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ABSTRACT
In this paper, we present an innovative decentralised control framework, designed to address
stochastic dynamic complex systems that are influencedbymultiplemultiplicative noise factors. Our
advanced approach builds upon the foundation of conventional Decentralised Fully Probabilistic
Design (DFPD)by refining theRiccati equation toaccommodatemultiplenoise sources effectively. By
embracing the inherent stochastic nature of complex systems, our methodology fully characterises
their dynamic behaviours using probabilistic state–space models, delivering a comprehensive rep-
resentation of subsystem components. Importantly, the DFPD approach also incorporates system
and input constraints by characterising their corresponding ideal distributions, ensuring optimal
functionality andperformancewhile adhering to permissible boundaries. To further enhance system
performance, we introduce a probabilisticmessage passing architecture that enables seamless com-
munication between neighbouring subsystems and promotes harmonised decision-making among
local nodes. To demonstrate the efficacy of our proposed framework, we employ a three-inverted
pendulum system as a numerical example and compare its performance to that of the conventional
DFPD. Through this comparison, we showcase the advantages of our novel decentralised control
approach in handling complex systems with multiple noise factors.
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1. INTRODUCTION

Complex systems are a major research focus due to
their widespread presence in real life (Chen et al., 2021;
Zhang & Zhou, 2022), spanning various domains such
as electrical power grids (Herzallah & Zhou, 2021),
cryogenic propellant loading systems (Ren et al., 2018)
and social, biological and economic systems (Bunde
& Bogachev, 2010; Mokshin et al., 2019). A key char-
acteristic of these systems is their susceptibility to
high levels of uncertainty, which has led to exten-
sive literature on stochastic control for complex sys-
tems (Herzallah & Lowe, 2003; Li et al., 2017; Liu
et al., 2022; Zhang & Zhou, 2022). However, most
existing studies primarily focus on additive noise,
which is insufficient for modelling complex industrial
andmechanical processes, especially in networked sys-
tems with noisy communication channels (Antsaklis
& Baillieul, 2007) and modern power networks with
a high penetration of intermittent renewables (Y. Guo
& Summers, 2019). In such systems, multiplicative
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noises (or state-dependent noises) are often employed
to characterise the stochastic dynamics, as they can
capture the dependence of noise on state and/or con-
trol input (Xing et al., 2020).

Moreover, multiple multiplicative noises are preva-
lent in a wide range of complex systems, and in many
practical scenarios, systems may contain more than
one multiplicative noise. For example, communica-
tion systems may experience fading channels, result-
ing in multiple multiplicative noises. Power systems,
such as Phasor Measurement Units (PMUs) (Yang
et al., 2014), employed in power quality monitor-
ing, can also be affected by multiple multiplicative
noises due to phase mismatches. Sensor networks (Ma
et al., 2017) and image processing systems (X. Hu
& Hu, 2015) are additional examples where multiple
multiplicative noises play a significant role. To better
describe various sources and channels of uncertain-
ties, it is crucial to consider multiple multiplicative
noises in stochastic systemdynamics (J. Hu et al., 2013;
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Sotiropoulos &Kaznessis, 2008). This approach allows
for the explicit incorporation ofmodel uncertainty and
inherent stochasticity, thereby improving the robust-
ness properties of the controller (Gravell et al., 2020;
L. Guo et al., 2021).

Despite the prevalence of multiple multiplicative
noises, most existing stochastic control algorithms
either focus on additive noises or assume single mul-
tiplicative noises within the system. Addressing mul-
tiple multiplicative noises can provide a more accu-
rate representation of various sources and channels
of uncertainty present in complex systems, warrant-
ing further research and attention. Some studies have
begun to tackle multiple multiplicative noises both
theoretically and practically. For instance, X. Hu
and Hu (2015) proposed a variational method for
removing multiple multiplicative noises in image pro-
cessing systems, while Sotiropoulos Kaznessis (2008)
investigated the recursive finite-horizon filtering prob-
lem for a class of nonlinear time-varying systems
subject to multiple multiplicative noises, missing
measurements and quantisation effects. Building on
these foundations, Dong et al. (2015) addressed the
event-based filtering problem for time-varying sys-
tems with fading channels and multiple multiplicative
noises.

Extending the existing research that addresses mul-
tiple multiplicative noises in various contexts, this
paper proposes a novel decentralised control frame-
work for a class of complex networks subject to mul-
tiple multiplicative noises. Recognising that complex
systems typically comprise large numbers of interact-
ing nodes, the proposed control framework is designed
in a decentralised manner. To enhance the system’s
performance, we employ a computational and com-
munication approach calledmessage passing, enabling
individual subsystems to harmonise their actions by
sharing information. This distinguishes our approach
from traditional decentralised control methods, as
stochastic message passing is not constrained by the
homogeneity or conformability of the subsystem com-
ponents. Furthermore, all systemdynamics are charac-
terised by probabilistic state–space models, providing
a comprehensive description of the stochastic com-
plex system components. Capitalising on the strengths
of stochastic control methods, such as the Decen-
tralised Fully Probabilistic Design (DFPD) (Herzal-
lah & Kárnỳ, 2017; Herzallah & Zhou, 2021; Zhou
& Herzallah, 2020, 2021), our proposed framework

demonstrates superiority over conventional determin-
istic control methods in addressing the inherent ran-
domness of complex systems influenced by multiple
multiplicative noises.

While most published papers on conventional FPD
have primarily focused on additive noises, some
research has expanded the method by taking multi-
plicative noise into account (Zhou et al., 2019). How-
ever, this approach is limited to centralised systems
and does not effectively represent the various distur-
bances that agents encounter frommultiple sources (L.
Guo et al., 2021; J. Hu et al., 2013; Sotiropoulos
& Kaznessis, 2008). To address these limitations, this
paper extends the conventional DFPD by considering
multiple multiplicative noises, making it more suit-
able for complex systems. In contrast to the extended
FPD method presented in Zhou et al. (2019), the
novel control method proposed in this paper employs
a decentralised approach. Furthermore, our method
surpasses existing DFPDmethods in Zhou andHerza-
llah (2020, 2021) and Herzallah and Zhou (2021) by
addressing not only additive noises but also multi-
ple multiplicative noises. We go beyond the consid-
eration of a single multiplicative noise, as in Zhou
et al. (2019), by incorporating a series of multiplica-
tive noises to accurately represent the various sources
of disturbances affecting complex systems. This com-
prehensive approach enhances the applicability of the
control method for real-world scenarios, making it a
more effective solution for managing complex systems
with multiple noise sources.

The contributions of this paper can be summarised
as follows:

(1) All system dynamics are described by probabilis-
tic models, resulting in a comprehensive descrip-
tion of the stochastic complex system compo-
nents.

(2) Stochasticmessage passing is implemented to har-
monise subsystems’ actions under disturbances,
without being limited by the homogeneity or con-
formability of the subsystem components.

(3) Both multiplicative and additive noises are con-
sidered. The conventional DFPD is improved by
evaluating the effect of multiple multiplicative
noises, filling a gap in current DFPD research.

(4) The novel DFPD is further enhanced to handle
multiple multiplicative noises, representing vari-
ous sources of disturbances.
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The remainder of this paper is organised as fol-
lows: Section 2 presents the control problem state-
ment. Section 3 introduces the probabilistic mes-
sage passing framework, while Section 4 details the
randomised optimal controller design for decen-
tralised randomised complex systems with multiplica-
tive noises. Section 5 demonstrates the effectiveness
of the proposed framework through a three-inverted-
pendulums example. Finally, the conclusion and future
work are discussed in Section 6.

2. Problem statement

As we specified in the introduction part and model
from J. Hu et al. (2013), consider each subsystem i, i ∈
N with the following expressions:

xi,k =
(
Ai,1 +

Pi∑
l=1

ρi,lĀi,l

)
xi,k−1 +

Ni∑
j
Ai,j,2xj,k−1

+ Biui,k−1 + wi,k, (1)

where xi,k ∈ �ni is the state of subsystem i, xj,k ∈ �nj ,
j ∈ Ni is the neighbouring subsystem which connects
with subsystem i and Ni is the total number of subsys-
tems that subsystem i has connection with, ui,k ∈ �mi

represents the controlled input of local subsystem i.
ρi,l ∈ �, l = 1, 2, . . . , Pi are the multiplicative noises
with the following distributions (2) while wi,k ∈ �ni
stands for the process noise with Gaussian distribu-
tion (3). Note that wi,k and ρi,l are mutually uncor-
related in k, l and i. Furthermore, matrices Ai,1, Ai,j,2,
Bi, Āi,l, l = 1, 2, . . . , Pi are the system parameters with
appropriate dimensions.

ρi,l ∼ N(0, Q̄i,l), l = 1, . . . , Pi, (2)

wi,k ∼ N(0,Mi). (3)

We can see that the formulation expressed as
Equation (1) is complicated and hard to read. There-
fore, to express the system in a clearer and more con-
venient manner, we extend the subsystem state by
including the states fromneighbouring nodes. As such,
the extended state of subsystem i is donated as zi,k =
[xTi,k, x̃

T
i,k], where xi,k is the refereed as to the inter-

nal state while x̃i,k = [· · · , xTj,k, . . .]Tj∈Ni
, the states from

neighbouring nodes is donated as subsystem i’s exter-
nal state. Using these new notations, Equation (1) can

be rewritten as follows:

xi,k =
(
Ai,1 +

Pi∑
l=1

ρi,lĀi,l

)
xi,k−1 + Ai,2x̃i,k−1

+ Biui,k−1 + wi,k, (4)

where Ai,2 = [· · · Ai,j,2 · · ·], j ∈ Ni. As introduced
earlier, the external state x̃i,k represents the states from
the neighbouring subsystems who have connections
with subsystem i. In this framework, we offer an prior
linear estimation of external state x̃i,k−1 inside of sub-
system i which is given as the following form:

x̃i,k = Ai,3x̃i,k−1 + w̃i,k, (5)

where Ai,3 = diag[Ai,j,3] is the estimated parameter
which will be updated every step and Ai,j,3, j ∈ Ni are
related to each external state x̃i,j,k corresponding to
neighbouring nodes j, w̃i,k the estimated error that is
assumed as Gaussian noise with zero mean and vari-
ance Qi,2. Later on, the external state will be updated
using the information passed from the neighbour-
ing subsystems which will be explained in detail in
Section 3.

To better characterise the stochastic nature of the
considered system, in this paper, we describe the sys-
tem dynamics using probabilistic models. Thus the
system dynamics of internal state equation (4) and
external state equation (5) can be represented as the
following conditional distributions:

s(xi,k
∣∣ zi,k−1, ui,k−1 ) ∼ N(μi,k,Qi,k,1) (6)

s(x̃i,k
∣∣ x̃i,k−1 ) ∼ N(μ̃i,k,Qi,2) (7)

where

μi,k = Ai,1xi,k−1 + Ai,2x̃i,k−1 + Biui,k−1

Qi,k,1 =
Pi∑
l=1

Āi,lxi,k−1Q̄i,lxTi,k−1Ā
T
i,l +Mi

μ̃i,k = Ai,3x̃i,k−1 (8)

where μi,k and μ̃i,k are the mean values and Qi,k,1 and
Qi,k,2 are covariances.

Remark 2.1: Based on Equation (1), we can see that
ni represents state dimension of subsystem i, which is
verified with i, i = 1, . . . ,N. This is because of that the
above formulation is not restricted by the homogene-
ity assumption of the components of the subsystems.
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Individual subsystems can be heterogeneous and can
have different lengths.

Remark 2.2: From Equation (5), we can see that the
prior estimation of external state is only related to the
former value of itself, where the controller of subsys-
tem i has no control power over the external state.
This is an realistic assumption since the external state
represents the state from the neighbouring subsys-
tems, thus shouldn’t be affected by any variables from
subsystem i.

From the system dynamic probabilistic model (6),
we can see that the internal state of subsystem i is
decided by both internal and external states and con-
trolled by the controller of subsystem i. In addition,
the external state participates the controller design as
well, in which way the control decision is made based
on not only their own state information but also the
state information fromneighbouring nodes, thusmak-
ing sure the global control objective can be achieved.
Therefore, the external state is significant for subsys-
tems and has major influence on both system internal
state dynamics and control inputs. Note that the exter-
nal state probabilistic model (7) only offers an prior
estimation of external state, which will be updated to
posterior external state using the obtained information
passed from the neighbouring subsystems. The whole
communication process is regarded asmessage passing
framework and will be introduced in the next section.

3. Message passing framework

In this section, the probabilistic message passing
methodology, which indicates how subsystems com-
municate with each other and keep each other
informed about their newest state will be briefly intro-
duced. As discussed in the previous section, we offered
a brief prior external state estimation inside if sub-
system i using the external state’s previous values.
After that, the prior estimation will be updated using
external signals received as messages from neigh-
bouring subsystems. In the meantime, the subsys-
tem i will pass their new updated internal state to
the neighbouring subsystems as well, thus provid-
ing coordination between the subsystems. To better
understand this process, we divided this into two
steps. The first step is regarded as Passing, which
indicates how the information been passed to their

neighbouring subsystems. For instance, for subsys-
tem i’s neighbouring nodes j, j ∈ Ni, after the latest
probabilistic distribution of the interacting variables
of subsystem j, Lj(xj,k, x̃j,k, uj,k−1 | zj,k−1) = s(xj,k |
zj,k−1, uj,k−1)s(x̃j,k | x̃j,k−1)c(uj,k−1 | zj,k−1) obtained,
subsystem j will then pass this information to its
neighbouring subsystem i specifying the probabilis-
tic description of its own internal state, xj,k, which is
given by,

Mi←j,k =
∫

s(xj,k, x̃j,k, uj,k−1
∣∣ zj,k−1 ) dx̃j,k duj,k−1

=
∫

s(xj,k
∣∣ zj,k−1, uj,k−1 )s(x̃j,k

∣∣ x̃j,k−1 )

× c(uj,k−1
∣∣ zj,k−1 ) dx̃j,k duj,k−1

= N(μi←j,k,�i←j,k), (9)

where

μi←j,k = Aj,1xj,k−1 + Aj,2x̃j,k−1 + Bjuj,k−1,

�i←j,k = Qj,k,1 + Bj�jBTj , (10)

where c(uj,k−1 | zj,k−1) is the randomised controller
which will be designed in the following section, uj,k−1
and �j are the mean and covariance of randomised
input uj,k−1, respectively.

From Equation (9), we can see that except the inter-
nal state, all the other variables have been integrated
over. This is because that the subsystems only need
to send information about their own state, thus the
marginal distributions of the internal states need to
be evaluated and packed to be passed to neighbouring
subsystems.

After this information about the internal state of
subsystem j is received by subsystem i, it will be used
to update the prior external estimation of subsystem i,
which will lead to the next step: Updating. To be more
specific, the prior estimation (7) and new received
message (9) are fused using Bayesian rule by multiply-
ing the two together, yielding

s(x̃i←j;fk) = N(μ̃i,j,k,Qi,2)N(μi←j,k,�i←j,k)

= N(μi←j;fk ,�i←j;fk),

μi←j;fk = μ̃i,j,k + Li←j,k(μi←j,k − μ̃i,j,k),

�i←j;fk = Qi,2 − Li←j,kQi,2. (11)

where

Li←j,k = Qi,2(�i←j,k + Qi,2)
−1. (12)
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These equations can then be used to update the param-
eter Ai,3 in Equation (5) using linear optimisation
methods. Note that we only offer a brief introduc-
tion and discussion of message passing methodology
in this paper. For more details and the general results
of the probabilistic message passing methodology, the
readers are referred to Zhou and Herzallah (2020).

4. Randomised controller design

As discussed previously, the control decision is made
based on both internal and external states, thus guar-
anteeing not only the local but also the global control
goal can be achieved. After the posterior distribution
of the external state obtained in the last section, we
will then design the decentralised optimal randomised
controller for individual subsystems. In this paper, the
tracking problem is considered, which means that the
control objective is for the internal state to follow a
predefined reference state. Moreover, the fully proba-
bilistic design (FPD) control method will be applied in
this paper given the stochastic nature of systems.

4.1. General decentralised FPD control solution to
the probabilistic state–space representation

As a randomised controller, FPD is designed to min-
imise the Kullback–Leibler divergence (KLD) between
the probabilistic model of dynamics of the closed loop
system and its desired joint distribution.WithH being
the control horizon, the KLD between the actual joint
PDF f (F) of the observed data F = (x(H), u(H)) and
the ideal joint PDF f I(F) is given by

D(f
∥∥f I ) = ∫

f (F) ln
(
f (F)

f I(F)

)
dF. (13)

Based on the chain rules (Zhou et al., 2019), the joint
distribution of the probabilistic closed-loop of the sys-
tem dynamics is evaluated as follows:

f (F) =
H∏
k=1

s(zi,k
∣∣ ui,k−1, zi,k−1 )c(ui,k−1

∣∣ zi,k−1 ),

(14)
with

s(zi,k
∣∣ ui,k−1, zi,k−1 )

= s(xi,k
∣∣ ui,k−1, zi,k−1 )s(x̃i,k

∣∣ x̃i,k−1 ). (15)

The ideal closed-loop distribution that determines the
steady-state behaviour of the joint distribution can be

factorised in the same form as Equation (14) with ideal
system dynamic PDF sI(zi,k|ui,k−1, zi,k−1) and ideal
control input PDF cI(ui,k−1|zi,k−1),

f I(F) =
H∏
k=1

sI(zi,k
∣∣ ui,k−1, zi,k−1 )cI(ui,k−1

∣∣ zi,k−1 ),

(16)
where

sI(zi,k
∣∣ ui,k−1, zi,k−1 )

= sI(xi,k
∣∣ ui,k−1, zi,k−1 )s(x̃i,k

∣∣ x̃i,k−1 ). (17)

Since the x̃i,k−1 enters subsystem i as external signal
whose behaviour cannot be changed by subsystem i,
its corresponding ideal PDF is taken to be equal to its
actual PDF.

The randomised controller can then be developed
to minimise the KLD (13) between the actual joint
PDF (14) and ideal joint PDF (16), which yields the
performance index given as the following form:

− ln(γ (zi,k−1))

= min
c(ui,k−1 | zi,k−1 )

∫
s(xi,k

∣∣ ui,k−1, zi,k−1 )

× s(x̃i,k
∣∣ x̃i,k−1 )c(ui,k−1

∣∣ zi,k−1 )

×

⎡
⎢⎢⎢⎣ln

⎛
⎜⎜⎜⎝

s(xi,k
∣∣ ui,k−1, zi,k−1 )

c(ui,k−1
∣∣ zi,k−1 )

sI(xi,k
∣∣ ui,k−1, zi,k−1 )

cI(ui,k−1
∣∣ zi,k−1 )

⎞
⎟⎟⎟⎠− ln(γ (zi,k))

⎤
⎥⎥⎥⎦

× d(xi,k, x̃i,k, ui,k−1), (18)

where the first term in parenthesis in (18) represents
the partial cost while the second term − ln(γ (zi,k))
stands for the expectedminimum cost-to-go function.
Full derivation of (18) is provided in our previous
publication (Zhou & Herzallah, 2020).

Therefore, the general decentralised optimal con-
trol law c∗(ui,k−1|zi,k−1) for the subsystem i which
minimises the KLD between the joint PDF (14) and
ideal distribution (16) is given in following theorem
based on the Fully Probabilistic Design (FPD) (Herza-
llah & Kárnỳ, 2017; Kárnỳ, 1996; Zhou & Herzal-
lah, 2020),

Theorem 4.1: The optimal randomised control law
which minimises the performance index (18) given the
ith subsystem closed loop dynamic joint PDF (14) and
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the ideal PDF of the ith subsystem (16) is given by

c∗(ui,k−1
∣∣ zi,k−1 ) =

cI(ui,k−1
∣∣ zi,k−1 )

× exp[−β(ui,k−1, zi,k−1)]
γ (zi,k−1)

, (19)

where

γ (zi,k−1) =
∫

cI(ui,k−1
∣∣ zi,k−1 )

× exp[−β(ui,k−1, zi,k−1)] dui,k−1,

β(ui,k−1, zi,k−1) =
∫

s(xi,k
∣∣ ui,k−1, zi,k−1 )

×
[
ln

s(xi,k
∣∣ ui,k−1, zi,k−1 )

sI(xi,k
∣∣ ui,k−1, zi,k−1 )

− ln(γ̃ (xi,k, x̃i,k))

]
dxi,k,

− ln(γ̃ (xi,k, x̃i,k)) =
∫

s(x̃i,k
∣∣ x̃i,k−1 ) ln γ (zi,k) dx̃i,k.

(20)

for full derivation of Equations (19)–(20), please
refer toHerzallah andKárnỳ (2017) andKárnỳ (1996).

Remark 4.1: Equations (19)–(20) offer the general
solution of the decentralised fully probability design
methodology, which are not restricted by the distribu-
tions of the subsystem dynamics or its ideal distribu-
tion. They could theoretically follow any arbitrary dis-
tribution. Moreover, note that the optimal controller
c∗(ui,k−1|zi,k−1) stands for the optimal solution for the
current instant k to reach the control goal (18) while
cI(ui,k−1|zi,k−1) represents the ideal controller for the
instant k. With k→∞, c∗(ui,k−1|zi,k−1) should be
gradually approach cI(ui,k−1|zi,k−1).

4.2. Optimal controller design for local subsystems

In this section, the decentralised FPD control law
(19)–(20) will be implemented to each subsystem (4)
which is affected by multiple multiplicative noises and
the analytical control solutionwill be presented. In this
paper, the tracking problem is considered, meaning
that the controller will be designed so that the internal
state can follow a predefined desired trajectory. There-
fore, the ideal distribution of the internal state can be

represented as follows:

sI(xi,k
∣∣ ui,k−1, zi,k−1 ) ∼ N(ri,Ri), (21)

where ri is the mean of the distribution and Ri
is the covariance, which indicate the tracking error
allowance.

The ideal distribution of the controller can also be
defined as follows:

cI(ui,k−1
∣∣ zi,k−1 ) ∼ N(ur,i,k−1,�i), (22)

where�i represents the desired covariance which indi-
cates the admissible range of the optimal control input,
and ur,i,k−1 in (22) is the ideal mean of the optimal
control signal which can be calculated as follows:

lim
k→∞

E(xi,k) = ri

= lim
k→∞

E(Ai,1xi,k−1 + Ai,2x̃i,k−1

+ Biui,k−1)

ur,i,k−1 = (BTi Bi)
−1BTi {(I − Ai,1)ri − Ai,2x̃i,k−1}.

(23)

As we specified earlier, the ideal distribution of the
external state remains itself since the external state
should not be controlled by the local controller.

With the ideal distributions (21) and (22) and the
distributions of the subsystem dynamics (6) and (7),
the performance index (18) can be specified by the
following theorem.

Theorem 4.2: Substituting the PDF of the system
dynamics specified by Equations (6) and (7), the ideal
distribution of the system dynamics equation (21) and
the ideal distribution of the controller equations (22)
into (20) yield the following performance index:

− ln
(
γ
(
zi,k−1

)) = 0.5xTi,k−1M1k−1;ixi,k−1

+ xTi,k−1M2k−1;ix̃i,k−1

+ 0.5x̃Ti,k−1M3k−1;ix̃i,k−1
+ 0.5S1,k−1;ixi,k−1
+ 0.5S2,k−1;ix̃i,k−1 + 0.5ωi,k−1,

(24)

where

M1k−1;i = AT
i,1(M1k;i + R−1i )Ai,1

− AT
i,1(M1k;i + R−1i )TBi
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× [BTi (M1k;i + R−1i )Bi + �−1i ]−1

× BTi (M1k;i + R−1i )Ai,1 +
Pi∑
l=1

�̄i,l

M2k−1;i = AT
i,1(M1k;i + R−1i )Ai,2 + AT

i,1M2k;iAi,3

− AT
i,1(M1k;i + R−1i )TBi[BTi (M1k;i + R−1i )Bi

+ �−1i ]−1BTi (M1k;i + R−1i )Ai,2

− AT
i,1(M1k;i + R−1i )TBi

× [BTi (M1k;i + R−1i )Bi + �−1i ]−1

× BTi M2k;iAi,3

M3k−1;i = AT
i,3M3k;iAi,3 + AT

i,2(M1k;i + R−1i )Ai,2

− AT
i,2(M1k;i + R−1i )TBi

× [BTi (M1k;i + R−1i )Bi + �−1i ]−1BTi
× (M1k;i + R−1i )Ai,2 − AT

i,3M
T
2k;i

× Bi[BTi (M1k;i + R−1i )Bi + �−1i ]−1

× BTi M2k;iAi,3 + 2AT
i,2M2k;iAi,3

− 2AT
i,2(M1k;i + R−1i )T

× Bi[BTi (M1k;i + R−1i )Bi + �−1i ]−1

× BTi M2k;iAi,3

S1,k−1;i = 2
{
(0.5ST1,k;i − R−1i xr,i)TAi,1

+ (BTi [−0.5ST1,k;i + R−1i xr,i]

+ �−1i ur,i,k−1)T[BTi (M1k;i + R−1i )Bi

+�−1i ]−1BTi × (M1k;i + R−1i )Ai,1

}
S2,k−1;i = 2

{
(0.5ST1,k;i − R−1i xr,i)TAi,2

+ 0.5S2,k;iAi,3 + (BTi [−0.5ST1,k;i + R−1i xr,i]

+ �−1i ur,i,k−1)T

× [BTi (M1k;i + R−1i )Bi + �−1i ]−1

× BTi (M1k;i + R−1i )Ai,2

+ (BTi [−0.5ST1,k;i + R−1i xr,i]+ �−1i ur,i,k−1)T

× [BTi (M1k;i + R−1i )Bi + �−1i ]−1

× BTi M2k;iAi,3

}
(25)

and where

�̄i,l = tr(ĀT
i,lQ̄i,lM1k;iĀi,l), l = 1, 2, . . . , Pi (26)

Proof: To evaluate Equation (38), we need to sub-
stitute the distributions of system dynamics (6) and
Equation (7) and the ideal distributions (21) and (22)
into Equation (20).

Following the steps in Equation (20), first, we
should calculate ln(γ̃ (xik , x̃ik)) by substituting
s(x̃i,k|x̃i,k−1) and ln γ (zi,k) into the third equation in
Equation (20),

ln(γ̃ (xi,k, x̃i,k)) =
∫

s(x̃i,k
∣∣ x̃i,k−1 ) ln γ (zi,k) dx̃i,k

= −0.5xTi,kM1k;ixi,k − xTi,kM2k;iμ̃i,k

− 0.5μ̃T
i,kM3k;iμ̃i,k

− 0.5S1,k;ixi,k − 0.5S2,k;iμ̃i,k

− 0.5ωi,k − 0.5tr(M3k;iQi,2) (27)

And the next step is to evaluate β(ui,k−1, zi,k−1) by
completing the integration over xi,k,

β(ui,k−1, zi,k−1) =
∫

s(xi,k
∣∣ ui,k−1, zi,k−1 )

×
[
ln

s(xi,k
∣∣ ui,k−1, zi,k−1 )

sI(xi,k
∣∣ ui,k−1, zi,k−1 )

− ln(γ̃ (xi,k, x̃i,k))

]
dxi,k

= −0.5μT
i,k(−M1k;i − R−1i )μi,k

+ μT
i,k(M2k;iμ̃i,k

+ 0.5ST1,k;i − R−1i xr,i)

+ 0.5xTr,iR
−1
i xr,i + 0.5μ̃T

i,kM3k;iμ̃i,k

+ 0.5S2,k;iμ̃i,k + 0.5ωi,k

+ 0.5tr(M3k;iQi,2)

− 0.5 ln(
∣∣Qi,k,1

∣∣ |Ri|−1)
− 0.5tr((Q−1i,k,1 −M1k;i − R−1i )

× Qi,k,1), (28)

then substituting β(ui,k−1, zi,k−1) (28) into γ (zi,k−1) in
Equation (20), we have

γ (zi,k−1) =
∫

cI(ui,k−1
∣∣ zi,k−1 )

× exp[−β(ui,k−1, zi,k−1)] dui,k−1

=
∫

cI(ui,k−1
∣∣ zi,k−1 ) exp

[
0.5μT

i,k(−M1k;i − R−1i )
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+ μi,k − μT
i,k(M2k;iμ̃i,k + 0.5ST1,k;i − R−1i xr,i)

− 0.5xTr,iR
−1
i xr,i − 0.5μ̃T

i,kM3k;iμ̃i,k

− 0.5S2,k;iμ̃i,k − 0.5ωi,k − 0.5tr(M3k;iQi,2)

+ 0.5 ln(
∣∣Qi,k,1

∣∣ |Ri|−1)
+0.5tr((Q−1i,k,1 −M1k;i − R−1i )Qi,k,1)

]
dui,k−1.

(29)

Substituting μi,k and μ̃i,k Equations (8) into (29), we
can obtain the following form of γ (zi,k−1),

γ (zi,k−1) = exp
{
−0.5xTi,k−1

[
AT
i,1(M1k;i + R−1i )Ai,1

− AT
i,1(M1k;i + R−1i )TBi[BTi (M1k;i + R−1i )

× Bi + �−1i ]−1BTi

× (M1k;i + R−1i )Ai,1

]
xi,k−1

− 0.5x̃Ti,k−1[A
T
i,3M3k;iAi,3

+ AT
i,2(M1k;i + R−1i )Ai,2

− AT
i,2(M1k;i + R−1i )TBi

× [BTi (M1k;i + R−1i )Bi + �−1i ]−1

× BTi (M1k;i + R−1i )Ai,2

− AT
i,3M

T
2k;iBi[BTi (M1k;i + R−1i )Bi

+ �−1i ]−1BTi M2k;iAi,3 + 2AT
i,2M2k;iAi,3

− 2AT
i,2(M1k;i + R−1i )TBi

× [BTi (M1k;i + R−1i )Bi + �−1i ]−1

× BTi M2k;iAi,3]x̃i,k−1

− xTi,k−1
[
AT
i,1(M1k;i + R−1i )Ai,2

+ AT
i,1M2k;iAi,3 − AT

i,1(M1k;i + R−1i )T

× Bi[BTi (M1k;i + R−1i )Bi + �−1i ]−1

× BTi (M1k;i + R−1i )Ai,2

− AT
i,1(M1k;i + R−1i )TBi[BTi (M1k;i + R−1i )

× Bi + �−1i ]−1BTi M2k;iAi,3

]
x̃i,k−1

−
[
(0.5ST1,k;i − R−1i xr,i)TAi,1

+ (BTi [−0.5ST1,k;i + R−1i xr,i]

+ �−1i ur,i,k−1)T[BTi (M1k;i + R−1i )Bi

+ �−1i ]−1BTi (M1k;i + R−1i )Ai,1

]
xi,k−1

−
[
(0.5ST1,k;i − R−1i xr,i)TAi,2 + 0.5S2,k;iAi,3

+ (BTi [−0.5ST1,k;i + R−1i xr,i]

+ �−1i ur,i,k−1)T[BTi (M1k;i + R−1i )Bi

+ �−1i ]−1BTi (M1k;i + R−1i )Ai,2

+ (BTi [−0.5ST1,k;i + R−1i xr,i]

+ �−1i ur,i,k−1)T

× [BTi (M1k;i + R−1i )Bi + �−1i ]−1

× BTi M2k;iAi,3

]
x̃i,k−1 − 0.5xTr,iR

−1
i xr,i

+ 0.5(BTi [0.5S
T
1,k;i − R−1i xr,i]

+ �−1i ur,i,k−1)T

× [BTi (M1k;i + R−1i )Bi + �−1i ]−1

× (BTi [0.5S
T
1,k;i − R−1i xr,i]+ �−1i ur,i,k−1)

− 0.5uTr,i,k−1�
−1
i ur,i,k−1

− 0.5ωi,k − 0.5tr(M3k;iQi,2)

+ 0.5 ln(
∣∣Qi,k,1

∣∣ |Ri|−1)
− 0.5tr((−Q−1i,k,1 +M1k;i + R−1i )Qi,k,1)

}
(30)

where

0.5tr((−Q−1i,k,1 +M1k;i + R−1i )Qi,k,1)] dui,k−1

= −0.5n+ 0.5tr(M1k;iQi,k,1)+ 0.5tr(R−1i Qi,k,1),
(31)

and using the Lemma in Zhou et al. (2019),

0.5 ln(
∣∣Qi,k,1

∣∣ |Ri|−1)
= 0.5tr(log(Qi,k,1R−1i ))

× 0.5tr(Qi,k,1R−1i )− 0.5n (32)

Thus, the last two items, 0.5 ln(|Qi,k,1||Ri|−1)− 0.5tr
((−Q−1i,k,1 +M1k;i + R−1i )Qi,k,1) in Equation (30) can
be simplified as follows:

0.5 ln(
∣∣Qi,k,1

∣∣ |Ri|−1)
− 0.5tr((−Q−1i,k,1 +M1k;i + R−1i )Qi,k,1)

= 0.5tr(Qi,k,1R−1i )

− 0.5n+ 0.5n− 0.5tr(M1k;iQi,k,1)

− 0.5tr(R−1i Qi,k,1)
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= −0.5tr(M1k;iQi,k,1)), (33)

where

tr(M1k;iQi,k,1)

= tr

(
M1k;i

( Pi∑
l=1

Āi,lxi,k−1Q̄i,lxTi,k−1Ā
T
i,l +Mi

))

=
Pi∑
l=1

xTi,k−1tr(Ā
T
i,lQ̄i,lM1k;iĀi,l)xi,k−1

+ tr(M1k;iMi)

=
Pi∑
l=1

xTi,k−1�̄i,lxi,k−1 + tr(M1k;iMi). (34)

Then we can obtain the result specified by Equa-
tions (24) and (38) by substituting Equations (33)
and (34) back into Equation (30). The constant terms
correspond toωi,k can be found in Equation (30) and is
omitted here as it has no contribution to the controller
evaluation. End of proof. �

Following the above verification of the performance
index, the next step is to evaluate the parameters of the
optimal randomised controller distribution such that
the KLD can be minimised. Based on Equation (19),
the optimal distribution of the local controller can be
specified in the following theorem.

Theorem 4.3: The distribution of the optimal ran-
domised controller minimising the cost-to-go func-
tion (18) is formulated as follows given the ideal dis-
tribution of subsystem i dynamics (21) and the ideal
distribution of control signal (22),

c(ui,k−1
∣∣ zi,k−1 ) ∼ N(ūi,k−1,�i,k−1), (35)

where

ūi,k−1 = −Ki,k−1zi,k−1 + di,k−1

Ki,k−1 = �ik−1B
T
i [(M1k;i + R−1i )Ai

× (M1k;i + R−1i )Ai,2 +M2k;iAi,3],

�i,k−1 = (�−1i + BTi (M1k;i + R−1i )Bi)−1,

di,k−1 = �i,k−1[−0.5BTi ST1,k;i + BTi R
−1
i xr,i

+ �−1i ur,i,k−1], (36)

where ūik−1 and �ik−1 are the mean and covariance of
the optimal randomised controller of subsystem i, respec-
tively.Moreover, Ki,k−1 stands for the controller feedback

gain while di,k−1 is a linear shift which manifests from
the considered tracking problem.

Proof: The results given in Equations (35) and (36)
can be evaluated by substituting cI(ui,k−1|zi,k−1) (16),
β(ui,k−1, zi,k−1) (28), and γ (zi,k−1) (30) into Equation
(19). The details of the evaluation are omitted
here. �

Remark 4.2: The quadratic term M1k−1;i in the Ric-
cati equation of the conventional DFPD is given by

M1k−1;i = AT
i,1(M1k;i + R−1i )Ai,1

− AT
i,1(M1k;i + R−1i )TBi

× [BTi (M1k;i + R−1i )Bi + �−1i ]−1

× BTi (M1k;i + R−1i )Ai,1. (37)

Comparing this equation to the quadratic termM1k−1;i
in the Riccati equation of the DFPD proposed in
this paper (30), it becomes evident that the proposed
DFPD Riccati equation includes an additional term∑Pi

l=1 �̄i,l. The incorporation of this additional term
is due to the consideration of multiple multiplicative
noises in the optimisation process of the randomised
controller. Consequently, the derived control solution
not only accounts for the covariances of the multiple
multiplicative noises but also simultaneously attempts
to minimise these covariances, as they are state depen-
dent. It can be inferred that by modifying the Riccati
equation, the DFPD proposed in this paper exhibits
an enhanced capability to handle multiple multiplica-
tive noises. Furthermore, our method outperforms the
extended FPD method in Zhou et al. (2019), which
only considered a single multiplicative noise in a cen-
tralised approach. This improvement represents the
main contribution of this paper.

5. IMPLEMENTATION PROCEDURE OF THE
PROPOSED FRAMEWORK

The step-by-step implementation pseudocode of the
proposed probabilistic decentralised control and mes-
sage passing framework to the considered stochas-
tic complex system with multiplicative noise is sum-
marised in Algorithm 1. This algorithm is provided
to assist implementation without having to go through
the mathematical details.
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Algorithm 1 DFPD Framework
1: for each i ∈ N do
2: Initialise: ui,0← rand, M1;i← rand, M2;i←

rand, M3;i← rand, S1;i← rand, and S2;i←
rand;

3: k = 1;
4: Evaluate internal distribution

s(xi,k|zi,k−1, ui,k−1), and prior external
distribution s(x̃i,k|x̃i,k−1),

5: for all j ∈ Ni, j 	= i do
6: Pass Mj←i,k and receive Mi←j,k as

Equation (9);
7: Fuse s(x̃ik |x̃ik−1) with Mi←j,k following

Equation (11);
8: Update Ai,3 using linear optimisation;
9: end for
10: Calculate M1k;i, M2k;i, M3k;i, S1,k;i and S2,k;i fol-

lowing Equation (25);
11: Use the calculated values from stage 10 to eval-

uateKi,k and di,k, and formulate the optimal ui,k
for the next instant following Equation (36);

12: k = k+ 1;
13: end for

6. Simulation

In this section, the proposed algorithm is tested on a
three-inverted-pendulum system in Koo et al. (2015)
to illuminate the effectiveness of the proposed con-
trol method. The structure of the system employed
from Koo et al. (2015) is shown in Figure 1. From
Figure 1, we can see that the system is consisting by
three inverted pendulums whose arms are coupled
with each other by springs. The state–space equation
for each system is given by

ẋi =
⎡
⎣ 0 1
g
l
− aik

ml2
0

⎤
⎦ xi +

[
0
1
ml2

]
ui

+
3∑
j	=i

[
0 0
1
ml2

0

]
xj, (38)

where g = 10 is the gravitational acceleration, l = 2
represents the length of the pendulum, m = 1 is the
mass of the pendulum and k = 5 stands for the spring
constant. Besides, ai denotes the number of springs
connected to the ith pendulum with a1 = a3 = 1 and
a2 = 2 while hij means the connection between ith

Figure 1. Three inverted pendulum system.

pendulumand jth pendulum,which givesh12 = h21 =
h23 = h32 = 1 and hij = 0 otherwise.

To apply our proposed method, the system is
assumed of suffering from multiplicative noises and
additive noises, which is very common in inverted
pendulum system. The system (38) can then be rewrit-
ten as following form after discretised,

xi,t = (Ai,1 + Āi,1ρi,1 + Āi,2ρi,2)xi,t−1 + Ai,2x̃i,t−1
+ Biui,t−1 + wi,t

x̃i,t = Ai,3x̃i,t−1 + w̃i,t (39)

where A1,1 = A2,1 = A3,1 = I + h
[ 0 1

g
l −

aik
ml2

0

]
, B1 =

B2 = B3 = h
[ 0

1
ml2

]
, A1,2 = A3,2 = h

[ 0 0
1

ml2
0

]
, A2,2 =

h
[ 0 0 0 0

1
ml2

0 1
ml2

0

]
, Ai,3, i = 1, 2, 3 are initialised ran-

domly. The distribution of noises are listed in Table 1.
The noise parameters are listed in Table 2.

To validate the control performance of the decen-
tralised randomised controller derived in this paper,
the results are compared to the results obtained from
the traditional DFPD. The state results of all three sub-
systems are shown in Figures 2–7. In these figures, the
red dot lines represent the state’s response controlled

Table 1. Noise distribution.

Noise Distribution Noise Distribution

ρ1,1 N(0, 0.0094) ρ1,2 N(0, 0.0098)
ρ2,1 N(0, 0.009) ρ2,2 N(0, 0.0096)
ρ3,1 N(0, 0.009) ρ3,2 N(0, 0.016)
w1 N(0, 0.001) w̃1 N(0, 0.001)
w2 N(0, 0.001) w̃2 N(0, 0.001)
w3 N(0, 0.0012) w̃3 N(0, 0.001)

Table 2. Noise parameters.

Noise Distribution Noise Distribution

Ā1,1

[ −0.17 −0.54
−1.67 1.58

]
Ā1,2

[
0.98 −0.01
0.85 −0.89

]

Ā2,1

[
0.37 −2.10
0.83 −0.39

]
Ā2,2

[
0.30 −0.74
−2.83 1.34

]

Ā3,1

[ −0.40 0.79
−2.09 1.71

]
Ā3,2

[ −0.45 0.36
0.07 1.63

]
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Figure 2. State x11 .

Figure 3. State x12 .

Figure 4. State x21 .

Figure 5. State x22 .

Figure 6. State x31 .

Figure 7. State x32 .



12 Y. ZHOU ET AL.

by the proposed extended DFPD while the blue solid
lines are the state response controlled by the traditional
DFPD. From these figures, we can see that both states
controlled by extended DFPD and states controlled by
traditional DFPD converge to zero in all three sub-
systems. Compared to the traditional DFPD, the con-
verging speed of the proposed method is clearly faster
with much fewer oscillations and smaller overshoots.
This makes sense as the proposed method is designed
to deal with multiple multiplicative noises. Therefore,
the conclusion can be drawn that compared to the
traditional DFPD, the extended DFPD can achieve a
better performance in a decentralised manner for the
subsystems that suffering frommultiple multiplicative
noises.

7. Conclusion

In this paper, a DFPD-based control framework for
a class of stochastic dynamic complex systems with
multiplicative noise has been proposed. The proposed
control framework has improved the conventional
DFPD by taking multiple multiplicative noises into
consideration, rather than simply assuming the system
noises are additional. To better cope with the stochas-
tic nature of complex systems and to provide a more
accurate description of the components of the subsys-
tems, the systems’ dynamical behaviours in this paper
have been fully presented by probabilistic state–space
models. Moreover, the probabilistic message passing
method has been applied to provide communication
between neighbouring subsystems. Numerical results
also proved that the proposed control framework has
better control performance than the original DFPD.
Future research will take into account how the pro-
posed framework might be applied to real-world sys-
tems. In addition, we will consider extending our
framework to non-linear and non-Gaussian multi-
agent systems.
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