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Abstract—Topology discovery is the key function of core
network management since it utilizes the perception of data
and mapping network devices. Nevertheless, it holds operational
and resource efficiency complexities. For example, traditional
discovery cannot perform predictive analysis to learn the network
behavior. Moreover, traditional discovery periodically visits IP
ports without considering the utilization levels, which leads
to high resource usage and energy consumption. Hence, it
is necessary to integrate intelligent methods into traditional
discovery to deeply understand the behavioral pattern of a
core network and recommend action to avoid these intrinsic
complexities. Therefore, we propose a Digital Twin (DT) enriched
Green Discovery Policy (DT-GDP) to serve a green discovery by
using the increased intelligence and seamless assistance of DT.
DT-GDP jointly uses the outputs of two modules to calculate
the total energy consumption in Watts. In the energy module,
we consider the service power, idle state power, and the cooling
power of an IP port and derive a novel energy formula. In the
visit decision module, we use Multilayer Perceptron (MLP) to
classify the IP ports and recommend visit action. According to
experimental results, we achieve a significant reduction in the
visited ports by 53% and energy consumption by 66%.

Index Terms—energy efficiency, sustainable network discovery,
multilayer perceptron, digital twin networks

I. INTRODUCTION

N the last few years, energy efficiency in core network

discovery has become the key consideration for Internet
Service Providers (ISPs) due to the rising energy costs and the
critical environmental effects of network devices. At this point,
intelligent and resource-aware discovery approaches become
crucial to serving green and reliable network management by
considering the network convergence time. However, tradi-
tional discovery does not consider energy consumption issues
and requires a high amount of resources, for instance, high
runtime, CPU, and memory usage. Also, due to the lack
of predictive and prescriptive methods, traditional discovery
cannot provide fast convergence time. Although today’s ISPs
start with searching for new ML/DL (Machine Learning/Deep
Learning) integrated approaches with the focus on green and
highly reliable network services [1], no effective solution has
been found yet. Furthermore, the Sustainable Development
Goal (SDG) 7.3 of the United Nations’ urges energy efficiency
to double the global energy efficiency rate by 2030 [2] along
with many vertical domains, such as industrial applications,
ICT, etc. For this, we note that increased intelligence integrated
with virtualization technologies, such as Augmented Reality
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Fig. 1: Discovery service resource usage and energy consump-
tion characteristics

(AR)/Virtual Reality (VR), Digital Twin Networks (DTNs),
Hologram Communication, etc., have advantages in the reduc-
tion of physical resource usage and thus contribute for green
network services [3], [4].

A. Main Challenges in Core Network Discovery

1) Lack of smart monitoring and controlling mechanism to
deploy prescriptive models and run what-if-analysis: In
today’s ISPs, traditional discovery is driven manually.
However, this method is insufficient to take an insight
into the future state of the network behavior to recom-
mend actions and run a what-if-analysis to avoid sudden
discovery of performance degradation.

2) Energy efficiency: Port-level energy consumption of net-
work discovery impacts the total energy consumption
of a router [5]. Moreover, the long-running period and
putting extra management traffic on the links increases
the energy consumption of discovery. This is because
the high load on the links for a long time affects the
CPU usage, response time, and thus the energy con-
sumption. For example, in Fig. 1, traditional complete
discovery working on a medium-sized (~ 40 routers)
IP core with the number of visited ports and average
energy consumption can be seen. Although the average
energy consumption limit for a medium-sized topology
is around 100kW, traditional complete discovery exceeds
this limit due to the periodic visit to all underutilized
and overutilized IP ports. Besides, overutilized ports
could lead to quality of service-related degradations in
network devices. This is because overutilization puts a
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high workload on the network links, which leads to the
heating of processing devices at the same time.

These mentioned problems require intelligent management
abilities to deliver a more green and resource-aware net-
work discovery. Digital Twin (DT), as an emerging digital
technology, brings the virtual twin of any physical entity of
real-world equipment. ZSM"-ETSI" is examining the appli-
cation of ML/DL to realize automated network management
by referring to DT as an increased intelligence procedure
[6]. Besides, ITU-T" also proposes a high-level functional
architecture [7] for ML integrated next-generation networks
by considering DT mirroring. It is seen that DT integration
models are strong enablers for future telecom networks that
tend to have increased complexity and comprehensive learning
abilities alongside proactive management needs.

B. Why Do We Need DT Technology for a Green Core
Network Management?

The main reasons why we propose DT integration to net-
work discovery service are as follows: (i) DT serves real-
time remote monitoring and control along the entire lifecycle
of discovery service, which enables deploying predictive and
prescriptive analytics and running what-if-analysis to learn
more about the network behavior (addressing Challenge 1), (ii)
In contrast to traditional discovery services, DT can support
services with a direct linkage to network operational data
rather than lastly updated IP inventory. Lastly updated IP
inventory becomes outdated as time passes until the next
discovery service cycle starts. For this reason, DT-integrated
discovery results in more accurate topology information via
smart observation and control (addressing Challenge 1). (iii)
Thanks to its virtualization feature and seamless assistance,
DT provides resource and energy saving for discovery service.
This is because, in a DT-integrated discovery, there is no
need to access all physical IP ports, which reduces the total
CPU and memory usage. For this, less amount of resource
usage will result in reduced energy consumption for the
discovery service while maintaining highly reliable topology
information that surpasses the traditional partial discovery
methods (addressing Challenge 2), (iv) The configuration
settings of a network device include the information on how
to obtain the operational data regarding the device. Unlike
the traditional methods, DT integrated discovery service does
not require additional configurations in the perception of data
from different types of network devices. It eliminates the extra
data gathering step with a contribution to lowering energy
consumption (addressing Challenge 2), (v) In contrast to tradi-
tional discovery services, DT supports the implementation of
various Machine Learning methods to predict the unnecessary
visits and thus decrease the energy consumption of discovery
(addressing Challenge 2).

As a result of these advantages, we propose to integrate
Digital Twin networks into the network discovery to manage
the discovery process in a more efficient way regarding the

* Abbreviations: ZSM: Zero-touch Network and Service Management,
ETSI: European Telecommunications Standart Institute, ITU-T: International
Telecommunications Union Telecommunication Standardization Sector

network resource usage and environmental effects. Although
the DT seems like a separation of layers as in Software
Defined Networks (SDN) technology, there are significant dif-
ferences in terms of network discovery. For instance, the SDN
control plane implements a centralized controller to discover
the configuration information of network devices, while DT
aggregates and analyzes the configuration information from
various sources. In addition, DT makes it possible to imple-
ment AI/ML algorithms and identify patterns and anomalies.
However, the SDN control plane cannot achieve such smart
methods to deeply understand the network dynamics and take
smart actions in network discovery. In summary, the DT
control tower uses a virtual representation of the IP core
and learning capabilities to enable an energy-efficient network
discovery in contrast to the centralized SDN control plane.

C. State of the Art

In the current literature, there are significant attempts to
integrate DT technology into network management and control
systems to enhance communications services. For example, in
[8], enabling the IoT applications over the sixth generation
(6G) networks is discussed to manage and optimize 6G edge
networks. Moreover, [9] discusses 6G Digital Twin Network-
ing (DTN) from both data and communication perspectives
by resulting in a reference architecture for interfaces between
the layers to form a closed-control loop. [10] gives a broad
taxonomy of DT and 6G integration. In addition, the authors
examine the potential challenges from a data management
perspective for 6G-oriented services. Furthermore, [11] ex-
amines the implementation of network slicing by using DT
regarding the Industry 4.0 and 5G applications. According
to the simulation results, the authors ensure that the DT
model accurately mirrors the network behavior and predicts
end-to-end latency under various environmental conditions.
Regarding the DT modeling and applications, [12] serves
as a comprehensive survey highlighting the DT and product
lifecycle relations. This study mentions the Digital Twin and
Digital Shadow terms for the current DT modeling attempts. In
addition, the DT design phase is referred to as the production
system design to optimize iteratively, analyze and evaluate
virtually.

On the other hand, the current literature is categorized into
two parts from the network discovery perspective regarding
the node visit behavior; TPD (Traditional Partial Discovery)
and TCD (Traditional Complete Discovery). In TPD, a subset
of topology is chosen and visited instead of periodical visits.
However, its usage has not yet been widespread in the telco
industry. In our previous work [13], we propose a device-level
TPD approach by using Hidden Markov Model to estimate
the possible devices which need to be discovered in an ISP
network. Furthermore, in [14], a new partial discovery scheme
is proposed to increase the accuracy rate of neighbor discovery
for a transmit-receive pair in cellular networks. In [15], a
new topology inference method based on a subset structure
is proposed to achieve decreased packet delay to construct
a holistic network view. In [16], a new partial discovery
approach is introduced for multi-UAVs in ad-hoc networks
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to solve network reconstruction problems by reducing the
coverage time and increasing the reconstruction accuracy.
Furthermore, in [17], an adaptive topology reconfiguration
method is proposed for DNs (Distribution Networks) to handle
reliability challenges in DN lines.

In [18], a complete discovery is proposed for an SDN
deployed scenario to eliminate the redundant messages for
the central controller. Likewise, in [19] and [20], new com-
plete discovery mechanisms are proposed depending on the
OpenFlow protocol to improve the discovery time. In [21], a
complete neighbor discovery scheme is examined to solve the
mobility and the battery limitation dilemma in IoT networks.
Besides in [22], energy efficiency is considered for underwater
acoustic sensor networks (UANs) discovery due to the limited
lifetime of the underwater vehicles.

As seen in Table-I, existing state-of-the-art TPDs and TCDs
are able to serve accurate topology information for different
networks. However, only IoT cases are energy-oriented. More-
over, IP core-based studies do not consider the underutilized
and overutilized ports regarding energy consumption. At this
point, the high energy consumption of discovery stemming
from underutilized ports remains serious. Although several
examples of DT developments for network management are
listed above, none of them focuses on network discovery. To
the best of our knowledge, this is the first study to develop a
sustainable topology discovery for an IP core network by using
DT integration. Thereby, our research question for this study is
“How can we serve an intelligent, and energy-aware discovery
for IP core considering the specified energy definition, which
uses the parameters; port usage, bandwidth requests, and
capacity of the ports ?” To address this; we propose the use of
DT technology by taking advantage of its resource efficiency
and prescriptive analytics feature.

D. Contributions

We summarize the contributions of this study as follows:

o We construct the digital twin layer of the physical IP
core to maintain more efficient discovery management
in which descriptive, predictive and prescriptive analytics
are enabled to learn the network behavior and perform
what-if-analysis.

« We model the total energy consumption of discovery as
a function of the average number of visited IP ports and
their individual energy consumption. With the integration
of DT, our energy consumption model embodies the
virtual neighboring circumstance of the physical IP ports.

e As an agile brain of our solution, we use Multilayer
Perceptron integrated with the DT capabilities to perform
an action recommendation for a port-level discovery.

The rest of the paper is organized as follows. In Section II,

DT-GDP architecture is given in detail. Section III is devoted
to the performance evaluation of DT-GDP. Finally, Section IV
concludes the paper.

II. DT-GDP ARCHITECTURE
A. Physical IP Core

We consider a physical IP core topology that serves broad-
band services to regional internet users. At the top of the

Discovery
agent

Pyhsical & Logical
Inventory

+ snmpwalk 12.24.21 00:01:25
* lemp 12.25.21 00:03:42

IP access methods

IP CORE

=P i
(== P: Provider router

PE: Provider Edge router

‘ Aggregation switch

— Physical connection

Virtual neighborhood

m  Underutilized port

Overutilized port

Access
I Layer

) & S &

Access-1 Access-2

Fig. 2: Traditional discovery service topology working on a
sample IP core layer

broadband access topology, there is an IP/MPLS (Internet
Protocol/Multi Protocol Label Switching) core, which makes
it possible to carry different types of traffic and access
available services. In this core, there are P (provider) and
PE (provider edge) routers. In our physical twin topology,
we use single-rack Cisco CRS-1 core router specifications to
calculate energy consumption. For example, we use consumed
power as approximately 106 W at full load and 92 W at idle
state [5]. Fig.2 describes the general application architecture
of TPD and TCD on a sample IP core. As the figure shows,
the discovery agent takes information from the IP core via
IP access methods, specifically snmpwalk (a Simple Net-
work Management Protocol application) and ICMP (Internet
Message Control Protocol), and then constructs the physical
and logical inventory regarding the network topology. TCP
and TPD discovery approaches are implemented within the
discovery agent by jointly using the snmpwalk and ICMP
outcomes. Therefore, we have adopted a partial discovery
approach in DT-GDP by implementing snmpwalk and ICMP.
We have gathered the port information of the network devices’
via snmpwalk. After retrieving the network devices’ diagnosis
information, we used ICMP to test the connectivity status of
the network devices. We have used ICMP while encountering
missing diagnosis information within the snmpwalk outputs.

B. Twin IP Core

As shown in Fig. 3, DT-GDP starts with processing the
real-time, historical, and physical asset dataset of the physical
topology. After it constructs the virtual twin layer in which
the DT model is formed using the processed asset set. After
that, the intelligence feature of the twin IP core layer is
activated within the Visit Decision Module, and the specific
energy consumption formula is formed within the Energy
Module. The outputs of these two main modules predicted
visit behavior and per port energy consumption, are combined
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TABLE I: Comparison of Proposed Green Discovery with Existing Works

Literature Discovery Infrastructure Number of Energy Topology construction  Average node
approach nodes visited consumption accuracy availability
[13], [14], [15] artial IP core, Cellular low high high low
p g g
(161, [17] partial UAV, DN low high high high
[18], [19], [20] complete SDN high high high low
p g g g
[21], [22] complete IoT, UAN high low high low
p. g g
Our work partial IP core low low high high
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Fig. 3: Proposed structure for Digital Twin Enriched Green Discovery Policy, DT-GDP
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accuracy to the desired levels. In addition, synchronization
is performed to check for the asset dataset lifetime between
the physical IP core layer and the twin IP core layer. At
this point, propagation and processing delays are two issues
in synchronization related to the communication concerns in
DT networking. As our main focus is developing a discovery
service-wide energy consumption model by considering the
service and cooling power, the communication issues remain
out of scope for this study. Therefore, we perform a manual
synchronization frequency set approach as given in [23]. The
details of DT-GDP are explained in the below sections, and
the notations used within this study are given in Table II.

1) Energy Consumption Model: Generally, a router’s power
consumption is related to its processing power, the total
number of ports, the type of these ports, and the activity on
those ports. For instance, a router with more or higher speed
ports consumes more power due to increased data flow in both
ingress and egress directions. In this circumstance, the power
consumption of a router port is lower than the total power
consumption of this router. On the other hand, the port speed
and the type of port connection (fiber optic, Ethernet, etc.)
change, and the power consumption of a port can reach high
levels. Considering this, we work on Cisco CRS-1 routers with
identical port types to realize and test our theoretical work in
a clarified manner.

Before starting the port-based energy model development,
we need to find a way to relate the port features and find
interdependencies between them. For this, we work on the
MPLS dataset used in [13] by extracting the Cisco CRS-1
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Fig. 4: Block diagram for twin processing step, realized in
Twin IP core Layer

router rows and their features (mainly including the energy
consumption opposed to the given study) as the columns.
After, we perform correlation analysis for each feature to see
how the features affect each other and energy consumption
on this dataset. We use corrcoef() method in MATLAB
R2020b° to get the correlation coefficients for the features.
We feed this method with the feature matrix consisting of
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TABLE II: Nomenclature

Notation Explanation

F Asset set for twins

n Total number of routers

m Total number of ports

k Total number of ports in a router

FEiotal Total energy consumption in network discovery
service | Energy consumed when the discovery service in run

P Energy consumed by the j¢" port of an i¢" router
i maz Energy consumed by router i at full load

P;aie Energy consumed by port a router at idle state

P. Cooling power for a router

P.; Cooling power for a port

v; Visit coefficient

o Port usage

B Requested bandwidth

C Capacity of the port

a IP port access rate

¢ Output label by layer i

Ct Output vector at time t

Ce Cross-entropy value

R Total reliability value

Tij Reliability constant for action j in case i

Cij Cost constant for action j in case i

the Cisco routers in rows and the respective feature values
in columns. The resultant correlation matrix is given in Fig.
5. This figure shows that three-port features have a nonzero
correlation with the theoretical power. Moreover, the lower
triangular side of the correlation plot shows the Pearson’s
Correlation Coefficient (PCC) values for linear correlations.
By looking at these correlation values, it seems that the port
capacity has a negative correlation value that is —0.31, with
the consumed energy. This correlation result is a possible case
with the constant service requests. Moreover, regarding the
correlation values, the requested bandwidth and port usage
seem to have positive correlations, with 0.68,0.72 values,
respectively, with the consumed energy. Furthermore, this case
is also sensible regarding the increased service demands. As
the nonzero correlation means the features affect each other,
they can be considered all in one to define a new metric:
energy consumption. For this reason, we form a specific energy
consumption formula for our energy-aware discovery by using
port usage (), requested bandwidth (/3), and capacity of the
port (C).

In our energy consumption model, we take into considera-
tion the energy consumed by the discovery service, the energy
consumed at the idle state of a router, and the cooling power
of the router. The energy required for port visits constitutes
the discovery service power. The idle state power arises when
there is no active running service on a router. In addition, the
cooling power of a network device, a router in our study, is
related to the given discovery service power. By considering
these terms, we form the energy consumption of the j® port
in the i router as:

Pij = Pijscrvice + Pijo + Pije, Vs (D

where Pjjgervice 18 defined as the energy consumed when
the discovery service is running at full load. F;j;q is the idle
state energy consumption, and Pj;. is the cooling power of a
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Fig. 5: Energy consumption model parameters correlation
matrix

port. The energy consumption of discovery service at full load
is calculated as:

B Pinmw
Pi' ervice — ~- 7. * 2
js C k Y ( )

where § and C' values are in Gbps, and v is in percent-
age. We note that 3 stands for requested bandwidth for the
management interfaces of a router. For this reason, % can be
interpreted as service request rate.

Moreover, + is the port usage rate in percentage that is the
actual management port utilization rate. The maximum value
for this utilization rate is equal to 1. Furthermore, the requested
bandwidth value plays a significant role in the resource usage
of the management interfaces. In other words, if there arises
a high amount of bandwidth request, CPU usage, processing
capability, response time, current device temperature, and thus
the consumed energy values are affected. For this reason, we
not only multiply the port power by () but also by (%) to
hit the dense management traffic arrival cases. Also, Pjyqqx
in the nominator stands for the max power consumed by the
router ¢ at maximum load. We take this value from the Cisco
CRS-1 router datasheet equal 106Watt. We assume fair port
usage for active services in the maximum load case. On the
other hand, when the discovery service and all other services
are not running, the router will be in an idle state. Hence, there
arises minimum power consumption, called idle state power
consumption. It is calculated as:

Piidie
k
where k stands for the number of ports regarding the related

router. In addition, from the energy consumption perspective,

there arises an additional consumption term for a router, that
is, the cooling power. As the routers generate heat when they
are operating according to the load, the energy required to
cool that arisen heat is in non-negligible levels. In addition,
according to [5], the required cooling power is equal to the
given service power. Therefore, we take into consider cooling
power of a router when modeling the discovery service to
converge to a more realistic energy consumption model. In this

Py = 3)
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case, the total energy consumption of a router for discovery
service will be doubled due to the cooling power by reaching
higher levels. That’s why we take into consider the cooling
power in our theoretical modeling. Hence, we define the per
port cooling power as:

PijC = (PijService + Pijo).a 4)

where, a is the average access rate to the IP ports and €
[0,1]. Access rate means, if the requested service is high, the
access rate will be high for these ports. The calculation of a
is given below:

1 k
a= %Zvig (5)
i=1

where v; is the visit coefficient that is decided by Visit
Decision Module. In the first run of the DT-GDP, v; values for
all ports are initialized as one, which is the maximum value.
In the upcoming iterations, it is decided in the Visit Decision
Module and feedbacked to the virtual twin model.

2) Visit Behavior Decision: The visiting decision for IP
ports is made by using the twin layer features. As given in
Fig. 6, the proposed DT-GDP uses Multilayer Perceptrons
(MLPs) in Visit Decision Module to find out the discovery
visit behavior. Since some of the IP port features in the dataset
are strongly correlated with the energy consumption value and
the visit behavior, it might not be enough to use statistical
models or optimization approaches. Also, by looking at the
performance results of the simulated prediction methods, we
choose MLP as the brain function of DT-GDP as achieving the
highest accuracy. Thus, MLP takes X! € R%*? as the input,
where d stands for the number of instances, and 25 stands for
the number of features in the twin layer. In our case, as the
number of instances will be equal to the total number of ports
in the inventory for the time ¢, we say that d = m.
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2
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—> y; o visitty; =1

bandwidth Xp ——
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weight matrix 2

weight matrix 1

Fig. 6: Internal structure of proposed Visit Decision Module

Furthermore, by looking from the derived energy model
perspective, we see that there arise two classes with visit and
no visit labels to be mapped with the actual overutilization
and underutilization status of the ports. Here, predicted class
values are achieved by using all features listed in the dataset.
As the features have interdependency with each other, using
the result of this multi-featured effect to plan the port visits

give more significant results rather than using only the uti-
lization rate feature. With this approach, DT-GDP maintains a
revealing topology more applicable for what-if-analysis. The
performance results of one-feature and multi-feature cases are
given in Section-IV.D in detail. As a result, we train our model
on MLP in order to solve a two-class classification problem.
We use randomized 5-fold cross-validation to decide the MLP
architecture and select (6,4) 2-layered architecture, which is
given in Fig. 6. In this MLP architecture, we use sigmoid, o(.)
activation function in the label decision step, which outputs the
labels by:

1
CAh (6)

1+ exp(Z?:l WhiTj + Who)

where, h € {1,2,3} stands for the 2 hidden layer indexes
and the output layer index respectively, and ¢}, € {0, 1} stands
for the class labels in our 2-layered MLP architecture. Besides,
wp(.y is the weight vector for the layer h" layer, and it is
updated according to the loss function output. As the loss
function, we use binary cross-entropy (c.) which is given
below:

ce = cplogén + (1 — cp)log(1l — ¢p) @)

where, c;, values are the actual class labels, and ¢, values
are the predicted class labels. In the implementation of MLP,
the cross-entropy is calculated for each of the predicted class
labels and the update rule for stochastic gradient descent
algorithm is realized by trying to achieve minimum cross-
entropy value in total. According to the output of MLP that
is, C* € R™ we interpret the visit behavior of the j" port
in the i router as given below:

if o(wTz) =1

if o(wTz) =0

vyt 4+ 1) = vzszti .
no visit,
By using MLP outputs, DT topology is updated by con-
sidering only the ports with the visit predicted label. More
specifically, if a port visit behavior is predicted as visit, the
asset set of this port is updated. If it is novisit, then there is no
update for this port. Moreover, the visit decision is performed
for all ports at each time step. This is because the visit decision
is a kind of service for the twin layer that makes DT up-to-
date. To calculate the total energy consumption during the
discovery service, we use:

n k
Eiotar = Z Z v P ®)

i=1 j=1

where n stands for the number of routers, and & stands for
the number of ports in a router. Thereby, the outputs of both the
Visit Decision Module and the Energy Module, respectively,
are used to traverse all ports in all routers contributing to the
total energy consumption. This approach basically depends
upon summing together the visited ports’ energy consumption
by excluding the energy consumption of the non-visited ports.

As seen in Alg.1, DT-GDP comprises of two functions,
such as visitDecision and energyCalculation. Each of these
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functions covers the newly designed modules within the twin
IP core layer. Before calling these functions in the main body
of DT-GDP, the initialization step is performed by setting the
visit behavior for all ports to 1, setting the weight values
between the layers of MLP in the interval of (-0.01,0.01)
in a randomized manner, and synchronizing the asset set of
the physical-digital twin. The energyCalculation function is
called in line-15 in Alg.1. It realizes our energy consumption
model that is derived in the Energy Module and calculates
the total energy consumption of a port located on a core IP
router in line-10. After that, the visit behavior forecasting
is performed by using MLP between line-12 and line-21 in
Alg.1. Moreover, between line-17 and line-19, cross-entropy
values are calculated to use in the updating weight values.
The updating rule is performed by adding the Aw values to
the current weight values. In line-18, Aw values are calculated
by using learning rate («), cross-entropy values, and the input
set. After getting the MLP outputs, we interpret them to form
the visit behavior decision as given in line-22. Eventually, the
outputs of the two functions, visit behavior and the consumed
energy by each port, are used to calculate the total energy
consumption of a discovery service in line-23.

Algorithm 1 DT-GDP

Require: F, Xt € R*% n, m, k, Pige. Pnaw» MLP
parameters
Ensure: Ct € R™  vo*tY, Eioral
1: initialization
’Uallt+1 +— 1
Way < rand(—0.01,0.01)
Synch. asset set, F' of physical twin
function energyCalculation(3, C, 7, vau! T, Pidie> Prmaz)
foreach router i from 1 to n
foreach port j from 1 to k
Calculate average port access rate, a;;
Calculate P;jservices Pio. Pijc
10: Pij — PijService + Py + PijC
: end
12: function visitDecision(X?, MLP parameters)
13:  while in time step ¢ repeat

R e A A S o

—
—_

14:  foreach z! € X' in random order
15: for h from 1 to 3

16: Predict class labels, ¢,

17: e + [1, ()" (1 = ép)t—en
18: Awgy = acext

19: Wall — Wall + AwWqy

20: until convergence

21: end

22: Interpret C* and update vq;! "
23: Calculate Fyytq;
24: end =0

III. PERFORMANCE EVALUATION
A. Dataset Description

We used an MPLS service dataset that is provided by
a telecom service provider in Turkey. We have worked on

TABLE III: Features and Labels Summary

Features

Router features (9 features)
-avg number of active links
-number of ports

-cpu load (%)

-memory usage (%)

-load (min/max/avg)

Port features (16 features)
-port usage (min/max/avg)(%)
-requested bandwidth (Gbps)
-capacity

-status (up/down)

-fan speed (%)

-temperature (C) -location
-theoretical power (Watt) -region
-buffer state (%) -status
-packet drop count
-mean packet size (bytes)
-ingress packet rate
-egress packet rate
-connection percentage
Labels
-underutilized

-overutilized

100 T T
I underutilized
[ overutilized
== = avg. und. port usage
avg. ovr. port usage

90 -

80

70

60

50

port usage (%)

40
30

20

0 20 40 60 80 100 120 140 160 180 200
class-1 class-2

Fig. 7: Port usage distribution of two classes; Class-1 Under-
utilized ports, Class-2 Overutilized ports

this dataset before [13], but did not consider the energy
consumption values. As we work on Cisco CRS-1 routers, we
crop the dataset to extract only the CRS-1 specific information.
As a result, our final dataset consists of 500 samples, each of
which stands for an IP port of a core router Cisco CRS-I.
In the training process, we have implemented 5-fold cross-
validation to have a more robust trained model by tuning the
hyperparameters. In the implementation of sparse topology,
we take the samples from the same dataset by using the rate
of 35%. In addition, each sample in the dataset has a 25 x
1 feature vector with the features of {port usage, requested
bandwidth, the capacity of the port, total CPU load, memory
usage, fan speed... etc. }. The full list of these features and
labels is given in Table III. Also, the distribution of port usage
values over two classes is given in Fig. 7 with the average
values shown as the dashed lines. We partition the data into
three parts, such as 70% as training data, 15% as test data, and
15% as validation data to use in the learning and prediction
steps.
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B. Experimental Setup Phvsical IP C
ysica ore

As seen in Fig. 8, we carried out model training on MAT-
LAB R2020b° environment using Deep Learning Toolbox.
We have set up the simulation modules in Deep Network . inventory%
Designer according to our two-layered MLP structure working ------- » relation

i Discovery Service > Operating platiom

REST call

on an Ubuntu 16.04 desktop. We use MATLAB Production o synch point
Server to test and store the models and handle DT version || &/ [« >
management. The production servers are integrated with the
Microsoft’s Azure Digital Twin Platform. According to the RS SRR R
most accurate models, we update the current DT, which i Data-Driven Model
is available to network services. The data communication query |  generation and
between the physical IP core and DT IP core is maintained by testing
using REST calls. Also, database accesses are performed by Twin IP Core V
using SQL queries. All the simulation Parameters are GIVEN 1N rosrssssesessomes s e
Table IV. ;
i | DL Toolbox Production Server Current DT
TABLE IV: DT-GDP Core Network Discovery Parameters 1 N ) R > 3
Parameters Values trained ‘\ current available for
- S S~ models : model R network servicesi
i . .m/.mat files .m/.ctf files :
Topology L ogies: (85, 200} A e

Total Number of ports in Sparse and Dense
Topologies: {175, 500} Including:
Overutilized and underutilized ports

Implemented router: CISCO CRS-1
Capacity: 4-slot, single-rack

Full load energy consumption, P, qz: 106W
Idle state energy consumption, P;g;.: 92W
Port density: 5x100G

MLP (6,4) 2-layered architecture
Optimizer: sgdm

Cross-validation: 5-fold

Loss function: Binary cross-entropy
Learning rate update period: 3
Maxepochs: 40

Mini batch-size: 125

Router Parameters

Learning Model
Parameters

C. Targeted Parameters & Baselines

In this simulation, we aim to investigate the results of DT-
GDP, for the parameters: (i) number of ports visited, (ii)
total energy consumption of discovery service, (iii) average
resource consumption, and (vi) total cost value. We compare
the performance of DT-GDP with TPD and TCD discovery
approaches. We test a set of prediction methods as given below
and compare the classification results with MLP.

1) Naive-Bayes: In the Naive-Bayes model, we use the
Gaussian approach assuming that the likelihood of features
follows a normal distribution.

2) Quadratic Discriminant: In the Quadratic Discriminant
model, we try to find a non-linear boundary between the two
classes by using a quadratic kernel.

3) KNN: In the KNN model, we use fine KNN with the
euclidean distance metric and equal distance weights when
calculating the decision criteria.

4) Decision Tree: In the running of the Decision Tree
model, we form decision surfaces by using Gini’s s Index as
the splitting criteria.

< __Ubuntu 16.04 > < _Microsoft Azure >

Fig. 8: System architecture of the DT realization process

5) SVM: In the implementation of the SVM model, we use
kernel type as poly. In addition, other hyperparameters for this
model, such as regularization term and the kernel coefficient
are decided according to the cross-validation results.

D. Performance Comparison

1) Visited Number of Ports-Energy Consumption Relation:
Firstly, we perform DT-GDP on sparse and dense topologies
to measure the visited number of ports and the total energy
consumption in Watts. We run the simulation in parallel for
a non-stop discovery and observe the results for 20 minutes
of simulation time. At this point, we choose such a topology
sample to run a discovery service that will take 20 minutes
on average. Namely, the simulation of discovery starts at the
t = 1 and ends at the end of the twentieth minute. We show
these steps in Fig. 9 to make a clear observation of a visited
number of ports and energy consumption. We compare the
results with TCD and TPD methods. As seen from Fig. 9
DT-GDP in sparse topology, which is shown as a blue line,
visits 40% fewer IP ports than the TCD and TPD for a
sparse topology. Furthermore, for a dense topology, the visiting
behavior of DT-GDP occurs as ~ 55% less compared to TCD
and TPD. For example, if we look at the green and orange
colored rectangles in Fig. 9, we see that the average visited
a number of ports with DT-GDP is much closer to the sparse
topology results. This means that DT-GDP surpasses the other
methods, even if in the dense topology scenarios. Moreover,
if we calculate the average energy consumption regarding
the colored rectangles, we see that DT-GDP consumes 66%
less energy in a dense topology. The main reason for the
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Fig. 9: Visited number of ports and energy consumption value
during simulation time

success of DT-GDP comes from making a distinction between
overutilized and underutilized ports (in Alg.1 line-22) and
eliminating unnecessary visits to IP ports.

2) Average Resource Usage: We examine the average re-
source usage of the discovery methods by measuring the total
runtime, CPU usage, and memory usage of TPD, TCD, and
DT-GDP. As seen from Fig. 10, although DT-GDP is not
the fastest discovery method, it occupies the least CPU and
memory resources in percentage when compared to TCD and
TPD. The main reason for this is that even though it runs ML
algorithms, the snmpwalk to a high number of network devices
puts more load on the network devices compared to the data-
driven algorithm run. Correspondingly, the implementation of
DT (assuming that DT communication issues are handled) has
resulted in a more effective method to eliminate the unneces-
sary snmpwalk process to many devices. As a result, it has a
wider range of available resource slots, as shown in the figure
with green two-sided arrows. The main reason for the resource
slot availability is that we deploy the data-driven digital twin
on the cloud by using the capability of Matlab Production
Server to be deployed on cloud platforms. With this, physical
production servers’ management cost and resource usage are
eliminated from the overhead of DT deployment.

TABLE V: DT-GDP loss matrix in terms of discovery service
relative cost evaluation

Actions
No visit Visit
Cases yij =0 [ ¢ O c: P

3) Relative Cost Analysis-Energy Consumption Relation:
The relative cost value is the measure of how much the
proposed method diverges from the ideal case in terms of
energy consumption. The higher the relative cost-value means,
the higher the extra energy consumption that is not likely
to occur in the ideal case where all visits are assumed to
be performed correctly. We construct the loss matrix of DT-

90 T T

[ runtime
CPU usage
80 |- | I memory usage

TCD has fewer available
slots, whereas DT-GDP
has 38% more

. \68

66

70

60

50

average resource usage(%)

DT-GDP TPD TCD
discovery approach

Fig. 10: Average resource usage comparison

TABLE VI: DT-GDP Relative Cost Analysis

Sparse Topology
27% |

Dense Topology
45% |

GDP as given in Table V. In this matrix, we put the actual
class labels, that are y;;’ s, to imply the row elements. On
the contrary, we put the actions to be taken according to
the predicted class labels as the column indicator. In the loss
matrix, ¢ values stands for cost rate for the case-action pairs.
We define the values for ¢ according to our discovery decision
problem.

For the cost rate, ¢, we put positive P;; values if the real
class label of a port is zero and it is misclassified because of
being an unnecessary visit in reality. Likewise, we put negative
P;; values if the real class label of a port is one and it is
misclassified. Besides, we put cost metric ¢ as zero for the
successfully classified cases, that are, if the real class label
is zero and it is not visited, and the real class label is one,
and it is visited, in other words, the diagonal elements in the
cost matrix, which means that successively classified cases do
not put the extra relative cost to the ideal energy consumption
value.

We perform relative cost analysis by using the Bayesian
Decision Theory basics, and use the following formula
to calculate the relative cost of DT-GDP, Cost =

2misclass. |l H
ar%max{zactiom Smgeclace 2} In the cost calculation, ¢
wers

values are used as defined in the loss matrix.

We compare the relative cost values of DT-GDP with the
TPD and TCD. According to our experimental results (given
in Table VI), we see that there is 45% decrease in relative
cost compared to the average relative cost of TCD and TPD.
Also, we observe 23% decreased relative cost value for the
simulated sparse topology.

4) Learning Method Performance Analysis: We investigate
the performance results MLP. We use cross-entropy as the
loss function and update the training parameters according to
the minimized cross-entropy values. For example, Fig. 1la
shows that the cross-entropy has its maximum value at the first
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Best Validation Performance is at epoch 36

cross-entropy

0 5 10 15 2 25 30 35 40
42 Epochs

(a) Calculated cross-entropy values for each epoch
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Discovery Visit Classification
with MLP (6,4)2-Layer

no visit

True Class
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visit

Predicted Class

no visit

(b) Confusion matrix for MLP output

Fig. 11: MLP performance results

TABLE VII: Performance Results of Learning Methods with Different Evaluation Metrics

MLP Naive Bayes pluadratic KNN Decision SVM
iscriminant Tree

Sparse Dense Sparse Dense Sparse Dense Sparse Dense Sparse Dense Sparse Dense
Accuracy (%) 97.33 98 83.1 90.1 91.7 95.2 91.7 95.2 94.3 96 94 96.6
Training time (sec) 2.58 2.73 0.8421 0.97 0.87 1.05 0.87 1.05 0.65 0.65 1.87 2.03
fgﬁ‘:}::c‘;n speed ~4850 | ~5000 | ~8350 | ~8500 | ~6300 | ~6600 | ~6300 | ~6600 | ~12000 | ~12000 | ~4150 | ~4500
TPR-Recall (%) 98.0 96.7 85.7 93.5 91.5 96.4 91.5 98.0 92.6 94.7 90.5 96.0
FPR (%) 2.0 33 14.3 6.5 8.5 3.6 8.5 2.0 7.4 5.3 9.5 4.0

epoch, and within the algorithm run, it is tried to be minimized.
During the running of MLP, we achieve the best validation
performance at epoch 36. Furthermore, we examine the results
of MLP by forming the confusion matrix of the classification
problem. According to Fig. 11b, accuracy and recall values
are calculated as 98% and ~ 95.4%.

TABLE VIII: One-feature vs Multi-feature effect to the MLP
Prediction

One-feature | Multi-feature
Accuracy (%) 92.6 98
TPR (%) 91.5 96.7
FPR (%) 8.5 33

Furthermore, we investigate the one-feature and multi-
feature effects on the prediction success. We first use the
port utilization feature in the form of time-series data. We
perform periodic sampling of 12-hour, 24-hour, and 36-hour
in order to add auxiliary port utilization features to our
dataset. After we feed the (6,4) 2-layered MLP architecture
with this new input data that considers only port utilization
information with the minimum, maximum and average values
for three different sampling periods. To measure the multi-
feature effect, we feed the same MLP network with the dataset
that includes all twenty-five features (given in Table III). As
seen from Table VIII, a multi-feature case results in more
successful prediction performance due to highly correlated

features and information gain. The executive summary for all
of the simulated learning methods for multi-featured dataset is
given in TableVII. By looking at these results, we can deduce
the following points: (i) Although MLP requires more runtime
and make prediction more slowly, it achieves a significant
accuracy result which is the desired performance in the newly
designed discovery policy, (ii) The best recall values for the
classification task is achieved with MLP for both the sparse
and dense topology structures, (iii) SVM and Decision Tree
models can be preferred if less runtime (training time and
prediction speed) is required for the classification problem.

IV. CONCLUSION

With the tremendous interest in green network management
strategies, many service providers try to develop new method-
ologies regarding the main network management functions,
especially for network discovery. Since resource usage plays
a significant role in the energy consumption in discovery, we
propose a novel network discovery policy called DT-GDP that
jointly uses the individual energy consumption and the visit
behavior of an IP port. In addition, it integrates the digital
twin technology into the network discovery service. Thanks to
this integrated design, we not only achieve to reduce the total
energy consumption but also the total network management
cost of a service provider, making it possible to examine
the network topology in a virtual environment. In DT-GDP,

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on June 05,2023 at 12:40:45 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2023.3282326

there are two sub-modules, one is performing a novel energy
definition, and the other is predicting the visit behavior for IP
ports. MLP is used in the implementation of the brain of the
digital twin. Experimental results show that DT-GDP performs
well in terms of the total number of visited ports, total energy
consumption, percentage resource usage, and the total relative
cost of discovery service.

For future work, we are planning to revise the energy
formula by taking into consideration the requested traffic
types. In this way, we are planning to make a distinction
between the different types of traffic and their corresponding
energy consumption. In addition, as another future work case,
we plan to examine the effect of DT communication problems,
such as synchronization, on DT-GDP to enhance our energy
consumption model.
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