ 0

τ2 + τ10 + τ11 + τ12 + τ13 − 5 · r2 ≥ 0

τ3 + τ14 + τ15 + τ16 + τ17 − 5 · r3 ≥ 0

τ4 + τ18 + τ19 + τ20 + τ21 − 5 · r4 ≥ 0

τ5 + τ22 + τ23 + τ24 + τ25 − 5 · r5 ≥ 0

$0.10 · (τ1 + · · ·+ τ5)

+ $0.02 · (τ6 + · · ·+ τ17)

+ $0.03 · (τ18 + · · ·+ τ25) ≤ $0.65

Bounds: r1, . . . , r5 ∈ {0, 1}
τ1, . . . , τ25 ∈ {0, 1}

The two big advantages of the Integer Programming Allocation Rule are that (1) it
can be solved using standard optimization tools which are specialized in such problems
and (2) the allocation found by this rule is optimal: a customer cannot gain more utility
by any other allocation, given the valuation and prices. However, the allocation rule also
has also a disadvantage: Solving the Integer Programming Problem is NP-hard, which
means that the Integer Programming Allocation Rule has a limited scalability. We will
investigate the runtime needed to solve the problem in Section 7. Another drawback
of this allocation rule is that it is limited to a linear valuation of the allocation. As
soon as the value for a single solution mapping is not constant—this can happen for
example if the customer has a decreasing marginal value for the solution mappings—the
optimization cannot anymore be formulated as an Integer Programming Problem and
the solving tools cannot be used. Given this drawback, we present another allocation
rule which will complement the Integer Programming Allocation Rule.
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6.2 Greedy Allocation Rule

The Greedy Allocation Rule tries, as the name suggests, to find a good allocation in a
greedy fashion. Hence, the allocation rule does not guarantee that the found allocation
is optimal in the sense that it maximizes the customer’s utility. The upside of this
allocation rule is that (1) it scales better with increasing number of solution mappings
which can be allocated, which means it remains feasible in situations where the NP-hard
Integer Programming Allocation Rule is not anymore feasible, and (2) the allocation rule
is compatible with any valuation which is monotonic decreasing. Note that the valuation
does not have to be strictly monotonic decreasing but can also be linear.

The idea of the Greedy Allocation Rule is quite simple: Choose the non-allocated
solution mapping with the highest ratio between utility and price and allocate it, as long
as the utility is positive (the value is higher than the price) and the sum of the price
of all allocated solution mappings is smaller than or equal to the budget. Whenever a
new solution mapping is allocated, the utility of the remaining non-allocated solution
mappings must be updated. This is because an allocated solution mapping might include
some triples of the non-allocated solution mappings, in which case the specific triples do
not have to be bought again and the price for the respective solution mappings decreases.

Fig. 4 shows how the Greedy Allocation rule can be implemented. First, the algorithm
initializes the set I with the indices of all solution mappings, the set Tbuy for the indices
of all triples which need to be bought, the allocation a, and the total price Π of allocation
a (Line 1–4). Then, the algorithm enters a loop and determines the solution mapping
with the highest ratio between utility and price. For this, the algorithm has to get
the indices of those triples which are relevant for a specific solution mapping ωi. This
information is provided by the function relevantTriplesIndices (Line 7). Afterwards, the
indices of those triples which are already considered for buying are removed from Tbuy

(Line 8), because the same triple does not need to be bought twice by the customer.
Using the indices of the required triples, the price Πi (Line 9), the utility ui (Line 10),
and the ratio ri (Line 11) can be calculated. With this information, the algorithm can
determine the index max of the solution mapping with the highest ratio having a price
which is still in the budget b and a utility of at least 0 (Line 12). If there is still a solution
mapping that reaches these conditions (Line 13), the total price Π, the allocation a, the
index set I with all available solution mappings for allocation, and the index set of all
triples to be bought Tbuy are updated accordingly (Line 14–17). If there is no suitable
solution mapping or simply no solution mapping at all left, the algorithm stops the loop
and returns the allocation a and the total price Π (Line 18–19).

The allocation rule runs in O(n2 log(n)) time, where n is the number of solution
mappings available: For each (at most n) new allocated solution mapping, the algorithm
has to sort the remaining non-allocated solution mappings (O(n log(n))) to determine
the one with the highest utility.
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Require: Solution mappings ω1, . . . , ωn, values v1, . . . , vn, prices π1, . . . , πk, budget b
Ensure: Allocation a, Payment Π
1: I ← {1, . . . , n}
2: Tbuy ← ∅
3: a ← ∅
4: Π ← 0
5: do
6: for i ∈ I do
7: Trelevant ← relevantTriplesIndices(ωi)
8: Trequired ← Trelevant \ Tbuy

9: Πi ←
∑

j∈Trequired

πj

10: ui ← vi −Πi

11: ri ← ui
Πi

12: max ← argmaxi∈{1,...,n}({ri|Π + Πi ≤ b and ui ≥ 0})
13: if ∃max then
14: Π ← Π + Πmax

15: a ← a ∪ {ωmax}
16: I ← I \ {i}
17: Tbuy ← Tbuy ∪ Trelevant

18: while ∃max and I 6= ∅
19: return a, Π

Figure 4: Algorithm for the Greedy Allocation Rule.
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Table 4: Number of solution mappings and triple per solution mapping.

Query Solution Mappings Triples per Solution Mapping

CD1 90 1–2
CD6 11 4
LD1 308 3
LD2 185 3
LD3 159 4
LD4 50 5
LD5 28 3
LD6 39 5
LD7 1216 2
LD8 22 5
LD11 376 5
LS1 1159 1
LS2 333 1–2
LS3 9054 5
LS5 393 6
LS6 28 5
LS7 144 4–5

7 Evaluation

To empirically compare the presented allocation rules, we measure runtime and utility
for different queries. The first measure, runtime, is chosen to establish that the use of
our proposed method is feasible and practical in a WoD setting from a computational
point of view. The second metric, utility, indicates that the results are desirable and
how close the greedy rule approaches the optimal.

7.1 Evaluation Setup

We use two different scenarios: one based on the FedBench benchmark and a new,
synthetic scenario.

FedBench Scenario: The goal of this first scenario is to evaluate our procedure in a
well-established realistic setting. FedBench [30] consists of 9 datasets on various topics
and 25 SPARQL queries. We excluded queries with only 1, 2, or 3 solution mappings,
as their allocation would be rather trivial. This left us with 17 queries. The number
of solution mappings range from 11 to 9054 per query. Table 4 shows the number of
solution mappings and triples per solution mapping for each of the 17 selected FedBench
queries.

Synthetic Scenario: The goal of this second scenario is to evaluate the scaling
behavior of the allocation procedure whilst varying both the number of solution mappings
per query answer and the number of unique triples contained therein. To that end we
generated hypothetical queries that have randomly generated query answers (as we only
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require the answer sets for evaluating the allocation procedure). The number of solution
mappings s per answer varies between 50 and 1000. Each solution mapping consists
of 5 triples, hence we have n = 5s triples in an answer. To simulate the diversity of
an answer, we introduce the parameter d ∈ [0, 1], which specifies how many unique
triples are contained in a query answer. Next, we randomly assign each triple one of
nunique = 1+d · (n−1) identifiers. The result is an answer set in which all triples are the
same for d = 0 and each triple in the query answer is unique for d = 1. This procedure
generates query answers of varying size s and number of unique triples nunique.

Parameters: We set the price for each triple to a uniformly distributed random
number between $0.00 and $1.00. The number of triples per solution mapping multiplied
by a uniformly distributed random number between $1.00 and $2.00 gives us the value
for each solution mapping. The budget for each query is set such that only 50% of the
solution mappings can be obtained. Using these numbers ensures that (1) there is at
least one affordable allocation having positive utility and (2) not all solution mappings
can be allocated. This guarantees that the allocation problem does not become trivial
to solve.

7.2 Results

We discuss both scenarios in turn.
FedBench Scenario: Fig. 5 graphs the execution time for the 17 selected FedBench

queries for the Integer Rule and the Greedy Rule in seconds. It shows that the Integer
Allocation Rule is by orders magnitude slower than the Greedy Allocation Rule for
most queries. One exception is query LS3, which actually has a longer runtime for the
Greedy Rule. LS3 is also the query with the highest number of solution mappings. One
explanation is the high diversity in a large number of solution mappings that benefits
the integer approach.

The ratio between the utility of the Greedy Rule and the Integer Rule for the 17
selected FedBench queries is graphed in Fig. 6. The graph shows that the Greedy Rule
has a utility which is very close to the Integer Rule, which maximizes utility given the
prices and values. The evaluation shows that for the FedBench queries, the Greedy Rule
provides allocations of comparable quality to the Integer Rule in orders of magnitude
smaller time.

Synthetic Scenario: We will now focus on the scaling behavior of both allocation
rules. Fig. 7 shows how the Integer Programming Allocation Rule scales with respect
to the diversity d for different number of solution mappings. Note that the runtime
is plotted in a logarithmic scale and that we plot with respect to d and not nunique,
as the latter is dependent on s. For this evaluation, we used our own synthetic data
as described above. For some plots, the graph has some missing points. The missing
points indicate parameter combinations that did not yield results within 12 hours of
optimization. As the figure shows, the runtime complexity explodes if the diversity is in
the lower third of the spectrum and the number of solution mappings is high enough. For
a diversity of 0, the allocation problem becomes trivial as there is only one triple which
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CD1 CD6 LD1 LD2 LD3 LD4 LD5 LD6 LD7 LD8 LD11 LS1 LS2 LS3 LS5 LS6 LS7

Integer 29.74 17.12 25.32 16.13 30.67 28.40 16.27 17.63 9.54 18.61 21.20 13.64 25.00 20.94 32.15 17.97 19.58

Greedy 0.008 0.004 0.129 0.049 0.060 0.005 0.006 0.004 1.703 0.008 0.307 1.123 0.065 38.95 0.151 0.004 0.025

Solutions 90 11 308 185 159 50 28 39 1216 22 376 1159 333 9054 393 28 144
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Figure 5: Runtime in seconds for the Integer Programming Allocation Rule (Integer)
and the Greedy Allocation Rule (Greedy) for the FedBench benchmark.

CD1 CD6 LD1 LD2 LD3 LD4 LD5 LD6 LD7 LD8 LD11 LS1 LS2 LS3 LS5 LS6 LS7

Ratio 0.997 0.973 0.952 0.985 0.955 0.994 0.998 0.85 1 0.901 0.985 1 0.967 0.997 0.985 0.997 0.798

Integer 54.85 35.63 775.4 530.2 686.6 238.6 59.51 96.69 2017 70.77 1591 956.7 208.3 41059 1768 109.5 408.2

Greedy 54.67 34.67 738.2 522.5 655.4 237.3 59.41 82.17 2016 63.79 1566 956.3 201.5 40921 1742 109.2 325.9
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Figure 6: Ratio between the utility of the Greedy Allocation Rule (Greedy) and the
Integer Programming Allocation Rule (Integer) for the FedBench benchmark.
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Figure 7: Runtime in seconds (on a logarithmic scale) for the Integer Programming Al-
location Rule for different diversities and query answer sizes.

can be chosen. For a diversity of 1, the different solution mappings in a query answer are
independent, meaning that they do not share any triples. Also, in this case, the allocation
problem seems to be simpler to solve, although not as simple as when the diversity is
0. For a diversity in between 0 and 1, the allocation problem becomes harder. This
is because the solution mappings are now more dependent on each other because they
share triples: some combinations of solution mappings will be much cheaper than other
combinations, because they can exploit the fact that they share some triples and their
prices. Interestingly, the less the diversity is, the more time the Integer Programming
Allocation Rule needs to solve the allocation problem. At least, until the diversity gets
close to 0, at which point the number of triples is very low and the allocation problem
becomes much easier.

The scaling behavior of the Greedy Allocation Rule with respect to the diversity d for
different number of solution mappings is shown in Fig. 8. The plot uses the same scale
as in Fig. 7 to make it easier to compare the results. As Fig. 8 indicates, the runtime
for the Greedy Allocation Rule does not suffer from the same explosion of runtime
as the Integer Programming Allocation Rule when the diversity is low. The reason
for this is quite simple: the Greedy Rule does have to consider which combination of
solution mapping could exploit the overlap of triples the most. Instead, the allocation
rule just chooses the next best solution mapping and updates the prices, accordingly.
Nevertheless, we can observe some trend that the runtime is higher for lower diversity
than it is for high diversities or a diversity of 0. This can be explained by considering
how much the Greedy Allocation Rule has to resort the solution mappings after each
step. If the diversity is high, there are only few solution mappings for which the price
changes after a solution mapping is selected. Hence, the resorting can be done faster. If
the diversity is low, however, selecting a solution mapping does impact more remaining
solution mappings, due to the increased overlap. Hence, the resorting takes more time.
Eventually, for a diversity of 0, after selecting the first solution mapping all other
solution mappingss have a price of 0 (because they all need the same triple which is
already bought), which means that no resorting at all is needed.
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Figure 8: Runtime in seconds (on a logarithmic scale) for the Greedy Allocation Rule
for different diversities and query answer sizes.

As our evaluation shows, the runtime of the Integer Rule depends highly on the di-
versity of the triples within a query answer. Hence, even a query answer with a lot of
solution mappings can be feasible for the Integer Rule whereas another query answer
with fewer solution mappings might not be feasible. The Greedy Rule behaves more
stable with changing diversity. Paired with our observations about the utility of result-
ing solution mappings in the FedBench scenario, we can infer that the Greedy approach
seems to provide good allocations within reasonable time bounds for realistic scenarios.

8 Limitations and Conclusions

To grow further and be able to serve as a high-quality data source, the WoD has to
find the means to fund the creation, serving, and maintenance of data sources. In this
paper, we proposed a new paradigm for funding these activities in the form of a market
for data that combines a market-based approach with principles of federated querying.
We presented FedMark, a prototype that implements the concepts we introduced in
this paper. In addition, we introduced two possible allocation rules which can be used
by a customer to decide for a specific allocation. As we have seen, both allocation
rules have different properties with respect to runtime and utility. While the Integer
Allocation Rule guarantees an optimal allocation with respect to utility, the runtime of
this rule can exceed any reasonable time limit under certain condition, as we have seen
in the evaluation section. The Greedy Allocation Rule does not suffer from extensive
runtimes in the scenarios we investigated. However, the Greedy Rule cannot guarantee
an optimal allocation. Although, we have seen that the utility is often very close to
an optimal allocation. In practice, a customer would be advised to run both allocation
rules in parallel and specify a time out. After the time runs out, the customer can check
whether the Integer Allocation Rule has found an optimal allocation. If not, the current
best solution of the Integer Allocation Rule can be compared to the outcome of the
Greedy Rule. Whichever rule produces the best result under the time constraints should
be picked by the customer.

Another advantage of the Greedy Rule is that it can handle decreasing marginal
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values for the solutions. If the customer’s valuation is not linear, he might not have any
other choice but to use the Greedy Rule. Obviously, we need to explore a set of other
allocation rules to understand the trade-offs for the various different valuation needs of
the customer.

In addition, we need to revisit our assumptions and check if they are truly realistic. As
an example, consider the assumption that providers can amortize their fixed costs over
many transactions. This is only true if their goods are actually sufficiently attractive
to be bought, which again depends on the competitiveness of the marketplace. Whilst
we believe that this is true for many data products (e.g., financial data) we will have
to investigate where this assumption does not hold. Second, this paper did not discuss
how a provider decides on the optimal pricing. Whilst we did run an analysis indicating
that it is favorable for a provider to learn the price, we did not evaluate how well that
price can be learned—a task for future work. Third, we need to explore the possibility
of selling query subscriptions, which opens the way to mechanisms akin to the ones
that are currently dominating the entertainment industry. Fourth, we need to explore
market-aware optimizations for FedMark and evaluate their influence on the speed of
query execution. Finally, the generalizability of our evaluation might be hampered by
the use of FedBench. Indeed, FedBench’s limitations led us to run a second evaluation
with synthetic data. Whilst an evaluation in additional real-world scenarios is desirable
and should be subject of future work, we believe that our evaluation highlights the key
properties of our allocation rules and, hence, establishes their applicability.

Whatever the shortcomings of FedMark and our concept, we believe that the contri-
butions of this paper are a first step in the principled exploration of a financially stable
and, therefore, sustainable Web of Data.
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