
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017 1

Wasserstein GAN-based Digital Twin Inspired
Model for Early Drift Fault Detection in Wireless
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Abstract— In this Internet of Things (IoT) era, the num-
ber of devices capable of sensing their surroundings is
increasing day by day. Based on the data from these de-
vices, numerous services and systems are now offered
where critical decisions depend on the data collected by
sensors. Therefore, error-free data are most desirable, but
due to extreme operating environments, the possibility of
faults occurring in sensors is high. So, detecting faults
in data obtained by sensors is important. In this paper, a
digital twin inspired detection approach is proposed, and
its ability to detect a single type of fault in several sensor is
analyzed. The digital equivalent of the sensor is developed
using a Generative Adversarial Network (GAN). As GANs inherently performs well with images, Gramian Angular Field
(GAF) encoding is used to convert timeseries data to image. The GAF encoding preserves the temporal relations of the
timeseries data. The GAN is trained with the GAF images. The trained GAN model acts as the virtual representation of
the sensor, and the discriminator network of the GAN model, once it has learned the pattern of normal data, is used as
the fault detector. The performance of the virtual sensor is promising because it successfully generates data for normal
conditions. The best fault detection accuracy achieved by the proposed model is 98.7%, which makes this GAN-based
digital twin inspired approach a promising candidate for sensor fault detection.

Index Terms— sensor faults, digital twin inspired model, Generative Adversarial Network (GAN), Gramian Angular Field
(GAF), deep learning

I. INTRODUCTION

THE pervasive deployment of Internet of Things (IoT)
devices fuses the physical and digital worlds. This inte-

gration creates more automated and interactive surroundings.
For instance, the inclusion of sensing and communication
capabilities in real-world physical objects has transformed
them into smart entities. Utilizing the wireless sensor network
(WSN) and advanced communications protocols, these smart
objects gather data from the vicinity and transfer them to
central nodes or processing units [1]. Finally, by utilizing
cloud-based services and data analytics algorithms, a myriad of
IoT applications in diversified fields have been proposed. In the
agricultural sector, IoT-based frameworks can be used for en-
vironment and soil condition monitoring on a large-scale farm
[2], [3] for plant disease detection, pest control [4], and precise
irrigation for efficient water management [5]. Through such
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approaches, farming can be possible in harsh areas through the
efficient use of natural resources. In power systems, the IoT
has a variety of applications, such as monitoring parameters
in a smart grid network for reliable operations [6], for power
consumption analysis and predictions in households [7], plus
power theft detection and notification [8]. Proper integration
of IoT- and cloud-based services can promote better living
environments through automated lighting systems, intelligent
transportation systems, smart parking management, as well as
waste and power management [9]. In healthcare, the IoT shows
great aspect in personalized patient care and monitoring [10].
Many innovative healthcare schemes have been proposed to
monitor, control, and prevent Covid-19 outbreaks [11].

The recent research and implementation trends indicate
that IoT-based services will continue to thrive in numerous
fields. However, one critical issue that determines the quality
of service from such IoT applications is the condition or
quality of the data communicated by sensors. In real scenarios,
there are heterogeneous physical parameters to be sensed, and
thus, sensors might have to be placed in harsh and extreme
conditions in either nature or industry [12]. In many cases,
tiny low-cost sensors become defective due to aging, hard-
ware malfunction, faulty installation, or from environmental
impacts such as high temperatures or humid weather, which
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leads to generation of anomalous data by a sensor. Aryal
et al. [13] defined anomaly in data as instances that do not
conform to a normal pattern and that show significant deviation
from a general trend. Such anomalous or faulty data can be
caused by sensor network issues; or the sensor itself might
be faulty due to internal and external factors [14]. In most
of the IoT-based applications or services, decision and control
instructions depend on data collected by sensors. Hence, if
faulty data or sensors remain undetected, the system could
become inaccurate and unreliable, and there could be serious
consequences [15]. Primarily, sensor faults can be classified
into two broad categories: incipient faults and abrupt faults
[16]. Incipient faults develop slowly and detecting them is
difficult in the initial stages of occurrences. However, the
system may initially work well, but as time passes could suffer
serious failures. On the other hand, abrupt faults are sudden
phenomena that can last for a brief moment or that occur
intermittently over time. This type of sensor fault is easily
identifiable compared to the incipient fault. Common sensor
faults and the possible contexts of an occurrence are listed in
Table I

TABLE I: Common sensor faults and their causes

Type Name of fault Reasons of occurrence
Bias fault External interference, presence of

bias voltage/current
Incipient Drift fault Calibration defect, change in sensor

circuit parameters
Gain fault Aging, change in sensor circuit pa-

rameters
Spike fault Defective hardware, communication

defects, battery issues
Stuck fault Defective hardware, communications

defects, clipping defects, battery is-
sues

Abrupt Random fault Sensor circuit failure, extreme condi-
tion (sensed variable exceeds sensor
range)

Short/open circuit
fault

Poor circuit connection, hardware
failure

Noise fault Battery issues, out-of-range commu-
nication, noise from circuit elements
or external sources

Wu and Zaho broadly separated fault analysis techniques
into three clusters: model-based, knowledge-based, and data-
driven approaches [17]. In model-based methods, an analytical
model is created utilizing the physical rules or specifications
of the underlying practical system. Fault diagnosis is then
performed by comparing real output from the system with
output estimated by a model. Any inconsistency between these
two responses is considered a possible fault. Xiong et al.
proposed a model-based sensor fault scheme for lithium-ion
battery packs from a joint estimation model of the battery pack
using recursive least squares and unscented Kalman filters
[18]. Those authors estimated the state of the charge in the
battery pack, and then compared it with a reference to deter-
mine fault occurrences. Lyapunov theory-based modeling was
also recently used by a few researchers for fault diagnosis. For
example, in [19], detection and identification of intermittent,
incipient, simultaneous, and abrupt faults in aircraft sensors
was performed using Lyapunov function theory. The authors

observed that this approach can result in faster fault detec-
tion, compared to an extended Kalman filter-based method.
Multiple sensor fault analysis for internal combustion engines
was investigated based on fuzzy Lyapunov modeling [20]. The
proposed model has two sublayers to model and estimate a pre-
processed sensor signal. In the initial stage, a fuzzy-assisted
Gaussian-autoregressive-Laguerre approach models the signal,
and later on, a fuzzy-Lyapunov-based computed ratio observer
results in better estimation of the signal. Finally, the residual
between the estimation and the original signal is used to
determine the sensor fault. This approach has shown good fault
classification performance when the signal change is minimal
for different sensor faults. Observer-based modeling has also
gained attention in recent times for sensor fault detection and
isolation, especially in power systems [21] and in railway
traction drives [22].

In many situations, the underlying systems are very com-
plicated and are usually a combination of many subsystems.
Therefore, constructing a mathematical model for them is
tedious and difficult, and could provide inaccurate estimation
of the output. For such scenarios, a knowledge-based sensor
fault analysis approach is proposed. This type of method
does not require a mathematical representation of the cor-
responding system. Instead, it uses historical data regarding
faults, and domain expertise to determine and analyze sensor
faults. Expert-system fault analysis for ship electronic power
systems was proposed [23]. The expert system receives fault
features through a human-computer interaction interface that
loads some fuzzy-based rules, compares the features with a
knowledge base, and finally, interprets the analysis for the
user. A similar type of expert system approach was adopted
by researchers for machinery fault analysis in the agricultural
sector [24]. Fuzzy-rule-based expert systems are mostly used
in sensor fault analysis [25].

In recent times, a wide range of networked sensor deploy-
ments with cloud connectivity have provided more access to
sensor data, which really boosted the application of data-driven
methods in sensor fault analysis. Data-driven approaches do
not require mathematical models or a predefined knowledge
base, as earlier methods did; rather, these methods can use
raw data or processed data directly, and the algorithms can
automatically identify the fault pattern with high accuracy.
Among machine learning algorithms, the support vector ma-
chine (SVM) is widely used for sensor fault analysis. A clas-
sification task for a number of possible faults in temperature
sensor data was performed using an SVM aided by a time
domain feature [26]. Time-frequency-based empirical mode
decomposition was used as a feature extraction method, and
an SVM was used for sensor fault diagnosis in a gas turbine
system [27]. In some recent work, various optimization tech-
niques, such as α-Gray Wolf Optimization [28] and the Baum-
Welch algorithm [29] were integrated with an SVM to make
fault diagnosis more robust. Moreover, previously practiced
model-based approaches are sometimes combined with data-
driven methods in a hybrid model for fault analysis. Other
popular machine learning algorithms like K-Nearest Neighbors
(KNN), Random Forest (RF)-based classifiers, Gaussian Naive
Bayes (GNB), and Multi-Layer Perceptron (MLP) have been
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utilized in sensor fault classification and analysis tasks [30]–
[32]. With increased amounts of relevant data, various deep
learning models now engage in sensor fault analysis. Although
deep neural networks (DNNs), convolutional neural networks
(CNNs), and other deep learning architectures have the ability
to extract meaningful features from data, the majority of the
literature has observed that additional methods are integrated
before data preprocessing. Time-frequency-based preprocess-
ing was used in conjugation with a CNN for sensor fault
diagnosis in several studies. In [33], faulty and non-faulty
sensor data from an aero-engine control system were first
converted into scalograms, and then, different faults were
classified from the scalograms by using a CNN model. A
similar approach was proposed in [34] where the authors
converted signals collected from a drone sensor into time-
frequency images using short-time Fourier transform, and they
then used the images for training a four-layer CNN classifier
model. Another modified CNN architecture was investigated
in [35] where faults in a hydrogen gas sensor were inspected.
The CNN-based classifier model was modified by including a
Morlet wavelet basis function as an activation function for
two intermediate convolutional layers. Other deep learning
models such as autoencoders and long short-term memory
(LSTM)-based architectures were applied to analyzing faults
in sensors, and in [36], a combined framework of a CNN and
a convolutional autoencoder (CAE) was proposed for sensor
fault detection and reconstruction. The authors used a CNN
classifier to detect one of the four types of sensor faults,
and in the subsequent stages, an individual CAE was used
for each fault type to reconstruct a signal corresponding to
the faulty signal. In the final stage, a post-processing method
utilizes a threshold value to localize the faulty sensor, and it
then replaces the faulty signal with the signal predicted from
the CAE. Jan et al. demonstrated a sensor fault detection and
analysis scheme in [37] where a stacked autoencoder (SAE) is
used to extract a lower dimensional representation of the input
signal to be used by an SVM classifier for fault detection, and
later, a fuzzy DNN is used for further diagnosis of faults.
Darvishi et at, in their recent work [38] proposed a modular
architecture for detecting sensor bias fault. The modular ar-
chitecture includes an estimator layer that estimates individual
sensor measurements based upon the available sensors present
in the physical system. The estimators are realized using NN-
based blocks. Later, the estimated measurement is compared
with the actual measurement to detect the presence of the fault.
In the final layer there is a classifier utilizing the residual
signal to provide a decision vector for identifying the faulty
sensor. The same authors demonstrated an enhanced version of
their modular sensor fault detection scheme in [39], where the
structure is modified by adding a predictor layer in parallel
to the estimator layer in the previous architecture [38]. A
controller module has also been added to isolate any faulty
sensor and prevent its data in the estimation process. In the
later, experiment authors considered four types of faults. The
newly developed approach demonstrated better fault detection
as compared to the baseline models such as Auto-Encoder
model and their previous model [38] when tested with real
world data.

In very recent times, a new method for fault or anomaly de-
tection has been applied by constructing the digital equivalent
of a physical system [40]. This approach involves a digital
representation of the underlying system, which is termed a
Digital Twin (DT) that usually simulates normal operating
behavior. Deciding on the occurrence of a fault is made
when the residual between the signal obtained from the DT
and the real measured signal exceeds a defined threshold.
Construction of the DT is often based on the physical laws
on which a particular component of a system operates. As
in [41] a DT estimator of a photovoltaic energy conversion
unit is developed. The design of the estimator for a single
energy conversion unit involves a convoluted modeling steps.
In [42] a DT based fault detection is proposed for bearing
fault detection. In this case also authors combines signal
approximation and signal estimation stages to create a DT.
Both the approximation and estimation stages have several
complex subsystems. It is evident that, this approaches gets
severely complex, and is error prone when the system under
consideration consists of a number of sub-systems in which
responses depend on each other. However, using DNNs to
generate DTs has recently been tapped by some researchers. A
relatively new concept is the Generative Adversarial Network
(GAN) approaches that seem promising in creating DTs. The
capability of generating artificial samples very similar to the
training examples provided is the key idea behind creating
DTs using GANs. In [43], Xu et al. proposed an anomaly-
detection framework based on a DT where the DT is created
from a GAN architecture. The generator segment is composed
of a graph convolutional network (GCN), a polling layer, and
LSTM layers, and the discriminator segment is a multi-class
classifier. A conditional-style GAN architecture was presented
in [44] to create a DT for a machining model that generates
time-series data representing a vibration signal. Booyse et al.
demonstrated that DTs based on deep generative models can
be used in fault detection and analysis [45].

A. Contribution of this Work

One aspect of DT is that it can represent the state of its
corresponding physical system with bidirectional interaction
with the physical entity. We take our inspiration from this
fact that if we could develop a model that realizes only the
normal operating condition of a physical sensor as a DT
does, we could utilize it to detect sensor fault. Although our
proposed model is not a complete DT but it is inspired from
the ability of the DT to mimic the physical system. In our
work, we construct a virtual twin of normal state of a physical
sensor using the generative adversarial network architecture.
The major contributions of this paper are as follows:

• We developed a virtual sensor motivated from DT con-
cept using the Wasserstein generative adversarial network
architecture. We demonstrated that with this GAN model
the normal operating behaviour of a physical sensor can
be realized.

• We implemented a fault detection method using the
discriminator segment of the trained GAN model. We
showed in our results the the fault detection method
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Fig. 1: Fault detection using DT inspired GAN model.

can produce consistent performance over three different
datasets.

• Our proposed model proved that it is possible to detect
fault with a good accuracy without using any data or
samples corresponding to the fault instances. As the GAN
model is trained with only the normal state data of a
sensor which is easily available. The trained model then
can differentiate a faulty instance as it appears for the
first time with descent accuracy. We believe that this is
significant because in real scenario it is quite difficult to
collect a sufficient number of fault samples from sensors.

The rest of the paper is organized as follows: Section
II provides a detailed description about the proposed fault
detection approach. In Section III the the steps involved
in dataset preparation is discussed. The performance of our
proposed model is presented and explained in Section IV.
Finally, concluding remarks are provided in Section V.

II. PROPOSED SENSOR FAULT DETECTION APPROACH

In this section, we briefly describe our proposed sensor fault
detection and classification approach based on a generative
model. In the first stage, a virtual representation of the normal
state of the sensor is developed using a GAN model that will
be able to generate synthetic data similar to the normal state of
the sensor. Since the GAN output closely resembles the normal
state of the sensor, it is considered a virtual representation of
the sensor at its normal state. The capability of the digital
representation will be used to detect the sensor fault. After
detecting a fault, a CNN classifies the type of fault. A graphical
representation of our approach is in Fig.1. The GAN-based
model is trained only on the normal sensor signal and as soon
as the model receives any abnormal or faulty pattern in the
data it can distinguish it as fault with high accuracy. As the
model does not require any historical fault data for training
therefore it does not need to wait for several fault instances
to occur. It can detect fault at the early instances of the fault
occurrence. Therefore, it can be considered as early detection
of fault.

After being proposed by Goodfellow et al. [46], the GAN
became the most active area of research in deep learning and
has been used mostly for image-related applications such as
image synthesis, image-to-image translation, reconstruction of
missing segments in an image, upscaling, plus video prediction
and generation. The core of the GAN is composed of two com-
petitive entities (the generator and the discriminator) trying

to deceive one another. Both generator and discriminator are
multi-layer convolutional neural networks or fully-connected
neural networks. The generator network creates fake data, and
the discriminator’s task is to differentiate between fake and
original instances. The ultimate goal of the generator network
is to learn the distribution of the original data through the
training process. In a properly trained GAN, the generator can
produce realistic instances to such an extent that the discrimi-
nator will find it difficult to distinguish whether data are from
the original dataset or are synthetic presented by the generator.
The training procedure of the GAN makes it possible for
the generator to achieve accuracy in producing realistic data.
Because the GAN consists of two separate networks, they are
trained in an alternative manner; the trainable parameters of the
generator are kept constant while training the discriminator,
and a similar approach is followed for the discriminator when
the generator is trained. Since the discriminator is generally
a binary classifier, it uses binary cross entropy as the loss
function, which is defined in (1).

E(X∼P (X)) [logD (X)] + E(Z∼P (Z)) [log (1−D (G (Z)))]
(1)

where Z is a random vector from the latent space, X is
the original training data, D(X) is the output from the
discriminator for real training data, and D(G(Z)) is the output
of the discriminator when the input comes from the generator,
G(Z). The discriminator’s goal is to maximize this loss. On
the other hand, the generator tries to generate data as similar as
possible to the original data; in other words, the discriminator
will label the output from generator G(Z) as if it is an original
instance of the data. Thus, the generator tries to minimize the
following cost function:

E(Z∼P (Z))[log(1−D(G(Z)))] (2)

Assuming θG and θD to be generator and discriminator
parameters, respectively, the complete loss function of the
GAN network mentioned in [46] is,

Min
θG

Max
θD

[
E(X∼P (X)) [logD (X)] +

E(Z∼P (Z)) [log (1−D (G (Z)))]
(3)

Upon successful training, a GAN can generate data from
random numbers sampled from the latent space, Z, that have a
very similar distribution to the original data used for training.
Generative models inherently perform better with images,
and our approach transforms the sensor signal into images
using a Gramian Angular Field (GAF) encoding technique
in the first stage. As a first attempt in this work, only the
drift fault was considered, and thus, sensor-to-image encoding
resulted in two classes of image: one corresponding to the
normal sensor signal and the other corresponding to the drift
fault signal. In the next stage, the GAN was trained using
only the images obtained for the non-faulty signal. Once the
GAN is successfully trained, it can generate images similar
to those seen during the training period. During the training
process, the discriminator is supposed to learn the features
of real training images to successfully distinguish them from
the images produced by the generator in the initial phase of
the training. A trained discriminator is expected to distinguish
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an image that differs from the images it saw while training.
Now, an image that corresponds to some type of fault signal
is not the same as the image from the normal condition, and
because the trained discriminator knows the pattern of a non-
fault image, it will discriminate images from a drift fault. In
this way, the GAN can be used for detecting faults in sensor
signals. Therefore, in our proposed method a DT inspired
model of a humidity sensor is realized based on the GAN
that replicates the normal state of the sensor, and the digital
version is in turn used to detect anomalies in the sensor signals.

A. GAN Implementation
Although the concept of the GAN is exciting, and promises

many novel applications, it is very difficult to train a GAN
model. In some cases, loss of the generator and discriminator
may exhibit an oscillating pattern, rather than converging
to some value over the course of the training. Due to this
oscillating loss problem, the model parameters do not stabilize,
and the model does not provide good output. Mode collapse
is another common challenge in GAN training, which occurs
when the generator settles itself into generating a small number
of similar outputs. In this case, the generator might make
the discriminator believe the output is real output, but the
generator is not able to generate a real data distribution,
which is more diverse and complex, rather than the limited
set it generates when mode collapse occurs. Additionally, the
vanishing gradient problem arises when the discriminator is
performing too perfectly, which causes the generator’s gradient
to diminish, which in turns prevents it from learning.

To provide stable GAN training, several approaches were
proposed over the past few years. In our work, we utilized
the Wasserstein GAN-Gradient Penalty (WGAN-GP) [47],
which proved efficient in many complex GAN applications.
The WGAN-GP is an intelligent modification of the original
Wasserstein GAN (WGAN) first proposed in [48]. The WGAN
is different from the standard GAN from several aspects; first,
the WGAN uses a different loss function called the Wasser-
stein loss, which is derived from the Earth Mover’s Distance
metric, and can resolve the vanishing gradient problem. The
discriminator and the generator loss function proposed in [48]
are presented in equations (4) and (5).

∇w
1

m

m∑
i=1

[
f
(
x(i)

)
− f

(
G
(
z(i)

))]
(4)

∇θ
1

m

m∑
i=1

f
(
G
(
z(i)

))
(5)

In the WGAN, generator parameters are updated after
training the discriminator multiple times, which is not the case
for a standard GAN, and while training the WGAN, the real
data are labeled as 1 and the fake data are labeled as -1. Finally,
unlike the standard GAN, there is no sigmoid activation used
in the final layer of the WGAN discriminator. In the absence
of sigmoid activation, the output of the WGAN discriminator
ranges between −∞ to ∞ rather than the usual 0 to 1 range.
This large loss value is not desirable in a neural network, and
to trace this unsettling loss, the authors in [48] introduced

the concept of weight clipping the discriminator network to
enforce the Lipschitz constraint. Although introducing weight
clipping improved training stability and performance from the
WGAN, the authors in [48] mentioned that this approach is not
a good way, because the gradient value of the discriminator is
changed and without accurate gradients, the generator weights
cannot be updated effectively. This issue with the WGAN was
addressed in [47] by introducing the gradient penalty into the
discriminator loss function. In spite of clipping the weights
of the discriminator, the WGAN-GP approach penalizes the
discriminator if the gradient norm deviates from 1. The mod-
ified loss value extended with the gradient penalty is defined
as follows:

L = E
x̃∼Pg

[D (x̃)]− E
x̃∼Pr

[D (x)]︸ ︷︷ ︸
Original critic loss

+

λ E
x̂∼Px̂

[
(∥∇x̂D (x̂)∥2 − 1)

2
]

︸ ︷︷ ︸
Gradient penalty

(6)

Here, x̂ is sampled from x̃ and x with t− uniformly sampled
between 0 to 1. The inclusion of this penalty term improved
the quality of the generated samples by the GAN and it showed
more stability while converging as compared to the DCGAN
[47].

Because the WGAN-GP proved superior to the traditional
GAN and WGAN, we used this approach in our work to
realize the GAN-based DT inspired model of the sensor.
The generator and discriminator both have a DCGAN-like
architecture, and each consists of five convolutional layers.
We adopted the training approach described in the original
paper. Table II describes the algorithm followed to implement
the WGAN-GP model.

TABLE II: WGAN-GP implementation

Initialize:The gradient penalty coefficient λ, the number
of critic, ncritic, batch size m, optimizer hyperparameters
(α, β1, β2),Discriminator parameters w0, generator parameters θ0
while θ has not converge do

for i = 1,...,ncritic do
for j=1,...,m do

Sample real data x ∼ Pr , latent variable z ∼ p (z),
a random number ϵ ∼ U [0, 1] .
x̃← Gθ (z)
x̂← ϵx+ (1− ϵ) x̃

L(i)←Dw(x̃)−Dw(x)+λ(∥∇x̂Dw(x̂)∥2−1)2

end for
w ← Adam

(
∇w

1
m

∑m
i=1 L

(i), w, α, β1, β2

)
end for
Sample a batch of latent variables

{
z(i)

}m

i=1
∼ p (z)

θ ← Adam
(
∇θ

1
m

∑m
i=1−Dw (Gθ (z)) , θ, α, β1, β2

)
end while

The values of gradient penalty coefficient λ and learning
rate α is set to 10 and 0.0001 as used in the original paper.
The batch size m is selected as 32 and the number of critics
ncritic is chosen as 3. The optimizer hyperparameters β1, β2

both set to 0.5

III. DATA PREPARATION

For implementing machine learning or deep learning-based
models, it is desirable to use actual data from real physi-
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Fig. 2: WSN network architecture for data collection.

cal scenarios. For sensor fault analysis task, a dataset that
consists of both non-faulty and fault-contaminated sensor
measurements would be appropriate for model training and
testing. However, there is no open dataset that provides sensor
recordings affected by sensor faults. Therefore, to create such
a dataset we synthetically injected faults into healthy sensor
readings, this approach of artificial fault insertion is adopted
by several researchers [32], [49]–[51].

The dataset we used for healthy sensor recordings is a
publicly available wireless sensor network dataset that contains
temperature and humidity measurements [52]. TinyOS-based
motes collected the temperature and humidity readings from
the vicinity of the sensors. The authors designed two network
scenarios for collecting data (a single-hop network and a
multi-hop network), and data were collected from both indoor
and outdoor environments. In the single-hop network, two
indoor sensors and two outdoor sensors measured temperature
and humidity at the same time, transmitting readings to a
base station. For the multi-hop network, the sensor nodes
were placed so they covered a large area resulting in a large
WSN. However, due to the limited transmission distances
of individual sensor nodes, intermediate routers were used
between the nodes and the base station, which then transmitted
data to a base station as depicted in in Fig. 2

Like the single-hop arrangement, four sensors were used in
the multi-hop network. To control data traffic, each sensor
created a packet of 10 temperature and humidity readings
to send to the base station. The data were collected for six
hours at a sampling interval of five seconds. During the data
collection process, an anomaly was induced in the signals by
using a water kettle near one indoor sensor and near one out-
door sensor to artificially change the temperature and humidity
readings. However, in our work we carefully discarded the
anomalous instances. In this work, we considered the multi-
hop scenario but took only a single sensor into account. In
this case, few of the measurements made by the sensor could
be subjected to faults, sometimes referred to as first-order
anomalies [52]. We propose implementing the fault detection
and analysis task at the intermediate router, as depicted in Fig.
3. This will help the base station to discard faulty observations
and to refrain from making any decisions based on the faulty
data.

The steps of creating additional samples from the reading
of a sensor is listed in Table III. As the first step for creating
the dataset, the sensor signal is segmented to create a number

Fig. 3: Overall system structure.

TABLE III: Additional sample creation

N : length of original data stream, D
wn: window length
i: sample index
set i = 0
while i× wn ≤ N do:

Obtain the ith segment of no fault signal,
Si = D[i× wn : i× wn + wn]
i = i+ 1

end while
Increase the number of samples to M
for j = 0 : M do:

Choose a random instance from Si

Add zero mean, low variance random signal with Si to create
additional samples:
Sj = Si +Hn(0, µ)

end for

Fig. 4: Additional sample generation.

of samples. The samples created through this segmentation
process is not enough for deep learning models. Therefore,
more additional samples are created by adding zero-mean
and low-variance signals with the segmented sensor signal
instances. The concept is depicted in Fig. 4

A. Synthetic Fault Injection

After generating samples through the segmentation process
mentioned above, sensor faults were artificially injected into
the original samples. Here, synthetic fault injection process for
common sensor faults are discussed briefly.

1) Drift fault: The drift fault is one of the common faults
in sensors, where the sensor measurement changes in a linear
fashion over time. This deviation in measurements could occur

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3272908

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Edinburgh Napier University. Downloaded on May 11,2023 at 03:55:38 UTC from IEEE Xplore.  Restrictions apply. 



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 7

due to external factors or changes in circuit parameters. Such
faulty signals can be synthetically generated by adding a
linearly increasing bias signal to a healthy sensor signal. A
sensor signal of length N that is affected by a drift fault,
Sdrift(N), can be mathematically expressed with (7), where
Shealthy(N) is the uncontaminated signal, HN (0, µ) denotes
a zero-mean noise signal having a variance of µ, and βN is
the drift parameter that increases linearly over time:

Sdrift(N) = Shealthy(N) +HN (0, µ) + βN (7)

Here, βN is the drift that increases linearly with time and
that can be realized from β = α×N where α represents the
amount of drift, and N is the index of the data point.

2) Spike fault: In this case, periodic high-amplitude spikes
are observed in the sensor signal. This fault could occur due
to defects in the sensor hardware or battery, from an external
environmental phenomenon, or from defects in communication
links. Mathematically, this fault can be defined as

SN
spike = SN

healthy + δN ,

δN =

{
v, N = i× τ, i = (1, 2, . . . . . .), τ = constant

0, otherwise

(8)

3) Bias fault: The sensor signal is said to be contaminated
with a bias fault when the sensor output shifts to a value higher
than a normal value. This fault is generated synthetically by
adding a constant bias term to the normal readings of the
sensor, defined as follows:

SN
bias = SN

healthy + v, v = constant (9)

4) Stuck fault: If the sensor readings show zero variation for
a considerably larger number of samples than expected, it is
assumed that the sensor data are erratic, called a stuck fault.
This could happen from clipping of signals, due to hardware,
or from battery malfunctions:

SN
stuck = v, v = constant (10)

This fault is generated synthetically by fixing a healthy sensor
signal to some offset value after some random period of time.

5) Precision fault: This fault is present when the variance
increases above that of the normal scenario. To obtain preci-
sion fault samples, a random signal with a variance larger than
a healthy signal is added to the original measurements:

SN
precision = SN

healthy + N̈ (µ = 0, σ2 = 0, σ2 ≫ σ2
healthy

(11)
A visual representation of common sensor faults is pre-

sented in Fig. 5
Some observations following the data generation process

as discussed are presented in Fig. 6(a). In Fig. 6(b), the
state of the sensor data after a synthetic drift fault injection
is displayed. It has already been stated that only the drift
fault was considered in this work, and therefore, we can see
from the figure that the amplitude of the drift-injected signal
increased over time. The fault initiation starts from the middle
of the measurement, and at the beginning the severity of the
fault is negligible; however, the drift increases over time,

Fig. 5: Common sensor faults.

(a) Segmented samples.

(b) Synthetic drift fault.

Fig. 6: Data Preparation.

and at the end of the measurement window, the difference
between a no-fault sensor signal and a drift-injected signal
is at a maximum. The drift parameter was set to 0.05 for
this experiment. In the later stage, these faulty and no-fault
data were converted into images using the GAF encoding
technique.

B. Gramian Angular Field Imaging for Sensor Data

The GAF image encoding technique can be segmented into
three steps: rescaling the time series observation, converting
the rescaled time series into polar coordinates, and finally,
constructing a Gramian-like matrix using the angle values
from the polar coordinates. The steps are discussed below with
detailed explanations.

To begin the encoding process, a time series, Xn =
{x1, x2, x3, . . . . . . . . . xn}, consisting of n samples or obser-
vations is rescaled using the equation (12):

x̃i = 2
xi −min (Xn)

max (Xn)−min(Xn)
− 1 (12)
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Fig. 7: Non-faulty signal instances converted to GAF images.

Fig. 8: Drift-fault signals converted to GAF images.

This will rescale Xn to the range -1 to 1. This rescaling is
necessary because in the next step x̃i is remapped to a polar
coordinate system with corresponding values for the angle and
radius. The angle and the radius for each x̃i are defined as{

ϕi = arccos(x̃i)

ri =
ti
n

(13)

The value of x̃i is within the range -1 to 1, and thus, the
value of ϕi lies between angles 0 and π. Here, ri represents
the corresponding radius of x̃i in the polar coordinate system,
which is computed by dividing the timestamp by the length
of the time series, n. According to the authors of [53],
this transformation is bijective and preserves the temporal
relations. The values of angle ϕi are utilized to create a
Gramian-like matrix as defined in (14):

GAF =


cos(ϕ1 + ϕ1) cos(ϕ1 + ϕ2) · · · cos(ϕ1 + ϕn)
cos(ϕ2 + ϕ1) cos(ϕ2 + ϕ2) · · · cos(ϕ2 + ϕn)

...
...

. . .
...

cos(ϕn + ϕ1) cos(ϕn + ϕ2) · · · cos(ϕn + ϕn)


(14)

GAF = X̃ ′ · X̃ −
√
I − X̃2

′

·
√
I − X̃2 (15)

In (15) X̃ ′ represents the transpose of the rescaled time
series, and I corresponds to a unit row vector of length n.
Some instances of GAF-encoded images of non-faulty sensor
signals and drift-fault-injected signals are shown in Fig. 7 and
Fig. 8, respectively.

IV. RESULTS AND DISCUSSION

In this section, performance of the digital sensor and fault
detection are discussed. First, the performance of the GAN as
a digital representation of the sensor is discussed, and then,
the fault detection capability is explored. Commonly used
performance metrics for classification problem as: accuracy,
F1-score, precision, recall, and confusion matrix are calculated
to interpret the fault detection performance.

A confusion matrix is a tabular representation generally
used to evaluate the performance in a classification task. The
matrix enlists the predicted labels by the classifier and the
actual labels of the samples. In a binary classification scenario,
there are four entries in the confusion matrix as:

True Positive (TP): Instances of positive class that are
correctly predicted (predicted as positive class)

True Negative (TN): Instances of negative class that are
correctly predicted (predicted as negative class)

False Positive (FP): Instances of the negative class that are
incorrectly predicted (predicted as positive)

False Negative (FN): Instances of the positive class that are
incorrectly predicted (predicted as negative)

Confusion matrix is useful because it provides a visual
representation of the models performance and other common
performance metrices such as precision, recall, F1 score, and
accuracy can be derived from the entries of the matrix using
the following expressions:

Accuracy =
TN + TP

TN + FP + TP + FN
(16)

Precision =
TP

FP + TP
(17)

Recall =
TP

FN + TP
(18)

F1− score =
TP

TP + 1
2 (FP + FN)

(19)

A. The WGAN-GP as a Virtual Sensor

As mentioned in the proposed methodology segment, the
sensor signal is converted into an image for training, and
therefore, the performance of the DT inspired GAN model will
be assessed by observing the similarity between the images
generated by the GAN and the corresponding images seen
during training. Summaries of the generator and discriminator
segments of the GAN are presented in Table IV and Table V,
respectively.

The model was trained for 200 epochs, and the losses
for both the generator and the discriminator networks are
presented in Fig. 9.

From the loss plots in Fig. 9, we can see that for both
cases the loss converges to values around 20. The generator
took a lot of time to converge, the loss decreased with a
constant slope until 400 training steps and then stabilized. The
discriminator loss converged earlier than the discriminator at
around the 100th step. For both plots, although there are local
variances in the loss values, the global pattern did not vary by
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TABLE IV: Summary of the generator segment

Layer(type) Output shape Parameters
Input layer [(None,100)] 0
Dense layer (None, 8192) 819200
Reshape (None, 4, 4, 512) 0
Conv 2D Transpose layer [(None,4,4,512)] 4194304
Batch Normalization layer [(None,4,4,512)] 2048
Leaky ReLU (None,4,4,512) 0
Conv 2D Transpose layer (None, 8, 8, 256) 2097152
Batch Normalization layer (None, 8, 8, 256) 1024
Leaky ReLU (None, 8, 8, 256) 0
Conv 2D Transpose layer (None, 16, 16, 128) 524288
Batch Normalization layer (None, 16, 16, 128) 512
Leaky ReLU (None, 16, 16, 128) 0
Conv 2D Transpose layer (None, 32, 32, 64) 131072
Batch Normalization layer (None, 32, 32, 64) 256
Leaky ReLU (None, 32, 32, 64) 0
Conv 2D Transpose layer (None, 64, 64, 3) 3072
Total params: 7,772,928
Trainable params: 7,771,008
Non-trainable params: 1,920

TABLE V: Summary of the discriminator segment

Layer(type) Output shape Parameters
Input Layer [(None, 64, 64, 3)] 0
Conv 2D layer (None, 32, 32, 64) 3072
Leaky ReLU (None, 32, 32, 64) 0
Conv 2D layer (None, 16, 16, 128) 131072
Leaky ReLU (None, 16, 16, 128) 0
Conv 2D layer (None, 8, 8, 256) 524288
Leaky ReLU (None, 8, 8, 256) 0
Conv 2D layer (None, 4, 4, 512) 2097152
Leaky ReLU (None, 4, 4, 512) 0
Conv 2D layer (None, 4, 4, 1) 8192
Flatten (None, 16) 0
Dense (None, 1) 17
Total params: 2,763,793
Trainable params: 2,763,793
Non-trainable params: 0

much. The plots are shown for 1000 iterations to observe that
if there are any overfitting issues. This is a good indication that
the GAN model was trained well and can generate plausible
images from random vectors that are similar to the training set.
Fig. 10 depicts some sample images generated by the GAN
model after completion of the training.

The images shown in Fig. 10 closely resemble the images
of the training set created through GAF encoding of the sensor
signals. Since the GAN model is capable of generating images
similar to normal data from the sensor, we conclude that the
GAN model can be considered a digital representation of the
sensor in its normal state.

B. Sensor fault detection

The discriminator of the GAN will perform sensor fault
detection because it learned the pattern of a non-faulty signal
in the training stage. Therefore, when any image is not similar
to the non-faulty signal, the discriminator output will be
different. To observe the response of a trained discriminator,
a total of 2000 images, half of them corresponding to non-
faulty signals and half corresponding to a drift fault signal,
were given as input to the discriminator. The response of the
discriminator is presented in Fig. 11. The different responses
of the discriminator to faulty and non-faulty samples are

(a) Generator loss.

(b) Discriminator loss.

Fig. 9: Generator and discriminator losses of the GAN during
training.

Fig. 10: Sample images generated from the GAN model.

evident. The model was trained several times, and in each case,
a similar trend was observed. In Fig. 11, the best response
distribution is where a minimum overlap between classes
occurred. In some experiments, two classes overlap to some
extent, but with a careful choice for the decision threshold it is
possible to achieve better accuracy. For this best case scenario,
the discriminator output was more negative for faulty signal
instances; for non-faulty samples, the discriminator output fell
into the range -33 to -25. However, there were about 30 faulty
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Fig. 11: Discriminator response for non-fault and drift fault
signal.

Fig. 12: Detection accuracy for various threshold values.

instances for which the discriminator output was around -28,
which is within the range of non-faulty instances. Now, a
threshold for discriminator output is required for deciding fault
occurrences. A graph of fault detection accuracy with respect
to different discriminator threshold values is plotted in Fig.
12. The graph shows that detection accuracy decreases if the
threshold is less than -35 or greater than -34. The maximum
detection accuracy was attained when the decision threshold
was between -34 to -35 (98.7%). Thus, if the threshold is
set within the range -34 to -35 , the discriminator can detect
faults with high accuracy. Common performance metrics are
depicted in Fig. 13. The confusion matrix shows that, in the
current scenario, the fault detection system can identify almost
all no-fault instances, but out of 1000 drift fault samples, it
failed to detect 26 of them. The precision, recall, and F1-score
values are also very consistent.

Our proposed approach involves training a GAN model with
only a single class of image for non-faulty signals. A similar
idea of using a single class for abnormality detection was
developed in [54], where the ResNet18 architecture was used
to compute features. Later, the computed features were used
to train a machine learning model. In the initial stage, this
approach only used normal road surface images as input to
the ResNet18 architecture. However, the final fully connected
layer was omitted, which allowed use of the values obtained
from the final pooling layer as features. Following a similar
process, features for images that represented road cracks were
also extracted. In the training stage, the extracted features

(a) Confusion matrix.

(b) Performance metrics.

Fig. 13: Summary performance.

from normal images were used to train a support vector
machine. Because the classifier was trained on normal images,
in the final stage, the classifier was provided with features for
both normal and abnormal images. Because the classifier was
trained on only one class, it was expected to provide different
values for images it did not use during the training stage. For
classification of crack and non-crack images, a threshold was
selected and (based on the threshold) decisions were made by
comparing the classifier value with the threshold. We used
a GAF-image dataset of no-fault and drift-fault images to
observe sensor fault detection performance. The ResNet18-
SVM-based model was trained with 2000 no-fault images, and
later, 1200 images were used for testing with the one class. The
performance is summarized in the confusion matrix presented
in Fig. 14.

TABLE VI: Comparison between the two approaches

Model Accuracy Precision Recall F1-Score
ResNet18-SVM [54] 0.945 0.921 0.973 0.947
GAN-based model
(Proposed)

0.987 0.975 0.999 0.987

If we observe the confusion matrixes in Fig. 13 and Fig.
14, we can see that the number of misclassified samples was
a little higher in the ResNet18-SVM-based model. Table VI
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Fig. 14: Confusion matrix for the ResNet18-SVM classifier.

provides a comparison of the common classification metrics
for the two models, and the numbers indicate that the accuracy
of the GAN-based fault classifier was 4.2% higher than the
ResNet18-SVM approach.

To support the robustness of the proposed approach, we
checked the fault detection performance by the model for
two other datasets. The datasets considered are the Electricity
Transformer Dataset(ETDataset) [55] and the TON IoT dataset
from University of New South Wales (UNSW) used in [56].
The ETDataset consists the oil temperature of a transformer
which is significant to indicate the transformer condition
and this signal is considered here. On the other hand the
TON IoT dataset contains a collection of sensor signal and we
considered a temperature sensor signal collected by a Modbus
sensor deployed for environment monitoring. We injected fault
following the similar approach as discussed in data preparation
section and encoded the timeseries data into images. The same
GAN architecture was trained and then implemented for fault
detectin on a set of 2000 images. The discriminator responses
for the two datasets are provided in Fig. 15 and Fig. 16. From
the discriminator responses it is evident that the discriminator
response are largely different for the no-fault and fault class
samples. For the discriminator response corresponding to the
ETDataset maximum accuracy of 92.7% is attained for a
threshold of -7.1 and in case of the discriminator response for
TON IoT dataset the maximum accuracy of 96.7%is obtained
for a threshold value of 15.5. The corresponding confusion
matrices are presented in Fig. 17 and Fig. 18. Other perfor-
mance parameters are listed in Table VII. The parameters in
Table VII indicates that the proposed model delivers consistent
performance across different datasets.

TABLE VII: Performance of the proposed method on different
datasets

Dataset Accuracy Precision Recall F1-Score
WSN Dataset 0.987 0.975 0.999 0.987
ETDataset 0.927 0.937 0.915 0.926
TON IoT Dataset 0.967 0.936 0.915 0.926

Our proposed approach differs from most of the existing
works on sensor fault detection in the aspect that, it uses

Fig. 15: Discriminator response for ETDataset temperature
sensor signal.

Fig. 16: Discriminator response for TON IoT temperature
sensor signal .

Fig. 17: Confusion matrix for ETDataset temperature sensor
signal.

only single class i.e., the normal state data from the sensor
while the major existing works considered both the fault and
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Fig. 18: Confusion matrix for TON IoT temperature sensor
signal.

normal state data. However, for the shake of comparison we
consider two previous works on same dataset. In [32] au-
thors investigated extremely randomized tree for several fault
classification. In their work they used F1-score to compare
individual fault detection performance. They achieved an F1-
score of 98 for drift fault while using the same dataset. In our
work we also obtained an F1-score of 99. The same work also
implements MLP, DT, SVM, and RF while reporting F1-score
values of 61, 99.2, 99.4 and 99 respectively. Our proposed
approach shows higher value of F1-score than the MLP and is
comparable with the other models. Similar performance is also
reported in [49] for the same parameter where the F1-score is
found as 98 for drift fault which is again marginally smaller
than our proposed model. However, it must be considered that
we achieve the similar performance while using only a single
class samples i.e., the normal state data from the sensor.

V. CONCLUSION

In this work, a different data-driven fault detection approach
inspired from the concept of DT for a humidity sensor was
presented and its performance discussed. Fault detection was
performed using a virtual representation of the physical sensor
that was created by the newest type of deep neural net-
work, famously known as the Generative Adversarial Network.
Specifically, a Deep Convolutional Generative Adversarial
Network architecture was used to create the virtual sensor.
Considering the fact that major research work used the GAN
architecture for image data extensively, in our work, we also
converted the times series sensor data to images using Gramian
Angular Field encoding. Prior to image encoding, a fault
dataset was created by injecting synthetic faults into normal
sensor signals. The GAN model was trained with images
created from non-faulty sensor signals. After successful train-
ing, we observed that the model is capable of generating
samples from a random noise vector, and thus, a GAN-based
functional digital representation of the sensor was created.
In the fault detection stage, the discriminator network of the
GAN model was utilized by selecting the decision threshold

for the discriminator. In a few repeated experiments, we
observed a minimum fault detection accuracy of 92.55% and
a maximum of 98.7%. Comparison with similar approaches
that involve a ResNet architecture with an SVM showed that
the GAN-based approach could provide better classification
of our GAF-image dataset of sensor faults. The performance
of the proposed method is found to be consistent across three
different datasets which is an indication of robustness of the
model. The overall performance assessment indicates that this
digital-twin inspired GAN-based approach can be considered
a new method for sensor fault detection even only the normal
condition data is used during the training process. Although
only one type of sensor fault was considered in our work, the
efficacy of this approach is promising. We plan to investigate
the performance of this method with more fault types and
greater complexities.
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Rajjaf, P. Berrı́os, R. Morais, and A. Pérez-Pastor, “Irriman platform:
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